Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2019 in reptile paleontology

From Wikipedia, the free encyclopedia

Overview of the events of 2019 in reptile paleontology
List of years in reptile paleontology
In arthropod paleontology
2016
2017
2018
2019
2020
2021
2022
In archosaur paleontology
2016
2017
2018
2019
2020
2021
2022
In mammal paleontology
2016
2017
2018
2019
2020
2021
2022
In paleoichthyology
2016
2017
2018
2019
2020
2021
2022

Thislist offossilreptiles described in 2019 is a list of newtaxa of fossil reptiles that weredescribed during the year 2019, as well as other significant discoveries and events related to reptilepaleontology that occurred in 2019.

Lizards and snakes

[edit]

Research

[edit]
  • A study aiming to test which ecological and developmental traits have influenced skull evolution in thesquamate reptiles, based on data from extant and extinct taxa, is published by Watanabeet al. (2019).[1]
  • A new assemblage of lizard tracks, representing the largest such assemblage yet reported from theCretaceous, is described from theLower CretaceousJinju Formation (South Korea) by Kimet al. (2019), who name a newichnotaxonNeosauroides innovatus.[2]
  • New specimen ofYabeinosaurus robustus, preserving traces of integument and abdominal contents, is described by Xinget al. (2019).[3]
  • Jaw elements ofskinks with an anatomy identical toHeremites vittatus are described from the lateMiocene locality Solnechnodolsk (Russia) by Čerňanský & Syromyatnikova (2019), representing firstNeogene record of the cladeMabuyidae reported so far.[4]
  • A juvenile specimen ofEolacerta robusta is described from theEoceneMessel pit (Germany) by Čerňanský & Smith (2019).[5]
  • Description of lateMiocenelacertid fossils from the Solnechnodolsk locality (Russia), belonging to a relative of extantBalkan green lizard, is published by Čerňanský & Syromyatnikova (2019).[6]
  • A study on the diet, habitat and timing and cause of extinction ofGallotia goliath is published by Crowleyet al. (2019).[7]
  • An almost complete and articulated fossil skull of theLa Palma giant lizard is described from thePleistocene of theLa Palma island (Canary Islands) by Cruzado-Caballeroet al. (2019), who also study the phylogenetic relationships of extant and fossil members of the genusGallotia.[8]
  • The first fossil of afringe-toed lizard reported so far is described from theMioceneDove Spring Formation (California,United States) by Scarpetta (2019).[9]
  • A study on the taxonomy and evolutionary history ofglyptosaurineanguids is published by Sullivan (2019).[10]
  • Fossils ofPeltosaurus granulosus are described from the middleOligoceneMonroe Creek and upperSharps formations ofSharps Corner, South Dakota by Scarpetta (2019), representing the youngest known record of glyptosaurine lizards reported so far.[11]
  • Fossilanguine material is described from the lowerMiocene locality Ulm – Westtangente (Germany) for the first time by Klembara, Hain & Čerňanský (2019).[12]
  • Bochatonet al. (2019) present equations producing estimations of size and weight ofmonitor lizards on the basis of measurements of their bones, and use them to determine body size and weight of Late Pleistocene monitor lizards known from remains from the Doi Pha Kan rock shelter (Thailand).[13]
  • A study evaluating the fossil record ofmosasaurs in terms of fossil completeness as a measure of fossil quality is published by Driscollet al. (2019).[14]
  • A study on the morphology of the marginal teeth ofMosasaurus lemonnieri, and on their implications for the distinguishability of this species on the basis of fossil teeth, is published online by Madzia (2019).[15]
  • A skull of a member of the genusMosasaurus is reported from the upperMaastrichtianLopez de Bertodano Formation (Seymour Island,Antarctica) by Ruizet al. (2019).[16]
  • A study on the anatomy of the inner ear ofPlatecarpus is published by Yi &Norell (2019).[17]
  • An isolated tooth of atylosaurine mosasaur is described from theTuronian of the Apennine Carbonate Platform by Romanoet al. (2019), representing the first tylosaurine fromItaly and the southernmost occurrence of a tylosaurine in the northern margin of the MediterraneanTethys.[18]
  • A study on the phylogenetic relationships of tylosaurine mosasaurs is published by Jiménez-Huidobro & Caldwell (2019).[19]
  • A review of the taxonomic history ofClidastes liodontus and "Clidastes moorevillensis" is published by Lively (2019).[20]
  • A juvenile mosasaur specimen affected byinfectious arthritis andspondyloarthropathy is described from the upperMaastrichtian ofAntarctica by Taleviet al. (2019), representing the first report of a skeletal pathology of a mosasaur from theSouthern Hemisphere.[21]
  • A study on the spatial and temporal distribution and evolutionary history ofdolichosaurs is published by Campbell Mekarski, Pierce & Caldwell (2019).[22]
  • A study on the evolution,homology and reduction of thepelvic elements and hindlimbs of snakes is published online by Palciet al. (2019).[23]
  • A study on the evolution of vertebral intercentrum system of snakes, as indicated by data from specimens ofNajash rionegrina andDinilysia patagonica, is published by Garberoglioet al. (2019).[24]
  • New specimen ofNajash rionegrina, consisting of a partial skull and closely associated vertebrae, is described by Garberoglioet al. (2019).[25]
  • Description of new fossil material (including eight skulls) ofNajash rionegrina, and a study on the implications of these fossils for the knowledge of the evolution of the snake body plan, is published by Garberoglioet al. (2019).[26]
  • A study on the vertebral microanatomy of extinct aquatic snakes belonging to the familiesNigerophiidae,Palaeophiidae andRusselophiidae is published by Houssayeet al. (2019).[27]
  • A study on the phylogenetic relationship and evolutionary history ofcaenophidian snakes, as indicated by data from extant taxa and fossil record, is published by Zaheret al. (2019).[28]
  • Revision ofdipsadid snake fossils fromGuadeloupe Islands is published by Bochatonet al. (2019).[29]
  • Snake fauna from theMiocene of the Baikadam and Malyi Kalkaman 1 and 2 localities in northeasternKazakhstan, representing the best-documented Miocene snake assemblage in Central Asia, is described by Ivanovet al. (2019).[30]
  • Description of fossil snake vertebrae from the latePleistocene fissure deposits of theMinatogawa Man site (Okinawa Island,Japan) is published by Ikedaet al. (2019).[31]
  • Description of Pleistocene snake fossils from the Shanyangzhai Cave (Hebei,China) is published online by Chenet al. (2019).[32]
  • Description of fossil material of lizards from the Oligocene and Miocene of theValley of the Lakes (centralMongolia) is published by Čerňanský & Augé (2019).[33]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Chalcides augei[34]

Sp. nov

Valid

Čerňanskýet al.

Early middleMiocene

 Russia

Askink, a species ofChalcides. Announced in 2019; the final version of the article naming it was published in 2020.

Egernia gillespieae[35]

Sp. nov

Valid

Thornet al.

MiddleMiocene

Riversleigh site

 Australia

Askink, a species ofEgernia.

Eomadtsoia[36]

Gen. et sp. nov

Valid

Gómez, Garberoglio & Rougier

Late Cretaceous (Maastrichtian)

La Colonia Formation

 Argentina

Amadtsoiid snake. Genus includes new speciesE. ragei.

Globidens simplex[37]

Sp. nov

Valid

Leblanc, Mohr & Caldwell

Late Cretaceous (Maastrichtian)

PossiblyOulad Abdoun Basin

 Morocco

A mosasaur.

Gurvelus[38]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous (lateAptian–earlyAlbian)

Hühteeg Horizon

 Mongolia

A lizard belonging to the familyArdeosauridae. The type species isG. khangaicus.

Hoeckosaurus[39]

Gen. et sp. nov

Valid

Čerňanský

EarlyOligocene

 Mongolia

Possibly a member ofDibamidae. Genus includes new speciesH. mongoliensis.

Hongshanxi[40]

Gen. et sp. nov

Valid

Donget al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A lizard of uncertain phylogenetic placement. The type species isH. xiei.

Indrasaurus[41]

Gen. et sp. nov

Valid

O'Connoret al.

Early Cretaceous

Jiufotang Formation

 China

Abasal member ofScleroglossa. The type species isI. wangi.

Khereidia[38]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous (lateAptian–earlyAlbian)

Hühteeg Horizon

 Mongolia

A lizard belonging to the familyGlobauridae. The type species isK. aptiana.

Lapparentophis ragei[42]

Sp. nov

Valid

Vullo

Cretaceous (AlbianCenomanian)

Kem Kem Beds

 Morocco

An early snake.

Naimanosaurus[38]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous (lateAptian–earlyAlbian)

Hühteeg Horizon

 Mongolia

A lizard belonging to the familyParamacellodidae. The type species isN. dinosauroaequalis.

Ophisaurus manchenioi[43]

Sp. nov

Valid

Blain & Bailon

EarlyPleistocene

 Spain

Ananguidlizard, a species ofOphisaurus.

Palaeopython helveticus[44]

Sp. nov

Valid

Georgalis & Scheyer

Eocene

  Switzerland

A boid snake.

Palaeoxanta[38]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous (lateAptian–earlyAlbian)

Hühteeg Horizon

 Mongolia

A lizard belonging to the familyEoxantidae. The type species isP. conicodentata.

Paradorsetisaurus[45]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous

 Mongolia

A lizard belonging to the familyDorsetisauridae. Genus includes new speciesP. postumus.

Paraxenophis[46]

Gen. et sp. nov

Valid

Georgaliset al.

LatestMiocene or earliestPliocene

 Greece

Acolubrid snake. The type species isP. spanios.

Periergophis[46]

Gen. et sp. nov

Valid

Georgaliset al.

LatestMiocene or earliestPliocene

 Greece

Acolubrid snake. The type species isP. micros.

Portunatasaurus[47]

Gen. et sp. nov

Valid

Campbell Mekarskiet al.

Late Cretaceous (CenomanianTuronian)

 Croatia

Anaigialosaurmosasauroid. Genus includes new speciesP. krambergeri.

Sardophis[48]

Gen. et sp. nov

Valid

Georgalis & Delfinoin Georgaliset al.

EarlyPleistocene

 Italy

A snake, a member ofColubroidea of uncertain phylogenetic placement. The type species isS. elaphoides.

Xenostius[45]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous

 Mongolia

A lizard belonging to the familyXenosauridae. Genus includes new speciesX. futilus.

Ichthyosauromorphs

[edit]

Research

[edit]
  • Two new specimens ofEretmorhipis carrolldongi, revealing superficialconvergence with the modernplatypus, are described from theLower TriassicJialingjiang Formation (China) by Chenget al. (2019).[49]
  • A study on the phylogenetic relationships ofichthyosaurs will be published by Moon (2019).[50]
  • A study on the evolution of ichthyosaur body forms and on its impact on the energy demands of ichthyosaur swimming is published by Gutarraet al. (2019).[51]
  • A study on the flexibility and function of ichthyosaur tails, as indicated by comparisons with shark tails, is published by Crofts, Shehata & Flammang (2019).[52]
  • A study on the effects of methodology, missing data and exceptional preservation of fossil specimens inlagerstätten on known morphological diversity of fossil animals, as indicated by fossil record of ichthyosaurs, is published by Flannery Sutherlandet al. (2019).[53]
  • A study on a putative Cretaceousmosasaur"Globidens" timorensis fromTimor is published by Mulder & Jagt (2019), who consider this taxon to be ofTriassic age, and reinterpret it as an ichthyosaur with affinities to the generaTholodus andXinminosaurus.[54]
  • A study on the prevalence and distribution of pathologies in the skeletons of ichthyosaurs from the Lower JurassicPosidonienschiefer Formation (Germany) by Pardo-Pérez, Kear & Maxwell (2019).[55]
  • Second specimen ofWahlisaurus massarae is reported from a quarry inSomerset (United Kingdom), from the base of theBlue Lias Formation (TriassicJurassic boundary) by Lomax, Evans & Carpenter (2019), extending known geographic and stratigraphic range of the species.[56]
  • Partial skeleton of a large ichthyosaur from theLower Jurassic (Sinemurian) ofWarwickshire,England is described by Lomax, Porro & Larkin (2019), who assign this specimen to the speciesProtoichthyosaurus prostaxalis.[57]
  • A study on the anatomy of the skull roof ofProtoichthyosaurus prostaxalis, incorporating data from a previously unrecognized specimen, is published online by Lomax, Massare & Evans (2019).[58]
  • Aneonate specimen ofIchthyosaurus communis is described by Lomaxet al. (2019).[59]
  • A study on the variation of the hindfinmorphology in the specimens ofIchthyosaurus and on its taxonomic utility is published by Massare & Lomax (2019).[60]
  • A study on the bone microstructure of the skeleton of a specimen ofStenopterygius quadriscissus from the Lower JurassicPosidonia Shale (Germany) is published by Andersonet al. (2019).[61]
  • A study on theontogenetic variation in the anatomy of the braincases of members of the genusStenopterygius is published by Miedema & Maxwell (2019).[62]
  • Description of new ophthalmosaurid fossils from the Upper Jurassic of the Slottsmøya Member Lagerstätte (Spitsbergen,Norway) and a study on the phylogenetic relationships of ophthalmosaurid specimens from the Slottsmøya Member Lagerstätte is published by Delsettet al. (2019).[63]
  • A revision of thetype series of all three species ofUndorosaurus is published by Zverkov & Efimov (2019).[64]
  • A study on the taxonomy and phylogeny of ichthyosaurs belonging to the genusArthropterygius is published by Zverkov & Prilepskaya (2019).[65]
  • New fossil remains ofPlatypterygius sachicarum (a new skull and associated postcranial remains of upperBarremian age) are described from Villa de Leyva,Colombia by Maxwellet al. (2019), representing the first documented postcranial remains of this species.[66]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Arthropterygius thalassonotus[67]

Sp. nov

Valid

Campos, Fernández & Herrera

Late Jurassic

Vaca Muerta Formation

 Argentina

Chaohusaurus brevifemoralis[68]

Sp. nov

Valid

Huanget al.

Early Triassic

 China

Sauropterygians

[edit]

Research

[edit]
  • A study on the bonehistology of sauropterygians, and on its implications for the knowledge of the evolution of diving adaptations of members of this group, is published by Fleischleet al. (2019).[69]
  • A study on the microstructure of ribs and vertebrae ofMiddle Triassic sauropterygians is published by Klein, Canoville & Houssaye (2019).[70]
  • A study on thetaphonomy of sauropterygian specimens from the Middle Triassic fossil deposit of Winterswijk (theNetherlands) is published by Heijne, Klein & Sander (2019).[71]
  • The first subadult specimen ofPsephochelys polyosteoderma, representing the most complete specimen of this taxon reported so far and providing new information on the anatomy of this taxon, is described from south-westernChina by Wang, Ma & Li (2019).[72]
  • The first adult specimen ofSinocyamodus xinpuensis reported so far is described by Wang, Li & Wu (2019).[73]
  • Twopachypleurosaur specimens are described from the Lashio Basin (Myanmar) by Sanet al. (2019), representing the firstTriassic vertebrate fossils from Myanmar reported so far.[74]
  • A large marine sauropterygian belonging or related toNothosauroidea is described from the Triassic (probablyOlenekian)Sulphur Mountain Formation (British Columbia,Canada) by Scheyer, Neuman & Brinkman (2019), representing one of the oldest records of Sauropterygia and the northernmost occurrence of such animals in the Triassic.[75]
  • A study on life history ofNothosaurus, as indicated by growth curves determined fromhumeralhistology, and on its implications for inferring reproduction mode of this animal, is published by Griebeler & Klein (2019).[76]
  • Description of microbodies extracted from a bone ofNothosaurus from theMiddle Triassic ofPoland, reported as morphologically consistent with bone cells of present-day vertebrates, is published online by Surmiket al. (2019).[77]
  • An articulated juvenile specimen ofYunguisaurus liae, providing new information on the anatomy of this species, is described from theLadinianFalang Formation (China) by Wanget al. (2019).[78]
  • A study onhydrodynamics of neck length and thickness in plesiosaurs is published by Troelsenet al. (2019).[79]
  • Pathological fusions of neck vertebrae are reported in four plesiosaur specimens from different geological horizons by Sassoon (2019).[80]
  • Four teeth of a freshwater plesiosaur are described from theMiddle JurassicXinhe Formation (Gansu,China) by Gaoet al. (2019).[81]
  • The first plesiosaur remains fromPeru are described from the Lower CretaceousLa Herradura Formation by Meza-Vélez & O'Gorman (2019).[82]
  • A review of the fossil record of Late Cretaceous Antarctic plesiosaurs is published by O'Gormanet al. (2019).[83]
  • Fossils of a large-bodied pliosaurid-like plesiosaur are described from theMiddle Jurassic (Bajocian)Passwang Formation (Switzerland) by Sachs, Klug & Kear (2019).[84]
  • A study on the morphology of the teeth and skull ofMegacephalosaurus eulerti, and on their implications for assessing the phylogenetic relationships of this species, is published by Madzia, Sachs & Lindgren (2019).[85]
  • An isolatedpliosaurid tooth crown is described from theHauterivian ofAustria by Lukeneder & Zverkov (2019), representing the first pliosaur from this country and the second occurrence of conical-toothed pliosaurid in the Hauterivian worldwide.[86]
  • A new specimen ofStenorhynchosaurus munozi is described from the upperBarremian of the Arcillolitas Abigarradas Member of thePaja Formation (Colombia) byPáramo-Fonseca, Benavides-Cabra & Gutiérrez (2019).[87]
  • Description of fossils of plesiosaurs from the Late Jurassic of EuropeanRussia belonging or related to the genusColymbosaurus, and a study evaluating thepalaeobiogeographic implications of these fossils, is published online by Arkhangelskyet al. (2019).[88]
  • A study on the mobility of the neck ofCryptoclidus eurymerus is published by Wintrichet al. (2019).[89]
  • New plesiosaur fossils are described from theBarremian levels of theArcillas de Morella Formation (Spain) by Quesadaet al. (2019), including the firstleptocleidid fossil reported from theIberian Peninsula.[90]
  • A study on the skullmorphology of two specimens ofDolichorhynchops bonneri from thePierre Shale ofSouth Dakota, as well as on the phylogenetic relationships of this species, is published by Morgan & O'Keefe (2019).[91]
  • A study on bonehistology and ontogeny of the gravid specimen ofPolycotylus latipinnus displayed at theLos Angeles County Museum of Natural History, and on its implications for interpreting a histological growth series inDolichorhynchops bonneri, is published by O'Keefeet al. (2019).[92]
  • Skull and neck bones of anelasmosaurid plesiosaur are described from theCenomanianHegushi Formation (Japan) by Utsunomiya (2019), representing the oldest confirmed elasmosaurid in Japan and in East Asia.[93]
  • A postcranial skeleton of an elasmosaurid belonging or related to the genusAristonectes is described from the uppermostMaastrichtian levels of theLopez de Bertodano Formation (Seymour Island,Antarctica) by O'Gormanet al. (2019), who report that this specimen is one of the largest known elasmosaurid specimens worldwide.[94]
  • Description of new fossil material ofKawanectes lafquenianum from the upperCampanianMaastrichtian levels of theLa Colonia Formation (Argentina), extending known stratigraphical range of this taxon and providing new information on diagnostic character states forK. lafquenianum, is published online by O'Gorman (2019).[95]
  • Digitalendocasts of two specimens ofLibonectes morgani and apolycotylid from theTuronian of Goulmima (Morocco) are reconstructed by Allemandet al. (2019).[96]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Cyamodus orientalis[97]

Sp. nov

Valid

Wanget al.

Late Triassic (Carnian)

Falang Formation

 China

Glyphoderma robusta[98]

Sp. nov

Valid

Hu, Jiang & Li

Middle Triassic (Ladinian)

Falang Formation

 China

Leivanectes[99]

Gen. et sp. nov

Valid

Páramo-Fonsecaet al.

Early Cretaceous (Aptian)

Paja Formation

 Colombia

A member of the familyElasmosauridae. Genus includes new speciesL. bernardoi.

Lindwurmia[100]

Gen. et sp. nov

Valid

Vincent & Storrs

Early Jurassic (Hettangian)

 Germany

An early member ofPlesiosauria. Genus includes new speciesL. thiuda.

Microcleidus melusinae[101]

Sp. nov

Valid

Vincentet al.

Early Jurassic (Toarcian)

 Luxembourg

Amicrocleididplesiosaur.

Nothosaurus cristatus[102]

Sp. nov

Valid

Hinz, Matzke & Pfretzschner

Middle Triassic (Ladinian)

Erfurt Formation

 Germany

Panzhousaurus[103]

Gen. et sp. nov

Valid

Jianget al.

Middle Triassic (Anisian)

 China

An early member ofEosauropterygia. Genus includes new speciesP. rotundirostris.

Turtles

[edit]

Research

[edit]
  • A study on the phylogenetic relationships of living and fossil turtles is published by Evers & Benson (2019).[104]
  • A study on the evolution andontogenetic development of the akinetic skull of turtles, based on data from extant and fossil taxa, is published by Werneburg & Maier (2019).[105]
  • A study on thehistology of shell bones of extant and fossil turtles, evaluating its utility for determination of habitat of fossil turtles, is published online by Jannello, Cerda & de la Fuente (2019).[106]
  • A study on the shell composition inproterochersids and otherTriassicpantestudinates is published by Szczygielski & Sulej (2019).[107]
  • Fragmentary fossil material of abasal turtle belonging to the cladeMesochelydia is described from theLower Cretaceous Teete locality (Yakutia,Russia) by Skutschaset al. (2019).[108]
  • Description of new fossil material ofCondorchelys antiqua, and a study on the phylogenetic relationships of early turtles, is published by Sterli, de la Fuente & Rougier (2019).[109]
  • A study on the endocranial anatomy ofNaomichelys speciosa is published by Paulina-Carabajal, Sterli & Werneburg (2019).[110]
  • Description of new fossil material ofPeligrochelys walshae from thePaleocene (Danian)Salamanca Formation (Argentina), and a study on the phylogenetic relationships of this species, is published by Sterli & de la Fuente (2019).[111]
  • The only complete shell ofEocenochelus identified so far is described from theEocene (Lutetian)Sobrarbe Formation (Spain) by Pérez-Garcíaet al. (2019).[112]
  • Description of new fossil material ofNeusticemys neuquina from the Upper Jurassic of the Neuquén Basin (Argentina) and a study on the phylogenetic relationships of this species is published online by Ruiz, de la Fuente & Fernández (2019).[113]
  • Description of new fossil material ofPlesiochelys bigleri from theKimmeridgian Banné Marls (Switzerland), providing new information on the anatomy of this species, is published by Raselli & Anquetin (2019).[114]
  • A shell ofPlesiochelys bigleri which might have been trodden on by a largesauropod dinosaur, representing the first evidence that these turtles occasionally visitedtidal flat environments, is reported from the Late Jurassic of Porrentruy (SwissJura Mountains) by Pünteneret al. (2019).[115]
  • Redescription of theholotype specimen ofNanhsiungchelys wuchingensis is published by Tong & Li (2019).[116]
  • A review of theararipemydid fossil record from Africa is published by Pérez-García (2019), who considersLaganemys tenerensis to be ajunior synonym ofTaquetochelys decorata.[117]
  • A revision of the fossil record of the non-baenid members of the cladeParacryptodira is published by Joyce & Anquetin (2019).[118]
  • Description of fossils ofOrdosemys leios from the Lower CretaceousMengyin Formation (China), and a study on their implications for inferring the ecology of this species and the age of theLuohandong Formation of theOrdos Basin, is published by Liet al. (2019).[119]
  • Fossil specimens belonging to the speciesOrdosemys liaoxiensis, otherwise known from the olderYixian Formation of theJehol Biota, are described from the Lower CretaceousHengtongshan Formation (Jilin,China) by Zhou, Wu & Rabi (2019).[120]
  • A study on shifts of range of theEuropean pond turtle in Eastern Europe throughout theHolocene, based on data fromsubfossil remains from archaeological sites, is published by Nekrasovaet al. (2019).[121]
  • A latePleistocene nuchal bone is described from the Muaco site (westernVenezuela) by Cadena & Carrillo-Briceño (2019), who interpret this specimen as the first undisputable fossil of a member of the genusRhinoclemmys found east of theAndes.[122]
  • A study on the mass of North American Pleistocenetortoises, on the relationship between the mass of tortoises and their ability to maintain a viable body temperature at low ambient temperatures, and on the implications of this relationships for the knowledge of Pleistocene temperatures in the areas from which tortoise fossils are known, is published by Esker, Forman & Butler (2019).[123]
  • A study on the phylogenetic relationships and biogeographic origin of tortoises belonging to the genusCylindraspis, based on data from near-complete mitochondrial genomes, is published by Kehlmaieret al. (2019).[124]
  • Three incomplete shells ofProtestudo bessarabica are described from the late Miocene of the Belka locality by Syromyatnikovaet al. (2019), representing the first record of this species fromUkraine reported so far.[125]
  • A study on the skeletal anatomy and phylogenetic relationships ofRhinochelys pulchriceps is published by Evers, Barrett & Benson (2019).[126]
  • Digital endocasts of the brain cavity and endosseous labyrinth ofRhinochelys pulchriceps are presented by Everset al. (2019), who use these endocasts to studyneuroanatomy andcarotid circulation of this species.[127]
  • A gravid specimen ofDesmatochelys padillai, representing the first indisputable gravid marine fossil turtle reported so far, is described from theLower Cretaceous ofColombia by Cadenaet al. (2019), who interpret this specimen as indicating thatD. padillai produced rigid eggs similar to those associated with some extant and fossil freshwater and terrestrial turtles, and unlike flexible eggs produced by extant marine turtles.[128]
  • A specimen ofDesmatochelys belonging or related to the speciesD. lowii is described from the lowerCampanianAustin Formation (Coahuila,Mexico) by López-Condeet al. (2019), representing the first record of the familyProtostegidae in the Late Cretaceous of Mexico reported so far.[129]
  • An isolatedcarapacial ossicle of a member of the genusPsephophorus is described from the lowermostPliocenePurisima Formation (California,United States) by Fallon & Boessenecker (2019), representing the first occurrence of a sea turtle from this formation.[130]
  • An incomplete skeleton of a juvenile sea turtle belonging to the genusEochelone is described from theEocene (Bartonian) of the Gorny Luch locality (Krasnodar Krai,Russia) by Zvonoket al. (2019).[131]
  • Description of the anatomy of the braincase of a specimen ofSyllomus aegyptiacus from theMioceneCalvert Formation (Virginia,United States) is published by Matzke & Maisch (2019).[132]
  • Description of turtle fossils from fivePaleogene localities in theCrimea is published by Zvonok & Danilov (2019).[133]
  • A study on turtle remains from fiveHolocene localities inThai central plain, and on their implications for the knowledge of changes of turtle biodiversity in this area over the Holocene, is published by Claudeet al. (2019).[134]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Asmodochelys[135]

Gen. et sp. nov

Valid

Gentry, Ebersole & Kiernan

Late Cretaceous (Campanian)

Demopolis Chalk

 United States
( Alabama
 Mississippi)

A member of the familyCtenochelyidae. The type species isA. parhami.

Axestemys infernalis[136]

Sp. nov

Valid

Joyce, Brinkman &Lyson

Late Cretaceous (Maastrichtian)

Hell Creek Formation
Lance Formation

 United States
( Montana
 North Dakota
 South Dakota
 Wyoming)

A member of the familyTrionychidae.

Banhxeochelys[137]

Gen. et sp. nov

Valid

Garbin,Böhme & Joyce

Eocene (lateBartonian–latePriabonian)

 Vietnam

Apan-geoemydid. The type species isB. trani.

Duboisemys[138]

Gen. et comb. nov

Valid

Karl, Safi & Philippen

Middle Pleistocene

Trinil Beds

 Indonesia

A member of the familyGeoemydidae. The type species is"Hardella" isoclina Dubois (1908).

Francemys[139]

Gen. et sp. nov

Valid

Pérez-García

Early Cretaceous (Aptian)

Elrhaz Formation

 Niger

A member ofPelomedusoides. The type species isF. gadoufaouaensis.

Ilatardia[140]

Gen. et sp. nov

Valid

Pérez-García

Late Cretaceous (Maastrichtian)

 Niger

A member of the familyBothremydidae. Genus includes new speciesI. cetiotesta.

Kalasinemys[141]

Gen. et sp. nov

Valid

Tonget al.

Late Jurassic

Phu Kradung Formation

 Thailand

A member of the familyXinjiangchelyidae. Genus includes new speciesK. prasarttongosothi.

Protoshachemys[142]

Gen. et sp. nov

Valid

Tonget al.

Early Cretaceous (Barremian)

Sao Khua Formation

 Thailand

A member of the familyAdocidae. Genus includes new speciesP. rubra.

Saxochelys[143]

Gen. et sp. nov

Valid

Lyson, Sayler & Joyce

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( North Dakota)

A member of the familyBaenidae. Genus includes new speciesS. gilberti.

Tasbacka germanica[144]

Sp. nov

Valid

Karl, Gröning & Brauckmann

Late Cretaceous (Campanian)

 Germany

"Trinitichelys" maini[145]

Sp. nov

Valid

Adrianet al.

Late Cretaceous (Cenomanian)

Woodbine Formation

 United States
( Texas)

A member of the familyBaenidae.

Wutuchelys[146]

Gen. et sp. nov

Valid

Tonget al.

EarlyEocene

Wutu Formation

 China

Astem-testudinoid. Genus includes new speciesW. eocenica.

Archosauriformes

[edit]

General research

[edit]

Archosaurs

[edit]
Main article:2019 in archosaur paleontology

Other archosauriforms

[edit]

Research

[edit]
  • Virtualendocast ofProterosuchus fergusi is reconstructed by Brownet al. (2019), who evaluate the implications of the endocranial anatomy of this species for the knowledge of its life habits.[150]
  • Redescription of the anatomy of theholotype specimen ofGarjainia prima is published by Ezcurraet al. (2019), who considerVjushkovia triplicostata to be ajunior synonym ofG. prima.[151]
  • A study on the skull anatomy and taxonomic validity ofVjushkovia triplicostata is published by Butleret al. (2019).[152]
  • A study on the anatomy and phylogenetic relationships ofGuchengosuchus shiguaiensis is published by Butleret al. (2019).[153]
  • A study on the anatomy and phylogenetic relationships ofChalishevia cothurnata is published by Butleret al. (2019).[154]
  • A study on the anatomy,ecomorphology and bone microstructure of members ofProterochampsia, and on their implications for inferring the lifestyles of these reptiles, is published by Arcucci, Previtera & Mancuso (2019).[155]
  • Two newrhadinosuchineproterochampsid specimens are described from theChañares Formation (Argentina) by Ezcurraet al. (2019).[156]
  • A study on the morphology and affinities of isolatedphytosaur teeth from the Upper TriassicTiki Formation (India) is published online by Datta, Kumar & Ray (2019).[157]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Antarctanax[158]

Gen. et sp. nov

Valid

Peecook, Smith & Sidor

Triassic

Fremouw Formation

Antarctica

Anarchosauriformarchosauromorph reptile. The type species isA. shackletoni.

Mystriosuchus steinbergeri[159]

Sp. nov

Valid

Butleret al.

Late Triassic (Norian)

Dachstein Limestone

 Austria

Aphytosaur.

Volcanosuchus[160]

Gen. et sp. nov

Valid

Datta, Ray & Bandyopadhyay

Late Triassic

Tiki Formation

 India

Aphytosaur. Genus includes new speciesV. statisticae.

Other reptiles

[edit]

Research

[edit]
  • New information on a specimen of themesosaur speciesStereosternum tumidum affected by congenitalscoliosis, first described by Szczygielskiet al. (2017),[161] is published by Szczygielskiet al. (2019).[162]
  • A study on bonehistology and growth patterns ofStereosternum tumidum andBrazilosaurus sanpauloensis is published by Kleinet al. (2019).[163]
  • New information on the anatomy ofFeeserpeton oklahomensis is presented by MacDougallet al. (2019).[164]
  • Description of the anatomy of a new specimen ofKapes bentoni from theOtter Sandstone ofDevon (United Kingdom, and a study on the phylogenetic relationships of this species, is published by Zaher, Coram &Benton (2019).[165]
  • A study on the skull anatomy and phylogenetic relationships ofEmbrithosaurus schwarzi is published online by Van den Brandt, Abdala & Rubidge (2019).[166]
  • Redescription of thepareiasaur species"Anthodon" haughtoni from thePermianUsili Formation (Tanzania) is published by Maisch & Matzke (2019).[167]
  • X-ray diffraction study of bone fragments ofDeltavjatia vjatkensis from the Kotelnich vertebrate fossil site (Russia) is published by Ryanskayaet al. (2019).[168]
  • A study on the composition and structure of bone fragments ofDeltavjatia vjatkensis from the Kotelnich vertebrate fossil site is published by Kiselevaet al. (2019), who reportwhite blood cell-like structures, interpreted as possible leukocytes.[169]
  • A study on theontogenetic changes in long-bone and ribhistology ofDeltavjatia rossica andScutosaurus karpinskii is published by Boitsovaet al. (2019).[170]
  • A study on the microstructure of limb bones, a rib fragment andosteoderms ofProvelosaurus americanus is published online by Farias, Schultz & Soares (2019).[171]
  • A study on the species richness and morphological diversity ofparareptiles over the course of their evolutionary history is published by MacDougall, Brocklehurst & Fröbisch (2019).[172]
  • A study testing whether the consistent evolutionary size increase incaptorhinids led to major re-patterning in theirlong bone structure is published by Romano & Rubidge (2019).[173]
  • A study on the anatomy of themandible and on the phylogenetic relationships ofMoradisaurus grandis, based on data from new fossil material from the upper PermianMoradi Formation ofNiger, is published by Modestoet al. (2019).[174]
  • Redescription of the anatomy ofOrovenator mayorum and a study on the phylogenetic relationships of this species is published by Ford & Benson (2019), who recover bothOrovenator andvaranopids (usually regarded assynapsids) asdiapsid reptiles.[175]
  • A study on the early evolution of the diel activity patterns in diapsid lineages, focusing on the common ancestor branch of living birds, is published by Yu & Wang (2019).[176]
  • A study on themorphological diversity and rates of morphological evolution of extinct and extantrhynchocephalians published by Herrera-Flores, Stubbs &Benton (2017)[177] is criticized by Vauxet al. (2019).[178][179]
  • A study on the skull morphology ofClevosaurus hudsoni andClevosaurus cambrica is published by Chambi-Trowell, Whiteside & Benton (2019).[180]
  • A case study of anosteosarcoma affecting afemur of a specimen ofPappochelys rosinae is published by Haridyet al. (2019).[181]
  • A study on the microstructure of bones ofPappochelys rosinae is published by Schochet al. (2019).[182]
  • An isolated vertebra of achoristoderan reptile is described from theCenomanian Essen Greensand Formation (Germany) by Reisset al. (2019), representing the first identifiable European choristoderan from theKimmeridgianCampanian interval reported so far.[183]
  • Description of new fossil material ofKhurendukhosaurus from theAlbianKhuren Dukh Formation (Mongolia) and a study on the anatomy and phylogenetic relationships of this reptile is published by Matsumotoet al. (2019).[184]
  • Neck vertebrae of a long-neckedtanystropheid reptile are described from theMiddle TriassicMoenkopi Formation by Formosoet al. (2019).[185]
  • A study on the bonehistology ofAzendohsaurus laaroussii, and on its implications for the knowledge of evolution ofendothermy inArchosauromorpha, is published by Cubo & Jalil (2019).[186]
  • A study on the anatomy of the postcranial skeleton ofTeraterpeton hrynewichorum, as well as on the phylogenetic relationships of this species, is published by Pritchard &Sues (2019).[187]
  • Partialmaxilla of ahyperodapedontinerhynchosaur, possessing amorphology that differs from those of other South American rhynchosaur species, is described from theUpper TriassicIschigualasto Formation (Argentina) by Gentil & Ezcurra (2019).[188]
  • A study on the anatomy of the braincase and middle and inner ears ofMesosuchus browni is published by Sobral & Müller (2019).[189]
  • A study on the anatomy of theholotype ofTeyujagua paradoxa and on the phylogenetic relationships of this species is published online by Pinheiro, De Simão-Oliveira & Butler (2019).[190]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Ancistronychus[191]

Gen. et sp. nov

Valid

Gonçalves &Sidor

Late Triassic

Chinle Formation

 United States
( Arizona)

A member ofDrepanosauromorpha. The type species isA. paradoxus.

Captorhinus kierani[192]

Sp. nov

DeBraga, Bevitt &Reisz

Permian (Artinskian)

 United States

Carbonodraco[193]

Gen. et sp. nov

Valid

Mannet al.

Carboniferous (Moscovian)

Allegheny Group

 United States

A member of the familyAcleistorhinidae. The type species isC. lundi. Announced in 2019; the correction including the requiredZooBank accession number was published in 2020.[194]

Clevosaurus hadroprodon[195]

Sp. nov

Hsiouet al.

Late Triassic (Carnian)

Santa Maria Formation

 Brazil

Coeruleodraco[196]

Gen. et sp. nov

Valid

Matsumotoet al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A member ofChoristodera. Genus includes new speciesC. jurassicus.

Patagosphenos[197]

Gen. et sp. nov

Valid

Gentilet al.

Late Cretaceous (Turonian)

Huincul Formation

 Argentina

Aneilenodontinerhynchocephalian. Genus includes new speciesP. watuku.

Sclerostropheus[198]

Gen. et comb. nov

Valid

Spiekman & Scheyer

Late Triassic (Norian)

 Italy

A member of the familyTanystropheidae; a new genus for"Tanystropheus" fossai Wild (1980).

Shihtienfenia completus[199]

Sp. nov

Valid

Wang, Yi & Liu

Permian

Sunjiagou Formation

 China

Apareiasaur.

General research

[edit]

Research concerning more than one group of reptiles listed above.

  • A revision of existing records of marine reptiles known from the Jurassic and Cretaceous of Siberia is published by Rogovet al. (2019).[200]
  • Description of fossils of marine reptiles from the Late Jurassic of the Krzyżanowice locality (Poland) and a study evaluating the palaeobiogeographic implications of these fossils is published by Tyborowski & Błażejowski (2019).[201]

References

[edit]
  1. ^Akinobu Watanabe; Anne-Claire Fabre; Ryan N. Felice; Jessica A. Maisano; Johannes Müller; Anthony Herrel; Anjali Goswami (2019)."Ecomorphological diversification in squamates from conserved pattern of cranial integration".Proceedings of the National Academy of Sciences of the United States of America.116 (29):14688–14697.doi:10.1073/pnas.1820967116.PMC 6642379.PMID 31262818.
  2. ^Kyung Soo Kim; Jong Deock Lim; Martin G. Lockley; Dong Hee Kim; Laura Piñuela; Jae Sang Yoo (2019)."Largest Cretaceous lizard track assemblage, new morphotypes and longest trackways comprise diverse components of an exceptional Korean Konservat-Lagerstätten ichnofauna".Scientific Reports.9 (1): Article number 13278.Bibcode:2019NatSR...913278K.doi:10.1038/s41598-019-49442-0.PMC 6746761.PMID 31527673.
  3. ^Lida Xing; Kechung Niu; Rod S. Taylor; Susan E. Evans (2019)."Integumentary remains and abdominal contents in the Early Cretaceous Chinese lizard,Yabeinosaurus (Squamata), demonstrate colour banding and a diet including crayfish"(PDF).Cretaceous Research.108: Article 104320.doi:10.1016/j.cretres.2019.104320.S2CID 210262098.
  4. ^Andrej Čerňanský; Elena V. Syromyatnikova (2019). "The first pre-Quaternary fossil record of the clade Mabuyidae with a comment on the enclosure of the Meckelian canal in skinks".Papers in Palaeontology.7 (1):195–215.doi:10.1002/spp2.1279.ISSN 2056-2799.S2CID 204266535.
  5. ^Andrej Čerňanský; Krister T. Smith (2019). "The first juvenile specimen ofEolacerta (Squamata: Eolacertidae) from the early–middle Eocene of the Messel Pit (Germany)".Comptes Rendus Palevol.18 (7):735–745.doi:10.1016/j.crpv.2019.04.004.S2CID 199092977.
  6. ^Andrej Čerňanský; Elena V. Syromyatnikova (2019)."The first Miocene fossils ofLacerta cf.trilineata (Squamata, Lacertidae) with a comparative study of the main cranial osteological differences in green lizards and their relatives".PLOS ONE.14 (8): e0216191.Bibcode:2019PLoSO..1416191C.doi:10.1371/journal.pone.0216191.PMC 6703700.PMID 31433807.
  7. ^Brooke Erin Crowley; Yurena Yanes; Stella Grace Mosher; Juan Carlos Rando (2019)."Revisiting the foraging ecology and extinction history of two endemic vertebrates from Tenerife, Canary Islands".Quaternary.2 (1): Article 10.doi:10.3390/quat2010010.
  8. ^Penélope Cruzado-Caballero; Carolina Castillo Ruiz; Arnau Bolet; Juan Ramón Colmenero; Julio De la Nuez; Ramón Casillas; Sergio Llacer; Federico Bernardini; Josep Fortuny (2019)."First nearly complete skull ofGallotia auaritae (lower-middle Pleistocene, Squamata, Gallotiinae) and a morphological phylogenetic analysis of the genusGallotia".Scientific Reports.9 (1): Article number 16629.Bibcode:2019NatSR...916629C.doi:10.1038/s41598-019-52244-z.PMC 6851374.PMID 31719546.
  9. ^Simon G. Scarpetta (2019)."The first known fossilUma: ecological evolution and the origins of North American fringe-toed lizards".BMC Evolutionary Biology.19 (1): Article number 178.doi:10.1186/s12862-019-1501-5.PMC 6729053.PMID 31492110.
  10. ^Robert M. Sullivan (2019). "The taxonomy, chronostratigraphy and paleobiogeography of glyptosaurine lizards (Glyptosaurinae, Anguidae)".Comptes Rendus Palevol.18 (7):747–763.doi:10.1016/j.crpv.2019.05.006.S2CID 202174449.
  11. ^Simon G. Scarpetta (2019). "Peltosaurus granulosus (Squamata, Anguidae) from the middle Oligocene of Sharps Corner, South Dakota, and the youngest known chronostratigraphic occurrence of Glyptosaurinae".Journal of Vertebrate Paleontology.39 (3): e1622129.doi:10.1080/02724634.2019.1622129.S2CID 196690362.
  12. ^Jozef Klembara; Miroslav Hain; Andrej Čerňanský (2019). "The first record of anguine lizards (Anguimorpha, Anguidae) from the early Miocene locality Ulm – Westtangente in Germany".Historical Biology: An International Journal of Paleobiology.31 (8):1016–1027.doi:10.1080/08912963.2017.1416469.S2CID 90251378.
  13. ^Corentin Bochaton; Pauline Hanot; Stéphane Frère; Julien Claude; Wilailuck Naksri; Prasit Auetrakulvit; Valéry Zeitoun (2019). "Size and weight estimations of subfossil monitor lizards (Varanus sp. Merrem 1820) with an application to the Hoabinhian assemblage of Doi Pha Kan (Late Pleistocene, Lampang province, Thailand)".Annales de Paléontologie.105 (4):295–304.doi:10.1016/j.annpal.2019.05.003.S2CID 201331999.
  14. ^Daniel A. Driscoll; Alexander M. Dunhill; Thomas L. Stubbs; Michael J. Benton (2019)."The mosasaur fossil record through the lens of fossil completeness"(PDF).Palaeontology.62 (1):51–75.doi:10.1111/pala.12381.S2CID 133743666.
  15. ^Daniel Madzia (2019). "Dental variability and distinguishability inMosasaurus lemonnieri (Mosasauridae) from the Campanian and Maastrichtian of Belgium, and implications for taxonomic assessments of mosasaurid dentitions".Historical Biology: An International Journal of Paleobiology.32 (10):1340–1354.doi:10.1080/08912963.2019.1588892.S2CID 108526638.
  16. ^Pablo González Ruiz; Marta S. Fernández; Marianella Talevi; Juan M. Leardi; Marcelo A. Reguero (2019)."A new Plotosaurini mosasaur skull from the upper Maastrichtian of Antarctica. Plotosaurini paleogeographic occurrences".Cretaceous Research.103: Article 104166.doi:10.1016/j.cretres.2019.06.012.hdl:11336/125124.S2CID 198418273.
  17. ^Hongyu Yi; Mark Norell (2019). "The bony labyrinth ofPlatecarpus (Squamata: Mosasauria) and aquatic adaptations in squamate reptiles".Palaeoworld.28 (4):550–561.doi:10.1016/j.palwor.2018.12.001.S2CID 134163806.
  18. ^Marco Romano; Riccardo Manni; Enrico Venditti; Umberto Nicosia; Angelo Cipriani (2019). "First occurrence of a Tylosaurinae mosasaur from the Turonian of the Central Apennines, Italy".Cretaceous Research.96:196–209.doi:10.1016/j.cretres.2019.01.001.S2CID 135342154.
  19. ^Paulina Jiménez-Huidobro; Michael W. Caldwell (2019)."A new hypothesis of the phylogenetic relationships of the Tylosaurinae (Squamata: Mosasauroidea)".Frontiers in Earth Science.7: Article 47.Bibcode:2019FrEaS...7...47J.doi:10.3389/feart.2019.00047.
  20. ^Joshua R. Lively (2019). "Taxonomy and historical inertia:Clidastes (Squamata: Mosasauridae) as a case study of problematic paleobiological taxonomy".Alcheringa: An Australasian Journal of Palaeontology.42 (4):516–527.doi:10.1080/03115518.2018.1549685.S2CID 134825554.
  21. ^Marianella Talevi; Bruce Rothschild; Marta Fernández; Marcelo Reguero; Matías Mitidieri (2019)."A pathological scapula in a mosasaur from the upper Maastrichtian of Antarctica: evidence of infectious arthritis and spondyloarthropathy".Cretaceous Research.100:1–4.doi:10.1016/j.cretres.2019.03.024.hdl:11336/125089.S2CID 135367471.
  22. ^Michelle Campbell Mekarski; Stephanie E. Pierce; Michael W. Caldwell (2019)."Spatiotemporal distributions of non-ophidian ophidiomorphs, with implications for their origin, radiation, and extinction".Frontiers in Earth Science.7: Article 245.Bibcode:2019FrEaS...7..245M.doi:10.3389/feart.2019.00245.
  23. ^Alessandro Palci; Mark N. Hutchinson; Michael W. Caldwell; Krister T. Smith; Michael S. Y. Lee (2019)."The homologies and evolutionary reduction of the pelvis and hindlimbs in snakes, with the first report of ossified pelvic vestiges in an anomalepidid (Liotyphlops beui)".Zoological Journal of the Linnean Society.188 (2):630–652.doi:10.1093/zoolinnean/zlz098.
  24. ^Fernando F. Garberoglio; Raúl O. Gómez; Tiago R. Simões; Michael W. Caldwell; Sebastián Apesteguía (2019)."The evolution of the axial skeleton intercentrum system in snakes revealed by new data from the Cretaceous snakesDinilysia andNajash".Scientific Reports.9 (1): Article number 1276.Bibcode:2019NatSR...9.1276G.doi:10.1038/s41598-018-36979-9.PMC 6362196.PMID 30718525.
  25. ^Fernando F. Garberoglio; Raúl O. Gómez; Sebastián Apesteguía; Michael W. Caldwell; María L. Sánchez; Gonzalo Veiga (2019). "A new specimen with skull and vertebrae ofNajash rionegrina (Lepidosauria: Ophidia) from the early Late Cretaceous of Patagonia".Journal of Systematic Palaeontology.17 (18):1533–1550.doi:10.1080/14772019.2018.1534288.S2CID 91780191.
  26. ^Fernando F. Garberoglio; Sebastián Apesteguía; Tiago R. Simões; Alessandro Palci; Raúl O. Gómez; Randall L. Nydam; Hans C. E. Larsson; Michael S. Y. Lee; Michael W. Caldwell (2019)."New skulls and skeletons of the Cretaceous legged snakeNajash, and the evolution of the modern snake body plan".Science Advances.5 (11): eaax5833.Bibcode:2019SciA....5.5833G.doi:10.1126/sciadv.aax5833.PMC 6867888.PMID 31799393.
  27. ^Alexandra Houssaye; Anthony Herrel; Renaud Boistel; Jean-Claude Rage (2019)."Adaptation of the vertebral inner structure to an aquatic life in snakes: Pachyophiid peculiarities in comparison to extant and extinct forms".Comptes Rendus Palevol.18 (7):783–799.doi:10.1016/j.crpv.2019.05.004.S2CID 209480050.
  28. ^Hussam Zaher; Robert W. Murphy; Juan Camilo Arredondo; Roberta Graboski; Paulo Roberto Machado-Filho; Kristin Mahlow; Giovanna G. Montingelli; Ana Bottallo Quadros; Nikolai L. Orlov; Mark Wilkinson; Ya-Ping Zhang (2019)."Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes)".PLOS ONE.14 (5): e0216148.Bibcode:2019PLoSO..1416148Z.doi:10.1371/journal.pone.0216148.PMC 6512042.PMID 31075128.
  29. ^Corentin Bochaton; Renaud Boistel; Sandrine Grouard; Ivan Ineich; Anne Tresset; Salvador Bailon (2019)."Fossil dipsadid snakes from the Guadeloupe Islands (French West-Indies) and their interactions with past human populations".Geodiversitas.41 (12):501–523.doi:10.5252/geodiversitas2019v41a12.S2CID 198415595.
  30. ^Martin Ivanov; Davit Vasilyan; Madelaine Böhme; Vladimir S. Zazhigin (2019). "Miocene snakes from northeastern Kazakhstan: new data on the evolution of snake assemblages in Siberia".Historical Biology: An International Journal of Paleobiology.31 (10):1284–1303.doi:10.1080/08912963.2018.1446086.S2CID 90976993.
  31. ^Tadahiro Ikeda; Akio Takahashi; Makoto Manabe; Yoshikazu Hasegawa (2019)."Snake vertebrae fossils occurred from the Minatogawa Man site, southern part of Okinawajima Island, Ryukyu Archipelago, southwestern Japan"(PDF).Bulletin of Gunma Museum of Natural History.23:21–34.
  32. ^Yu Chen; Yong-Xiang Li; Jing-Song Shi; Yun-Xiang Zhang; Kun Xie (2019). "Pleistocene fossil snakes (Squamata, Reptilia) from Shanyangzhai Cave, Hebei, China".Historical Biology: An International Journal of Paleobiology.33 (5):699–711.doi:10.1080/08912963.2019.1658094.S2CID 202851962.
  33. ^Andrej Čerňanský; Marc Louis Augé (2019)."The Oligocene and Miocene fossil lizards (Reptilia, Squamata) of Central Mongolia".Geodiversitas.41 (24):811–839.doi:10.5252/geodiversitas2019v41a24.S2CID 214190322.
  34. ^Andrej Čerňanský; Elena V. Syromyatnikova; Ekaterina S. Kovalenko; Konstantin M. Podurets; Alexander A. Kaloyan (2020)."The key to understanding the European MioceneChalcides (Squamata, Scincidae) comes from Asia: the lizards of the East Siberian Tagay locality (Baikal Lake) in Russia".The Anatomical Record.303 (7):1901–1934.doi:10.1002/ar.24289.PMID 31595688.S2CID 203983366.
  35. ^Kailah M. Thorn; Mark N. Hutchinson; Michael Archer; Michael S. Y. Lee (2019). "A new scincid lizard from the Miocene of Northern Australia, and the evolutionary history of social skinks (Scincidae: Egerniinae)".Journal of Vertebrate Paleontology.39 (1): e1577873.doi:10.1080/02724634.2019.1577873.S2CID 155763347.
  36. ^Raúl O. Gómez; Fernando F. Garberoglio; Guillermo W. Rougier (2019). "A new Late Cretaceous snake from Patagonia: Phylogeny and trends in body size evolution of madtsoiid snakes".Comptes Rendus Palevol.18 (7):771–781.doi:10.1016/j.crpv.2019.09.003.hdl:11336/139595.S2CID 213774502.
  37. ^Aaron R. H. Leblanc; Sydney R. Mohr; Michael W. Caldwell (2019). "Insights into the anatomy and functional morphology of durophagous mosasaurines (Squamata: Mosasauridae) from a new species ofGlobidens from Morocco".Zoological Journal of the Linnean Society.186 (4):1026–1052.doi:10.1093/zoolinnean/zlz008.
  38. ^abcdV. R. Alifanov (2019). "Lizards of the families Eoxantidae, Ardeosauridae, Globauridae, and Paramacellodidae (Scincomorpha) from the Aptian–Albian of Mongolia".Paleontological Journal.53 (1):74–88.doi:10.1134/S0031030119010039.S2CID 181824832.
  39. ^Andrej Čerňanský (2019). "The first potential fossil record of a dibamid reptile (Squamata: Dibamidae): a new taxon from the early Oligocene of Central Mongolia".Zoological Journal of the Linnean Society.187 (3):782–799.doi:10.1093/zoolinnean/zlz047.
  40. ^Liping Dong; Yuan Wang; Lijie Mou; Guoze Zhang; Susan E. Evans (2019)."A new Jurassic lizard from China".Geodiversitas.41 (16):623–641.doi:10.5252/geodiversitas2019v41a16.S2CID 204256127.
  41. ^Jingmai O'Connor; Xiaoting Zheng; Liping Dong; Xiaoli Wang; Yan Wang; Xiaomei Zhang; Zhonghe Zhou (2019)."Microraptor with ingested lizard suggests non-specialized digestive function".Current Biology.29 (14): 2423–2429.e2.doi:10.1016/j.cub.2019.06.020.PMID 31303494.S2CID 195887207.
  42. ^Romain Vullo (2019)."A new species ofLapparentophis from the mid-Cretaceous Kem Kem beds, Morocco, with remarks on the distribution of lapparentophiid snakes".Comptes Rendus Palevol.18 (7):765–770.doi:10.1016/j.crpv.2019.08.004.S2CID 210297438.
  43. ^Hugues-Alexandre Blain; Salvador Bailon (2019). "Extirpation ofOphisaurus (Anguimorpha, Anguidae) in Western Europe coincided with the disappearance of subtropical ecosystems at the Early-Middle Pleistocene transition".Palaeogeography, Palaeoclimatology, Palaeoecology.520:96–113.doi:10.1016/j.palaeo.2019.01.023.S2CID 135280617.
  44. ^Georgios L. Georgalis; Torsten M. Scheyer (2019)."A new species ofPalaeopython (Serpentes) and other extinct squamates from the Eocene of Dielsdorf (Zurich, Switzerland)"(PDF).Swiss Journal of Geosciences.112 (2–3):383–417.doi:10.1007/s00015-019-00341-6.S2CID 195374710. Archived fromthe original(PDF) on 2020-02-28. Retrieved2019-08-06.
  45. ^abV.R. Alifanov (2019)."Lizards of the families Dorsetisauridae and Xenosauridae (Anguimorpha) from the Aptian-Albian of Mongolia".Paleontological Journal.53 (2):183–193.doi:10.1134/S0031030119020023.S2CID 195302163.
  46. ^abGeorgios L. Georgalis; Andrea Villa; Martin Ivanov; Davit Vasilyan; Massimo Delfino (2019)."Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary".Palaeontologia Electronica.22 (3): Article number 22.3.68.doi:10.26879/908.hdl:2318/1715071.S2CID 210621662.
  47. ^Michelle Campbell Mekarski; Dražen Japundžić; Katarina Krizmanić; Michael W. Caldwell (2019). "Description of a new basal mosasauroid from the Late Cretaceous of Croatia, with comments on the evolution of the mosasauroid forelimb".Journal of Vertebrate Paleontology.39 (1): e1577872.doi:10.1080/02724634.2019.1577872.S2CID 182237952.
  48. ^Georgios L. Georgalis; Marisa Arca; Lorenzo Rook; Caterinella Tuveri; Massimo Delfino (2019). "A new colubroid snake (Serpentes) from the early Pleistocene of Sardinia, Italy".Bollettino della Società Paleontologica Italiana.58 (3):277–294.doi:10.4435/BSPI.2019.19 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  49. ^Long Cheng; Ryosuke Motani; Da-yong Jiang; Chun-bo Yan; Andrea Tintori; Olivier Rieppel (2019)."Early Triassic marine reptile representing the oldest record of unusually small eyes in reptiles indicating non-visual prey detection".Scientific Reports.9 (1): Article number 152.Bibcode:2019NatSR...9..152C.doi:10.1038/s41598-018-37754-6.PMC 6345829.PMID 30679783.
  50. ^Benjamin C. Moon (2019)."A new phylogeny of ichthyosaurs (Reptilia: Diapsida)"(PDF).Journal of Systematic Palaeontology.17 (2):129–155.doi:10.1080/14772019.2017.1394922.hdl:1983/463e9f78-10b7-4262-9643-0454b4aa7763.S2CID 90912678.
  51. ^Susana Gutarra; Benjamin C. Moon; Imran A. Rahman; Colin Palmer; Stephan Lautenschlager; Alison J. Brimacombe; Michael J. Benton (2019)."Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs".Proceedings of the Royal Society B: Biological Sciences.286 (1898): Article ID 20182786.doi:10.1098/rspb.2018.2786.PMC 6458325.PMID 30836867.
  52. ^S. B. Crofts; R. Shehata; B. Flammang (2019)."Flexibility of heterocercal tails: what can the functional morphology of shark tails tell us about ichthyosaur swimming?".Integrative Organismal Biology.1 (1): obz002.doi:10.1093/iob/obz002.PMC 7671117.PMID 33791519.
  53. ^Joseph T. Flannery Sutherland; Benjamin C. Moon; Thomas L. Stubbs; Michael J. Benton (2019)."Does exceptional preservation distort our view of disparity in the fossil record?".Proceedings of the Royal Society B: Biological Sciences.286 (1897): Article ID 20190091.doi:10.1098/rspb.2019.0091.PMC 6408902.PMID 30963850.
  54. ^Eric W.A. Mulder; John W.M. Jagt (2019). "Globidens(?) timorensis E. VON HUENE, 1935: not a durophagous mosasaur, but an enigmatic Triassic ichthyosaur".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.293 (1):107–116.doi:10.1127/njgpa/2019/0835.S2CID 199112423.
  55. ^Judith M. Pardo-Pérez; Benjamin Kear; Erin E. Maxwell (2019)."Palaeoepidemiology in extinct vertebrate populations: factors influencing skeletal health in Jurassic marine reptiles".Royal Society Open Science.6 (7): Article ID 190264.Bibcode:2019RSOS....690264P.doi:10.1098/rsos.190264.PMC 6689571.PMID 31417732.
  56. ^Dean R. Lomax; Mark Evans; Simon Carpenter (2019)."An ichthyosaur from the UK Triassic–Jurassic boundary: A second specimen of the leptonectid ichthyosaurWahlisaurus massarae Lomax 2016".Geological Journal.54 (1):83–90.doi:10.1002/gj.3155.S2CID 134448865.
  57. ^Dean R. Lomax; Laura B. Porro; Nigel R. Larkin (2019)."Descriptive anatomy of the largest known specimen ofProtoichthyosaurus prostaxalis (Reptilia: Ichthyosauria) including computed tomography and digital reconstruction of a three-dimensional skull".PeerJ.7: e6112.doi:10.7717/peerj.6112.PMC 6329338.PMID 30643690.
  58. ^Dean R. Lomax; Judy A. Massare; Mark Evans (2019). "New information on the skull roof ofProtoichthyosaurus (Reptilia: Ichthyosauria) and intraspecific variation in some dermal skull elements".Geological Magazine.157 (4):640–650.doi:10.1017/S0016756819001225.S2CID 210267260.
  59. ^Dean R. Lomax; Nigel R. Larkin; Ian Boomer; Steven Dey; Philip Copestake (2019)."The first known neonateIchthyosaurus communis skeleton: a rediscovered specimen from the Lower Jurassic, UK"(PDF).Historical Biology: An International Journal of Paleobiology.31 (5):600–609.doi:10.1080/08912963.2017.1382488.S2CID 89922569.
  60. ^Judy A. Massare; Dean R. Lomax (2019)."Hindfins ofIchthyosaurus: effects of large sample size on 'distinct' morphological characters".Geological Magazine.156 (4):725–744.Bibcode:2019GeoM..156..725M.doi:10.1017/S0016756818000146.S2CID 134945422.
  61. ^Katherine L. Anderson; Patrick S. Druckenmiller; Gregory M. Erickson; Erin E. Maxwell (2019). "Skeletal microstructure ofStenopterygius quadriscissus (Reptilia, Ichthyosauria) from the Posidonienschiefer (Posidonia Shale, Lower Jurassic) of Germany".Palaeontology.62 (3):433–449.doi:10.1111/pala.12408.S2CID 135229818.
  62. ^Feiko Miedema; Erin E. Maxwell (2019)."Ontogeny of the braincase inStenopterygius (Reptilia, Ichthyosauria) from the Lower Jurassic of Germany".Journal of Vertebrate Paleontology.39 (4): e1675164.doi:10.1080/02724634.2019.1675164.S2CID 209439995.
  63. ^Lene L. Delsett; Aubrey J. Roberts; Patrick S. Druckenmiller; Jørn H. Hurum (2019)."Osteology and phylogeny of Late Jurassic ichthyosaurs from the Slottsmøya Member Lagerstätte (Spitsbergen, Svalbard)".Acta Palaeontologica Polonica.64 (4):717–743.doi:10.4202/app.00571.2018.hdl:10852/76089.S2CID 210294877.
  64. ^Nikolay G. Zverkov; Vladimir M. Efimov (2019)."Revision ofUndorosaurus, a mysterious Late Jurassic ichthyosaur of the Boreal Realm".Journal of Systematic Palaeontology.17 (14):1183–1213.Bibcode:2019JSPal..17.1183Z.doi:10.1080/14772019.2018.1515793.S2CID 91912834.
  65. ^Nikolay G. Zverkov; Natalya E. Prilepskaya (2019)."A prevalence ofArthropterygius (Ichthyosauria: Ophthalmosauridae) in the Late Jurassic—earliest Cretaceous of the Boreal Realm".PeerJ.7: e6799.doi:10.7717/peerj.6799.PMC 6497043.PMID 31106052.
  66. ^Erin E. Maxwell; Dirley Cortés; Pedro Patarroyo; Mary Luz Parra Ruge (2019). "A new specimen ofPlatypterygius sachicarum (Reptilia, Ichthyosauria) from the Early Cretaceous of Colombia and its phylogenetic implications".Journal of Vertebrate Paleontology.39 (1): e1577875.doi:10.1080/02724634.2019.1577875.S2CID 146059015.
  67. ^Lisandro Campos; Marta S. Fernández; Yanina Herrera (2020)."A new ichthyosaur from the Late Jurassic of north-west Patagonia (Argentina) and its significance for the evolution of the narial complex of the ophthalmosaurids".Zoological Journal of the Linnean Society.188 (1):180–201.doi:10.1093/zoolinnean/zlz095.
  68. ^Jian-dong Huang; Ryosuke Motani; Da-yong Jiang; Andrea Tintori; Olivier Rieppel; Min Zhou; Xin-Xin Ren; Rong Zhang (2019)."The new ichthyosauriformChaohusaurus brevifemoralis (Reptilia, Ichthyosauromorpha) from Majiashan, Chaohu, Anhui Province, China".PeerJ.7: e7561.doi:10.7717/peerj.7561.PMC 6741286.PMID 31565558.
  69. ^Corinna V. Fleischle; P. Martin Sander; Tanja Wintrich; Kai R. Caspar (2019)."Hematological convergence between Mesozoic marine reptiles (Sauropterygia) and extant aquatic amniotes elucidates diving adaptations in plesiosaurs".PeerJ.7: e8022.doi:10.7717/peerj.8022.PMC 6873879.PMID 31763069.
  70. ^Nicole Klein; Aurore Canoville; Alexandra Houssaye (2019)."Microstructure of vertebrae, ribs, and gastralia of Triassic sauropterygians – New insights into the microanatomical processes involved in aquatic adaptations of marine reptiles".The Anatomical Record.302 (10):1770–1791.doi:10.1002/ar.24140.PMID 30989828.S2CID 117721335.
  71. ^Jelle Heijne; Nicole Klein; P. Martin Sander (2019). "The uniquely diverse taphonomy of the marine reptile skeletons (Sauropterygia) from the Lower Muschelkalk (Anisian) of Winterswijk, The Netherlands".PalZ.93 (1):69–92.doi:10.1007/s12542-018-0438-0.S2CID 133992814.
  72. ^Wei Wang; Feimin Ma; Chun Li (2019). "First subadult specimen ofPsephochelys polyosteoderma (Sauropterygia, Placodontia) implies turtle-like fusion pattern of the carapace".Papers in Palaeontology.6 (2):251–264.doi:10.1002/spp2.1293.S2CID 212865203.
  73. ^Wei Wang; Chun Li; Xiao-Chun Wu (2019). "An adult specimen ofSinocyamodus xinpuensis (Sauropterygia: Placodontia) from Guanling, Guizhou, China".Zoological Journal of the Linnean Society.185 (3):910–924.doi:10.1093/zoolinnean/zly080.
  74. ^Khaing Khaing San; Nicholas C. Fraser; Davide Foffa; Olivier Rieppel; Stephen L. Brusatte (2019)."The first Triassic vertebrate fossils from Myanmar: Pachypleurosaurs in a marine limestone".Acta Palaeontologica Polonica.64 (2):357–362.doi:10.4202/app.00594.2019.hdl:20.500.11820/5fa5756a-4e76-4f62-b444-413ff379fbbd.S2CID 149583826.
  75. ^Torsten M. Scheyer; Andrew G. Neuman; Donald B. Brinkman (2019)."A large marine eosauropterygian reptile with affinities to nothosauroid diapsids from the Early Triassic of British Columbia, Canada".Acta Palaeontologica Polonica.64 (4):745–755.doi:10.4202/app.00599.2019.S2CID 204794697.
  76. ^Eva M. Griebeler; Nicole Klein (2019). "Life-history strategies indicate live-bearing inNothosaurus (Sauropterygia)".Palaeontology.62 (4):697–713.doi:10.1111/pala.12425.S2CID 133629062.
  77. ^D. Surmik; M. Dulski; B. Kremer; J. Szade; R. Pawlicki (2019). "Iron-mediated deep-time preservation of osteocytes in a Middle Triassic reptile bone".Historical Biology: An International Journal of Paleobiology.33 (2):186–193.doi:10.1080/08912963.2019.1599884.S2CID 146090823.
  78. ^Xue Wang; Hao Lu; Da-Yong Jiang; Min Zhou; Zuo-Yu Sun (2019). "A new specimen ofYunguisaurus (Reptilia; Sauropterygia) from the Ladinian (Middle Triassic) Zhuganpo Member, Falang Formation, Guizhou, China and the restudy ofDingxiaosaurus".Palaeoworld.29 (1):137–150.doi:10.1016/j.palwor.2019.05.006.S2CID 181711576.
  79. ^Pernille V. Troelsen; David M. Wilkinson; Mehdi Seddighi; David R. Allanson; Peter L. Falkingham (2019)."Functional morphology and hydrodynamics of plesiosaur necks: Does size matter?"(PDF).Journal of Vertebrate Paleontology.39 (2): e1594850.doi:10.1080/02724634.2019.1594850.S2CID 181587237.
  80. ^Judyth Sassoon (2019)."Congenital and late onset vertebral fusions in long necked plesiosaurs: The first report of spondylosis deformans in Sauropterygians".Palaeontologia Electronica.22 (1): Article number 22.1.1.doi:10.26879/913.S2CID 135461586.
  81. ^Ting Gao; Da-Qing Li; Long-Feng Li; Jing-Tao Yang (2019)."The first record of freshwater plesiosaurian from the Middle Jurassic of Gansu, NW China, with its implications to the local palaeobiogeography".Journal of Palaeogeography.8 (1): Article number 27.Bibcode:2019JPalG...8...27G.doi:10.1186/s42501-019-0043-5.S2CID 199547716.
  82. ^Iván Meza-Vélez; José P. O'Gorman (2019). "First plesiosaurian record (Diapsida; Sauropterygia) from the La Herradura Formation, (Valanginian–Hauterivian), Morro Solar, Peru".Cretaceous Research.106: Article 104247.doi:10.1016/j.cretres.2019.104247.S2CID 204267246.
  83. ^José Patricio O'Gorman; Rodrigo Otero; Marcelo Reguero; Zulma Gasparini (2019). "Cretaceous Antarctic plesiosaurs: stratigraphy, systematics and paleobiogeography".Advances in Polar Science.30 (3):210–227.doi:10.13679/j.advps.2018.0049.
  84. ^Sven Sachs; Christian Klug; Benjamin P. Kear (2019)."Rare evidence of a giant pliosaurid-like plesiosaur from the Middle Jurassic (lower Bajocian) of Switzerland".Swiss Journal of Palaeontology.138 (2):337–342.doi:10.1007/s13358-019-00200-9.S2CID 207827907.
  85. ^Daniel Madzia; Sven Sachs; Johan Lindgren (2019). "Morphological and phylogenetic aspects of the dentition ofMegacephalosaurus eulerti, a pliosaurid from the Turonian of Kansas, USA, with remarks on the cranial anatomy of the taxon".Geological Magazine.156 (7):1201–1216.Bibcode:2019GeoM..156.1201M.doi:10.1017/S0016756818000523.S2CID 133859507.
  86. ^Alexander Lukeneder; Nikolay Zverkov (2019). "First evidence of a conical-toothed pliosaurid (Reptilia, Sauropterygia) in the Hauterivian of the Northern Calcareous Alps, Austria".Cretaceous Research.106: Article 104248.doi:10.1016/j.cretres.2019.104248.S2CID 204251536.
  87. ^María E. Páramo-Fonseca; Cristian D. Benavides-Cabra; Ingry E. Gutiérrez (2019). "A new specimen ofStenorhynchosaurus munozi Páramo-Fonseca et al., 2016 (Plesiosauria, Pliosauridae), from the Barremian of Colombia: new morphological features and ontogenetic implications".Journal of Vertebrate Paleontology.39 (4): e1663426.doi:10.1080/02724634.2019.1663426.S2CID 208561823.
  88. ^Maxim S. Arkhangelsky; Nikolay G. Zverkov; Mikhail A. Rogov; Ilya M. Stenshin; Evgeniya M. Baykina (2019). "Colymbosaurines from the Upper Jurassic of European Russia and their implication for palaeobiogeography of marine reptiles".Palaeobiodiversity and Palaeoenvironments.100 (1):197–218.doi:10.1007/s12549-019-00397-0.S2CID 201983459.
  89. ^Tanja Wintrich; René Jonas; Hans-Joachim Wilke; Lars Schmitz; P. Martin Sander (2019)."Neck mobility in the Jurassic plesiosaurCryptoclidus eurymerus: finite element analysis as a new approach to understanding the cervical skeleton in fossil vertebrates".PeerJ.7: e7658.doi:10.7717/peerj.7658.PMC 6842296.PMID 31720095.
  90. ^J.M. Quesada; A. Pérez-García; J.M. Gasulla; F. Ortega (2019). "Plesiosauria remains from the Barremian of Morella (Castellón, Spain) and first identification of Leptocleididae in the Iberian record".Cretaceous Research.94:8–24.doi:10.1016/j.cretres.2018.10.010.S2CID 134139253.
  91. ^Donald J. Morgan III; F. Robin O'Keefe (2019). "The cranial osteology of two specimens ofDolichorhynchops bonneri (Plesiosauria, Polycotylidae) from the Campanian of South Dakota, and a cladistic analysis of the Polycotylidae".Cretaceous Research.96:149–171.doi:10.1016/j.cretres.2018.11.027.S2CID 134887820.
  92. ^F. R. O'Keefe; P. M. Sander; T. Wintrich; S. Werning (2019)."Ontogeny of polycotylid long bone microanatomy and histology".Integrative Organismal Biology.1 (1): oby007.doi:10.1093/iob/oby007.PMC 7671113.PMID 33791514.
  93. ^Satoshi Utsunomiya (2019). "Oldest Elasmosauridae(Plesiosauria) in East Asia from the Upper Cretaceous Goshoura Group, Shishijima Island, southwestern Japan".Bulletin of the Osaka Museum of Natural History.73:23–35.doi:10.20643/00001333.
  94. ^J.P. O'Gorman; S. Santillana; R. Otero; M. Reguero (2019). "A giant elasmosaurid (Sauropterygia; Plesiosauria) from Antarctica: new information on elasmosaurid body size diversity and aristonectine evolutionary scenarios".Cretaceous Research.102:37–58.doi:10.1016/j.cretres.2019.05.004.S2CID 181725020.
  95. ^José Patricio O'Gorman (2019). "First record ofKawanectes lafquenianum (Plesiosauria, Elasmosauridae) from the La Colonia Formation of Argentina, with comments on the mandibular morphology of elasmosaurids".Alcheringa: An Australasian Journal of Palaeontology.44 (1):176–193.doi:10.1080/03115518.2019.1687754.S2CID 213090343.
  96. ^Rémi Allemand; Alexandra Houssaye; Nathalie Bardet; Peggy Vincent (2019)."Endocranial anatomy of plesiosaurians (Reptilia, Plesiosauria) from the Late Cretaceous (Turonian) of Goulmima (Southern Morocco)"(PDF).Journal of Vertebrate Paleontology.39 (2): e1595636.doi:10.1080/02724634.2019.1595636.S2CID 181790183.
  97. ^Wei Wang; Chun Li; Torsten M. Scheyer; Lijun Zhao (2019). "A new species ofCyamodus (Placodontia, Sauropterygia) from the early Late Triassic of south-west China".Journal of Systematic Palaeontology.17 (17):1457–1476.doi:10.1080/14772019.2018.1535455.S2CID 91579582.
  98. ^Jinyuan Hu; Tao Jiang; Zhiguang Li (2019)."A new species ofGlyphoderma (Reptilia: Placodontia) of Middle Triassic from Fuyuan County, Yunnan Province, China".Journal of Geology.43 (4):595–598. Archived fromthe original on 2020-09-13. Retrieved2020-05-03.
  99. ^Maria Eurídice Páramo-Fonseca; José Patricio O'Gorman; Zulma Gasparini; Santiago Padilla; Mary Luz Parra Ruge (2019). "A new late Aptian elasmosaurid from the Paja Formation, Villa de Leiva, Colombia".Cretaceous Research.99:30–40.doi:10.1016/j.cretres.2019.02.010.hdl:11336/127809.S2CID 134171636.
  100. ^Peggy Vincent; Glenn W. Storrs (2019). "Lindwurmia, a new genus of Plesiosauria (Reptilia: Sauropterygia) from the earliest Jurassic of Halberstadt, northwest Germany".The Science of Nature.106 (1–2): Article 5.Bibcode:2019SciNa.106....5V.doi:10.1007/s00114-018-1600-y.PMID 30689058.S2CID 59304744.
  101. ^Peggy Vincent; Robert Weis; Guy Kronz; Dominique Delsate (2019)."Microcleidus melusinae, a new plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg"(PDF).Geological Magazine.156 (1):99–116.Bibcode:2019GeoM..156...99V.doi:10.1017/S0016756817000814.S2CID 135111068.
  102. ^Juliane K. Hinz; Andreas T. Matzke; Hans-Ulrich Pfretzschner (2019). "A new nothosaur (Sauropterygia) from the Ladinian of Vellberg-Eschenau, southern Germany".Journal of Vertebrate Paleontology.39 (2): e1585364.doi:10.1080/02724634.2019.1585364.S2CID 155775644.
  103. ^Da-Yong Jiang; Wen-Bin Lin; Olivier Rieppel; Ryosuke Motani; Zuo-Yu Sun (2019). "A new Anisian (Middle Triassic) eosauropterygian (Reptilia, Sauropterygia) from Panzhou, Guizhou Province, China".Journal of Vertebrate Paleontology.38 (4): (1)–(9).doi:10.1080/02724634.2018.1480113.S2CID 109794338.
  104. ^Serjoscha W. Evers; Roger B. J. Benson (2019)."A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group".Palaeontology.62 (1):93–134.doi:10.1111/pala.12384.S2CID 134736808.
  105. ^Ingmar Werneburg; Wolfgang Maier (2019). "Diverging development of akinetic skulls in cryptodire and pleurodire turtles: an ontogenetic and phylogenetic study".Vertebrate Zoology.69 (2):113–143.doi:10.26049/VZ69-2-2019-01.
  106. ^Juan M. Jannello; Ignacio A. Cerda; Marcelo S. de la Fuente (2019). "The relationship between bone shell microanatomy and palaeoecology in Testudinata from South America".Palaeogeography, Palaeoclimatology, Palaeoecology.537: Article 109412.doi:10.1016/j.palaeo.2019.109412.S2CID 210293162.
  107. ^Tomasz Szczygielski; Tomasz Sulej (2019). "The early composition and evolution of the turtle shell (Reptilia, Testudinata)".Palaeontology.62 (3):375–415.doi:10.1111/pala.12403.S2CID 134011993.
  108. ^Pavel P. Skutschas; Valentina D. Markova; Veniamin V. Kolchanov; Alexander O. Averianov; Thomas Martin; Rico Schellhorn; Petr N. Kolosov; Dmitry V. Grigoriev; Dmitry D. Vitenko; Ekaterina M. Obraztsova; Igor G. Danilov (2019). "Basal turtle material from the Lower Cretaceous of Yakutia (Russia) filling the gap in the Asian record".Cretaceous Research.106: Article 104186.doi:10.1016/j.cretres.2019.07.016.S2CID 202195840.
  109. ^Juliana Sterli; Marcelo S. de la Fuente; Guillermo W. Rougier (2019). "New remains ofCondorchelys antiqua (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles".Journal of Vertebrate Paleontology.38 (4): (1)–(17).doi:10.1080/02724634.2018.1480112.hdl:11336/99525.S2CID 109556104.
  110. ^Ariana Paulina-Carabajal; Juliana Sterli; Ingmar Werneburg (2019)."The endocranial anatomy of the stem turtleNaomichelys speciosa from the Early Cretaceous of North America".Acta Palaeontologica Polonica.64 (4):711–716.doi:10.4202/app.00606.2019.hdl:11336/175025.
  111. ^Juliana Sterli; Marcelo S. de la Fuente (2019). "Cranial and post-cranial remains and phylogenetic relationships of the Gondwanan meiolaniform turtlePeligrochelys walshae from the Paleocene of Chubut, Argentina".Journal of Paleontology.93 (4):798–821.doi:10.1017/jpa.2019.11.S2CID 146608711.
  112. ^A. Pérez-García; E. Díaz-Berenguer; A. Badiola; J.I. Canudo (2019). "An unexpected finding: identification of the first complete shell of the Franco-Belgian middle Eocene littoral pleurodiran turtleEocenochelus eremberti in Spain".Historical Biology: An International Journal of Paleobiology.33 (4):527–533.doi:10.1080/08912963.2019.1644330.S2CID 199637318.
  113. ^P. González Ruiz; M. S. de la Fuente; M.S. Fernández (2019). "New cranial fossils of the Jurassic turtleNeusticemys neuquina and phylogenetic relationships of the only thalassochelydian known from the eastern Pacific".Journal of Paleontology.94 (1):145–164.doi:10.1017/jpa.2019.74.S2CID 210611801.
  114. ^Irena Raselli; Jérémy Anquetin (2019)."Novel insights into the morphology ofPlesiochelys bigleri from the early Kimmeridgian of Northwestern Switzerland".PLOS ONE.14 (5): e0214629.Bibcode:2019PLoSO..1414629R.doi:10.1371/journal.pone.0214629.PMC 6519798.PMID 31091241.
  115. ^Christian Püntener; Jean-Paul Billon-Bruyat; Daniel Marty; Géraldine Paratte (2019)."Under the feet of sauropods: a trampled coastal marine turtle from the Late Jurassic of Switzerland?".Swiss Journal of Geosciences.112 (2–3):507–515.doi:10.1007/s00015-019-00347-0.S2CID 202565198.
  116. ^Haiyan Tong; Lu Li (2019). "A revision of the holotype ofNanhsiungchelys wuchingensis, Ye, 1966 (Testudines: Cryptodira: Trionychoidae: Nanhsiungchelyidae)".Cretaceous Research.95:151–163.doi:10.1016/j.cretres.2018.11.003.S2CID 133937906.
  117. ^Adán Pérez-García (2019). "Identification of the Lower Cretaceous pleurodiran turtleTaquetochelys decorata as the only African araripemydid species".Comptes Rendus Palevol.18 (1):24–32.Bibcode:2019CRPal..18...24P.doi:10.1016/j.crpv.2018.04.004.S2CID 134080281.
  118. ^Walter G. Joyce; Jérémy Anquetin (2019)."A review of the fossil record of nonbaenid turtles of the clade Paracryptodira".Bulletin of the Peabody Museum of Natural History.60 (2):129–155.doi:10.3374/014.060.0204.S2CID 203780510.
  119. ^Da-Qing Li; Chang-Fu Zhou; Lan Li; Jing-Tao Yang; Longfeng Li; Márton Rabi (2019)."The sinemydid turtleOrdosemys from the Lower Cretaceous Mengyin Formation of Shandong, China and its implication for the age of the Luohandong Formation of the Ordos Basin".PeerJ.7: e6229.doi:10.7717/peerj.6229.PMC 6338100.PMID 30671300.
  120. ^Chang-Fu Zhou; Wen-Hao Wu; Márton Rabi (2019)."Presence of the Jehol Biota turtleOrdosemys liaoxiensis in the Early Cretaceous Hengtongshan Formation of southern Jilin Province, China".Fossil Record.22 (2):57–64.doi:10.5194/fr-22-57-2019.S2CID 203380800.
  121. ^Oksana Nekrasova; Yevheniia Yanish; Volodymyr Tytar; Mihails Pupins (2019)."GIS-modeling of the range shifts of the sub-fossil and extant European pond turtle (Emys orbicularis) in Eastern Europe in Holocene".Diversity.11 (8): Article 121.doi:10.3390/d11080121.
  122. ^Edwin Alberto Cadena; Jorge D. Carrillo-Briceño (2019). "First fossil ofRhinoclemmys Fitzinger, 1826 (Cryptodira, Geoemydidae) east of the Andes".South American Journal of Herpetology.14 (1):19–23.doi:10.2994/SAJH-D-17-00099.1.S2CID 146111011.
  123. ^Donald A. Esker; Steve L. Forman; Dava K. Butler (2019). "Reconstructing the mass and thermal ecology of North American Pleistocene tortoises".Paleobiology.45 (2):363–377.doi:10.1017/pab.2019.6.S2CID 155216574.
  124. ^Christian Kehlmaier; Eva Graciá; Patrick D. Campbell; Margaretha D. Hofmeyr; Silke Schweiger; Albert Martínez-Silvestre; Walter Joyce; Uwe Fritz (2019)."Ancient mitogenomics clarifies radiation of extinct Mascarene giant tortoises (Cylindraspis spp.)".Scientific Reports.9 (1): Article number 17487.Bibcode:2019NatSR...917487K.doi:10.1038/s41598-019-54019-y.PMC 6877638.PMID 31767921.
  125. ^E.V. Syromyatnikova; T.V. Krakhmalnaya; V.M. Chkhikvadze; I.G. Danilov (2019)."TurtlesProtestudo bessarabica from the Late Miocene of Ukraine".Paleontological Journal.53 (6):647–659.doi:10.1134/S003103011906011X.S2CID 210926442.
  126. ^Serjoscha W. Evers; Paul M. Barrett; Roger B. J. Benson (2019)."Anatomy ofRhinochelys pulchriceps (Protostegidae) and marine adaptation during the early evolution of chelonioids".PeerJ.7: e6811.doi:10.7717/peerj.6811.PMC 6500378.PMID 31106054.
  127. ^Serjoscha W. Evers; James M. Neenan; Gabriel S. Ferreira; Ingmar Werneburg; Paul M. Barrett; Roger B. J. Benson (2019)."Neurovascular anatomy of the protostegid turtleRhinochelys pulchriceps and comparisons of membranous and endosseous labyrinth shape in an extant turtle".Zoological Journal of the Linnean Society.187 (3):800–828.doi:10.1093/zoolinnean/zlz063.
  128. ^Edwin-Alberto Cadena; Mary L. Parra-Ruge; Juan de D. Parra-Ruge; Santiago Padilla-Bernal (2019). "A gravid fossil turtle from the Early Cretaceous reveals a different egg development strategy to that of extant marine turtles".Palaeontology.62 (4):533–545.doi:10.1111/pala.12413.S2CID 134446621.
  129. ^Oliver A. López-Conde; Juliana Sterli; Jesús Alvarado-Ortega; María L. Chavarría-Arellano; Héctor Porras-Múzquiz (2019). "The first record ofDesmatochelys cf.D. lowii from the Late Cretaceous (Campanian) of Coahuila, Mexico".Journal of South American Earth Sciences.94: Article 102204.Bibcode:2019JSAES..9402204L.doi:10.1016/j.jsames.2019.05.020.S2CID 182226555.
  130. ^Bailey R. Fallon; Robert W. Boessenecker (2019)."First record of the leatherback sea turtle (Dermochelyidae) from the Mio-Pliocene Purisima Formation of northern California, USA".PaleoBios.36: ucmp_paleobios_44240.
  131. ^E.A. Zvonok; E.V. Syromyatnikova; I.G. Danilov; A.F. Bannikov (2019)."A sea turtle (Cheloniidae) from the middle Eocene of North Caucasus".Paleontological Journal.53 (5):530–539.doi:10.1134/S0031030119050137.S2CID 203848066.
  132. ^Andreas T. Matzke; Michael W. Maisch (2019)."The braincase ofSyllomus aegyptiacus Lydekker, 1899 (Reptilia, Testudines) from the Middle Miocene Calvert Formation of Virginia".Palaeodiversity.12 (1):31–39.doi:10.18476/pale.v12.a3.S2CID 155517282.
  133. ^E.A. Zvonok; I.G. Danilov (2019)."Paleogene turtles of Crimea".Paleontological Journal.53 (1):62–73.doi:10.1134/S003103011901012X.S2CID 181673636.
  134. ^Julien Claude; Prasit Auetrakulvit; Wilailuck Naksri; Corentin Bochaton; Valéry Zeitoun; HaiyanTong (2019). "The recent fossil turtle record of the central plain of Thailand reveals local extinctions".Annales de Paléontologie.105 (4):305–315.doi:10.1016/j.annpal.2019.04.005.S2CID 197569669.
  135. ^Andrew D. Gentry; Jun A. Ebersole; Caitlin R. Kiernan (2019)."Asmodochelys parhami, a new fossil marine turtle from the Campanian Demopolis Chalk and the stratigraphic congruence of competing marine turtle phylogenies".Royal Society Open Science.6 (12): Article ID 191950.Bibcode:2019RSOS....691950G.doi:10.1098/rsos.191950.PMC 6936288.PMID 31903219.
  136. ^Walter G. Joyce; Donald B. Brinkman; Tyler R. Lyson (2019)."A new species of trionychid turtle,Axestemys infernalis sp. nov., from the Late Cretaceous (Maastrichtian) Hell Creek and Lance formations of the Northern Great Plains, USA".Palaeontologia Electronica.22 (3): Article number 22.3.72.doi:10.26879/949.S2CID 214538408.
  137. ^Rafaella C. Garbin; Madelaine Böhme; Walter G. Joyce (2019)."A new testudinoid turtle from the middle to late Eocene of Vietnam".PeerJ.7: e6280.doi:10.7717/peerj.6280.PMC 6383559.PMID 30805245.
  138. ^Hans-Volker Karl; Amtyaz Safi; Hans-Dieter Philippen (2019)."Evidences of cheloniophagy by early hominid (Homo erectus) during middle of Pleistocene from beds of Trinil's layers in central Java (Indonesia), with an updated list of Trinil's Testudines, and a redescription ofDuboisemys isoclina (Dubois, 1908)".International Journal of Zoology Studies.4 (6):73–84.
  139. ^A. Pérez-García (2019)."The African AptianFrancemys gadoufaouaensis gen. et sp. nov.: new data on the early diversification of Pelomedusoides (Testudines, Pleurodira) in northern Gondwana".Cretaceous Research.102:112–126.doi:10.1016/j.cretres.2019.06.003.S2CID 197575106.
  140. ^Adán Pérez-García (2019). "A new member of Taphrosphyini (Pleurodira, Bothremydidae) from the Maastrichtian of Niger".Journal of African Earth Sciences.158: Article 103548.Bibcode:2019JAfES.15803548P.doi:10.1016/j.jafrearsci.2019.103548.S2CID 198409262.
  141. ^Haiyan Tong; Wilailuck Naksri; Eric Buffetaut; Suravech Suteethorn; Varavudh Suteethorn; Phornphen Chantasit; Julien Claude (2019). "Kalasinemys, a new xinjiangchelyid turtle from the Late Jurassic of NE Thailand".Geological Magazine.156 (10):1645–1656.Bibcode:2019GeoM..156.1645T.doi:10.1017/S0016756818000791.S2CID 134746960.
  142. ^Haiyan Tong; Eric Buffetaut; Varavudh Suteethorn; Suravech Suteethorn; Gilles Cuny; Lionel Cavin; Uthumporn Deesri; Jeremy E. Martin; Kamonrak Wongko; Wilailuck Naksri; Julien Claude (2019). "Phu Din Daeng, a new Early Cretaceous vertebrate locality on the Khorat Plateau, NE Thailand".Annales de Paléontologie.105 (3):223–237.doi:10.1016/j.annpal.2019.04.004.S2CID 189968031.
  143. ^Tyler R. Lyson; Jacob L. Sayler; Walter G. Joyce (2019)."A new baenid turtle,Saxochelys gilberti, gen. et sp. nov., from the uppermost Cretaceous (Maastrichtian) Hell Creek Formation: sexual dimorphism and spatial niche partitioning within the most speciose group of Late Cretaceous turtles".Journal of Vertebrate Paleontology.39 (4): e1662428.doi:10.1080/02724634.2019.1662428.S2CID 208587902.
  144. ^Hans-Volker Karl; Elke Gröning; Carsten Brauckmann (2019). "Tasbacka germanica n. sp., a new Campanian marine turtle from NW-Germany (Testudines: Chelonioidea)".Mainzer Naturwissenschaftliches Archiv.56:99–112.
  145. ^Brent Adrian; Heather F. Smith; Christopher R. Noto; Aryeh Grossman (2019)."A new baenid,"Trinitichelys" maini sp. nov., and other fossil turtles from the Upper Cretaceous Arlington Archosaur Site (Woodbine Formation, Cenomanian), Texas, USA".Palaeontologia Electronica.22 (3): Article number 22.3.81.doi:10.26879/1001.S2CID 210136178.
  146. ^Haiyan Tong; Julien Claude; Cheng-Sen Li; Jian Yang; Thierry Smith (2019). "Wutuchelys eocenica n. gen. n. sp., an Eocene stem testudinoid turtle from Wutu, Shandong Province, China".Geological Magazine.156 (1):133–146.Bibcode:2019GeoM..156..133T.doi:10.1017/S0016756817000905.S2CID 134788782.
  147. ^Bethany J. Allen; Thomas L. Stubbs; Michael J. Benton; Mark N. Puttick (2019)."Archosauromorph extinction selectivity during the Triassic–Jurassic mass extinction".Palaeontology.62 (2):211–224.doi:10.1111/pala.12399.hdl:1983/e3fc2e40-c849-42ed-99fe-ea17fc26b2ec.S2CID 55009185.
  148. ^Sanghamitra Ray; Mohd Shafi Bhat; P. M. Datta (2019). "First record of varied archosauriforms from the Upper Triassic of India based on isolated teeth, and their biostratigraphic implications".Historical Biology: An International Journal of Paleobiology.33 (2):237–253.doi:10.1080/08912963.2019.1609957.ISSN 0891-2963.S2CID 155986791.
  149. ^Devin K. Hoffman; Hunter R. Edwards; Paul M. Barrett; Sterling J. Nesbitt (2019)."Reconstructing the archosaur radiation using a Middle Triassic archosauriform tooth assemblage from Tanzania".PeerJ.7: e7970.doi:10.7717/peerj.7970.PMC 6839518.PMID 31720109.
  150. ^Emily E. Brown; Richard J. Butler; Martín D. Ezcurra; Bhart-Anjan S. Bhullar; Stephan Lautenschlager (2019)."Endocranial anatomy and life habits of the Early Triassic archosauriformProterosuchus fergusi"(PDF).Palaeontology.63 (2):255–282.doi:10.1111/pala.12454.S2CID 204271968.
  151. ^Martín D. Ezcurra; David J. Gower; Andrey G. Sennikov; Richard J. Butler (2019). "The osteology of the holotype of the early erythrosuchidGarjainia prima (Diapsida: Archosauromorpha) from the upper Lower Triassic of European Russia".Zoological Journal of the Linnean Society.185 (3):717–783.doi:10.1093/zoolinnean/zly061.
  152. ^Richard J. Butler; Andrey G. Sennikov; Emma M. Dunne; Martin D. Ezcurra; Brandon P. Hedrick; Susannah C. R. Maidment; Luke E. Meade; Thomas J. Raven; David J. Gower (2019)."Cranial anatomy and taxonomy of the erythrosuchid archosauriform"Vjushkovia triplicostata" Huene, 1960, from the Early Triassic of European Russia".Royal Society Open Science.6 (11): Article ID 191289.Bibcode:2019RSOS....691289B.doi:10.1098/rsos.191289.PMC 6894557.PMID 31827861.
  153. ^Richard J. Butler; Martín D. Ezcurra; Jun Liu; Roland B. Sookias; Corwin Sullivan (2019)."The anatomy and phylogenetic position of the erythrosuchid archosauriformGuchengosuchus shiguaiensis from the earliest Middle Triassic of China".PeerJ.7: e6435.doi:10.7717/peerj.6435.PMC 6385703.PMID 30809443.
  154. ^Richard J. Butler; Andrey G. Sennikov; Martín D. Ezcurra; David J. Gower (2019)."The last erythrosuchid—a revision ofChalishevia cothurnata from the late Middle Triassic of European Russia".Acta Palaeontologica Polonica.64 (4):757–774.doi:10.4202/app.00648.2019.hdl:11336/123959.S2CID 264102352.
  155. ^Andrea Arcucci; Elena Previtera; Adriana C. Mancuso (2019)."Ecomorphology and bone microstructure of Proterochampsia from the Chañares Formation".Acta Palaeontologica Polonica.64 (1):157–170.doi:10.4202/app.00536.2018.hdl:11336/126031.S2CID 134821780.
  156. ^Martín Daniel Ezcurra; María Belén Von Baczko; María Jimena Trotteyn; Julia Brenda Desojo (2019). "New proterochampsid specimens expand the morphological diversity of the rhadinosuchines of the Chañares Formation (lower Carnian, northwestern Argentina)".Ameghiniana.56 (2):79–115.doi:10.5710/AMGH.25.05.2019.3230.S2CID 197550418.
  157. ^Debajit Datta; Nishant Kumar; Sanghamitra Ray (2019). "Taxonomic identification of isolated phytosaur (Diapsida, Archosauria) teeth from the Upper Triassic of India and their significances".Historical Biology: An International Journal of Paleobiology.33 (2):272–282.doi:10.1080/08912963.2019.1613652.S2CID 181776675.
  158. ^Brandon R. Peecook; Roger M. H. Smith; Christian A. Sidor (2019). "A novel archosauromorph from Antarctica and an updated review of a high-latitude vertebrate assemblage in the wake of the end-Permian mass extinction".Journal of Vertebrate Paleontology.38 (6): e1536664.doi:10.1080/02724634.2018.1536664.S2CID 92116260.
  159. ^Richard J. Butler; Andrew S. Jones; Eric Buffetaut; Gerhard W Mandl; Torsten M. Scheyer; Ortwin Schultz (2019). "Description and phylogenetic placement of a new marine species of phytosaur (Archosauriformes: Phytosauria) from the Late Triassic of Austria".Zoological Journal of the Linnean Society.187 (1):198–228.doi:10.1093/zoolinnean/zlz014.
  160. ^Debajit Datta; Sanghamitra Ray; Saswati Bandyopadhyay (2019)."Cranial morphology of a new phytosaur (Diapsida, Archosauria) from the Upper Triassic of India: implications for phytosaur phylogeny and biostratigraphy".Papers in Palaeontology.7 (2):675–708.doi:10.1002/spp2.1292.S2CID 213698017.
  161. ^Tomasz Szczygielski; Dawid Surmik; Agnieszka Kapuścińska; Bruce M. Rothschild (2017)."The oldest record of aquatic amniote congenital scoliosis".PLOS ONE.12 (9): e0185338.Bibcode:2017PLoSO..1285338S.doi:10.1371/journal.pone.0185338.PMC 5608408.PMID 28934336.
  162. ^Tomasz Szczygielski; Dawid Dróżdż; Dawid Surmik; Agnieszka Kapuścińska; Bruce M. Rothschild (2019)."New tomographic contribution to characterizing mesosaurid congenital scoliosis".PLOS ONE.14 (2): e0212416.Bibcode:2019PLoSO..1412416S.doi:10.1371/journal.pone.0212416.PMC 6392265.PMID 30811483.
  163. ^Nicole Klein; Antoine Verrière; Heitor Sartorelli; Tanja Wintrich; Jörg Fröbisch (2019)."Microanatomy and growth of the mesosaursStereosternum tumidum andBrazilosaurus sanpauloensis (Reptilia, Parareptilia)".Fossil Record.22 (2):91–110.doi:10.5194/fr-22-91-2019.S2CID 207966143.
  164. ^Mark J. MacDougall; Anika Winge; Jasper Ponstein; Maren Jansen; Robert R. Reisz; Jörg Fröbisch (2019)."New information on the early Permian lanthanosuchoidFeeserpeton oklahomensis based on computed tomography".PeerJ.7: e7753.doi:10.7717/peerj.7753.PMC 6825742.PMID 31687269.
  165. ^Marta Zaher; Robert A. Coram; Michael J. Benton (2019)."The Middle Triassic procolophonidKapes bentoni: computed tomography of the skull and skeleton".Papers in Palaeontology.5 (1):111–138.doi:10.1002/spp2.1232.hdl:1983/3dd2d71d-a439-404a-997f-758063f40678.
  166. ^Marc Johan Van den Brandt; Fernando Abdala; Bruce Sidney Rubidge (2019). "Cranial morphology and phylogenetic relationships of the Middle Permian pareiasaurEmbrithosaurus schwarzi from the Karoo Basin of South Africa".Zoological Journal of the Linnean Society.188 (1):202–241.doi:10.1093/zoolinnean/zlz064.
  167. ^Michael W. Maisch; Andreas T. Matzke (2019). "Anthodon ? haughtoni (V. HUENE, 1944), a pareiasaurid (Parareptilia: Pareiasauria) from the Late Permian Usili Formation of Kingori, Ruhuhu Basin, Tanzania".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.291 (2):197–204.doi:10.1127/njgpa/2019/0796.S2CID 134218980.
  168. ^A. D. Ryanskaya; D. V. Kiseleva; O. P. Shilovsky; E. S. Shagalov (2019). "XRD study of the Permian fossil bone tissue".Powder Diffraction.34 (S1):S14 –S17.Bibcode:2019PDiff..34S..14R.doi:10.1017/S0885715619000174.S2CID 107655052.
  169. ^Daria Kiseleva; Oleg Shilovsky; Evgeny Shagalov; Anastasia Ryanskaya; Maria Chervyakovskaya; Elizaveta Pankrushina; Nadezhda Cherednichenko (2019). "Composition and structural features of two Permian parareptile (Deltavjatia vjatkensis, Kotelnich Site, Russia) bone fragments and their alteration during fossilisation".Palaeogeography, Palaeoclimatology, Palaeoecology.526:28–42.Bibcode:2019PPP...526...28K.doi:10.1016/j.palaeo.2019.04.015.S2CID 146631055.
  170. ^Elizaveta A. Boitsova; Pavel P. Skutschas; Andrey G. Sennikov; Valeriy K. Golubev; Vladimir V. Masuytin; Olga A. Masuytina (2019). "Bone histology of two pareiasaurs from Russia (Deltavjatia rossica andScutosaurus karpinskii) with implications for pareiasaurian palaeobiology".Biological Journal of the Linnean Society.128 (2):289–310.doi:10.1093/biolinnean/blz094.
  171. ^Brodsky Dantas Macedo Farias; Cesar Leandro Schultz; Marina Bento Soares (2019). "Bone microstructure of the pareiasaurProvelosaurus americanus from the Middle Permian of southern Brazil".Historical Biology: An International Journal of Paleobiology.33 (3):328–339.doi:10.1080/08912963.2019.1617288.S2CID 191161997.
  172. ^Mark J. MacDougall; Neil Brocklehurst; Jörg Fröbisch (2019)."Species richness and disparity of parareptiles across the end-Permian mass extinction".Proceedings of the Royal Society B: Biological Sciences.286 (1899): Article ID 20182572.doi:10.1098/rspb.2018.2572.PMC 6452079.PMID 30890099.
  173. ^Marco Romano; Bruce Rubidge (2019). "Long bone scaling in Captorhinidae: do limb bones scale according to elastic similarity in sprawling basal amniotes?".Lethaia.52 (3):389–402.doi:10.1111/let.12319.S2CID 134825836.
  174. ^Sean P. Modesto; Courtney D. Richards; Oumarou Ide; Christian A. Sidor (2019). "The vertebrate fauna of the Upper Permian of Niger—X. The mandible of the captorhinid reptileMoradisaurus grandis".Journal of Vertebrate Paleontology.38 (6): e1531877.doi:10.1080/02724634.2018.1531877.S2CID 91675715.
  175. ^David P. Ford; Roger B. J. Benson (2019)."A redescription ofOrovenator mayorum (Sauropsida, Diapsida) using high-resolution μCT, and the consequences for early amniote phylogeny".Papers in Palaeontology.5 (2):197–239.doi:10.1002/spp2.1236.S2CID 92485505.
  176. ^Yonghua Wu; Haifeng Wang (2019)."Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality".Proceedings of the Royal Society B: Biological Sciences.286 (1897): Article ID 20182185.doi:10.1098/rspb.2018.2185.PMC 6408890.PMID 30963837.
  177. ^Jorge A. Herrera-Flores; Thomas L. Stubbs; Michael J. Benton (2017)."Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?".Palaeontology.60 (3):319–328.doi:10.1111/pala.12284.S2CID 55955230.
  178. ^Felix Vaux; Mary Morgan-Richards; Elizabeth E. Daly; Steven A. Trewick (2019). "Tuatara and a new morphometric dataset for Rhynchocephalia: Comments on Herrera-Floreset al.".Palaeontology.62 (2):321–334.doi:10.1111/pala.12402.S2CID 134902015.
  179. ^Jorge A. Herrera-Flores; Thomas L. Stubbs; Michael J. Benton (2019)."Reply to comments on: Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?"(PDF).Palaeontology.62 (2):335–338.doi:10.1111/pala.12404.hdl:1983/846d212a-6eb6-494e-855f-e0684bede158.S2CID 133726749.
  180. ^Sofia A.V. Chambi-Trowell; David I. Whiteside; Michael J. Benton (2019)."Diversity in rhynchocephalianClevosaurus skulls based on CT reconstruction of two Late Triassic species from Great Britain".Acta Palaeontologica Polonica.64 (1):41–64.doi:10.4202/app.00569.2018.S2CID 84832388.
  181. ^Yara Haridy; Florian Witzmann; Patrick Asbach; Rainer R. Schoch; Nadia Fröbisch; Bruce M. Rothschild (2019)."Triassic cancer—osteosarcoma in a 240-million-year-old stem-turtle".JAMA Oncology.5 (3):425–426.doi:10.1001/jamaoncol.2018.6766.PMC 6439844.PMID 30730547.
  182. ^Rainer R. Schoch; Nicole Klein; Torsten M. Scheyer; Hans-Dieter Sues (2019)."Microanatomy of the stem-turtlePappochelys rosinae indicates a predominantly fossorial mode of life and clarifies early steps in the evolution of the shell".Scientific Reports.9 (1): Article number 10430.Bibcode:2019NatSR...910430S.doi:10.1038/s41598-019-46762-z.PMC 6639533.PMID 31320733.
  183. ^Stefan Reiss; Udo Scheer; Sven Sachs; Benjamin P. Kear (2019). "Filling the biostratigraphical gap: first choristoderan from the Lower–mid-Cretaceous interval of Europe".Cretaceous Research.96:135–141.doi:10.1016/j.cretres.2018.12.009.S2CID 134904339.
  184. ^Ryoko Matsumoto; Khishigjav Tsogtbaatar; Shinobu Ishigaki; Chinzorig Tsogtbaatar; Zorig Enkhtaivan; Susan E. Evans (2019)."Revealing body proportions of the enigmatic choristodere reptileKhurendukhosaurus from Mongolia".Acta Palaeontologica Polonica.64 (2):363–377.doi:10.4202/app.00561.2018.S2CID 133925482.
  185. ^Kiersten K. Formoso; Sterling J. Nesbitt; Adam C. Pritchard; Michelle R. Stocker; William G. Parker (2019)."A long-necked tanystropheid from the Middle Triassic Moenkopi Formation (Anisian) provides insights into the ecology and biogeography of tanystropheids".Palaeontologia Electronica.22 (3): Article number 22.3.73.doi:10.26879/988.hdl:10919/99898.S2CID 210088772.
  186. ^Jorge Cubo; Nour-Eddine Jalil (2019)."Bone histology ofAzendohsaurus laaroussii: Implications for the evolution of thermometabolism in Archosauromorpha"(PDF).Paleobiology.45 (2):317–330.doi:10.1017/pab.2019.13.S2CID 155782789.
  187. ^Adam C. Pritchard; Hans-Dieter Sues (2019). "Postcranial remains ofTeraterpeton hrynewichorum (Reptilia: Archosauromorpha) and the mosaic evolution of the saurian postcranial skeleton".Journal of Systematic Palaeontology.17 (20):1745–1765.doi:10.1080/14772019.2018.1551249.S2CID 91446492.
  188. ^Adriel R. Gentil; Martín D. Ezcurra (2019). "A new rhynchosaur maxillary tooth plate morphotype expands the disparity of the group in the Ischigualasto Formation (Late Triassic) of Northwestern Argentina".Historical Biology: An International Journal of Paleobiology.31 (9):1223–1230.doi:10.1080/08912963.2018.1438425.hdl:11336/93937.S2CID 90161690.
  189. ^Gabriela Sobral; Johannes Müller (2019)."The braincase ofMesosuchus browni (Reptilia, Archosauromorpha) with information on the inner ear and description of a pneumatic sinus".PeerJ.7: e6798.doi:10.7717/peerj.6798.PMC 6535042.PMID 31198620.
  190. ^Felipe L. Pinheiro; Daniel De Simão-Oliveira; Richard J. Butler (2019)."Osteology of the archosauromorphTeyujagua paradoxa and the early evolution of the archosauriform skull".Zoological Journal of the Linnean Society.189 (1):378–417.doi:10.1093/zoolinnean/zlz093.
  191. ^Gabriel S. Gonçalves; Christian A. Sidor (2019)."A new drepanosauromorph,Ancistronychus paradoxus n. gen. et sp., from the Chinle Formation of Petrified Forest National Park, Arizona, USA".PaleoBios.36: ucmp_paleobios_46203.
  192. ^Michael deBraga; Joseph J. Bevitt; Robert R. Reisz (2019)."A new captorhinid from the Permian cave system near Richards Spur, Oklahoma, and the taxic diversity ofCaptorhinus at this locality".Frontiers in Earth Science.7: Article 112.Bibcode:2019FrEaS...7..112D.doi:10.3389/feart.2019.00112.
  193. ^Arjan Mann; Emily J. McDaniel; Emily R. McColville; Hillary C. Maddin (2019)."Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles".Royal Society Open Science.6 (11): Article ID 191191.Bibcode:2019RSOS....691191M.doi:10.1098/rsos.191191.PMC 6894558.PMID 31827854.
  194. ^Arjan Mann; Emily J. McDaniel; Emily R. McColville; Hillary C. Maddin (2020)."Correction to "Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles"".Royal Society Open Science.7 (1): Article ID 192198.Bibcode:2020RSOS....792198M.doi:10.1098/rsos.192198.PMC 7029946.PMID 32180991.
  195. ^Annie S. Hsiou; Randall L. Nydam; Tiago R. Simões; Flávio A. Pretto; Silvio Onary; Agustín G. Martinelli; Alexandre Liparini; Paulo R. Romo de Vivar Martínez; Marina B. Soares; Cesar L. Schultz; Michael W. Caldwell (2019)."A new clevosaurid from the Triassic (Carnian) of Brazil and the rise of sphenodontians in Gondwana".Scientific Reports.9 (1): Article number 11821.Bibcode:2019NatSR...911821H.doi:10.1038/s41598-019-48297-9.PMC 6694142.PMID 31413294.
  196. ^Ryoko Matsumoto; Liping Dong; Yuan Wang; Susan E. Evans (2019)."The first record of a nearly complete choristodere (Reptilia: Diapsida) from the Upper Jurassic of Hebei Province, People's Republic of China".Journal of Systematic Palaeontology.17 (12):1031–1048.doi:10.1080/14772019.2018.1494220.S2CID 92421503.
  197. ^Adriel R. Gentil; Federico L. Agnolin; Jordi A. Garcia marsà; Matias J. Motta; Fernando E. Novas (2019). "Bridging the gap: sphenodont remains from the Turonian (Upper Cretaceous) of Patagonia. Palaeobiological inferences".Cretaceous Research.98:72–83.doi:10.1016/j.cretres.2019.01.016.S2CID 135429146.
  198. ^Stephan N.F. Spiekman; Torsten M. Scheyer (2019)."A taxonomic revision of the genusTanystropheus (Archosauromorpha, Tanystropheidae)".Palaeontologia Electronica.22 (3): Article number 22.3.80.doi:10.26879/1038.S2CID 211105850.
  199. ^Jun-you Wang; Jian Yi; Jun Liu (2019)."The first complete pareiasaur skull from China".Acta Palaeontologica Sinica.58 (2):216–221.doi:10.19800/j.cnki.aps.2019.02.007.
  200. ^M. A. Rogov; N. G. Zverkov; V. A. Zakharov; M. S. Arkhangelsky (2019). "Marine reptiles and climates of the Jurassic and Cretaceous of Siberia".Stratigraphy and Geological Correlation.27 (4):398–423.Bibcode:2019SGC....27..398R.doi:10.1134/S0869593819040051.S2CID 201058264.
  201. ^Daniel Tyborowski; Błażej Błażejowski (2019). "New marine reptile fossils from the Late Jurassic of Poland with implications for vertebrate faunas palaeobiogeography".Proceedings of the Geologists' Association.130 (6):741–751.doi:10.1016/j.pgeola.2019.09.004.S2CID 210298782.
Retrieved from "https://en.wikipedia.org/w/index.php?title=2019_in_reptile_paleontology&oldid=1291621536"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp