![]() 321 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() 231 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() 132 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |||
![]() Rectified 321 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() birectified 321 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||
![]() Rectified 231 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() Rectified 132 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||||
Orthogonal projections in E7Coxeter plane |
---|
In 7-dimensionalgeometry,231 is auniform polytope, constructed from theE7 group.
ItsCoxeter symbol is231, describing its bifurcatingCoxeter-Dynkin diagram, with a single ring on the end of the 2-node branch.
Therectified 231 is constructed by points at the mid-edges of the231.
These polytopes are part of a family of 127 (or 27−1) convexuniform polytopes in 7-dimensions, made ofuniform polytope facets andvertex figures, defined by all permutations of rings in thisCoxeter-Dynkin diagram:.
Gosset 231 polytope | |
---|---|
Type | Uniform 7-polytope |
Family | 2k1 polytope |
Schläfli symbol | {3,3,33,1} |
Coxeter symbol | 231 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | 632: 56221 ![]() 576{35} ![]() |
5-faces | 4788: 756211 ![]() 4032{34} ![]() |
4-faces | 16128: 4032201 ![]() 12096{33} ![]() |
Cells | 20160{32}![]() |
Faces | 10080{3}![]() |
Edges | 2016 |
Vertices | 126 |
Vertex figure | 131![]() |
Petrie polygon | Octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
The231 is composed of 126vertices, 2016edges, 10080faces (Triangles), 20160cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756pentacrosses, and 40325-simplexes), 632 6-faces (5766-simplexes and 56221). Itsvertex figure is a6-demicube.Its 126 vertices represent the root vectors of thesimple Lie groupE7.
This polytope is thevertex figure for auniform tessellation of 7-dimensional space,331.
It is created by aWythoff construction upon a set of 7hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from itsCoxeter-Dynkin diagram,.
Removing the node on the short branch leaves the6-simplex. There are 576 of these facets. These facets are centered on the locations of the vertices of the321 polytope,.
Removing the node on the end of the 3-length branch leaves the221. There are 56 of these facets. These facets are centered on the locations of the vertices of the132 polytope,.
Thevertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the6-demicube, 131,.
Seen in aconfiguration matrix, the element counts can be derived by mirror removal and ratios ofCoxeter group orders.[3]
E7 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | k-figures | notes | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D6 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ( ) | f0 | 126 | 32 | 240 | 640 | 160 | 480 | 60 | 192 | 12 | 32 | 6-demicube | E7/D6 = 72x8!/32/6! = 126 |
A5A1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | { } | f1 | 2 | 2016 | 15 | 60 | 20 | 60 | 15 | 30 | 6 | 6 | rectified 5-simplex | E7/A5A1 = 72x8!/6!/2 = 2016 |
A3A2A1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3} | f2 | 3 | 3 | 10080 | 8 | 4 | 12 | 6 | 8 | 4 | 2 | tetrahedral prism | E7/A3A2A1 = 72x8!/4!/3!/2 = 10080 |
A3A2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3} | f3 | 4 | 6 | 4 | 20160 | 1 | 3 | 3 | 3 | 3 | 1 | tetrahedron | E7/A3A2 = 72x8!/4!/3! = 20160 |
A4A2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3} | f4 | 5 | 10 | 10 | 5 | 4032 | * | 3 | 0 | 3 | 0 | {3} | E7/A4A2 = 72x8!/5!/3! = 4032 |
A4A1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 5 | 10 | 10 | 5 | * | 12096 | 1 | 2 | 2 | 1 | Isosceles triangle | E7/A4A1 = 72x8!/5!/2 = 12096 | ||
D5A1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3,4} | f5 | 10 | 40 | 80 | 80 | 16 | 16 | 756 | * | 2 | 0 | { } | E7/D5A1 = 72x8!/32/5! = 756 |
A5 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3,3} | 6 | 15 | 20 | 15 | 0 | 6 | * | 4032 | 1 | 1 | E7/A5 = 72x8!/6! = 72*8*7 = 4032 | ||
E6 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,32,1} | f6 | 27 | 216 | 720 | 1080 | 216 | 432 | 27 | 72 | 56 | * | ( ) | E7/E6 = 72x8!/72x6! = 8*7 = 56 |
A6 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | {3,3,3,3,3} | 7 | 21 | 35 | 35 | 0 | 21 | 0 | 7 | * | 576 | E7/A6 = 72x8!/7! = 72×8 = 576 |
E7 | E6 / F4 | B6 / A6 |
---|---|---|
![]() [18] | ![]() [12] | ![]() [7x2] |
A5 | D7 / B6 | D6 / B5 |
![]() [6] | ![]() [12/2] | ![]() [10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
![]() [8] | ![]() [6] | ![]() [4] |
2k1 figures inn dimensions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Finite | Euclidean | Hyperbolic | ||||||||
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Coxeter group | E3=A2A1 | E4=A4 | E5=D5 | E6 | E7 | E8 | E9 = = E8+ | E10 = = E8++ | |||
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |||
Symmetry | [3−1,2,1] | [30,2,1] | [[31,2,1]] | [32,2,1] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Order | 12 | 120 | 384 | 51,840 | 2,903,040 | 696,729,600 | ∞ | ||||
Graph | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | - | - | |||
Name | 2−1,1 | 201 | 211 | 221 | 231 | 241 | 251 | 261 |
Rectified 231 polytope | |
---|---|
Type | Uniform 7-polytope |
Family | 2k1 polytope |
Schläfli symbol | {3,3,33,1} |
Coxeter symbol | t1(231) |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6-faces | 758 |
5-faces | 10332 |
4-faces | 47880 |
Cells | 100800 |
Faces | 90720 |
Edges | 30240 |
Vertices | 2016 |
Vertex figure | 6-demicube |
Petrie polygon | Octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
Therectified 231 is arectification of the 231 polytope, creating new vertices on the center of edge of the 231.
It is created by aWythoff construction upon a set of 7hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from itsCoxeter-Dynkin diagram,.
Removing the node on the short branch leaves therectified 6-simplex,.
Removing the node on the end of the 2-length branch leaves the,6-demicube,.
Removing the node on the end of the 3-length branch leaves therectified 221,.
Thevertex figure is determined by removing the ringed node and ringing the neighboring node.
E7 | E6 / F4 | B6 / A6 |
---|---|---|
![]() [18] | ![]() [12] | ![]() [7x2] |
A5 | D7 / B6 | D6 / B5 |
![]() [6] | ![]() [12/2] | ![]() [10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
![]() [8] | ![]() [6] | ![]() [4] |