Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2019 in paleomammalogy

From Wikipedia, the free encyclopedia
(Redirected from2019 in mammal paleontology)

Overview of the events of 2019 in paleomammalogy
List of years in paleomammalogy
In arthropod paleontology
2016
2017
2018
2019
2020
2021
2022
In paleoichthyology
2016
2017
2018
2019
2020
2021
2022
In reptile paleontology
2016
2017
2018
2019
2020
2021
2022
In archosaur paleontology
2016
2017
2018
2019
2020
2021
2022

Thispaleomammalogy list records newfossilmammaltaxa that weredescribed during the year 2019, as well as notes other significant paleomammalogy discoveries and events which occurred during that year.

Afrotherians

[edit]

Afrosoricida

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Damarachloris[1]

Gen. et sp. nov

Valid

Pickford

Middle Eocene

Black Crow Limestone

 Namibia

Achrysochloridgolden mole.
The type species isD. primaevus.

Nanogale[2]

Gen. et sp. nov

Valid

Pickford

Middle Eocene

Black Crow Limestone

 Namibia

ATenrecomorph.
The type species isN. fragilis.

Proboscidea

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Blancotherium[3]

Gen. et comb. nov

Valid

May

EarlyClarendonian

Goliad Formation

 United States
( Texas)

Agomphothere.
The type species is"Gnathabelodon" buckneri Sellards (1940)

Mammut pacificus[4]

Sp. nov

Valid

Dooleyet al.

Pleistocene (Rancholabrean)

 United States
( California
 Idaho)

Amastodon

Saloumia[5]

Gen. et sp. nov

Valid

Tabuceet al.

Eocene (Lutetian)

 Senegal

An earlyproboscid.
The type species isS. gorodiskii.

Proboscidean research

[edit]
  • A study on the relationship between brain size and body mass in the evolutionary history of theproboscideans is published by Benoitet al. (2019).[6]
  • New proboscidean remains from the lateMiocene (Turolian) ofSamos Island (Greece), representing juvenile individuals ofdeinotheres,choerolophodonts andamebelodonts, are described by Konidaris & Koufos (2019).[7]
  • Revision of proboscidean fossils from thePliocene site ofKanapoi (Kenya) is published online by Sanders (2019).[8]
  • A study comparing the diversity ofelephantimorph proboscideans of northern and southern China during the late Miocene is published by Wanget al. (2019).[9]
  • A study on the intestinal contents of two late-glacialmastodons preserved in lake sediments inOhio andMichigan (Burning Tree mastodon and Heisler mastodon), and on their implications for inferring diet and habitats of these specimens, is published by Birkset al. (2019).[10]
  • A study on the diet of end-Pleistocene mastodons and mammoths from North America is published online by Cammidge, Kooyman & Theodor (2019).[11]
  • New fossil material ofChoerolophodon from the early and middle Miocene of China is reported by Liet al. (2019).[12]
  • A study on the diet of the Americangomphotheres, as indicated by stable isotope data fromtooth enamel anddentine from tusks, is published online by Pérez-Crespoet al. (2019).[13]
  • Mothé, Ferretti & Avilla (2019) support the validity ofNotiomastodon as a genus separate fromStegomastodon, arguing that members of the genusStegomastodon were absent from South America.[14]
  • Description of teeth of a member of the genusAnancus from theMiocene (Turolian) locality Chomateri (Greece), constituting the first late Miocene record of this genus in Greece, and a revision of the late Mioceneanancines from Europe, is published by Konidaris & Roussiakis (2019).[15]
  • A skull of a derived member of the genusTetralophodon of uncertain specific assignment is described from the late Miocene of the Ouarzazate Basin (Morocco) by Geraads, Zouhri & Markov (2019).[16]
  • A study on the evolution of the genusPalaeoloxodon, as indicated by data on skull morphology, is published online by Larramendiet al. (2019).[17]
  • A study on fossilmolars ofElephas jolensis from the PleistoceneKibish Formation (Kenya) and on the timing and causes of extinction of members of the genusElephas in Africa is published online by Manthiet al. (2019).[18]
  • A mammoth skeleton, probably belonging to a member of the speciesMammuthus rumanus, is described from the Erq el Ahmar Elephant Site (CentralJordan Valley part of theDead Sea Transform,Israel) by Rabinovichet al. (2019), representing the first known skeleton of a member of this species from the southern Levant.[19]
  • A study on the chemical composition, microstructure and mechanical properties oftuskdentine fromwoolly mammoth and from extantAfrican elephant, and on its implications for inferring the utility of mammoth ivory as a raw material for Late Pleistocene osseous projectile points, is published by Pfeiferet al. (2019).[20]
  • Stable carbon and nitrogen data of woolly mammoth fossils from north-easternSiberia ranging throughout the last ~50,000 years of the existence of this species is presented by Kuitemset al. (2019).[21]
  • A study on the age and origin of the Berelyokh mammoth site in northeast Siberia published by Lozhkin & Anderson (2018)[22] is criticized by Pitulkoet al. (2019).[23][24]
  • Nucleus-like structures are extracted fromYuka mammoth specimen by Yamagataet al. (2019), who visualise their dynamics after transfer into living mouseoocytes.[25]
  • A study on the isotopic compositions of carbon, nitrogen and sulfur in collagen in the population of woolly mammoths from theWrangel Island (Russia), aiming to determine the ecology of the Wrangel Island mammoth population and most likely cause of its extinction, is published by Arppeet al. (2019).[26]
  • A study on the cause of the extinction of theColumbian mammoth, using mathematical modelling to test theoverkill hypothesis, is published by Klapman & Capaldi (2019).[27]
  • A study on the diet of coexisting early Late PleistoceneAsian elephants and members of the speciesStegodon orientalis, as indicated by data from stable isotope analyses ofenamel of teeth from the Quzai Cave (southernChina), is published by Maet al. (2019).[28]
  • A review of Pleistocene proboscideans from the EasternMediterranean islands is published by Athanassiou, van der Geer & Lyras (2019).[29]

Sirenia

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Culebratherium[30]

Gen. et sp. nov

Valid

Velez-Juarbe & Wood

Early Miocene

Culebra Formation

 Panama

Adugonginedugong.
The type species isC. alemani.

Norosiren[31]

Gen. et sp. nov

Valid

Samondset al.

Miocene

Mahajanga Basin

 Madagascar

Adugongiddugong.
The type species isN. zazavavindrano.

Stegosiren[32]

Gen. et sp. nov

Valid

Domning & Beatty

Oligocene

Ashley Formation
Chandler Bridge Formation

 United States
( South Carolina)

Adugongiddugong.
The type species isS. macei.

Sirenian research

[edit]

Other afrotherians

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Eteketoni[36]

Gen. et sp. nov

Valid

Pickford

Early Miocene

 Uganda

Anorycteropodid relative of theaardvark.
The type species isE. platycephalus.

Euarchontoglires

[edit]

Lagomorpha

[edit]

Lagomorph research

[edit]
  • A study on the phylogenetic relationships of rodents andlagomorphs, based on data from extant and fossil taxa, is published by Asheret al. (2019).[37]

Primates

[edit]
Main article:2019 in primate paleontology

Rodentia

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Altasciurus leonardi[38]Sp. novValidKorthet al.OligoceneBrule United States
( North Dakota)
A member of the familyAplodontiidae belonging to the subfamilyProsciurinae
Aplodontia minor[39]Sp. novValidHopkinsLateHemphillian United States
( Oregon)
A relative of themountain beaver
Borsodia prechinensis[40]Sp. novValidZheng, Zhang & CuiLate PlioceneEarly PleistoceneNihewan ChinaA member ofArvicolinae
Capromys pilorides lewisi[41]Subsp. novValidMorganet al.Late Pleistocene-Holocene Cayman IslandsA subspecies ofDesmarest's hutia
Cardiatherium calingastaense[42]Sp. novValidCerdeñoet al.Late MioceneLas Flores ArgentinaA relative of thecapybara. Announced in 2018; the final version of the article naming it was published in 2019.
"Cricetodon" venczeli[43]Sp. novValidHír, Codrea & PrietoMiocene RomaniaA large hamster. Announced in 2019; the final version of the article naming it was published in 2020.
Cupressimus perissos[44]Sp. novValidStorerEocene (Chadronian)Cypress Hills Formation Canada
( Saskatchewan)
A member of the familyEomyidae
Deperetomys calefactus[45]Sp. novValidMarkovićet al.Late Oligocene Bosnia and HerzegovinaA member ofCricetodontinae
Deperetomys saltensis[45]Sp. novValidMarkovićet al.Late Oligocene SerbiaA member ofCricetodontinae
Ecclesimus mcdougalli[44]Sp. novValidStorerEocene (Chadronian)Cypress Hills Formation Canada
( Saskatchewan)
A member of the familyFlorentiamyidae
Eumys lammersi[38]Sp. novValidKorthet al.OligoceneBrule United States
( North Dakota)
A member of the familyCricetidae
Geocapromys caymanensis[41]Sp. novValidMorganet al.Late Pleistocene-Holocene Cayman IslandsA species ofGeocapromys
Gobiocylindrodon[46]Gen. et sp. novIn pressLiet al.EoceneErlian ChinaA member of the familyCylindrodontidae. Genus includes new speciesG. ulausuensis.
Heliscomys borealis[38]Sp. novValidKorthet al.OligoceneBrule United States
( North Dakota)
A member of the familyHeliscomyidae
Heterocricetodon serbicus[47]Sp. novValidMarkovićet al.Oligocene SerbiaA member of the familyMuridae belonging to the subfamilyPseudocricetodontinae
Japaneomys[48]Gen. et sp. novValidKimuraet al.Early MioceneNakamura JapanA member of the familyEomyidae. The type species isJ. yasunoi.
Liodontia bathypotamos[39]Sp. novValidHopkinsLateHemingfordian United States
( Montana)
A member of the familyAplodontiidae
Liodontia dailyi[39]Sp. novValidHopkinsLateHemingfordian United States
( Nevada)
A member of the familyAplodontiidae
Maquiamys[49]Gen. et comb. novValidBoivinin Boivin, Marivaux & AntoineLate OligoceneChambira PeruA member of the superfamilyChinchilloidea. The type species is"Scleromys" praecursor Boivin
Metanoiamys woodi[50]Sp. novValidKorthOligocene (Orellan)Sage Creek United States
( Montana)
A member of the familyEomyidae
Mimomys nihewanensis[40]Sp. novValidZheng, Zhang & CuiLate PlioceneNihewan ChinaA member ofArvicolinae
Monamys[51]Gen. et comb. novValidSallam & SeiffertOligocene (Rupelian)Jebel Qatrani EgyptA member ofPhiomorpha. The type species is"Paraphiomys" simonsi Wood (1968).
Montanamus taranae[44]Sp. novValidStorerEocene (Chadronian)Cypress Hills Formation Canada
( Saskatchewan)
A member of the family Eomyidae.
Natrona[52]Gen. et sp. novValidDawsonUintan andDuchesneanWagon Bed United States
( Wyoming)
A member of the familySciuravidae. The type species isN. natronensis.
Paradjidaumo obritschorum[53]Sp. novValidKorth, Boyd & PersonOligocene (Whitneyan)Brule United States
( North Dakota)
A member of the familyEomyidae
Paraethomys balearicus[54]Sp. novValidTorres Roiget al.Pliocene (Zanclean) SpainA member of the familyMuridae belonging to the subfamilyMurinae
Petaurista tetyukhensis[55]Sp. novIn pressTiunov & GimranovLate Pleistocene RussiaA species ofPetaurista. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.
Pitymys simplicidens[40]Sp. novValidZheng, Zhang & CuiEarly PleistoceneNihewan ChinaA species ofPitymys
Pliosiphneus daodiensis[40]Sp. novValidZheng, Zhang & CuiLate PlioceneNihewan ChinaAzokor
Pliosiphneus puluensis[40]Sp. novValidZheng, Zhang & CuiLate PlioceneNihewan ChinaAzokor
Proclinodontomys[56]Gen. et sp. et comb. novValidCandelaet al.Early-Middle Pleistocene and earlyHolocene Argentina

 Brazil
 Bolivia?

A member of the familyEchimyidae. The type species isP. dondasi; genus also includes"Mesomys" mordax Winge (1887).
Progonomys manolo[57]Sp. novValidLópez Antoñanzaset al.Late Miocene LebanonA member of the familyMuridae belonging to the subfamilyMurinae
Prosciurus hogansoni[38]Sp. novValidKorthet al.OligoceneBrule United States
( North Dakota)
A member of the familyAplodontiidae belonging to the subfamilyProsciurinae
Prosigmodon tecolotum[58]Sp. novValidPacheco Castro, Carranza Castañeda & Jiménez HidalgoEarly Pliocene (lateHemphillian)Tecolotlán
(San José)
 MexicoA member ofSigmodontini
Protorepomys[59]Gen. et 2 sp. novValidMartin & ZakrzewskiHemphillianShutler United States
( Oregon)
A member of the familyCricetidae belonging to the subfamilyNeotominae. The type species isP. mckayensis; genus also includesP. bartlettensis.
Pseudocricetodon heissigi[47]Sp. novValidMarkovićet al.Oligocene SerbiaA member of the familyMuridae belonging to the subfamilyPseudocricetodontinae
Saremmys[60]Gen. et sp. novValidBusker, Pérez & DozoMiocene (Colhuehuapian) ArgentinaA member ofChinchilloidea of uncertain phylogenetic placement. Genus includes new speciesS. ligcura.
Spermophilinus kumkolensis[61]Sp. novValidLiet al.Middle MioceneShimagou ChinaA member of the familySciuridae belonging to the subfamilySciurinae. Announced in 2019; the final version of the article naming it was published in 2020.
Spermophilus praecox[62]Sp. novValidSinitsa & PogodinaLate Pliocene andEarly Pleistocene UkraineA species ofSpermophilus
Tsaphanomys[59]Gen. et comb. novValidMartin & ZakrzewskiHemphillianGrassy Mountain United States
( Oregon)
A member of the familyCricetidae belonging to the subfamilyNeotominae. The type species is"Paronychomys" shotwelli Korth (2011).
Typhlomys storchi[63]Sp. novValidQiu & NiLate MioceneXiaohe ChinaA relative of theChinese pygmy dormouse
Wilsoneumys focarius[50]Sp. novValidKorthOligocene (Orellan)Sage Creek United States
( Montana)
A member of the familyCricetidae

Rodent research

[edit]
  • A study on the upperincisors of extant southern African rodents, evaluating whether themorphology of isolated rodent incisors can be used to provide dietary information, is published by Paineet al. (2019), who also apply their dietary model to fossil rodent incisors from theSouth African hominin-bearing sitesSterkfontein andSwartkrans.[64]
  • A study on the anatomy and affinities of rodent teeth from the earlyMiocene sites of Napak (Uganda) and on probable diets of rodents from these sites is published by Bento Da Costaet al. (2019).[65]
  • A study on the phylogenetic relationships of extant and fossilcaviomorph rodents is published by Boivin, Marivaux & Antoine (2019), who name new cladesErethicavioi Boivin andOctochinchilloi Boivin.[49]
  • A study on theenamelmicrostructure of the incisors of caviomorph rodents from theEocene andOligocene localities inPeruvian Amazon is published by Boivinet al. (2019).[66]
  • A study on the anatomy of threetarsal bones of Eocene caviomorph rodents from Peruvian Amazon, and on their implications for inferring the locomotor behaviors of these rodents, is published by Boivinet al. (2019).[67]
  • New fossils of caviomorph rodents are described from thePaleogene of the vicinity of the cities of Juanjui and Balsayacu (Peruvian Amazonia) by Assematet al. (2019).[68]
  • A study on the morphology of the limb bones of caviomorph rodents from theMioceneSanta Cruz Formation ofPatagonia, and on its implications for interpreting the use of substrate by these rodents, is published by Muñozet al. (2019).[69]
  • A study on the evolution of the variation of themandibular shape in caviomorph rodents is published online by Álvarez, Ercoli & Verzi (2019).[70]
  • A study on the enamel microstructure of the incisors of thehystricognaths andanomaluroids from theOligocene ofWestern Sahara is published by Marivauxet al. (2019).[71]
  • A study on the phylogenetic relationships and evolutionary history of early hystricognaths is published by Marivaux & Boivin (2019).[72]
  • A study on themorphology of the lowerdeciduouspremolars of extant and fossil caviomorph rodents and its implications for inferring the phylogenetic relationships of fossil caviomorphs is published by Verzi, Olivares & Morgan (2019), who argue thatEocene genusCachiyacuy might be astem-octodontoid.[73]
  • A study on the anatomy and phylogenetic relationships of thedolichotinecaviid rodentProdolichotis prisca is published by Madozzo-Jaén (2019).[74]
  • Description of a well-preserved skull ofTelicomys giganteus, estimation of body mass and analysis of the bite mechanics of this species is published by Rinderknechtet al. (2019).[75]
  • A study on themorphology of theossicles of the extinctneoepiblemid rodentPerimys and of extant and extinct caviomorph rodents in general is published by Kerber & Sánchez-Villagra (2019).[76]
  • A study on the morphology of cheek teeth, teeth replacement and systematics of members of the genusNeoepiblema is published by Kerber, Negri & Sanfelice (2019).[77]
  • A study on the anatomy of the skull ofNeoepiblema acreensis is published by Kerber, Ferreira & Negri (2019).[78]
  • A study on the morphology of uppermolars of extant and fossils members of Chinchilloidea, and on the phylogenetic relationships of members of this group, is published by Rasia & Candela (2019).[79]
  • Description of a new specimen ofLitodontomys from theDeseadan ofArgentina and a study on the phylogenetic relationships of this taxon is published by Busker & Dozo (2019).[80]
  • Nine virtual skullendocasts of members of the familyIschyromyidae (members of the generaPseudotomus,Notoparamys,Reithroparamys andRapamys) are reconstructed by Bertrandet al. (2019).[81]
  • Description of the skull anatomy of thePleistoceneground squirrel"Urocitellus" nogaici and a study on the phylogenetic relationships of this species and other European ground squirrel species previously attributed toUrocitellus is published by Sinitsa, Pogodina & Кryuchkova (2019), who transfer"U." nogaici,"U." polonicus and"U." primigenius to the genusSpermophilus.[82]
  • A study on the living and extinct species ofSpermophilus from Europe, focusing on factors affecting species distribution and speciation, is published by Popovaet al. (2019).[83]
  • New specimen ofTrogontherium cuvieri is described from the upper Pleistocene of the Songhua River drainage area nearHarbin (Heilongjiang,China) by Yanget al. (2019), documenting the survival of this species into the late Pleistocene in northeast China.[84]
  • A study on the ecology ofgiant beavers, as indicated by stable isotope data, is published by Plint,Longstaffe & Zazula (2019).[85]
  • Costeret al. (2019) describe a well-preservedastragalus of theanomaluroidPondaungimys anomaluropsis from theEocenePondaung Formation (Myanmar), and evaluate its implications for inferring the anatomy and phylogenetic relationships of this species.[86]
  • A study on impact of climate changes on the populations of thebushy-tailed woodrat in western North America over the late Quaternary is published by Balk, Betancourt & Smith (2019).[87]
  • A study on the evolutionary change in body mass and correlated ecological variables over the 3.75 million year history of the North Americanmuskrat is published by Martin (2019).[88]
  • A study on the morphological variation in Middle to Late Pleistocene populations of thecommon vole and thefield vole from northernIberian Peninsula and southernFrance is published by Luzi & López-García (2019).[89]
  • Lyman (2019) describes fourmolars of thewater vole from the lateHolocene Stemilt Creek Village archaeological site (Washington, United States), and evaluates the implications of this finding for reconstructions of local environment in prehistoric times.[90]
  • A study on melanin pigment distribution in 3-million-year-old specimens of theOld World field mouse speciesApodemus atavus is published by Manninget al. (2019).[91]
  • A study on the diet, habitat and timing and cause of extinction of theTenerife giant rat (Canariomys bravoi) is published by Crowleyet al. (2019).[92]
  • Threemolar fossils of thegreater bandicoot rat are described from the Middle Pleistocene ofTaiwan by Kawamura, Chang & Kawamura (2019), indicating that this species inhabited Taiwan in the early Middle Pleistocene.[93]
  • A study on variations of size of fossilmurine rodents fromLiang Bua (Flores,Indonesia) through time, and on their implications for reconstructions of paleoclimate and paleoenvironment of Flores, is published by Veatchet al. (2019).[94]
  • A study on thefemurhistology of an extinct (late Quaternary) form of Timorese giant rat is published by Miszkiewicz, Louys & O'Connor (2019).[95]

Laurasiatheria

[edit]

Artiodactyla

[edit]

Cetaceans

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Aegicetus[96]

Gen. et sp. nov

Valid

Gingerich, Antar & Zalmout

Eocene (Priabonian)

Gehannam Formation

 Egypt

Aprotocetid.
The type species isA. gehennae.

Borealodon[97]

Gen. et sp. nov

Valid

Shipps, Peredo & Pyenson

Oligocene (Rupelian)

Pysht Formation

 United States
( Washington)

Astem-mysticete.
The type species isB. osedax.

Casatia[98]

Gen. et sp. nov

Valid

Bianucciet al.

Early Pliocene

 Italy

Amonodontid.
The type species isC. thermophila.

Kentriodon nakajimai[99]

Sp. nov

Valid

Kimura & Hasegawa

Miocene (Serravallian/Tortonian)

Haraichi Formation

 Japan

AKentriodontid.

Miobalaenoptera[100]

Gen. et sp. nov

Valid

Tanaka & Watanabe

Late Miocene

Horokaoshirarika Formation

 Japan

Arorqual.
The type species isM. numataensis.

Nehalaennia[101]

Gen. et sp. nov

Valid

Bisconti, Munsterman & Post

Miocene (lateTortonian)

Breda Formation

 Netherlands

Arorqual.
The type species isN. devossi.

Niparajacetus[102]

Gen. et sp. nov

Valid

Solis-Añorve, González-Barba & Hernández-Rivera

Oligocene (Chattian)

El Cien Formation

 Mexico

Anaetiocetoidbaleen whale.
The type species isN. palmadentis

Norrisanima[103]

Gen. et comb. nov

Valid

Leslie, Peredo & Pyenson

Miocene (lateTortonian)

Monterey Formation

 United States
( California)

APan-balaenopteroid.
The type species is"Megaptera" miocaena Kellogg (1922).

Peregocetus[104]

Gen. et sp. nov

Valid

Lambertet al.

Eocene (Lutetian)

Pisco Basin

 Peru

Aprotocetid.
The type species isP. pacificus.

Pliokogia[105]

Gen. et sp. nov

Valid

Collareta, Cigala Fulgosi & Bianucci

Pliocene (Zanclean)

 Italy

Akogiidsperm whale.
The type species isP. apenninica.

Tranatocetus maregermanicum[106]

Sp. nov

Valid

Marxet al.

Late Miocene

Breda Formation

 Netherlands

ACetotheriidmysticete

Tupelocetus[107]

Gen. et sp. nov

Valid

Gibson, Mnieckowski & Geisler

Eocene (Bartonian)

Tupelo Bay Formation

 United States
( South Carolina)

Aprotocetid.
The type species isT. palmeri.

Yaquinacetus[108]

Fam., Gen. et sp. nov

Valid

Lambert, Godfrey & Fitzgerald

LatestOligocene–earlyMiocene

Nye Mudstone

 United States
( Oregon)

ASqualoziphiid relative ofSqualoziphius.
The type species isY. meadi.

Cetacean research
[edit]
  • A review of theEocene fossil record of cetaceans fromAntarctica is published by Buonoet al. (2019).[109]
  • Partial skeleton of anarchaeocete is described from thePaleogeneTongeren Formation (theNetherlands) by van Vlietet al. (2019).[110]
  • Newprotocetid fossils, including a nearly complete articulated forelimb providing new information on the locomotion and forelimb evolution of early cetaceans, are described from the upperLutetian ofSenegal by Vautrinet al. (2019).[111]
  • A study on the evolution of theossicles in early cetaceans, as indicated by data from a partially complete ossicular chain of a protocetid specimen collected in Eocene (Lutetian) phosphate deposits at Kpogamé (Togo), is published by Mourlam & Orliac (2019).[112]
  • A study on the anatomy of the olfactory and respiratoryturbinates ofAegyptocetus tarfa is published online by Periet al. (2019).[113]
  • A study on themorphology of teeth andenamel microstructure of two fossil cetaceans from Antarctica (abasilosaurid from theLa Meseta Formation and a member of the genusLlanocetus from the Submeseta Formation) is published online by Lochet al. (2019).[114]
  • Partly preserved tail vertebra of a basilosaurid is described from theEoceneCajaruro Formation (Peru) by Davydenko, Laime & Gol'din (2019), representing the first record of an Eocene marine mammal from the northwestern Amazon region.[115]
  • The discovery of over a hundred basilosaurid specimens from the middle to upper Eocene Gehannam and Birket Qaroun formation (Wadi El Hitan,Egypt) is reported by Mahdyet al. (2019), who also compare the anatomy and habitat ofDorudon atrox and extantkiller whale.[116]
  • A study on the stomach contents of a new specimen ofBasilosaurus isis from Wadi Al Hitan inEgypt is published by Vosset al. (2019).[117]
  • A study on the variation in feeding behavior of fossil toothed whales with extremely long rostra is published by McCurry & Pyenson (2019).[118]
  • A study on the evolution ofecholocation of toothed whales, as indicated by the anatomy of a skull of a toothed whale from theOligocenePysht Formation (Washington,United States) resemblingOlympicetus avitus, is published by Racicotet al. (2019).[119]
  • Redescription of theholotype and referred specimen ofProsqualodon australis from theMioceneGaiman Formation (Argentina) and a study on the phylogenetic relationships of this species is published by Gaetán, Buono & Gaetano (2019).[120]
  • Isolated teeth resembling tooth taxonPhococetus vasconum are described from thePungo River Formation (North Carolina,United States) by Boessenecker (2019), who also notes their similarities to the teeth ofInticetus vertizi, and suggests thatPhococetus may be anInticetus-like, largeheterodonttoothed whale.[121]
  • A study on the anatomy and phylogenetic relationships ofPhoberodon arctirostris is published by Viglinoet al. (2019).[122]
  • An isolated tooth of anInticetus-like cetacean is described from the Miocene deposits close to the village of Melpignano (Province of Lecce,Italy) by Periet al. (2019), who also review the geographic distribution of fossils ofInticetus-like cetaceans.[123]
  • A skull of a late Miocenebeaked whale belonging or related to the speciesMessapicetus longirostris, imaged by means of computed tomography rather than being extracted mechanically from the stone matrix, is described fromMenorca (Spain) by Bianucciet al. (2019).[124]
  • A new beaked whale specimen, with anatomy indicating that it relied primarily on suction feeding, is described from the upper MioceneGram Formation (Denmark) by Ramassamy & Lauridsen (2019).[125]
  • A study on the anatomy and phylogenetic relationships ofDiaphorocetus poucheti is published online by Paolucciet al. (2019).[126]
  • A study on dental damage in a set of teeth ofScaldicetus caretti from the Miocene ofBelgium is published by Lambert & Bianucci (2019), who interpret this damage as evidence indicating thatS. caretti was amacroraptorial (rather thansuction-feeding) top predator.[127]
  • A study on the anatomy and phylogenetic relationships ofMystacodon selenensis is published by de Muizonet al. (2019).[128]
  • Threepremolar teeth of a member of the genusLlanocetus reaching an estimated total body length of up to 12 m are described from theEocene Submeseta Formation (Seymour Island,Antarctica) by Marxet al. (2019), who interpret these fossils as indicative of at least two independent origins of gigantism inbaleen whale evolutionary history.[129]
  • A study aiming to explain the disappearance of baleen whales from the fossil record from 23Ma to 18–17 Ma is published by Marx, Fitzgerald & Fordyce (2019).[130]
  • New specimen ofJoumocetus shimizui, providing new information on the anatomy of this species, is described from the MioceneHaraichi Formation (Japan) by Kimura & Hasegawa (2019).[131]
  • A study on the age of fossilgray whale finds fromFlorida andGeorgia is published by Garrisonet al. (2019).[132]
  • Partial forelimb of arorqual with several shark bite marks is described from thePlioceneBurica Formation (Panama) by Cortéset al. (2019).[133]
  • Partial skeleton of aPleistoceneblue whale with an estimated total body length of 23.4–26.1 m, representing the largest whale fossil reported so far, is described from theLago di San Giuliano (Italy) by Bianucciet al. (2019), who also estimate body size of a specimen ofPelocetus from the Middle miocene locality of Mal Paso and two late Miocenerorquals from the Cerro Los Quesos site (Pisco Formation,Peru), and evaluate the implications of these fossils for the knowledge of evolution of gigantism of baleen whales.[134]
  • A study on the cetacean-bearingMioceneGaiman Formation (Argentina), and on its implications for inferring which factors affected the distribution and preservation of fossil cetaceans in several localities of the SouthwesternAtlantic Ocean, is published by Cuitiñoet al. (2019).[135]
  • A study on the diversity and abundance of cetaceans in the area of present-dayItaly through thePliocene, as indicated bychronostratigraphic data from Castell'Arquato Basin (northernApennine Mountains), is published by Freschiet al. (2019).[136]
  • A study on the oxygen isotope composition ofwhale barnacle shells from threePleistocene localities along the eastern Pacific coast, and on their implications for the knowledge of the history of whale migrations, is published by Tayloret al. (2019).[137]

Other artiodactyls

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Cervus canadensis combrayicus[138]

Subsp. nov

Valid

Croitor

LatePleistocene

 France

A subspecies of theelk. Announced in 2019; the final version of the article naming it was published in 2020.

Decennatherium asiaticum[139]

Sp. nov

Valid

Rios, Danowitz & Solounias

LateMiocene

 Pakistan

Dorcatherium dehmi[140]

Sp. nov

Valid

Guzmán-Sandoval & Rössner

Miocene

 Pakistan

Achevrotain.

Elaphurus davidianus predavidianus[141]

Subsp. nov

Valid

Donget al.

EarlyPleistocene

Nihewan Formation

 China

A subspecies of thePère David's deer.

Hispanomeryx lacetanus[142]

Sp. nov

Valid

Sánchezet al.

Miocene (Vallesian)

 Spain

A member of the familyMoschidae.

Kubanochoerus parvus[143]

Sp. nov

Valid

Hou & Deng

Latest Middle or earliest LateMiocene

 China

A member of the familySuidae belonging to the subfamilyListriodontinae.

Kubwachoerus[144]

Gen. et comb. et sp. nov

Valid

Pickford & Tsujikawa

Miocene

Aka Aiteputh Formation

 Kenya
 Libya

A member of the familySuidae related toKubanochoerus. Genus includesK. khinzikebirus (Wilkinson, 1976) andK. marymuunguae (Van der Made, 1996), as well as a new speciesK. nyakachensis.

Megaloceros matritensis[145]

Sp. nov

Valid

Van der Made

MiddlePleistocene

 Spain

Palaeochoerus australis[144]

Sp. nov

Valid

Pickford & Tsujikawa

Miocene

 Namibia

A member of the familySuidae.

Palaeoryx minor[146]

Sp. nov

Valid

Vasileiadis, Tsoukala & Kostopoulos

LateMiocene

 Greece

Abovid.

Qurliqnoria chorakensis[147]

Sp. nov

Valid

Kostopouloset al.

LateMiocene

 Turkey

Astem-caprinebovid. Announced in 2019; the final version of the article naming it was published in 2020.

Other artiodactyl research
[edit]
  • A study on the phylogenetic relationships and timing of the origin ofCetartiodactyla is published by Zuranoet al. (2019).[148]
  • A study on the teeth eruption pattern of a wide range of extinct cetartiodactyl families is published by Rodrigueset al. (2019).[149]
  • Description of an articulated postcranial skeleton of anoreodont from theOligoceneTehuitzingo Formation, representing the first postcranial skeleton of an oreodont fromMexico reported so far, is published online by Ferrusquía-Villafranca & Ruiz-González (2019).[150]
  • New specimen of the fossilpeccaryParachoerus carlesi is described from the UpperPleistocene of theChaco Province ofArgentina by Gaspariniet al. (2019), representing the most complete fossil material of a member this species reported so far, and providing new information on themorphology of the species and the environment it lived in.[151]
  • A study on the paleobiology of the fossil peccaryPlatygonus compressus, based on fossils from Bat Cave (Missouri,United States), is published by Woodruff & Schubert (2019).[152]
  • A description of the skull anatomy of the fossilsuidNyanzachoerus jaegeri based on new fossil material and a study on the phylogenetic relationships of the species is published by Reda, Lazagabaster & Haile-Selassie (2019).[153]
  • New fossil suid specimens, providing new information on the classification and relationships of theMioceneSuinae from China, are described from the latest Miocene site of Shuitangba (Zhaotong Basin, China) by Houet al. (2019).[154]
  • A study on the diet ofPliocene suids from theAustralopithecus anamensis site ofKanapoi and theAustralopithecus afarensis site ofHadar is published by Lazagabaster (2019).[155]
  • Description of deer fossils from the Pleistocene localities inBuenos Aires Province (Argentina), including the southernmost record of the genusMorenelaphus and the speciesM. lujanensis, is published by Chimentoet al. (2019).[156]
  • A systematic, macroscopic,radiographic, andhistologic study of the fossil bones of theCretan deerCandiacervus will be published by Lyraset al. (2019), who interpret their findings as indicative of the occurrence of a metabolic bone disease in the Cretan deer population, probably caused by habitat degradation.[157]
  • New fossil material ofEucladoceros boulei, providing new information on the anatomy of this species, is described from the Shanshenmiaozui site in theNihewan Basin (China) by Tong & Zhang (2019).[158]
  • A study comparing the characteristics of the postcranial skeletons ofArvernoceros ardei andCervus perrieri is published online by Pfeiffer-Deml (2019).[159]
  • A study on the age andmorphometrics of a partial fossil caribouantler fromGraham Island (Canada) is published by Mathewes, Richards & Reimchen (2019).[160]
  • A study on theontogenetic variation of theantlers of the Yabe's giant deer (Sinomegaceros yabei) reported from all overJapan is published by Taruno, Okumura & Ishida (2019).[161]
  • A study on the pattern of extinction of theIrish elk, as indicated by radiocarbon data from fossil specimens from western and eastern Europe, is published by Lister & Stuart (2019).[162]
  • A study testing whether the antlers of the Irish elk could have withstood forces generated during fighting is published by Klinkhameret al. (2019).[163]
  • Amandible of thegiant muntjac (Muntiacus gigas, considered by the authors to be synonymous withM. vuquangensis) is described from the Late Pleistocene to Early Holocene deposits in the cave site of Hang Boi (Vietnam) by Stimpsonet al. (2019).[164]
  • A study on the diet of the late PleistoceneIndian muntjacs fromSumatra, as indicated by data from fossil teeth from cave sites of Lida Ajer, Sibrambang and Jambu, is published by Wirkner & Hertler (2019).[165]
  • A study on the long- and short-term dietary behavior of the MiocenemoschidsMicromeryx flourensianus andM.? eiselei, as indicated by data from tooth wear, is published by Aiglstorfer & Semprebon (2019).[166]
  • A revision of putative fossil material ofLagomeryx reported from theMiocene locality Ulan Tolgoi (Loh Formation;Mongolia) is published by Mennecartet al. (2019), who reinterpret this material of fossils of a moschid, representing the first Miocene moschid remains from Mongolia.[167]
  • Description of new specimens ofSardomeryx oschiriensis from theMiocene (Burdigalian) ofSardinia (Italy) and a study on the phylogenetic relationships of this species is published by Mennecartet al. (2019).[168]
  • The first detailed description of thegiraffid speciesSchansitherium tafeli is published by Houet al. (2019), who compare this taxon withSamotherium boissieri.[169]
  • Description of an almost complete skull and a second partial skull ofBohlinia attic from the lateMiocene of Maragheh (Iran), as well as a complete upper dentition of a member of this species fromSamos (Greece), is published by Parizadet al. (2019).[170]
  • New skull remains ofDecennatherium rex are described from the late Miocene (Vallesian) Batallones-4 site (Cerro de los Batallones fossil site complex,Spain) by Ríos & Morales (2019).[171]
  • A revision of giraffid fossils from the late Miocene of the Thermopigi site (Greece) is published by Xafiset al. (2019).[172]
  • A study on the evolution ofNeogenebovids from centralMyanmar is published by Nishiokaet al. (2019), who also describe newcaprine andbovine specimens from the upper Miocene to Pliocene part of the Irrawaddy beds.[173]
  • Description of new fossil material ofLeptobos merlai from the early lateVillafranchian ofUmbria (Italy), providing new information on the anatomy of this species, is published by Cherin, D'Allestro & Masini (2019).[174]
  • Description of new fossil remains of spiral horned antelopeSpirocerus wongi fromNihewan Formation (Shanxi,China) and a study on the taxonomy and phylogenetic relationships of the genusSpirocerus is published by Baiet al. (2019).[175]
  • New fossil material of thestem-caprine speciesOlonbulukia tsaidamensis is described from the Wuzhong region of northernChina by Wanget al. (2019), who also revise fossil stem-caprine taxa from the Wuzhong Fauna and so-called "Qaidam Fauna".[176]
  • A study on past distribution of thelong-tailed goral and causes of its range shift over time, based on data from fossil specimens from thePaleolithic sites, is published by Kimet al. (2019).[177]
  • New specimen ofBubalus murrensis, representing the westernmost occurrence of this species, is described fromMédoc (France) by Koenigswaldet al. (2019).[178]
  • A study on the paleoecology of Northern Great Plains bisons from the latePleistocene and throughout theHolocene, based on carbon and nitrogen isotope data from bison specimens from 22 archaeological sites across the Northern Great Plains, is published by Davieset al. (2019).[179]
  • Entelodontid teeth are described from the lateEocene of the Krabi coal mine in southernThailand by Ducrocq, Chaimanee & Jaeger (2019), representing the southernmost occurrence of entelodontids in Asia during thePaleogene reported so far.[180]
  • An uppermolar of theanthracothereSivameryx palaeindicus is described from the early Miocene Kamus Junction site (Israel) by Grossmanet al. (2019).[181]
  • A study on the paleoecology of Pleistocene Mediterraneandwarf hippos is published by Bethuneet al. (2019).[182]
  • The first directly dated fossil of a member of the genusHexaprotodon (an upper rightcanine fragment) from theNarmada Valley of CentralIndia is described by Jukaret al. (2019), who also present a tentative extinction chronology ofHexaprotodon, indicating that this genus survived into the EarlyHolocene.[183]
  • PutativehelohyidsPakkokuhyus andProgenitohyus are transferred to the familyDichobunidae by Ducrocq (2019).[184]

Carnivorans

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Agriotherium hendeyi[185]Sp. novValidJiangzuo & FlynnLateHemphillianQuiburis United States
( Arizona)
Announced in 2019; the final version of the article naming it was published in 2020.
Amblonyx barryi[186]Sp. novValidJiangzuo, Yu & FlynnPlioceneSivalik Hills   NepalA relative of theAsian small-clawed otter. Announced in 2019; the final version of the article naming it was published in 2021.
Amphicyon zhanxiangi[187]Sp. novValidJiangzuoet al.earlyMiddle Miocene ChinaAbear dog
Amphimachairodus alvarezi[188]Sp. novValidRuiz-Ramoni, Rincón & Montellano-BallesterosLateHemphillian MexicoAmachairodontinefelid
Ballusia zhegalloi[189]Sp. novValidSotnikovaet al.Early Miocene Mongolia
 Russia
Abear. Announced in 2019; the final version of the article naming it was published in 2021.
Corumictis[190]Gen. et sp. et comb. novValidPatersonin Patersonet al.Oligocene (Arikareean) and earlyMioceneJohn Day France

 United States
( Oregon)

A member of the familyMustelidae. The type species isC. wolsani; genus also includes"Plesictis" julieniViret 1929.
Cynelos anubisi[191]Sp. novValidMorloet al.Early Miocene Egypt
 Libya?
Abear dog. Originally described as a species ofCynelos; Morales &Pickford (2022) made it the type species of a separate genusMogharacyon.[192]
Gobicyon acutus[193]Sp. novValidJiangzuoet al.lateMiddle Miocene ChinaAbear dog belonging to the subfamilyHaplocyoninae
Gobicyon yei[193]Sp. novValidJiangzuoet al.earlyMiddle Miocene ChinaAbear dog belonging to the subfamilyHaplocyoninae
Hoplictis baihu[194]Sp. novValidValencianoet al.Middle MioceneHalamagai ChinaA member of the familyMustelidae
Izmirictis[195]Gen. et sp. novValidMoraleset al.Early Miocene TurkeyA member ofFeliformia belonging to the familyLophocyonidae (new rank, formerly ranked as the subfamily Lophocyoninae within theViverridae). Genus includes new speciesI. cani.
Lartetictis pasalarensis[196]Sp. novValidValenciano, Mayda & AlpagutMiddle Miocene TurkeyAnotter
Leptofelis[197]Gen. et comb. novValidSalesaet al.Late Miocene SpainA member of the familyFelidae belonging to the subfamilyFelinae; a new genus for"Styriofelis" vallesiensis Salesaet al. (2012). Announced in 2017; the final version of the article naming it was published in 2019.
?Myacyon peignei[198]Sp. novValidWerdelinMiocene (Serravallian) KenyaAbear dog
Peignecyon[199]Gen. et sp. novValidMoraleset al.Early Miocene Czech RepublicAbear dog belonging to the subfamilyThaumastocyoninae. The type species isP. felinoides.
Peignictis[200]Gen. et sp. novValidDe Bonis, Gardin & BlondelEarly OligoceneQuercy FranceA member ofMustelida of uncertain phylogenetic placement. The type species isP. pseudamphictis.
Trochictis peignei[201]Sp. novValidMorloet al.Miocene GermanyA member of the familyMustelidae. Announced in 2019; the final version of the article naming it was published in 2021.
Wangictis[200]Gen. et comb. novValidDe Bonis, Gardin & BlondelEarly OligoceneWulanbulage ChinaA member ofAmphicynodontinae. The type species is"Pachycynodon" tedfordi Wang & Qiu (2003).
Carnivoran research
[edit]
  • A study on the morphology ofbony labyrinths of extant and fossil carnivorans, and on its implications for inferring hunting behaviours of extinct carnivorans, is published by Schwabet al. (2019).[202]
  • A study assess the usefulness of the scapholunar (one of thecarpal bones) for determining ecology and habitat of carnivorans, based on data from living and extinct carnivorans, is published by Dunnet al. (2019).[203]
  • A study on the morphology and functional anatomy of thethoracolumbar andsacrocaudal regions of the vertebral column ofMagericyon anceps is published online by Siliceoet al. (2019).[204]
  • Carnivoran fossils from the Hoyo Negro pit in theSac Actun cave system (Mexico), initially identified as remains of abear belonging to the genusTremarctos and acoyote, a reinterpreted as remains ofArctotherium wingei andProtocyon troglodytes by Schubertet al. (2019), representing the first record of these taxa outsideSouth America.[205]
  • Description of fossils ofNyctereutes donnezani from the earlyPliocene locality of Çalta (Turkey), and study on the phylogenetic relationships of species belonging to the genusNyctereutes, is published by Daguenet & Sen (2019).[206]
  • Revision of Pleistocene canid fossils from theSangiran Dome (Java,Indonesia), evaluating their implications for the knowledge of the timing of the arrival of members of the genusCuon in Java, is published by Volmeret al. (2019).[207]
  • A study on the taxonomy of thedire wolf, assessing whether fossils fromMexico and the western coast of theUnited States should be assigned to the distinct subspeciesCanis dirus guildayi, is published by Ruiz-Ramoni & Montellano-Ballesteros (2019).[208]
  • A study on the origin of the current genetic uniqueness of theItalian wolves, as indicated by data from mitochondrial DNA of the Pleistocene and Holocenecanid specimens fromItaly, is published by Ciucaniet al. (2019).[209]
  • A study on the age of dog remains from theKoster Site and Stilwell II site inIllinois, dated to between 10,190 and 9,630calBP, is published by Perriet al. (2019), who interpret these remains as representing the earliest confirmed evidence of domestic dogs in the Americas and the earliest confirmed individual dog burials anywhere in the world.[210]
  • A study on the history of pre-contact dogs in the North American Arctic, aiming to determine the relationship between dogs from archaeologicalPaleo-Inuit and Inuit sites and modern Arctic dog populations, is published by Ameenet al. (2019).[211]
  • Remains ofIndarctos punjabiensis are described from the lateMiocene locality of Las Casiones (Spain) by Abellaet al. (2019), representing the last population of members of the subfamilyAiluropodinae from the Iberian fossil record, and possibly from Europe.[212]
  • A study on thetrophic andecological niche widths of ancient and modern pandas is published by Hanet al. (2019).[213]
  • Nuclear genome of an ~5,000-year-old giant panda from Jiangdongshan (Yunnan, China) is sequenced by Shenget al. (2019), who assign this specimen to a genetically distinct extinct population forming thesister group to all extant populations, and present evidence indicative ofgenetic admixture from this extinct population in extant pandas.[214]
  • A study on functional adaptations in the anatomy of the elbow joint of extant and fossil bears, and on its implications for inferring paleobiology ofQuaternary fossil species of bears, is published by Meloro & de Oliveira (2019).[215]
  • A study on the evolution of the shape and size of thebasicranium of bears, as indicated by data from extant and extinct taxa, is published by Arnaudoet al. (2019).[216]
  • A study on the evolution of bear teeth, and on its implications for inferring the phylogenetic placement of fossil bear taxa, is published by Jiangzuo, Liu & Chen (2019).[217]
  • A study on the diet ofAgriotherium africanum from theSouth African fossil site ofLangebaanweg, as indicated by tooth microwear, is published by Stynderet al. (2019).[218]
  • The first fossil of a member of the genusAgriotherium fromItaly will be described by Bellucciet al. (2019).[219]
  • A study on the systematics and paleobiology of bears from theDmanisi site (Georgia), and on their coexistence with early members of the genusHomo, is published by Medinet al. (2019).[220]
  • A study aiming to decipher the various factors influencing the isotopic composition of bones of a potentially omnivorous species likecave bear, as well examining how likely are the different interpretations of the palaeodiet of theRomanian cave bears in comparison with the rest of the European cave bears, is published by Bocherens (2019).[221]
  • A study on the cranial andmandibular morphology ofUrsus deningeri compared to other bear species, and on its implications for inferring the palaeobiology of this species, is published by van Heterenet al. (2019).[222]
  • A study on the tooth-root morphology ofmaxillary teeth of living bears, and on its implications for inferring the diet and feeding behaviour of the cave bears, is published by Pérez-Ramoset al. (2019).[223]
  • A study on the feedings preferences and timing of extinction of cave bears in Mediterranean Europe based on data from twoPaleolithic cave bear sites in northeasternItaly (Paina Cave and Trene Cave) is published by Terlatoet al. (2019).[224]
  • A study on the timing and causes of extinction of cave bears in theAlps is published by Döppeset al. (2019).[225]
  • A study on themorphometric andmorphotypic variability of upperincisors of the Middle and LatePleistocene cave bears from theCaucasus andUral Mountains is published by Baryshnikov, Gimranov & Kosintsev (2019).[226]
  • A study on themorphometrical variability of upper cheek teeth of cave bears from 123 geographical sites ofPliocenePleistocene ages is published by Baryshnikov & Puzachenko (2019).[227]
  • A study evaluating how the morphology of teeth of cave bears from theScladina Cave (Belgium) changed over time is published by Charterset al. (2019).[228]
  • A study on the feeding habits of cave bears from the Toll Cave inCatalonia, as indicated by data from tooth microwear and from stable isotopes extracted from bone collagen, is published by Ramírez-Pedrazaet al. (2019).[229]
  • A study on the feeding habits of cave bears from six Late Pleistocene caves in Catalonia will be published by Ramírez-Pedrazaet al. (2019).[230]
  • A study on the timing of the occupation of the Schwabenreith Cave (Austria) by cave bears is published by Spötlet al. (2019).[231]
  • A study on the palaeoecology of cave bears from three Late Pleistocene cave bear sites fromRomanian Carpathians, based on stable isotope data from their teeth, is published by Robuet al. (2019).[232]
  • A study on population dynamics andphylogeography of cave bears during the Late Pleistocene, based on data from reconstructed cave bear mitochondrial genomes, is published by Gretzingeret al. (2019).[233]
  • A study on the evolutionary history and paleoecology ofbrown bears in North-East Siberia, as indicated by mitochondrial DNA and stable isotopic data fromsubfossil remains fromYakutia (Russia), is published by Rey-Iglesiaet al. (2019).[234]
  • A study on the morphology and taxonomical status of the Late Pleistocenesteppe brown bear is published by Marciszaket al. (2019).[235]
  • A study on the evolutionary history of theEuropean brown bears in northernIberian Peninsula is published by García-Vázquez, Llona & Grandal-d'Anglade (2019), who report evidence indicating that the Pleistocene lineages of the Iberian brown bears were not the direct ancestors of the Holocene ones, and interpret their findings as indicative of the Holocene recolonization of the Iberian Peninsula by brown bears from a crypticrefugium in continentalAtlantic Europe.[236]
  • A study on the evolutionary history and changes of range and diet of the European brown bears, as indicated by data from mitochondrial DNA from brown bear remains collected from across Europe and ranging in age between the Late Pleistocene and historical times, is published by[237]
  • A study on the biomechanical capabilities of themusteloid speciesLeptarctus primus relative to living carnivoran taxa, and on their implications for inferring the paleoecology of this species, is published by Prybyla, Tseng & Flynn (2019).[238]
  • A revision of the systematics of fossilhog-nosed skunks fromArgentina will be published by Schiaffini & Juan (2019).[239]
  • A skull of a large fossilmustelid showing similarities to bothOriensictis melina fromZhoukoudian andEnhydrictis fromSardinia is described from the Jinyuan cave (Liaoning,China) by Jiangzuoet al. (2019), who relegateOriensictis to the rank of a subgenus ofEnhydrictis.[240]
  • Fossil remains of a late PleistoceneEuropean badger are described from Grotta Laceduzza (Apulia,Italy) by Mecozziet al. (2019), representing the largest sample of this taxon in the European Pleistocene record.[241]
  • A study aiming to determine occurrence and timing of shifts in skull shape, body size and body shape in the evolutionary history of mustelids is published by Law (2019).[242]
  • A study on the functional morphology of the teeth ofCyonasua andChapalmalania and on the diet of these taxa, aiming to determine whether these carnivorans may have ecologically overlapped with extinct predatory metatherians from South America, is published by Engelman & Croft (2019).[243]
  • A study on feeding strategies used by extinctpinnipeds, as indicated by morphology of their skulls andmandibles, and on the evolution ofphocid feeding strategies is published by Kienle & Berta (2019).[244]
  • A study aiming to qualitatively and quantitatively characterize the fossil record of pinnipeds from taxonomic, geographical and temporal perspectives is published by Valenzuela-Toro & Pyenson (2019).[245]
  • A study on the morphological differences betweenhumeri andfemora of different modern phocid taxa, and on their implications for the utility of these limb bones in diagnosing fossil taxa, is published by Churchill & Uhen (2019).[246]
  • A study on the bonehistology ofNanophoca vitulinoides is published by Dewaeleet al. (2019).[247]
  • Miocenemonk seal teeth are described from the upperMonterey Formation (California,United States) by Velez-Juarbe & Valenzuela-Toro (2019), representing the oldest fossil record ofcrown phocids from the North Pacific region reported so far.[248]
  • A study on the impact of changing sea ice conditions on the diet of the Pacificwalrus during the last ~4000 years is published by Clarket al. (2019).[249]
  • Description of new dentary material ofPercrocuta carnifex from theNagri Formation (Pakistan), and a study on the occurrence andstratigraphic position of this species within theSivalik Hills and on the phylogenetic relationships of species assigned to the genusPercrocuta, is published by Ghaffaret al. (2019).[250]
  • A study evaluating the ability of the extinctgiant fossa to hunt large lemurs is published by Meadoret al. (2019).[251]
  • Description ofmongoose fossils from the early Pleistocene fossil locality Cooper 's D in theCradle of Humankind (South Africa) is published by Cohen, O'Regan & Steininger (2019).[252]
  • A study on the anatomy of thebasicranium ofDinocrocuta gigantea is published by Xiong (2019).[253]
  • Two isolated teeth ofhyenas belonging to the genusChasmaporthetes are described from the Old Crow Basin (Yukon,Canada) by Tseng, Zazula &Werdelin (2019).[254]
  • A study on the uppercanine replacement process in sabertooth carnivores belonging to the familyNimravidae is published by Wysocki (2019), who also compares the juvenile morphologies and upper canine replacement processes in the sabertooth lineages of the families Felidae,Barbourofelidae and Nimravidae.[255]
  • A study on the brain anatomy of an earlyMiocenefelid known from a skull from Ginn Quarry (Nebraska,United States), representing the oldest known felid specimen in the New World, is published by Lyras, Giannakopoulou &Werdelin (2019).[256]
  • A study on a sample of fossils of two species ofMachairodus from the earlyVallesian site of Los Valles de Fuentidueña (Province of Segovia,Spain), evaluating their implications for the knowledge of palaeoecology of these species, is published by Fernández-Monescillo, Antón & Salesa (2019).[257]
  • A study on the anatomy of the neck vertebrae ofMachairodus aphanistus, evaluating its implications for the knowledge of the early evolution of adaptations enabling the killing bite of the sabre-toothed cats, is published online by Antónet al. (2019).[258]
  • Description of felid fossils recovered from bluffs along theSouth Saskatchewan River nearMedicine Hat (Alberta,Canada), including the first confirmed occurrence ofSmilodon fatalis in Canada, is published by Reynolds, Seymour & Evans (2019).[259]
  • A study oncanines ofSmilodon fatalis, aiming to determine whether extreme canine size functioned as a sexually selected signal, is published by O'Brien (2019).[260]
  • Two specimens ofSmilodon populator with injuries on their skulls are described by Chimentoet al. (2019), who interpret these injuries as most likely caused by uppercanines of anotherSmilodon.[261]
  • A felidcalcaneum is described from the late Pliocene–early Pleistocene Uquía Formation (Argentina) by Ercoliet al. (2019), who assign this specimen to thepuma lineage, and interpret it as one of the earliest records of this lineage in America, and of Felidae in South America.[262]
  • Tooth enamelstrontium isotopic values of a specimen of theAmerican lion from Cedral (San Luis Potosí,Mexico) are determined by Pérez-Crespoet al. (2019), who also evaluate the implications of their findings for inferring the mobility of the studied specimen.[263]
  • The first fossiltiger specimen from the Kyushu area (Japan) is reported by Hasegawaet al. (2019).[264]

Chiroptera

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Barbastella maxima[265]Sp. novValidRosina, Kruskop & SemenovLate Miocene UkraineA species ofBarbastella
Koopmanycteris[266]Gen. et sp. novValidMorgan, Czaplewski & SimmonsOligocene United States
( Florida)
A member of the familyMormoopidae. The type species isK. palaeomormoops.
Myotis gerhardstorchi[267]Sp. novValidHoráček & TrávníčkováEarly Pliocene HungaryAmouse-eared bat
Quinetia frigidaria[268]Sp. novValidCzaplewskiet al.WhitneyanBrule Formation United States
( North Dakota)
A member of the familyVespertilionidae

Chiropteran research

[edit]
  • A study on the completeness of the bat fossil record is published by Brownet al. (2019).[269]
  • A study on aerodynamic features ofOnychonycteris finneyi is published by Amador,Simmons & Giannini (2019).[270]
  • Description ofPleistocene andHolocene bat fossils from the Grotta dei Pipistrelli (Sicily,Italy) is published by Salariet al. (2019).[271]

Notoungulates

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Hemihegetotherium tantillum[272]Sp. novValidVeraMioceneCollón Curá ArgentinaAhegetotheriidnotoungulate
Orome[273]Gen. et sp. novValidBauzá, Gelfo & LópezEocene (Ypresian)Las Flores ArgentinaAhenricosborniid notoungulate. The type species isO. deepi.
Protypotherium concepcionensis[274]Sp. novValidSolórzanoet al.MioceneCura-Mallín ChileAninteratheriidnotoungulate

Notoungulate research

[edit]

Perissodactyla

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

"Ceratotherium" advenientis[287]

Sp. nov

Valid

Pandolfiet al.

Late Miocene

 Italy

Arhinoceros.
Announced in 2019; the final article version was published in 2021.

Chowliia europea[288]

Sp. nov

Valid

Bronnertet al.

Early Eocene

 France

An "isectolophid"

Irenolophus[289]

Gen. et sp. et comb. nov

valid

Baiet al.

Eocene

Arshanto Formation

 China

ADeperetellidaeTapiroidean.
The type species isI. qii;
genus also includes"Teleolophus" primarius Qi (1987).

Pachynolophus ruscassierensis[290]

Sp. nov

Valid

Remyet al.

Eocene

 France

Apalaeotheriid

Plesiaceratherium balkanicum[291]

Sp. nov

Valid

Becker & Tissier

Miocene (MN5)

Bugojno Basin

 Bosnia and Herzegovina

Teleoceras aepysoma[292]

Sp. nov

Valid

Short, Wallace & Emmert

LatestHemphillian

Gray Fossil Site

 United States
( Tennessee)

Perissodactyl research

[edit]
  • A study on the anatomy of the skeleton of extanttapirs andendemicEocene European odd-toed ungulates, aiming to determine whether tapirs represent viable analogues for locomotion inpalaeotheres andlophiodontids, is published online by MacLaren & Nauwelaerts (2019).[293]
  • A study on the diet and habitat ofSchlosseria magister andLophialetes expeditus is published online by Gonget al. (2019).[294]
  • A study on the intraspecific variation of the skeletal anatomy in the lophiodontid speciesEolophiodon laboriense is published by Vautrinet al. (2019).[295]
  • A study on the morphology of the nares of thebrontotheresMetarhinus andSphenocoelus, and on their functional significance, is published by Mader (2019).[296]
  • A revision of the fossil material ofrhinocerotids from the Miocene (Agenian) of Wischberg (Switzerland) is published by Jameet al. (2019).[297]
  • A study on the abundance of members of the generaAphelops andTeleoceras from the middle Miocene to the Pliocene of theGreat Plains, and on possible causes of their extinction, is published online by Wang & Secord (2019).[298]
  • A study on the phylogenetic relationships of the Eurasian rhinocerotids of the Pleistocene epoch, based on data from theproteome fromenamel of a tooth of a member of the genusStephanorhinus from theDmanisi site (Georgia), is published by Cappelliniet al. (2019).[299]
  • A study on the timing of extinction ofElasmotherium sibiricum will be published by Kosintsevet al. (2019), who report evidence indicating that this species survived in Eastern Europe and Central Asia until at least 39,000 years ago.[300]
  • A study on cheek teeth andmandibular remains of a middle Pleistocene rhinoceros from the Matsugae Cave (Japan), previously identified as belonging to a member of the genusDicerorhinus, is published online by Handa, Kohno & Kudo (2019), who reinterpret this fossil material as belonging to a member of the genusStephanorhinus.[301]
  • A study on efficiency of the different modes ofmastication, changes in the different masticatory paths and probable diets of early members ofEquoidea is published by Engels & Schultz (2019).[302]
  • A study on the daily and seasonal movements ofequids from twoMiocene fossil sites in northernFlorida, as indicated by data fromstrontium isotope ratios intooth enamel, will be published by Wallace, Crowley & Miller (2019).[303]
  • A study on the life history of Miocenehipparionins, as indicated by teethhistology, is published by Orlandi-Oliveras, Nacarino-Meneses & Köhler (2019).[304]
  • Description of new fossil material of hipparions from the Miocene locality Ravin des Zouaves-5 (Greece), and a study on the taxonomy and phylogenetic relationships of these equids, is published by Koufos & Vlachou (2019).[305]
  • Limb bones fossils referred toHipparion (Hippotherium) chiai are described from the Miocene of the middle reaches of theYellow River (Shaanxi, China) by Liet al. (2019), who evaluate the implications of these fossils for the knowledge of the locomotor abilities ofH. chiai and the environment inhabited by members of this species.[306]
  • Fossils of members of the genusEurygnathohippus of uncertain specific assignment are described from the latePliocene sediments of thePotwar Plateau inPakistan and theSiwalik Hills in northwestIndia by Jukaret al. (2019), representing the first occurrence of members of this genus outside Africa reported so far.[307]
  • Revision and a study on variability of fossils ofDinohippus mexicanus from theHemphillian localities in centralMexico is published by Carranza-Castañeda (2019).[308]
  • A review of the evolutionary history of equid locomotor morphology, attempting to explain why themonodactyly evolved only in the lineage leading to modern equids, is published byJanis & Bernor (2019).[309]
  • A study assessing the evidence for different hypotheses explaining how and why monodactyly evolved in equids is published by McHorse, Biewener & Pierce (2019).[310]
  • A study on the functions ofhypsodonty of the tooth crowns in equids, as indicated by data from extant and fossil equids, is published by Solouniaset al. (2019).[311]
  • A review ofbiochronologic evidence which is the basis of recognizing Land Mammal Ages across different continents, evaluating is implications for the knowledge of the major equid evolutionary events for the last 8 million years, is published by Rooket al. (2019).[312]
  • Description of Pleistocene equid fossils from Cooper's D locality (Cooper's Cave,South Africa) is published by Badenhorst & Steininger (2019).[313]
  • A study on DNA extracted from Pleistocene equid fossils from Kunni River bed at Taiping village (Heilongjiang,China) is published by Yuanet al. (2019), who report evidence of presence ofEquus ovodovi in China.[314]
  • A study on teeth of Pleistocene equids from the Anagni Basin (centralItaly) and on their implications for the knowledge of the niche occupation and resource exploitation mechanisms of these equids is published by Straniet al. (2019).[315]
  • A study on the diversity and evolution of members of the genusEquus in North America, Asia, Europe, and Africa, and on its implications for the knowledge origin and evolution of ancient and livingzebras, is published by Bernoret al. (2019).[316]
  • An overview of research advances from the preceding years concerning thebiostratigraphy and palaeoecology of the genusEquus in Europe is published by Boulbes & van Asperen (2019).[317]
  • A review and a study on the evolutionary history of early members of the genusEquus fromChina is published by Sun & Deng (2019).[318]
  • A study on the diversity of native South American members of the genusEquus is published by Machado & Avilla (2019).[319]
  • A study on the potential range of distribution of South American horses during the transition from theLast Glacial Maximum to theHolocene, and on its implications for the knowledge of the causes of the Late Quaternary extinction of South American horses, is published by Villavicencio, Corcoran & Marquet (2019).[320]
  • A review of theNeogene fossil record of members ofEquinae fromMexico is published by Bravo-Cuevas & Jiménez-Hidalgo (2019).[321]
  • A study on the diversity and paleoecology of late Pleistocene horses from northwestern and centralOaxaca and centralChiapas (Mexico) is published by Jiménez-Hidalgoet al. (2019).[322]
  • A study on themetapodial bonehistology ofEquus mosbachensis andEquus steinheimensis, and on its implications for the knowledge of the life history of these species, is published online by Nacarino-Meneses & Orlandi-Oliveras (2019).[323]
  • A study on the evolutionary history of domestic horses, based on DNA data from horsesubfossils with ages mostly spanning the last six millennia, is published by Fageset al. (2019), who present evidence of existence of two extinct horse lineages in Iberia and Siberia during early domestication.[324]
  • A review of the use of the generic nameEquus within different phylogenetic frameworks and a study on the phylogenetic relationships of derived members ofEquini is published by Barrón-Ortizet al. (2019).[325]

Xenarthrans

[edit]

Cingulata

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Holmesina cryptae[326]

Sp. nov

Valid

Mouraet al.

LatePleistocene (Lujanian)

 Brazil

Cingulatan research

[edit]
  • A study on the evolution of morphological traits associated with tail weaponry inglyptodonts and ankylosaur dinosaurs, aiming to quantitatively test the hypothesis that tail weaponry of these groups is an example ofconvergent evolution, is published online byArbour &Zanno (2019).[327]
  • New fossil material of the glyptodontNeuryurus, including associated remains ofcarapace andendoskeletal bones, is described from the PleistoceneSopas Formation (Uruguay) by Perea, Toriño & Ghizzoni (2019).[328]
  • A review of the late Pleistocene species ofGlyptodon from southern South America is published by Cuadrelliet al. (2019).[329]
  • New specimen ofPucatherium parvum is described from the Eocene of theLumbrera Formation (Argentina) by Herreraet al. (2019).[330]
  • A study on the impact of climate changes on the distribution ofarmadillos as indicated by fossil record is published by Soibelzon (2019).[331]
  • A study on the internal structure of theosteoderms of extinct armadillos, and on its possible associations with the climate and environmental conditions of the distribution areas of various armadillo species, is published by Ciancioet al. (2019).[332]

Pilosa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Archaeomylodon[333]

Gen. et sp. nov

Valid

Brambilla & Ibarra

Ensenadan

 Argentina

A member of the familyMylodontidae belonging to the subfamily Mylodontinae. Genus includes new speciesA. sampedrinensis.

Glossotherium phoenesis[334]

Sp. nov

Valid

Cartelleet al.

LatePleistocene

 Brazil

Pilosan research

[edit]
  • A study on the phylogeny, macroevolution, and historical biogeography of sloths is published by Varelaet al. (2019).[335]
  • A study on the phylogenetic relationships and evolutionary history of extinct and living sloths, as indicated by data from extinct sloth mitogenomes, is published by Delsucet al. (2019).[336]
  • A study on the phylogenetic relationships of tree sloths and their extinct relatives, as indicated by collagen sequence information and mitochondrial DNA evidence, is published by Pressleeet al. (2019).[337]
  • A study on themusculoskeletal diseases of Pleistocene sloths from the Brazilian Intertropical Region is published by Barbosaet al. (2019).[338]
  • A study comparing theungualphalanges of the third finger from themanus of Pleistocene ground sloths and a wide range of extant mammals, and aiming to determine possible life habits of Pleistocene ground sloths, is published online by Patiño, Zerpa & Fariña (2019).[339]
  • A study on the phylogenetic relationships and evolutionary history of members of the familyMylodontidae is published by Boscaini, Pujos & Gaudin (2019).[340]
  • New skull and teeth remains ofSimomylodon uccasamamensis are described from the latestMiocenePliocene of theBolivianAltiplano by Boscainiet al. (2019).[341]
  • A study on the skeletal morphology ofSimomylodon uccasamamensis is published by Boscainiet al. (2019), who report evidence indicative ofsexual dimorphism.[342]
  • New specimen ofLestodon armatus, providing new information on the anatomy of this species, is described from aQuaternary deposit inCaçapava do Sul (Brazil) by Vargas-Peixotoet al. (2019).[343]
  • New fossil remains ofProscelidodon rothi are described from thePliocene El Polvorín Formation (Buenos Aires Province,Argentina) by Miño-Boiliniet al. (2019).[344]
  • Partial specimen ofMegalonyx jeffersonii is described from a peat deposit near Newburgh,Orange County by McDonald, Feranec & Miller (2019), representing the first record of this species fromNew York reported so far.[345]
  • A study on sexual dimorphism and geographic variation of fossilmegalonychid sloths fromHispaniola is published online by McAfee & Beery (2019).[346]
  • New fossil specimens belonging to the genusNeocnus, representing the easternmost record of this genus reported so far, are described from the Upper Pleistocene localities of Padre Nuestro and Oleg's Bat House (Dominican Republic) by McAfee & Rimoli (2019).[347]
  • Description of a partialdentary with teeth and anastragalus ofMegathericulus patagonicus from the MioceneCollón Curá Formation (Argentina) is published online by Brandoni, Ruiz & Bucher (2019), who consider the speciesMegathericulus primaevus to be ajunior synonym ofM. patagonicus.[348]
  • Description of new fossil material ofThalassocnus from the Mina Fosforita member of theBahía Inglesa Formation (Chile) and a study on the taxonomic diversity of members of the genusThalassocnus in Chile is published by Peralta-Prato & Solórzano (2019).[349]
  • Description of new fossil material ofNothrotheriops from the late Pleistocene of the Esperanza Lithostratigraphic Unit from the Salado Fluvial Accumulation Depression (Santa Fe Province,Argentina), and a study on the implications of this finding for the knowledge of the dispersal of ground sloths during theGreat American Interchange, is published by Brandoni & Vezzosi (2019).[350]
  • A study on the paleoecology of the first fossilized specimen ofEremotherium laurillardi fromBelize, as indicated by stable isotope analysis, is published by Larmonet al. (2019).[351]
  • Description of fossils ofMegatherium americanum from the Pleistocene deposits of the Coastal Plain of the State ofRio Grande do Sul (Brazil) is published by Lopes & Pereira (2019).[352]
  • A study on the morphology of thescapulae of juvenile and adult specimens ofMegalonyx jeffersoniiandParamylodon harlani, and on its implications of the knowledge of the behavior of these sloths, is published by Grass (2019).[353]

General xenarthran research

[edit]
  • A study on the anatomy of the bone elements of thehyoid apparatus of xenarthrans, and on its implications for the knowledge of the phylogenetic relationships of xenarthrans, is published by Zamorano (2019).[354]

Other eutherians

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Astrapotherium guillei[355]Sp. novValidKramarz, Garrido & BondMiddle MioceneCollón Curá ArgentinaA new species ofAstrapotherium
Cartierodon[356]Gen. et sp. novValidSolé & MennecartEocene (Lutetian) France
  Switzerland
A member ofHyaenodonta belonging to the familyHyaenodontidae. The type species isC. egerkingensis.
Enantiostylops[357]Gen. et comb. novValidAverianovEarly Eocene ChinaA member ofArctostylopida; a new genus for"Sinostylops" progressus Tang & Yan (1976)
Fratrodon[358]Gen. et sp. novValidSoléet al.Eocene (Ypresian)Paris FranceA member of the familyParoxyclaenidae. Genus includes new speciesF. tresvauxi.
Hyaenodon pumilus[359]Sp. novValidLavrovLate Eocene Mongolia
Lophocion grangeri[360]Sp. novValidBai, Wang & MengLate PaleoceneClark's Fork United States
( Wyoming)
A member of the familyPhenacodontidae. Announced in 2019; the final version of the article naming it was published in 2021.
Merialus bruneti[358]Sp. novValidSoléet al.Eocene (Ypresian)Paris FranceA member of the familyParoxyclaenidae
Nesophontes hemicingulus[41]Sp. novValidMorganet al.Late Pleistocene-Holocene Cayman IslandsA species ofNesophontes
Oligoechinus[361]Gen. et sp. novValidLiet al.Late OligoceneLanzhou Basin ChinaA member of the familyErinaceidae. Genus includes new speciesO. lanzhouensis.
Pahelia[362]Gen. et sp. novValidZacket al.Early EoceneCambay IndiaAn ungulate-like herbivorous mammal. Genus includes new speciesP. mysteriosa.
Paraspaniella[358]Gen. et sp. novValidSoléet al.Eocene (Ypresian)Paris FranceA member of the familyParoxyclaenidae. Genus includes new speciesP. gunnelli.
Propterodon witteri[363]Sp. novValidZacklateUintanUinta Formation United States
( Utah)
A member of the familyHyaenodontidae
Saltaodus[364]Gen. et sp. novValidGelfoet al.EoceneLumbrera ArgentinaA native South American ungulate belonging to the familyDidolodontidae. Genus includes new speciesS. sirolli. Announced in 2019; the final version of the article naming it was published in 2020.
Simbakubwa[365]Gen. et sp. novValidBorths & StevensEarly Miocene KenyaA member ofHyaenodonta belonging to the groupHyainailouroidea and to the subfamilyHyainailourinae. The type species isS. kutokaafrika.
Sororodon[358]Gen. et sp. novValidSoléet al.Eocene (Ypresian)Paris FranceA member of the familyParoxyclaenidae. Genus includes new speciesS. tresvauxae.
Uruguayodon[366]Gen. et sp. novValidCorona, Perea & UbillaPleistocene UruguayA member ofLitopterna belonging to the subfamilyProterotheriinae. Genus includes new speciesU. alius.

Other eutherian research

[edit]
  • A study on the phylogenetic relationships of extant and fossil moles belonging to the tribeScalopini is published by Schwermannet al. (2019).[367]
  • A study on early Miocene fossils of members of the familiesSoricidae andHeterosoricidae from theRibesalbes-Alcora Basin (Spain) is published by Crespoet al. (2019).[368]
  • A study on the anatomy oftarsals ofBatodonoides powayensis, and on its implications for the knowledge of the phylogenetic relationships of the familyGeolabididae, is published by Zack & Penkrot (2019).[369]
  • Description of the brain, inner ear, sinuses and endocranial nerves and vessels of theperiptychidCarsioptychus coarctatus is published by Cameronet al. (2019).[370]
  • Virtualendocasts of endocranium andinner ear ofChriacus pelvidens andChriacus baldwini are reconstructed by Bertrandet al. (2019).[371]
  • Description of new fossil material ofMolinodus suarezi,Simoclaenus sylvaticus,Tiuclaenus minutus,Tiuclaenus robustus andPucanodus gagnieri from thePaleocene of the Tiupampa locality (Bolivia), providing new information on the anatomy of skulls and teeth of these taxa, is published by de Muizon, Billet & Ladevèze (2019).[372]
  • Newastrapothere fossils from theEocene Cañadón Vaca Member of the Sarmiento Formation (Argentina), providing new information the early diversification of this group, are described by Kramarz, Bond & Carlini (2019).[373]
  • Redescription ofProtolipterna ellipsodontoides and a study on the teeth variation between members of this species is published by Zanesco, Bergqvist & Pereira (2019).[374]
  • Description oflitopterns from the early Miocene Pampa Castillo fauna (Galera Formation,Chile) and a study on the phylogenetic relationships ofproterotheriids is published online by McGrath, Flynn & Wyss (2019).[375]
  • Description of new cranial remains of theproterotheriidNeolicaphrium recens from thePleistoceneSopas Formation (Uruguay), and a study on the diet of this species as indicated by tooth microwear, is published by Corona, Ubilla & Perea (2019).[376]
  • A study on the dietary and environmental preferences ofNeolicaphrium recens is published by Morosi & Ubilla (2019).[377]
  • New proterotheriid andmacraucheniid fossil material is described from the lateOligocene Quebrada Fiera locality (Mendoza Province,Argentina) by Schmidt, Cerdeño & Del Pino (2019), extending the geographical range ofConiopternium, and including the first Argentinian record ofLambdaconus outsidePatagonia.[378]
  • Leftdentary of a member of the genusHarpagolestes belonging or related to the speciesH. uintensis is described from theEoceneClarno Formation (Oregon,United States) by Robsonet al. (2019), representing the firstmesonychid from this formation reported so far.[379]
  • A study on the phylogenetic relationships ofdesmostylians is published by Matsui & Tsuihiji (2019).[380]
  • New fossil material ofPantolestes is described from theUinta Basin (Utah, United States) by Dunn & Townsend (2019), who also revise species-level diversity ofPantolestes from theBridgerian andUintanNorth American land mammal ages.[381]
  • A study comparing the teeth ofPrionogale to the teeth of subadulthyaenodonts and carnivorans, as well as evaluating the phylogenetic affinities ofPrionogale andNamasector within Hyaenodonta, is published by Borths & Stevens (2019), who reinterpret the type specimen ofPrionogale breviceps and some of the paratype materials as preservingdeciduous teeth which were previously interpreted as permanent dentition.[382]
  • A reconstruction of theendocast ofProviverra typica based on X-ray microtomography is presented by Dubied, Solé & Mennecart (2019), who also study the phylogenetic relationships of hyaenodonts.[383]
  • Description of a partial skeleton of a medium-sized carnivorous mammal (classified as amachaeroidineoxyaenid) from theUinta Formation (Utah,United States) and a study on machaeroidine locomotor habits and on phylogenetic affinities of machaeroidines and "creodonts" in general is published by Zack (2019).[384]
  • Description of rabbit fossils from the Late Miocene Shuitangba site (Zhaotong Basin;Yunnan,China), assigned to the extant genusNesolagus, and a study on their implications for the knowledge of the evolutionary history of this genus and paleoecology of the site, is published by Flynnet al. (2019).[385]
  • A study on the size of fossil rabbits from 14 late Pleistocene and Holocene archaeological sites inPortugal, and on its implications for the knowledge of temperatures and environment in the area of Portugal during the last glaciation, is published by Davis (2019).[386]
  • Description of the anatomy of a partial skeleton and adentary with anterior teeth of theplesiadapiformTorrejonia wilsoni from the lowerPaleoceneNacimiento Formation (New Mexico,United States) is published by Chesteret al. (2019).[387]
  • A study on the anatomy, life history and phylogenetic relationships ofPlesiadapis cookei is published by Boyer &Gingerich (2019).[388]

General eutherian research

[edit]
  • A study on the relationship betweenmorphological and molecular rates of evolution ofplacental mammals is published by Hallidayet al. (2019), who interpret their findings as supporting a Late Cretaceous origin ofcrown placentals, and indicating that early members of major placental groups may not be easily distinguishable from one another or fromstemeutherians.[389]
  • A study on the phylogenetic distribution, morphological variation and functions of apicobasal ridges (elevated ridges oftooth enamel) in aquatic mammals and reptiles, as indicated by data from extant and fossil taxa, is published by McCurryet al. (2019).[390]
  • New lateRupelian mammal fossils, including new specimens of the shrewSrinitium marteli and fossils of taxa formerly unknown in this locality, are described from the Aubenas-les-Alpes locality (France) by Maridet, Hugueney & Costeur (2019).[391]
  • A study on the brain size of extinctinsular dwarf species of hippos and elephants is published by Lyras (2019).[392]
  • A study on the relative contributions of grass and grit as a driving force of evolutionary changes in teeth of North Americanungulates is published by Semprebon, Rivals & Janis (2019).[393]
  • A study on fossils ofMicromeryx flourensianus from aMiocene locality inFrance, preserving signs of carnivore activity, and on the possible identity of the predator which produced marks on these bones, is published by Aiglstorfer, Heizmann & Peigné (2019).[394]
  • A study on changes in local climate and habitat conditions in centralSpain in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated bytooth wear patterns, is published by De Miguel, Azanza & Morales (2019).[395]
  • Miocene (Turolian) mammal faunas from several fossiliferous localities at Gorna Sushitsa (southwesternBulgaria) are described by Spassovet al. (2019).[396]
  • New late Miocene vertebrate assemblage, including turtle, rodent andxenarthran fossils (among which is the oldest record of anarmadillo belonging to the genusDasypus reported so far), is described from the Los Alisos locality (Guanaco Formation,Argentina) by Ercoliet al. (2019).[397]
  • A study on modern and fossil mammal herbivore communities from eastern Africa spanning the last ~7 million years, aiming to determine whether modern herbivore communities are suitable analogs for the ancient ecosystems in which early hominins evolved, is published by Faith, Rowan & Du (2019).[398][399][400]
  • A study on the anatomical traits of teeth and inferred diet ofbovids,suids andrhinocerotids from thePliocene site ofKanapoi (Kenya), and on their implications for reconstructing the environments of this site, is published online by Dumouchel & Bobe (2019).[401]
  • A study on the mortality profiles of bovids from theOldowan localities in Kanjera South (Kenya) andOlduvai Gorge (Tanzania), and on their implications for inferring hunting and scavenging behavior of early hominins in different (i.e. grassland and woodland) habitats, is published by Oliveret al. (2019).[402]
  • A study on spatial and temporal variation in species composition of ungulates from theKoobi Fora Formation throughout the Early Pleistocene is published online by O'Brienet al. (2019).[403]
  • Results of stable carbon and oxygen isotope analyses oftooth enamel samples fromPleistocene mammals from the Yugong Cave and Baxian Cave (China) are presented by Sunet al. (2019), who evaluate the implications of their findings for the knowledge of Pleistocene climatic and environmental changes in South China.[404]
  • A study on the affinities and ages of Pleistocene mammalian faunas from China is published online by Dong, Liu & Bai (2019).[405]
  • A study on Pleistocene mammal fossils from the Yai Ruak Cave (Krabi Province,Thailand), including the southernmost known record ofCrocuta crocuta ultima in Southeast Asia, is published by Suraprasitet al. (2019), who evaluate the implications of these fossils for reconstructions of the environment in the area of theMalay Peninsula in the Pleistocene.[406]
  • A study onPaleolithic faunal remains from theManot Cave (Israel), comparing human and hyena prey choice in theUpper PaleolithicGalilee, is published online by Orbach & Yeshurun (2019).[407]
  • A study on Pleistocene small mammal remains from Stratigraphic Unit V from El Salt site (Alcoy, Spain), evaluating their implications for the knowledge of climatic conditions in the eastern Iberian Peninsula at the time of the disappearance of local Neanderthal populations duringMarine Isotope Stage 3, is published by Fagoagaet al. (2019).[408]
  • A study onleporid assemblages from 8 sites in southernFrance associated withAcheulean andMiddle Paleolithic occupations by hominins, aiming to examine small fastgame exploitation by archaicHomo populations, is published by Morinet al. (2019).[409]
  • A study on the taxonomic and skeletal identification and on surface modifications of mammals bones from the Fumane cave (Italy), evaluating their implications for the knowledge of subsistence behaviour of hominins inhabiting the cave across the Middle toUpper Paleolithic transition, is published by Sinet-Mathiotet al. (2019).[410]
  • A study on the dietary patterns and the ecological niches occupied by ungulates from theMousterian of the Covalejos Cave (Cantabria,Spain), as inferred from analyses of teeth wear and dentalcementum, is published by Sánchez-Hernándezet al. (2019), who evaluate the implications of their findings for the knowledge of the environmental conditions of this region, the knowledge of the age and season at the time of death these ungulates, and the knowledge of the seasonality and duration of Neanderthal occupations of the Covalejos Cave and the seasonality of their hunting activities.[411]
  • A study on animal remains from the El Cierro cave (Asturias,Spain), evaluating how much energyred deer supplied to the diet of the humans that inhabited El Cierro during the LowerMagdalenian in comparison with other animals, is published by Porteroet al. (2019).[412]
  • A study on movement patterns of theColumbian mammoths and other herbivores from theWaco Mammoth National Monument site (Texas,United States), based onstrontium isotope data from their teeth, is published by Eskeret al. (2019).[413]
  • Description of Pleistocene mammal fossils from Extinction Cave (Belize), including one of the southernmost record of the bison and one of two records of the bear speciesTremarctos floridanus from Central America, is published online by Churcher (2019).[414]
  • A revision and a study on the age of the Late Pleistocenemegafauna ofGuatemala is published by Dávilaet al. (2019).[415]
  • Evidence from the Campo Laborde site inArgentina indicating that humans hunted and butchered a giantground slothMegatherium americanum is presented by Politiset al. (2019).[416]
  • A study on diet and niche width of late Quaternary large herbivorous mammals from the Brazilian Intertropical Region is published by Pansaniet al. (2019).[417]
  • A study on late Pleistocene mammal fossils recovered from a tank deposit in Lagoa de Pedra (Anagé municipality,Bahia State, Brazil), aiming to determine the diet of these mammals and the paleoenvironment they lived in, is published by da Silvaet al. (2019).[418]
  • A study on late Quaternary mammal remains from the Upper Gunnison Basin (Colorado,United States), focusing on their implications for the knowledge ofimpact of climate changes since theLast Glacial Maximum on small mammals from this area, is published by Emslie & Meltzer (2019).[419]
  • A study on the ecology of mammals from theLa Brea Tar Pits, focusing on the dietary responses of carnivorans to changing climate and megafaunal extinctions at the end of the Pleistocene, is published by DeSantiset al. (2019).[420]
  • A study on possible causes of the late Pleistocene extinctions, as indicated by the analysis of tooth wear andenamelhypoplasia in late Pleistocene horses and bisons from North America, is published by Barrón-Ortizet al. (2019).[421]
  • A study aiming to identifycommunity assembly effects of the end-Pleistocene extinctions of large mammals in North America is published by Tóthet al. (2019).[422]
  • A study on the role of past climate, extinctmegafauna andguanaco in shaping the vegetation of the Patagonian steppe is published by Hernández, Ríos & Perotto-Baldivieso (2019).[423]
  • A study on the impact of climate change on the faunal composition and extinction dynamics of European mammal species during the Late Pleistocene-Holocene transition, aiming to test the hypothesis of the existence of common evolutionary processes of change in faunal composition during the Late Pleistocene and Holocene, independent of the regions of Europe, is published by Puzachenko & Markova (2019).[424]
  • A study on population density of large herbivores in Europe during the late Pleistocene and early Holocene, reconstructed on the basis of data from fossildung fungusspores from centralLatvia, is published by Stivrinset al. (2019).[425]
  • The discovery of ancient bear, roe deer and bat DNA recovered fromstalagmites from the Solkota cave (Georgia) is reported by Stahlschmidtet al. (2019).[426]
  • A study on evolutionary changes in body size and sexual size dimorphism associated with the independent colonization ofMadagascar by primates, carnivorans,tenrecs and rodents is published by Kappeleret al. (2019).[427]
  • A study aiming to evaluate whetherintroduced deers and hares fill the same ecological niches as extinctmoa birds inNew Zealand, as indicated by data from pollen extracted from moacoprolites and mammal feces, is published by Wood & Wilmshurst (2019).[428]
  • Description of small mammal fossils from the Pliocene site of Kanapoi (Kenya) is published online by Manthi & Winkler (2019).[429]

Metatherians

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Apeirodon[430]

Gen. et sp. nov

Valid

Babotet al.

Eocene (Priabonian)

Geste Formation

 Argentina

A smallbunodont metatherian, possibly an early divergent member ofPolydolopimorphia.
The type species isA. sorianoi.
Announced in 2019; the final article version was published in 2020.

Chaeropus yirratji[431]

Sp. nov

Valid

Travouillonet al.

Holocene

 Australia

A relative of thepig-footed bandicoot

Patene coloradensis[432]

Sp. nov

Valid

Rangelet al.

Middle Eocene

Quebrada de Los Colorados Formation

 Argentina

Asparassodont

Unnuakomys[433]

Gen. et sp. nov

Valid

Eberleet al.

Late Cretaceous (Maastrichtian)

Prince Creek Formation

 United States
( Alaska)

A member of the familyPediomyidae. Genus includes new speciesU. hutchisoni.

Unnuakomys (lower left)

Metatherian research

[edit]
  • Description of the anatomy of the postcranial skeleton ofArgyrolagus scaglai from thePliocene ofArgentina is published online by Abello & Candela (2019), who interpret this species as having bipedal jumping locomotion.[434]
  • Description of the anatomy of the caudal part of the cranium ofThylacosmilus atrox is published by Forasiepi, Macphee & del Pino (2019).[435]
  • Description of a nearly complete juvenile skull ofSparassocynus derivatus from thePlioceneChapadmalal Formation (Argentina) and a study on the phylogenetic relationships of "sparassocynids" is published online by Beck & Taglioretti (2019).[436]
  • A study on the locomotion ofbalbarids is published by Den Boer, Campione & Kear (2019).[437]
  • A study on the phylogenetic relationships of a giant short-faced kangarooSimosthenurus occidentalis and giant wallabyProtemnodon anak, as indicated by data from fossils and near-complete mitochondrial genomes, is published by Casciniet al. (2019).[438]
  • A study on the skull morphology ofSimosthenurus occidentalis, and on its implications for inferring the diet of this mammal, is published by Mitchell & Wroe (2019).[439]
  • A study on the skull ofSimosthenurus occidentalis, evaluating whether it was capable of consuming tough vegetation and withstanding twisting forces while biting resistant objects, is published by Mitchell (2019).[440]
  • The first descriptions of theappendicular skeleton and body mass estimates for threepalorchestid species (Palorchestes azael,Palorchestes parvus and a member of the genusPropalorchestes of uncertain specific assignment from theBullock Creek Fossil Site) are presented by Richardset al. (2019).[441]
  • A study on fossils of a putativeCretaceousdicynodont fromAustralia reported byThulborn & Turner (2003)[442] is published online by Knutsen & Oerlemans (2019), who consider these fossils to be ofPliocene-Pleistocene age, and reinterpret it as fossils of a large mammal, probably adiprotodontid.[443]
  • A study on the range and ecological tolerances of theTasmanian devil living in the mainland Australia in prehistoric times, and on its implications for the viability of the proposal to reintroduce Tasmanian devils to mainland Australia, is published by Westawayet al. (2019).[444]
  • A study on the pre-Pleistocene evolutionary history of the familyThylacinidae is published by Rovinsky, Evans & Adams (2019).[445]
  • An atlas of the skeletal elements of thethylacine is published by Warburton, Travouillon & Camens (2019).[446]

Other mammals

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Cimbriodon[447]Gen. et sp. novValidMartinet al.Late Jurassic (Kimmeridgian)Süntel GermanyAmultituberculate. Genus includes new speciesC. multituberculatus.
Cimolodon akersteni[448]Sp. novValidWeaveret al.Late Cretaceous (Cenomanian)Wayan United States
( Idaho)
Amultituberculate
Dolichoprion[449]Gen. et sp. novValidKusuhashi, Wang & JinEarly CretaceousFuxin ChinaAneobaataridmultituberculate. Genus includes new speciesD. lii. Announced in 2019; the final version of the article naming it was published in 2020.
Fuxinoconodon[450]Gen. et sp. novValidKusuhashiet al.Early Cretaceous (AptianAlbian)Fuxin ChinaA member of the familyGobiconodontidae. The type species isF. changi. Announced in 2019; the final version of the article naming it was published in 2020.
Galulatherium[451]Gen. et sp. novValidO'Connoret al.Late Cretaceous (TuronianCampanian)Galula TanzaniaPossibly a member ofGondwanatheria and the familySudamericidae. The type species isG. jenkinsi.
Guibaatar[452]Gen. et sp. novValidWible, Shelley & BiLate Cretaceous (Campanian)Bayan Mandahu ChinaAdjadochtatheriidmultituberculate. The type species isG. castellanus.
Jeholbaatar[453]Gen. et sp. novValidWang, Meng & WangEarly Cretaceous (Aptian)Jiufotang ChinaAneobaataridmultituberculate. Genus includes new speciesJ. kielanae.
Maiopatagium sibiricum[454]Sp. novValidAverianovet al.Middle JurassicItat RussiaA member ofEuharamiyida
Microdocodon[455]Gen. et sp. novValidZhouet al.Middle JurassicDaohugou ChinaA member ofDocodonta. Genus includes new speciesM. gracilis.
Origolestes[456]Gen. et sp. novMaoet al.Early Cretaceous (Aptian)Yixian ChinaA member of the familyZhangheotheriidae. Genus includes new speciesO. lii. Announced in 2019; the final version of the article naming it was published in2020.
Qishou[457]Gen. et sp. novValidMao & MengLate Jurassic (Oxfordian)Tiaojishan ChinaA member ofEuharamiyida. Genus includes new speciesQ. jizantang.
Sharypovoia[454]Gen. et 2 sp. novValidAverianovet al.Middle JurassicItat RussiaA member ofEuharamiyida belonging to the familyShenshouidae. Genus includes new speciesS. arimasporum andS. magna.
Storchodon[458]Gen. et sp. novValidMartinet al.Late Jurassic (Kimmeridgian)Süntel GermanyA member ofMorganucodonta. The type species isS. cingulatus.

Miscellaneous mammaliformes research

[edit]
  • A study onocclusion and function of teeth inMorganucodon watsoni andMegazostrodon rudnerae is published by Jägeret al. (2019).[459]
  • A study on teeth development and replacement inJurassiceuharamiyidan mammals from the Yanliao Biota (China) is published by Maoet al. (2019).[460]
  • A study on the anatomy of the auditory andhyoid bones ofArboroharamiya allinhopsoni andArboroharamiya jenkinsi is published online by Menget al. (2019).[461]
  • A study on thetooth wear inQishou andShenshou from the Yanliao Biota, and on theocclusal modes present in "haramiyidan" taxa, is published by Mao & Meng (2019).[462]
  • A study on the anatomy of the petrosal ofBorealestes is published by Panciroli, Schultz & Luo (2019), who also generate an endocast of the inner ear ofBorealestes.[463]
  • A study on the anatomy of themandible and teeth ofBorealestes serendipitus and on the phylogenetic relationships of this species, based on data from new specimens from theIsle of Skye (Scotland), is published by Panciroli, Benson & Luo (2019).[464]
  • A revision of the teeth andmandibular fossils of members of the genusDocodon from Yale Quarry 9 at theComo Bluff site in theUpper JurassicMorrison Formation is published by Schultz, Bhullar & Luo (2019), who argue that the fossils from that quarry represent only one species,Docodon victor.[465]
  • A study on the anatomy of the inner ear and surrounding structures inPriacodon fruitaensis and two isolatedstemtherian petrosal specimens from theAptian orAlbian Höövör locality (Mongolia) is published by Harper & Rougier (2019).[466]
  • A study comparing the anatomy and function of skulls of rodents andmultituberculates, and evaluating their implications for inferring whether the extinction of multituberculates was caused by competition with rodents, is published by Adamset al. (2019).[467]
  • A study on the anatomy of skull and teeth ofMaotherium sinense, based on data from a three-dimensionally preserved skull from the Lower CretaceousYixian Formation (China), is published online by Plogschties & Martin (2019).[468]
  • A study on the anatomy of the postcranial skeleton ofHenkelotherium guimarotae is published online by Jäger, Luo & Martin (2019).[469]
  • Description of newdental anddentary specimens ofReigitherium from theUpper CretaceousLa Colonia Formation (Argentina) and a study on the phylogenetic relationships of this taxon is published by Harper, Parras & Rougier (2019).[470]

General research

[edit]
  • A study on the origin of the mammalianmiddle earossicles, as indicated by the anatomy of the jaw-otic complex in 43synapsid taxa, is published by Navarro-Díaz, Esteve-Altava & Rasskin-Gutman (2019).[471]
  • A study on the evolution of the morphological complexity of the mammalian vertebral column, as indicated by data from mammals and non-mammalian synapsids, is published by Jones, Angielczyk & Pierce (2019).[472]
  • A study on the ecological structure ofMesozoicmammaliaform communities is published by Chen, Strömberg & Wilson (2019).[473]
  • A study on the diversification of functionalmorphology of jaws in Mammaliaformes in general andcrown-therians in particular from theEarly Jurassic to the end of theEocene, focusing on changes occurring across theCretaceous-Paleogene boundary, is published by Benevento, Benson & Friedman (2019).[474]
  • A study on the evolution of foot posture in mammals, and on the effects of posture on body size evolution, is published by Kuboet al. (2019).[475]
  • A study on arrangements oftarsal bones in mammals, focusing on extinct South American ungulates, is published by Lorente (2019).[476]
  • A review of ecological diversifications of mammals throughout their evolutionary history is published by Grossnickle, Smith & Wilson (2019).[477]
  • A study on the ancestraltribosphenictherian chewing stroke, as conserved in the extantgray short-tailed opossum, is published by Bhullaret al. (2019).[478]
  • A review of thebiogeographic history of mammals and other terrestrial vertebrates from the Mesozoic ofGondwana is published byKrauseet al. (2019).[479]
  • A protocol for reconstructing 3D models of skulls of extinct species of small mammals known only from fragmentary fossils is proposed by Moya-Costa, Cuenca-Bescós & Bauluz (2019), who present reconstructions of the skulls of fossilshrewsBeremendia fissidens andDolinasorex glyphodon.[480]
  • A study on the impact of uncertainty of stratigraphic age of fossils on studies estimating species divergence times which incorporate fossil taxa, based on data from the fossil record of North American mammals and from the dataset of extant and fossil cetaceans, is published by Barido-Sottaniet al. (2019).[481]
  • A study on the ecological spectrum of six sequential terrestrial mammal faunas of the North American Cenozoic, aiming to assess the potential influence of long-term climatic shifts on theecomorphological composition of these faunas, is published by Figueiridoet al. (2019).[482]
  • A study comparing the utility of classicmorphometric indices and three-dimensional landmarks configuration to infer diet of carnivorous fossil mammals is published by Tarquiniet al. (2019).[483]
  • A review of the fossil record of terrestrial mammals fromAntarctica is published by Gelfoet al. (2019).[484]
  • A study on thetaphonomy and age of mammal fossils from the Gruta do Ioiô cave (Salitre Formation;Chapada Diamantina region,Brazil), and on the paleoecology of fossil mammals from this site, is published online by Eltinket al. (2019).[485]
  • A study determining the sex of 186Holarctic bison specimens known fromsubfossil remains, of 91 subfossilbrown bear specimens and of mammal specimens from 4 large museum mammal collections representing multiple orders is published by Goweret al. (2019), who report a significant skew toward males among the studied specimens and search for possible explanations of the observed skew in sex ratio.[486]
  • A study determining the origins of nocturnal behavior in early mammals as correlating to sperm preservation.[487]


References

[edit]
  1. ^Martin Pickford (2019)."New Chrysochloridae (Mammalia) from the middle Eocene of Black Crow, Namibia"(PDF).Communications of the Geological Survey of Namibia.21:40–47.
  2. ^Martin Pickford (2019)."Tiny Tenrecomorpha (Mammalia) from the Eocene of Black Crow, Namibia"(PDF).Communications of the Geological Survey of Namibia.21:15–25.
  3. ^Steven R. May (2019)."The Lapara Creek Fauna: Early Clarendonian of south Texas, USA".Palaeontologia Electronica.22 (1): Article number 22.1.15.doi:10.26879/929.
  4. ^Alton C. Dooley; Eric Scott; Jeremy Green; Kathleen B. Springer; Brett S. Dooley; Gregory James Smith (2019)."Mammut pacificus sp. nov., a newly recognized species of mastodon from the Pleistocene of western North America".PeerJ.7: e6614.doi:10.7717/peerj.6614.PMC 6441323.PMID 30944777.
  5. ^Rodolphe Tabuce; Raphaël Sarr; Sylvain Adnet; Renaud Lebrun; Fabrice Lihoreau; Jeremy E. Martin; Bernard Sambou; Mustapha Thiam; Lionel Hautier (2019)."Filling a gap in the proboscidean fossil record: a new genus from the Lutetian of Senegal"(PDF).Journal of Paleontology.94 (3):580–588.doi:10.1017/jpa.2019.98.S2CID 213978026.
  6. ^Julien Benoit; Lucas J. Legendre; Rodolphe Tabuce; Theodor Obada; Vladislav Mararescul; Paul Manger (2019)."Brain evolution in Proboscidea (Mammalia, Afrotheria) across the Cenozoic".Scientific Reports.9 (1): Article number 9323.Bibcode:2019NatSR...9.9323B.doi:10.1038/s41598-019-45888-4.PMC 6597534.PMID 31249366.
  7. ^George E. Konidaris; George D. Koufos (2019)."Late Miocene proboscideans from Samos Island (Greece) revisited: new specimens from old collections".PalZ.93 (1):115–134.Bibcode:2019PalZ...93..115K.doi:10.1007/s12542-018-0432-6.S2CID 133779567.
  8. ^William J. Sanders (2019). "Proboscidea from Kanapoi, Kenya".Journal of Human Evolution.140: Article 102547.doi:10.1016/j.jhevol.2018.10.013.PMID 30745193.S2CID 73451588.
  9. ^Shi-Qi Wang; Xue-Ping Ji; Tao Deng; Li-Ya Fu; Jia-Hua Zhang; Chun-Xiao Li; Zi-Ling He (2019). "Yunnan, a refuge for trilophodont proboscideans during the late Miocene aridification of East Asia".Palaeogeography, Palaeoclimatology, Palaeoecology.515:162–171.Bibcode:2019PPP...515..162W.doi:10.1016/j.palaeo.2017.07.034.S2CID 135151633.
  10. ^Hilary H. Birks; Bas van Geel; Daniel C. Fisher; Eric C. Grimm; Wim J. Kuijper; Jan van Arkel; Guido B.A. van Reenen (2019). "Evidence for the diet and habitat of two late Pleistocene mastodons from the Midwest, USA".Quaternary Research.91 (2):792–812.Bibcode:2019QuRes..91..792B.doi:10.1017/qua.2018.100.S2CID 133822213.
  11. ^Tasha Cammidge; Brian Kooyman; Jessica M. Theodor (2019). "Diet reconstructions for end-PleistoceneMammut americanum andMammuthus based on comparative analysis of mesowear, microwear, and dental calculus in modernLoxodonta africana".Palaeogeography, Palaeoclimatology, Palaeoecology.538: Article 109403.doi:10.1016/j.palaeo.2019.109403.hdl:1880/115370.S2CID 210297680.
  12. ^Chunxiao Li; Shi-Qi Wang; Dimila Mothé; Xijun Ni (2019)."New fossils of early and middle MioceneChoerolophodon from northern China reveal a Holarctic distribution of Choerolophodontidae".Journal of Vertebrate Paleontology.39 (3): e1618864.Bibcode:2019JVPal..39E8864L.doi:10.1080/02724634.2019.1618864.S2CID 196682903.
  13. ^Víctor Adrián Pérez-Crespo; José Luis Prado; María Teresa Alberdi; Joaquín Arroyo-Cabrales; Eileen Johnson (2019). "Feeding ecology of the gomphotheres (Proboscidea, Gomphotheriidae) of America".Quaternary Science Reviews.229: Article 106126.doi:10.1016/j.quascirev.2019.106126.S2CID 212782959.
  14. ^Dimila Mothé; Marco P. Ferretti; Leonardo S. Avilla (2019). "Running Over the Same Old Ground:Stegomastodon Never Roamed South America".Journal of Mammalian Evolution.26 (2):165–177.doi:10.1007/s10914-017-9392-y.S2CID 23041930.
  15. ^George E. Konidaris; Socrates J. Roussiakis (2019)."The first record ofAnancus (Mammalia, Proboscidea) in the late Miocene of Greece and reappraisal of the primitive anancines from Europe".Journal of Vertebrate Paleontology.38 (6): e1534118.doi:10.1080/02724634.2018.1534118.S2CID 91391249.
  16. ^Denis Geraads; Samir Zouhri; Georgi N. Markov (2019)."The firstTetralophodon (Mammalia, Proboscidea) cranium from Africa"(PDF).Journal of Vertebrate Paleontology.39 (3): e1632321.Bibcode:2019JVPal..39E2321G.doi:10.1080/02724634.2019.1632321.S2CID 202024016.
  17. ^Asier Larramendi; Hanwen Zhang; Maria Rita Palombo; Marco P. Ferretti (2019). "The evolution ofPalaeoloxodon skull structure: Disentangling phylogenetic, sexually dimorphic, ontogenetic, and allometric morphological signals".Quaternary Science Reviews.229: Article 106090.doi:10.1016/j.quascirev.2019.106090.S2CID 213676377.
  18. ^Fredrick Kyalo Manthi; William J. Sanders; J. Michael Plavcan; Thure E. Cerling; Francis H. Brown (2019). "Late Middle Pleistocene elephants from Natodomeri, Kenya and the disappearance ofElephas (Proboscidea, Mammalia) in Africa".Journal of Mammalian Evolution.27 (3):483–495.doi:10.1007/s10914-019-09474-9.S2CID 198190671.
  19. ^Rivka Rabinovich; Gadi Herzlinger; Rani Calvo; Florent Rivals; Steffen Mischke; Gali Beiner (2019). "Erq el Ahmar Elephant Site – A mammoth skeleton at a rare and controversial Plio-Pleistocene site along the mammal migration route out of Africa".Quaternary Science Reviews.221: Article 105885.Bibcode:2019QSRv..22105885R.doi:10.1016/j.quascirev.2019.105885.S2CID 202194154.
  20. ^Sebastian J. Pfeifer; Wolfram L. Hartramph; Ralf-Dietrich Kahlke; Frank A. Müller (2019)."Mammoth ivory was the most suitable osseous raw material for the production of Late Pleistocene big game projectile points".Scientific Reports.9 (1): Article number 2303.doi:10.1038/s41598-019-38779-1.PMC 6381109.PMID 30783179.
  21. ^M. Kuitems; T. van Kolfschoten; A.N. Tikhonov; J. van der Plicht (2019)."Woolly mammoth δ13C and δ15N values remained amazingly stable throughout the last ~50,000 years in north-eastern Siberia"(PDF).Quaternary International.500:120–127.Bibcode:2019QuInt.500..120K.doi:10.1016/j.quaint.2019.03.001.S2CID 134833731.
  22. ^Anatoly V. Lozhkin; Patricia M. Anderson (2018). "Another perspective on the age and origin of the Berelyokh mammoth site (northeast Siberia)".Quaternary Research.89 (2):459–477.Bibcode:2018QuRes..89..459L.doi:10.1017/qua.2018.3.S2CID 134501307.
  23. ^Vladimir V. Pitulko; Elena Y. Pavlova; Aleksandr E. Basilyan; Pavel A. Nikolskiy (2019)."Another perspective on the age and origin of the Berelyokh mammoth site—Comment to the paper published by Lozhkin and Anderson, Quaternary Research 89 (2018), 459–477".Quaternary Research.91 (2):910–913.Bibcode:2019QuRes..91..910P.doi:10.1017/qua.2018.86.
  24. ^Anatoly V. Lozhkin; Patricia M. Anderson (2019)."Another perspective on the age and origin of the Berelyokh mammoth site: response to Pitulko et al".Quaternary Research.91 (2):914–915.Bibcode:2019QuRes..91..914L.doi:10.1017/qua.2018.97.
  25. ^Kazuo Yamagata; Kouhei Nagai; Hiroshi Miyamoto; Masayuki Anzai; Hiromi Kato; Kei Miyamoto; Satoshi Kurosaka; Rika Azuma; Igor I. Kolodeznikov; Albert V. Protopopov; Valerii V. Plotnikov; Hisato Kobayashi; Ryouka Kawahara-Miki; Tomohiro Kono; Masao Uchida; Yasuyuki Shibata; Tetsuya Handa; Hiroshi Kimura; Yoshihiko Hosoi; Tasuku Mitani; Kazuya Matsumoto; Akira Iritani (2019)."Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging".Scientific Reports.9 (1): Article number 4050.Bibcode:2019NatSR...9.4050Y.doi:10.1038/s41598-019-40546-1.PMC 6411884.PMID 30858410.
  26. ^Laura Arppe; Juha A. Karhu; Sergey Vartanyan; Dorothée G. Drucker; Heli Etu-Sihvola; Hervé Bocherens (2019)."Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population".Quaternary Science Reviews.222: Article 105884.Bibcode:2019QSRv..22205884A.doi:10.1016/j.quascirev.2019.105884.
  27. ^Matthew Klapman; Alex Capaldi (2019). "A simulation of anthropogenic Columbian mammoth (Mammuthus columbi) extinction".Historical Biology: An International Journal of Paleobiology.31 (5):610–617.Bibcode:2019HBio...31..610K.doi:10.1080/08912963.2017.1383987.S2CID 90015342.
  28. ^Jiao Ma; Yuan Wang; Changzhu Jin; Yaowu Hu; Hervé Bocherens (2019). "Ecological flexibility and differential survival of PleistoceneStegodon orientalis andElephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis".Quaternary Science Reviews.212:33–44.Bibcode:2019QSRv..212...33M.doi:10.1016/j.quascirev.2019.03.021.S2CID 135056116.
  29. ^Athanassios Athanassiou; Alexandra A.E. van der Geer; George A. Lyras (2019). "Pleistocene insular Proboscidea of the Eastern Mediterranean: A review and update".Quaternary Science Reviews.218:306–321.Bibcode:2019QSRv..218..306A.doi:10.1016/j.quascirev.2019.06.028.S2CID 199107354.
  30. ^Jorge Velez-Juarbe; Aaron R. Wood (2019). "An early Miocene dugongine (Sirenia: Dugongidae) from Panama".Journal of Vertebrate Paleontology.38 (5): e1511799.doi:10.1080/02724634.2018.1511799.S2CID 92728365.
  31. ^Karen E. Samonds; Rebekah A. Ernat; Tsiory Andrianavalona; Daryl P. Domning (2019). "New Miocene sirenians from Nosy Makamby, northwestern Madagascar".Journal of Vertebrate Paleontology.39 (1): e1570223.Bibcode:2019JVPal..39E0223S.doi:10.1080/02724634.2019.1570223.S2CID 132496360.
  32. ^Daryl P. Domning; Brian L. Beatty (2019). "Fossil Sirenia of the West Atlantic and Caribbean region. XII.Stegosiren macei, gen. et sp. nov".Journal of Vertebrate Paleontology.39 (3): e1650369.Bibcode:2019JVPal..39E0369D.doi:10.1080/02724634.2019.1650369.S2CID 203407242.
  33. ^Ester Díaz-Berenguer; Alexandra Houssaye; Ainara Badiola; José Ignacio Canudo (2019)."The hind limbs ofSobrarbesiren cardieli (Eocene, northeastern Spain) and new insights into the locomotion capabilities of the quadrupedal sirenians".Journal of Mammalian Evolution.27 (4):649–675.doi:10.1007/s10914-019-09482-9.S2CID 201838854.
  34. ^Pavel Gol'din; Oleksandr M. Kovalchuk; Tatiana Krakhmalnaya (2019). "The first record of Sirenia (Mammalia) from the early Oligocene of the Paratethys".Historical Biology: An International Journal of Paleobiology.31 (10):1373–1378.doi:10.1080/08912963.2018.1454444.S2CID 90379258.
  35. ^Johanset Orihuela; Lázaro W. Viñola López; Thomas E. Macrini (2019). "First cranial endocasts of early Miocene sirenians (Dugongidae) from the West Indies".Journal of Vertebrate Paleontology.39 (2): e1584565.Bibcode:2019JVPal..39E4565O.doi:10.1080/02724634.2019.1584565.S2CID 155655913.
  36. ^Martin Pickford (2019).Orycteropodidae (Tubulidentata, Mammalia) from the Early Miocene of Napak, Uganda. Vol. 47. pp. 1–101.ISBN 978-3-89937-247-2.{{cite book}}:|journal= ignored (help)
  37. ^Robert J. Asher; Martin R. Smith; Aime Rankin; Robert J. Emry (2019)."Congruence, fossils and the evolutionary tree of rodents and lagomorphs".Royal Society Open Science.6 (7): Article ID 190387.Bibcode:2019RSOS....690387A.doi:10.1098/rsos.190387.PMC 6689570.PMID 31417738.
  38. ^abcdWilliam W. Korth; Robert J. Emry; Clint A. Boyd; Jeff J. Person (2019)."Rodents (Mammalia) from Fitterer Ranch, Brule Formation (Oligocene), North Dakota".Smithsonian Contributions to Paleobiology.103 (103): iv-45.doi:10.5479/si.1943-6688.103.
  39. ^abcSamantha S. B. Hopkins (2019). "Phylogeny, systematics, and evolution of hypsodonty in the Aplodontiinae (Mammalia, Rodentia, Aplodontiidae), with the description of several new species".Journal of Vertebrate Paleontology.39 (4): e1668401.Bibcode:2019JVPal..39E8401H.doi:10.1080/02724634.2019.1668401.S2CID 209439990.
  40. ^abcdeShao-Hua Zheng; Ying-Qi Zhang; Ning Cui (2019). "Five new species of Arvicolinae and Myospalacinae from the Late Pliocene-Early Pleistocene of Nihewan Basin".Vertebrata PalAsiatica.57 (4):308–324.doi:10.19615/j.cnki.1000-3118.190725.
  41. ^abcGary S. Morgan; Ross D.E. Macphee; Roseina Woods; Samuel T. Turvey (2019)."Late Quaternary fossil mammals from the Cayman Islands, West Indies".Bulletin of the American Museum of Natural History.2019 (428):1–82.doi:10.1206/0003-0090.428.1.1.hdl:2246/6928.S2CID 92503421.
  42. ^Esperanza Cerdeño; María E. Pérez; Cecilia M. Deschamps; Víctor H. Contreras (2019)."A new capybara from the late Miocene of San Juan Province, Argentina, and its phylogenetic implications".Acta Palaeontologica Polonica.64 (1):199–212.doi:10.4202/app.00544.2018.
  43. ^János Hír; Vlad Codrea; Jérôme Prieto (2020). "Two new early Sarmatian s. str. (latest middle Miocene) rodent faunas from the Carpathian Basin".Palaeobiodiversity and Palaeoenvironments.100 (3):849–902.Bibcode:2020PdPe..100..849H.doi:10.1007/s12549-019-00399-y.S2CID 134949080.
  44. ^abcJohn E. Storer (2019)."Small mammals of the Horse locality fauna (latest Chadronian: Eocene), Cypress Hills Formation"(PDF).Paludicola.12 (3):87–108.
  45. ^abZoran Marković; Hans de Bruijn; Andrew A. van de Weerd; Wilma Wessels (2019)."Deperetomys (Rodentia, Muridae) from the Oligocene of Serbia and Bosnia and Herzegovina".Palaeobiodiversity and Palaeoenvironments.100 (3):821–840.doi:10.1007/s12549-019-00389-0.S2CID 204887178.
  46. ^Qian Li; Yuan Q. Wang; Fang Y. Mao; Jin Meng (2019). "A new Eocene cylindrodontid rodent from the Erlian Basin (Nei Mongol, China) and its implications for phylogeny and biochronology".Journal of Vertebrate Paleontology.39 (5): e1680990.Bibcode:2019JVPal..39E0990L.doi:10.1080/02724634.2019.1680990.S2CID 213073132.
  47. ^abZoran Marković; Wilma Wessels; Andrew A. van de Weerd; Hans de Bruijn (2019)."Pseudocricetodontinae (Mammalia, Rodentia) from the Paleogene of south-east Serbia".Palaeobiodiversity and Palaeoenvironments.100 (1):251–267.doi:10.1007/s12549-019-00373-8.S2CID 201724955.
  48. ^Yuri Kimura; Yukimitsu Tomida; Daniela C. Kalthoff; Isaac Casanovas-Vilar; Thomas Mörs (2019)."A new endemic genus of eomyid rodents from the early Miocene of Japan".Acta Palaeontologica Polonica.64 (2):303–312.doi:10.4202/app.00558.2018.
  49. ^abMyriam Boivin; Laurent Marivaux; Pierre-Olivier Antoine (2019)."New insight from the Paleogene record of Amazonia into the early diversification of Caviomorpha (Hystricognathi, Rodentia): phylogenetic, macroevolutionary, and paleobiogeographic implications".Geodiversitas.41 (4):143–245.doi:10.5252/geodiversitas2019v41a4.S2CID 135427987.
  50. ^abWilliam W. Korth (2019). "Rodents (Mammalia) from the early Oligocene (Orellan) Cook Ranch local fauna of southwestern Montana".Annals of Carnegie Museum.85 (3):223–248.doi:10.2992/007.085.0303.S2CID 202854687.
  51. ^Hesham M. Sallam; Erik R. Seiffert (2020)."Revision of Oligocene"Paraphiomys" and an origin for crown Thryonomyoidea (Rodentia: Hystricognathi: Phiomorpha) near the Oligocene–Miocene boundary in Africa".Zoological Journal of the Linnean Society.190 (1):352–371.doi:10.1093/zoolinnean/zlz148.
  52. ^Mary R. Dawson (2019). "Paleontology and geology of the Badwater Creek Area, central Wyoming. Part 21.Natrona, a new genus of rodent, family Sciuravidae (Mammalia)".Annals of Carnegie Museum.85 (4):329–333.doi:10.2992/007.085.0402.S2CID 210839998.
  53. ^William W. Korth; Clint A. Boyd; Jeff J. Person (2019). "Whitneyan (middle Oligocene) rodents from Obritsch Ranch (Stark County, North Dakota) and a review of Whitneyan rodent fossil record".Annals of Carnegie Museum.85 (3):249–278.doi:10.2992/007.085.0304.S2CID 202844364.
  54. ^Enric Torres Roig; Pedro Piñero; Jordi Agustí; Pere Bover; Josep Antoni Alcover (2019). "First evidence of endemic Murinae (Rodentia, Mammalia) in the early Pliocene of the Balearic Islands (western Mediterranean)".Geological Magazine.156 (10):1742–1750.Bibcode:2019GeoM..156.1742T.doi:10.1017/S0016756818000985.S2CID 134837943.
  55. ^Mikhail P. Tiunov; Dmitryi O. Gimranov (2020). "The first fossilPetaurista (Mammalia: Sciuridae) from the Russian Far East and its paleogeographic significance".Palaeoworld.29 (1):176–181.doi:10.1016/j.palwor.2019.05.007.hdl:10995/92658.S2CID 189990679.
  56. ^Adriana M. Candela; Marcos Cenizo; Daniel Tassara; Luciano L. Rasia; Céline Robinet; Nahuel A. Muñoz; Carola Cañón Valenzuela; Ulyses F. J. Pardiñas (2019). "A new echimyid genus (Rodentia, Caviomorpha) in Central Argentina: uncovered diversity of a Brazilian group of mammals in the Pleistocene".Journal of Paleontology.94 (1):165–179.doi:10.1017/jpa.2019.73.S2CID 204265515.
  57. ^Raquel López Antoñanzas; Sabrina Renaud; Pablo Peláez Campomanes; Dany Azar; George Kachacha; Fabien Knoll (2019)."First levantine fossil murines shed new light on the earliest intercontinental dispersal of mice".Scientific Reports.9 (1): Article number 11874.Bibcode:2019NatSR...911874L.doi:10.1038/s41598-019-47894-y.PMC 6715647.PMID 31467294.
  58. ^Adolfo Pacheco Castro; Oscar Carranza Castañeda; Eduardo Jiménez Hidalgo (2019)."A new species of Sigmodontinae (Rodentia) from the late Hemphillian of central Mexico, and comments on the possible radiation of this group".Revista Mexicana de Ciencias Geológicas.36 (3):321–333.doi:10.22201/cgeo.20072902e.2019.3.1162.
  59. ^abRobert A. Martin; Richard J. Zakrzewski (2019). "On the ancestry of woodrats".Journal of Mammalogy.100 (5):1564–1582.doi:10.1093/jmammal/gyz105.S2CID 203900558.
  60. ^Felipe Busker; María E. Pérez; María T. Dozo (2019)."A new chinchilloid (Rodentia, Hystricognathi) from the early Miocene of the localities of Bryn Gwyn and Gran Barranca (Patagonia, Argentina)".Comptes Rendus Palevol.18 (5):525–540.Bibcode:2019CRPal..18..525B.doi:10.1016/j.crpv.2019.05.003.
  61. ^Qiang Li; Xinying Zhou; Xijun Ni; Bihong Fu; Tao Deng (2019). "Latest Middle Miocene fauna and flora from Kumkol Basin of northern Qinghai-Xizang Plateau and paleoenvironment".Science China Earth Sciences.63 (2):188–201.doi:10.1007/s11430-019-9521-8.S2CID 207990767.
  62. ^Maxim V. Sinitsa; Nataliya V. Pogodina (2019)."The evolution of earlySpermophilus in eastern Europe and the antiquity of the Old World ground squirrels".Acta Palaeontologica Polonica.64 (3):643–667.doi:10.4202/app.00605.2019.
  63. ^Zhuding Qiu; Xijun Ni (2019)."Platacanthomyids (Rodentia, Mammalia) from the late Miocene Yuanmou hominoid locality of Yunnan, China".Fossil Imprint.75 (3–4):383–396.doi:10.2478/if-2019-0024.S2CID 210921503.
  64. ^Oliver C. C. Paine; Jennifer N. Leichliter; Nico Avenant; Daryl Codron; Austin Lawrence; Matt Sponheimer (2019)."The ecomorphology of southern African rodent incisors: Potential applications to the hominin fossil record".PLOS ONE.14 (2): e0205476.Bibcode:2019PLoSO..1405476P.doi:10.1371/journal.pone.0205476.PMC 6382097.PMID 30785886.
  65. ^Laura Bento Da Costa; Brigitte Senut; Dominique Gommery; Martin Pickford (2019). "Dental remains of Lower Miocene small rodents from Napak (Uganda): Afrocricetodontidae, Myophiomyidae, Kenyamyidae and Sciuridae".Annales de Paléontologie.105 (2):155–167.Bibcode:2019AnPal.105..155B.doi:10.1016/j.annpal.2019.04.001.S2CID 181429211.
  66. ^Myriam Boivin; Laurent Marivaux; Rodolfo Salas-Gismondi; Emma C. Vieytes; Pierre-Olivier Antoine (2019)."Incisor enamel microstructure of Paleogene caviomorph rodents from Contamana and Shapaja (Peruvian Amazonia)".Journal of Mammalian Evolution.26 (3):389–406.doi:10.1007/s10914-018-9430-4.hdl:11336/99917.S2CID 3408734.
  67. ^Myriam Boivin; Samuel Ginot; Laurent Marivaux; Ali J. Altamirano-Sierra; François Pujos; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Pierre-Olivier Antoine (2019). "Tarsal morphology and locomotor adaptation of some late middle Eocene caviomorph rodents from Peruvian Amazonia reveal early ecological diversity".Journal of Vertebrate Paleontology.38 (6): e1555164.doi:10.1080/02724634.2018.1555164.S2CID 91786428.
  68. ^Alexandre Assemat; Myriam Boivin; Laurent Marivaux; François Pujos; Aldo Benites-Palomino; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Rafael M. Varas-Malca; Francisco Ricardo Negri; Ana Maria Ribeiro; Pierre-Olivier Antoine (2019)."Restes inédits de rongeurs caviomorphes du Paléogène de la région de Juanjui (Amazonie péruvienne) : systématique, implications macro-évolutives et biostratigraphiques".Geodiversitas.41 (20):699–730.doi:10.5252/geodiversitas2019v41a20.S2CID 210611683.
  69. ^Nahuel A. Muñoz; Néstor Toledo; Adriana M. Candela; Sergio F. Vizcaíno (2019). "Functional morphology of the forelimb of Early Miocene caviomorph rodents from Patagonia".Lethaia.52 (1):91–106.Bibcode:2019Letha..52...91M.doi:10.1111/let.12292.S2CID 133740195.
  70. ^Alicia Álvarez; Marcos D. Ercoli; Diego H. Verzi (2019). "Integration and diversity of the caviomorph mandible (Rodentia: Hystricomorpha): assessing the evolutionary history through fossils and ancestral shape reconstructions".Zoological Journal of the Linnean Society.188 (1):276–301.doi:10.1093/zoolinnean/zlz071.
  71. ^Laurent Marivaux; Myriam Boivin; Sylvain Adnet; Mohamed Benammi; Rodolphe Tabuce; Mouloud Benammi (2019)."Incisor enamel microstructure of hystricognathous and anomaluroid rodents from the earliest Oligocene of Dakhla, Atlantic Sahara (Morocco)"(PDF).Journal of Mammalian Evolution.26 (3):373–388.doi:10.1007/s10914-017-9426-5.S2CID 25573848.
  72. ^Laurent Marivaux; Myriam Boivin (2019)."Emergence of hystricognathous rodents: Palaeogene fossil record, phylogeny, dental evolution and historical biogeography"(PDF).Zoological Journal of the Linnean Society.187 (3):929–964.doi:10.1093/zoolinnean/zlz048.
  73. ^Diego H. Verzi; A. Itatí Olivares; Cecilia C. Morgan (2019). "Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea".Historical Biology: An International Journal of Paleobiology.31 (9):1170–1178.doi:10.1080/08912963.2018.1427089.S2CID 89881481.
  74. ^María Carolina Madozzo-Jaén (2019)."Systematic and phylogeny ofProdolichotis prisca (Caviidae, Dolichotinae) from the Northwest of Argentina (late Miocene–early Pliocene): Advances in the knowledge of the evolutionary history of maras".Comptes Rendus Palevol.18 (1):33–50.Bibcode:2019CRPal..18...33M.doi:10.1016/j.crpv.2018.07.003.
  75. ^Andrés Rinderknecht; Washington W. Jones; Ney Araújo; Gustavo Grinspan; R. Ernesto Blanco (2019). "Bite force and body mass of the fossil rodentTelicomys giganteus (Caviomorpha, Dinomyidae)".Historical Biology: An International Journal of Paleobiology.31 (5):644–652.Bibcode:2019HBio...31..644R.doi:10.1080/08912963.2017.1384475.S2CID 89876784.
  76. ^Leonardo Kerber; Marcelo R. Sánchez-Villagra (2019). "Morphology of the middle ear ossicles in the rodentPerimys (Neoepiblemidae) and a comprehensive anatomical and morphometric study of the phylogenetic transformations of these structures in caviomorphs".Journal of Mammalian Evolution.26 (3):407–422.doi:10.1007/s10914-017-9422-9.S2CID 43212461.
  77. ^Leonardo Kerber; Francisco Ricardo Negri; Daniela Sanfelice (2019). "Morphology of cheek teeth and dental replacement in the extinct rodentNeoepiblema Ameghino, 1889 (Caviomorpha, Chinchilloidea, Neoepiblemidae)".Journal of Vertebrate Paleontology.38 (6): e1549061.doi:10.1080/02724634.2018.1549061.S2CID 91674686.
  78. ^Leonardo Kerber; José D. Ferreira; Francisco R. Negri (2019). "A reassessment of the cranial morphology ofNeoepiblema acreensis (Rodentia: Chinchilloidea), a Miocene rodent from South America".Journal of Morphology.280 (12):1821–1838.doi:10.1002/jmor.21067.PMID 31633247.S2CID 204815185.
  79. ^Luciano Luis Rasia; Adriana M. Candela (2019)."Upper molar morphology, homologies and evolutionary patterns of chinchilloid rodents (Mammalia, Caviomorpha)".Journal of Anatomy.234 (1):50–65.doi:10.1111/joa.12895.PMC 6284437.PMID 30402944.
  80. ^Felipe Busker; María Teresa Dozo (2019). "Rediscovering a forgotten rodent of Patagonia and its phylogenetic implications".Journal of Systematic Palaeontology.17 (9):759–773.Bibcode:2019JSPal..17..759B.doi:10.1080/14772019.2018.1457727.S2CID 89890539.
  81. ^Ornella C. Bertrand; Farrah Amador-Mughal; Madlen M. Lang; Mary T. Silcox (2019). "New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia".Journal of Mammalian Evolution.26 (3):345–371.doi:10.1007/s10914-017-9425-6.S2CID 33820671.
  82. ^Maxim V. Sinitsa; Natalia V. Pogodina; Lyudmila Y. Кryuchkova (2019). "The skull ofSpermophilus nogaici (Rodentia: Sciuridae: Xerinae) and the affinities of the earliest Old World ground squirrels".Zoological Journal of the Linnean Society.186 (3):826–864.doi:10.1093/zoolinnean/zly092.
  83. ^L.V. Popova; L.C. Maul; I.V. Zagorodniuk; Yu.M. Veklych; P.S. Shydlovskiy; N.V. Pogodina; K.M. Bondar; T.V. Strukova; S.A. Parfitt (2019)."'Good fences make good neighbours': Concepts and records of range dynamics in ground squirrels and geographical barriers in the Pleistocene of the Circum-Black Sea area".Quaternary International.509:103–120.Bibcode:2019QuInt.509..103P.doi:10.1016/j.quaint.2018.03.023.S2CID 135141565.
  84. ^Yangheshan Yang; Qiang Li; Łucja Fostowicz-Frelik; Xijun Ni (2019). "Last record ofTrogontherium cuvieri (Mammalia, Rodentia) from the late Pleistocene of China".Quaternary International.513:30–36.Bibcode:2019QuInt.513...30Y.doi:10.1016/j.quaint.2019.01.025.S2CID 135345352.
  85. ^Tessa Plint; Fred J. Longstaffe; Grant Zazula (2019)."Giant beaver palaeoecology inferred from stable isotopes".Scientific Reports.9 (1): Article number 7179.Bibcode:2019NatSR...9.7179P.doi:10.1038/s41598-019-43710-9.PMC 6509321.PMID 31073145.
  86. ^Pauline M. Coster; Aung Naing Soe; K. Christopher Beard; Yaowalak Chaimanee; Chit Sein; Vincent Lazzari; Jean-Jacques Jaeger (2019). "Astragalus ofPondaungimys (Rodentia, Anomaluroidea) from the late middle Eocene Pondaung Formation, central Myanmar".Journal of Vertebrate Paleontology.38 (6): e1552156.doi:10.1080/02724634.2018.1552156.S2CID 92284165.
  87. ^Meghan A. Balk; Julio L. Betancourt; Felisa A. Smith (2019). "Investigating (a)symmetry in a small mammal's response to warming and cooling events across western North America over the late Quaternary".Quaternary Research.92 (2):408–415.Bibcode:2019QuRes..92..408B.doi:10.1017/qua.2019.13.S2CID 181661962.
  88. ^Robert A. Martin (2019). "Body mass and correlated ecological variables in the North American muskrat lineage: evolutionary rates and the tradeoff of large size and speciation potential".Historical Biology: An International Journal of Paleobiology.31 (5):631–643.Bibcode:2019HBio...31..631M.doi:10.1080/08912963.2017.1384474.S2CID 90042885.
  89. ^Elisa Luzi; Juan Manuel López-García (2019). "Patterns of variation inMicrotus arvalis andMicrotus agrestis populations from Middle to Late Pleistocene in southwestern Europe".Historical Biology: An International Journal of Paleobiology.31 (5):535–543.Bibcode:2019HBio...31..535L.doi:10.1080/08912963.2017.1375490.S2CID 90573906.
  90. ^R. Lee Lyman (2019). "Paleoecological implications of the first prehistoric record of water vole (Microtus richardsoni) from Washington state, USA".Quaternary Research.92 (2):381–387.Bibcode:2019QuRes..92..381L.doi:10.1017/qua.2019.15.S2CID 155295120.
  91. ^Phillip L. Manning; Nicholas P. Edwards; Uwe Bergmann; Jennifer Anné; William I. Sellers; Arjen van Veelen; Dimosthenis Sokaras; Victoria M. Egerton; Roberto Alonso-Mori; Konstantin Ignatyev; Bart E. van Dongen; Kazumasa Wakamatsu; Shosuke Ito; Fabien Knoll; Roy A. Wogelius (2019)."Pheomelanin pigment remnants mapped in fossils of an extinct mammal".Nature Communications.10 (1): Article number 2250.Bibcode:2019NatCo..10.2250M.doi:10.1038/s41467-019-10087-2.PMC 6529433.PMID 31113945.
  92. ^Brooke Erin Crowley; Yurena Yanes; Stella Grace Mosher; Juan Carlos Rando (2019)."Revisiting the foraging ecology and extinction history of two endemic vertebrates from Tenerife, Canary Islands".Quaternary.2 (1): Article 10.doi:10.3390/quat2010010.
  93. ^Ai Kawamura; Chun-Hsiang Chang; Yoshinari Kawamura (2019). "The earliest fossil record of the bandicoot rat (Bandicota indica) from the early Middle Pleistocene of Taiwan with discussion on the quaternary history of the species".Quaternary International.523:37–45.Bibcode:2019QuInt.523...37K.doi:10.1016/j.quaint.2019.06.012.S2CID 198421646.
  94. ^E. Grace Veatch; Matthew W. Tocheri; Thomas Sutikna; Kate McGrath; E. Wahyu Saptomo; Jatmiko; Kristofer M. Helgen (2019)."Temporal shifts in the distribution of murine rodent body size classes at Liang Bua (Flores, Indonesia) reveal new insights into the paleoecology ofHomo floresiensis and associated fauna".Journal of Human Evolution.130:45–60.Bibcode:2019JHumE.130...45V.doi:10.1016/j.jhevol.2019.02.002.PMID 31010543.
  95. ^Justyna J. Miszkiewicz; Julien Louys;Sue O'Connor (2019)."Microanatomical record of cortical bone remodeling and high vascularity in a fossil giant rat midshaft femur".The Anatomical Record.302 (11):1934–1940.doi:10.1002/ar.24224.PMID 31265766.S2CID 195786436.
  96. ^Gingerich, P.; Antar, M.; Zalmout, I. (2019)."Aegicetus gehennae, a new late Eocene protocetid (Cetacea, Archaeoceti) from Wadi Al Hitan, Egypt, and the transition to tail-powered swimming in whales".PLOS ONE.14 (12): e0225391.Bibcode:2019PLoSO..1425391G.doi:10.1371/journal.pone.0225391.PMC 6905522.PMID 31825956.
  97. ^Shipps, B.; Peredo, C.;Pyenson, N. (2019)."Borealodon osedax, a new stem mysticete (Mammalia, Cetacea) from the Oligocene of Washington State and its implications for fossil whale-fall communities".Royal Society Open Science.6 (7): Article ID 182168.Bibcode:2019RSOS....682168S.doi:10.1098/rsos.182168.PMC 6689636.PMID 31417706.
  98. ^Giovanni Bianucci; Fabio Pesci; Alberto Collareta; Chiara Tinelli (2019). "A new Monodontidae (Cetacea, Delphinoidea) from the lower Pliocene of Italy supports a warm-water origin for narwhals and white whales".Journal of Vertebrate Paleontology.39 (3): e1645148.Bibcode:2019JVPal..39E5148B.doi:10.1080/02724634.2019.1645148.hdl:11568/1022436.S2CID 202018525.
  99. ^Toshiyuki Kimura; Yoshikazu Hasegawa (2019). "A new species ofKentriodon (Cetacea, Odontoceti, Kentriodontidae) from the Miocene of Japan".Journal of Vertebrate Paleontology.39 (1): e1566739.Bibcode:2019JVPal..39E6739K.doi:10.1080/02724634.2019.1566739.S2CID 92045700.
  100. ^Yoshihiro Tanaka; Mahito Watanabe (2019). "An early and new member of Balaenopteridae from the upper Miocene of Hokkaido, Japan".Journal of Systematic Palaeontology.17 (16):1417–1431.Bibcode:2019JSPal..17.1417T.doi:10.1080/14772019.2018.1532968.S2CID 91715946.
  101. ^Michelangelo Bisconti; Dirk K. Munsterman; Klaas Post (2019)."A new balaenopterid whale from the late Miocene of the Southern North Sea Basin and the evolution of balaenopterid diversity (Cetacea, Mysticeti)".PeerJ.7: e6915.doi:10.7717/peerj.6915.PMC 6526909.PMID 31149399.
  102. ^Azucena Solis-Añorve; Gerardo González-Barba; René Hernández-Rivera (2019). "Description of a new toothed mysticete from the Late Oligocene of San Juan de La Costa, B.C.S., México".Journal of South American Earth Sciences.89:337–346.Bibcode:2019JSAES..89..337S.doi:10.1016/j.jsames.2018.11.015.S2CID 133937023.
  103. ^Matthew S. Leslie; Carlos Mauricio Peredo; Nicholas D. Pyenson (2019)."Norrisanima miocaena, a new generic name and redescription of a stem balaenopteroid mysticete (Mammalia, Cetacea) from the Miocene of California".PeerJ.7: e7629.doi:10.7717/peerj.7629.PMC 6788442.PMID 31608165.
  104. ^Olivier Lambert; Giovanni Bianucci; Rodolfo Salas-Gismondi; Claudio Di Celma; Etienne Steurbaut; Mario Urbina; Christian de Muizon (2019)."An amphibious whale from the Middle Eocene of Peru reveals early South Pacific dispersal of quadrupedal cetaceans".Current Biology.29 (8): 1352–1359.e3.Bibcode:2019CBio...29E1352L.doi:10.1016/j.cub.2019.02.050.PMID 30955933.S2CID 93004029.
  105. ^Alberto Collareta; Franco Cigala Fulgosi; Giovanni Bianucci (2019)."A new kogiid sperm whale from northern Italy supports psychrospheric conditions in the early Pliocene Mediterranean Sea".Acta Palaeontologica Polonica.64 (3):609–626.doi:10.4202/app.00578.2018.
  106. ^Felix G. Marx; Klaas Post; Mark Bosselaers; Dirk K. Munsterman (2019)."A large Late Miocene cetotheriid (Cetacea, Mysticeti) from the Netherlands clarifies the status of Tranatocetidae".PeerJ.7: e6426.doi:10.7717/peerj.6426.PMC 6377596.PMID 30783574.
  107. ^Matthew L. Gibson; John Mnieckowski; Jonathan H. Geisler (2019). "Tupelocetus palmeri, a new species of protocetid whale (Mammalia, Cetacea) from the middle Eocene of South Carolina".Journal of Vertebrate Paleontology.38 (6): e1555165.doi:10.1080/02724634.2018.1555165.S2CID 109617439.
  108. ^Olivier Lambert; Stephen J. Godfrey; Erich M. G. Fitzgerald (2019). "Yaquinacetus meadi, a new latest Oligocene–early Miocene dolphin (Cetacea, Odontoceti, Squaloziphiidae, fam. nov.) from the Nye Mudstone (Oregon, U.S.A.)".Journal of Vertebrate Paleontology.38 (6): e1559174.doi:10.1080/02724634.2018.1559174.S2CID 108903672.
  109. ^Mónica R. Buono; R. Ewan Fordyce; Felix G. Marx; Marta S. Fernández; Marcelo A. Reguero (2019). "Eocene Antarctica: a window into the earliest history of modern whales".Advances in Polar Science.30 (3):293–302.doi:10.13679/j.advps.2019.0005.
  110. ^Henk Jan van Vliet; Olivier Lambert; Mark Bosselaers; Anne S. Schulp; John W.M. Jagt (2019). "A Palaeogene cetacean from Maastricht, southern Limburg (The Netherlands)".Cainozoic Research.19 (1):95–113.
  111. ^Quentin Vautrin; Fabrice Lihoreau; Bernard Sambou; Moustapha Thiam; Jeremy E. Martin; Rodolphe Tabuce; Sylvain Adnet; Renaud Lebrun; Anne-Lise Charruault; Raphaël Sarr; Lionel Hautier (2019)."From limb to fin: an Eocene protocetid forelimb from Senegal sheds new light on the early locomotor evolution of cetaceans".Palaeontology.63 (1):51–66.doi:10.1111/pala.12442.
  112. ^Mickaël J. Mourlam; Maeva J. Orliac (2019)."Early evolution of the ossicular chain in Cetacea: into the middle ear gears of a semi-aquatic protocetid whale".Proceedings of the Royal Society B: Biological Sciences.286 (1912): Article ID 20191417.doi:10.1098/rspb.2019.1417.PMC 6790766.PMID 31575370.
  113. ^Emanuele Peri; Philip D. Gingerich; Giacomo Aringhieri; Giovanni Bianucci (2019)."Reduction of olfactory and respiratory turbinates in the transition of whales from land to sea: the semiaquatic middle EoceneAegyptocetus tarfa".Journal of Anatomy.236 (1):98–104.doi:10.1111/joa.13088.PMC 6904701.PMID 31498900.
  114. ^Carolina Loch; Monica R. Buono; Daniela C. Kalthoff; Thomas Mörs; Marta S. Fernández (2019)."Enamel microstructure in Eocene cetaceans from Antarctica (Archaeoceti and Mysticeti)".Journal of Mammalian Evolution.27 (2):289–298.doi:10.1007/s10914-018-09456-3.S2CID 58014588.
  115. ^Svitozar Davydenko; Manuel J. Laime; Pavel Gol'din (2019). "The earliest record of a marine mammal (Cetacea: Basilosauridae) from the Eocene of the Amazonia".Journal of Vertebrate Paleontology.38 (6): e1549060.doi:10.1080/02724634.2018.1549060.S2CID 91553252.
  116. ^A. Mahdy; G. Abu El-Kheir; Abdullah S. Gohar; Maher I. El-Soughier (2019). "Palaeobiological assessment of some basilosaurid archaeocetes (Mammalia, Cetacea) and its affinity with recent odontocetes: new insights from Wadi El-Hitan, Fayoum, Egypt".Historical Biology: An International Journal of Paleobiology.33 (3):313–322.doi:10.1080/08912963.2019.1616292.S2CID 181399367.
  117. ^Manja Voss; Mohammed Sameh M. Antar; Iyad S. Zalmout; Philip D. Gingerich (2019)."Stomach contents of the archaeoceteBasilosaurus isis: Apex predator in oceans of the late Eocene".PLOS ONE.14 (1): e0209021.Bibcode:2019PLoSO..1409021V.doi:10.1371/journal.pone.0209021.PMC 6326415.PMID 30625131.
  118. ^Matthew R. McCurry; Nicholas D. Pyenson (2019)."Hyper-longirostry and kinematic disparity in extinct toothed whales".Paleobiology.45 (1):21–29.Bibcode:2019Pbio...45...21M.doi:10.1017/pab.2018.33.S2CID 91258072.
  119. ^Rachel A. Racicot; Robert W. Boessenecker; Simon A. F. Darroch; Jonathan H. Geisler (2019)."Evidence for convergent evolution of ultrasonic hearing in toothed whales (Cetacea: Odontoceti)".Biology Letters.15 (5): Article ID 20190083.doi:10.1098/rsbl.2019.0083.PMC 6548736.PMID 31088283.
  120. ^Carlos Maximiliano Gaetán; Mónica R. Buono; Leandro C. Gaetano (2019). "Prosqualodon australis (Cetacea: Odontoceti) from the early Miocene of Patagonia, Argentina: redescription and phylogenetic analysis".Ameghiniana.56 (1):1–27.doi:10.5710/AMGH.21.11.2018.3208.S2CID 134125179.
  121. ^Robert W. Boessenecker (2019). "Problematic archaic whalePhococetus (Cetacea: Odontoceti) from the Lee Creek Mine, North Carolina, USA, with comments on geochronology of the Pungo River Formation".PalZ.93 (1):93–103.Bibcode:2019PalZ...93...93B.doi:10.1007/s12542-018-0419-3.S2CID 134575348.
  122. ^Mariana Viglino; Mónica R. Buono; R. Ewan Fordyce; José I. Cuitiño; Erich M. G. Fitzgerald (2019). "Anatomy and phylogeny of the large shark-toothed dolphinPhoberodon arctirostris Cabrera, 1926 (Cetacea: Odontoceti) from the early Miocene of Patagonia (Argentina)".Zoological Journal of the Linnean Society.185 (2):511–542.doi:10.1093/zoolinnean/zly053.
  123. ^Emanuele Peri; Alberto Collareta; Gianni Insacco; Giovanni Bianucci (2019). "AnInticetus-like (Cetacea: Odontoceti) postcanine tooth from the Pietra leccese (Miocene, southeastern Italy) and its palaeobiogeographical implications".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.291 (2):221–228.doi:10.1127/njgpa/2019/0799.S2CID 134765423.
  124. ^Giovanni Bianucci; Sergio Llàcer; Josep Quintana Cardona; Alberto Collareta; Agustí Rodríguez Florit (2019)."A new beaked whale record from the upper Miocene of Menorca, Balearic Islands, based on CT-scan analysis of limestone slabs".Acta Palaeontologica Polonica.64 (2):291–302.doi:10.4202/app.00593.2019.
  125. ^Benjamin Ramassamy; Henrik Lauridsen (2019)."A new specimen of Ziphiidae (Cetacea, Odontoceti) from the late Miocene of Denmark with morphological evidence for suction feeding behaviour".Royal Society Open Science.6 (10): Article ID 191347.Bibcode:2019RSOS....691347R.doi:10.1098/rsos.191347.PMC 6837206.PMID 31824732.
  126. ^Florencia Paolucci; Mónica R. Buono; Marta S. Fernández; Felix G. Marx; José I. Cuitiño (2019). "Diaphorocetus poucheti (Cetacea, Odontoceti, Physeteroidea) from Patagonia, Argentina: one of the earliest sperm whales".Journal of Systematic Palaeontology.18 (4):335–355.doi:10.1080/14772019.2019.1605544.S2CID 196658603.
  127. ^Olivier Lambert; Giovanni Bianucci (2019). "How to break a sperm whale's teeth: dental damage in a large Miocene physeteroid from the North Sea basin".Journal of Vertebrate Paleontology.39 (4): e1660987.Bibcode:2019JVPal..39E0987L.doi:10.1080/02724634.2019.1660987.S2CID 204150420.
  128. ^Christian de Muizon; Giovanni Bianucci; Manuel Martínez-Cáceres; Olivier Lambert (2019)."Mystacodon selenensis, the earliest known toothed mysticete (Cetacea, Mammalia) from the late Eocene of Peru: anatomy, phylogeny, and feeding adaptations".Geodiversitas.41 (11):401–499.doi:10.5252/geodiversitas2019v41a11.S2CID 189969073.
  129. ^Felix G. Marx; Mónica R. Buono; Alistair R. Evans; R. Ewan Fordyce; Marcelo Reguero; David P. Hocking (2019)."Gigantic mysticete predators roamed the Eocene Southern Ocean".Antarctic Science.31 (2):98–104.Bibcode:2019AntSc..31...98M.doi:10.1017/S095410201800055X.
  130. ^Felix G. Marx; Erich M.G. Fitzgerald; R. Ewan Fordyce (2019)."Like phoenix from the ashes: How modern baleen whales arose from a fossil "dark age"".Acta Palaeontologica Polonica.64 (2):231–238.doi:10.4202/app.00575.2018.
  131. ^Toshiyuki Kimura; Yoshikazu Hasegawa (2019)."New specimen ofJoumocetus shimizui from the Miocene Haraichi Formation, Annaka Group, Gunma Prefecture, Japan"(PDF).Bulletin of Gunma Museum of Natural History.23:13–20.
  132. ^Ervan G. Garrison; Gary S. Morgan; Krista McGrath; Camilla Speller; Alexander Cherkinsky (2019)."Recent dating of extinct Atlantic gray whale fossils, (Eschrichtius robustus), Georgia Bight and Florida, western Atlantic Ocean".PeerJ.7: e6381.doi:10.7717/peerj.6381.PMC 6368218.PMID 30746309.
  133. ^Dirley Cortés; Carlos De Gracia; Jorge D. Carrillo-Briceño; Gabriel Aguirre-Fernández; Carlos Jaramillo; Aldo Benites-Palomino; Joaquín Enrique Atencio-Araúz (2019)."Shark-cetacean trophic interactions during the late Pliocene in the Central Eastern Pacific (Panama)".Palaeontologia Electronica.22 (2): Article number 22.2.49.doi:10.26879/953.
  134. ^Giovanni Bianucci; Felix G. Marx; Alberto Collareta; Agata Di Stefano; Walter Landini; Caterina Morigi; Angelo Varola (2019)."Rise of the titans: baleen whales became giants earlier than thought".Biology Letters.15 (5): Article ID 20190175.doi:10.1098/rsbl.2019.0175.PMC 6548731.PMID 31039728.
  135. ^José I. Cuitiño; Mónica R. Buono; Mariana Viglino; Nicolás D. Farroni; Santiago Bessone (2019). "Factors affecting the preservation and distribution of cetaceans in the lower Miocene Gaiman Formation of Patagonia, Argentina".Palaeogeography, Palaeoclimatology, Palaeoecology.526:110–125.Bibcode:2019PPP...526..110C.doi:10.1016/j.palaeo.2019.03.013.S2CID 133749702.
  136. ^Alessandro Freschi; Simone Cau; Paola Monegatti; Marco Roveri (2019). "Chronostratigraphic distribution of cetaceans in the Pliocene of Northern Apennines (Italy): Palaeoecological implications".Palaeogeography, Palaeoclimatology, Palaeoecology.526:13–27.Bibcode:2019PPP...526...13F.doi:10.1016/j.palaeo.2019.04.005.S2CID 146637731.
  137. ^Larry D. Taylor; Aaron O'Dea; Timothy J. Bralower; Seth Finnegan (2019)."Isotopes from fossil coronulid barnacle shells record evidence of migration in multiple Pleistocene whale populations".Proceedings of the National Academy of Sciences of the United States of America.116 (15):7377–7381.Bibcode:2019PNAS..116.7377T.doi:10.1073/pnas.1808759116.PMC 6462050.PMID 30910962.
  138. ^Roman Croitor (2020)."A new form of wapitiCervus canadensis Erxleben, 1777 (Cervidae, Mammalia) from the Late Pleistocene of France"(PDF).Palaeoworld.29 (4):789–806.doi:10.1016/j.palwor.2019.12.001.S2CID 213500978.
  139. ^Maria Rios; Melinda Danowitz; Nikos Solounias (2019). "First identification ofDecennatherium Crusafont, 1952 (Mammalia, Ruminantia, Pecora) in the Siwaliks of Pakistan".Geobios.57:97–110.Bibcode:2019Geobi..57...97R.doi:10.1016/j.geobios.2019.10.007.S2CID 212818436.
  140. ^Jonathan A. Guzmán-Sandoval; Gertrud E. Rössner (2019). "Miocene chevrotains (Mammalia, Artiodactyla, Tragulidae) from Pakistan".Historical Biology: An International Journal of Paleobiology.33 (6):743–776.doi:10.1080/08912963.2019.1661405.S2CID 209595838.
  141. ^Wei Dong; Qi Wei; Weipeng Bai; Limin Zhang; Wenhui Liu; Zheying Chen; Yongbing Bai; Yongchun Wu (2019). "New material of the Early PleistoceneElaphurus (Artiodactyla, Mammalia) from North China and discussion on taxonomy ofElaphurus".Quaternary International.519:113–121.Bibcode:2019QuInt.519..113D.doi:10.1016/j.quaint.2018.05.015.S2CID 134111824.
  142. ^Israel M. Sánchez; Daniel Demiguel; Sergio Almécija; Salvador Moyà-Solà; Jorge Morales; David M. Alba (2019). "NewHispanomeryx (Mammalia, Ruminantia, Moschidae) from Spain and a reassessment of the systematics and paleobiology of the genusHispanomeryx Morales, Moyà-Solà, and Soria, 1981".Journal of Vertebrate Paleontology.39 (2): e1602536.Bibcode:2019JVPal..39E2536S.doi:10.1080/02724634.2019.1602536.S2CID 196661101.
  143. ^Su-Kuan Hou; Tao Deng (2019). "A new species ofKubanochoerus (Suidae, Artiodactyla) from the Linxia Basin, Gansu Province, China".Vertebrata PalAsiatica.57 (2):155–172.doi:10.19615/j.cnki.1000-3118.180402.
  144. ^abMartin Pickford; Hiroshi Tsujikawa (2019).Revision of African Kubanochoerinae (Suidae: Mammalia) with descriptions of new fossils from the Middle Miocene Aka Aiteputh Formation, Nachola, Kenya. Vol. 48. pp. 1–105.ISBN 978-3-89937-248-9.{{cite book}}:|journal= ignored (help)
  145. ^Jan van der Made (2019). "The dwarfed "giant deer"Megaloceros matritensis n.sp. from the Middle Pleistocene of Madrid - A descendant ofM. savini and contemporary toM. giganteus".Quaternary International.520:110–139.Bibcode:2019QuInt.520..110V.doi:10.1016/j.quaint.2018.06.006.S2CID 133792579.
  146. ^Nikolaos Vasileiadis; Evangelia Tsoukala; Dimitris S. Kostopoulos (2019). "The late Miocene bovids from Platania (Drama Basin, Greece), with description of a new species ofPaleoryx".Geobios.55:57–76.Bibcode:2019Geobi..55...57V.doi:10.1016/j.geobios.2019.06.005.S2CID 198420085.
  147. ^Dimitris S. Kostopoulos; Ayla Sevim Erol; Serdar Mayda; Alper Yener Yavuz; Erhan Tarhan (2020). "Qurliqnoria (Bovidae, Mammalia) from the Upper Miocene of Çorakyerler (Central Anatolia, Turkey) and its biogeographic implications".Palaeoworld.29 (3):629–635.doi:10.1016/j.palwor.2019.10.003.S2CID 210277571.
  148. ^Juan P. Zurano; Felipe M. Magalhães; Ana E. Asato; Gabriel Silva; Claudio J. Bidau; Daniel O. Mesquita; Gabriel C. Costa (2019). "Cetartiodactyla: updating a time-calibrated molecular phylogeny".Molecular Phylogenetics and Evolution.133:256–262.Bibcode:2019MolPE.133..256Z.doi:10.1016/j.ympev.2018.12.015.PMID 30562611.S2CID 56480132.
  149. ^Helder Gomes Rodrigues; Fabrice Lihoreau; Maëva Orliac; J. G. M. Thewissen; Jean-Renaud Boisserie (2019)."Unexpected evolutionary patterns of dental ontogenetic traits in cetartiodactyl mammals".Proceedings of the Royal Society B: Biological Sciences.286 (1896): Article ID 20182417.doi:10.1098/rspb.2018.2417.PMC 6408598.PMID 30963938.
  150. ^Ismael Ferrusquía-Villafranca; José E. Ruiz-González (2019). "The first postcranial oreodont (Mammalia, Artiodactyla, Merycoidodontidae) skeleton from Mexico: Description and paleobiological significance".Journal of South American Earth Sciences.97: Article 102388.doi:10.1016/j.jsames.2019.102388.S2CID 210311696.
  151. ^Germán Mariano Gasparini; Rodrigo Parisi Dutra; Guillermo N. Lamenza; Eduardo Pedro Tonni; Agustín Ruella (2019). "Parachoerus carlesi (Mammalia, Tayassuidae) in the Late Pleistocene (northern Argentina, South America): paleoecological and palaeobiogeographic considerations".Historical Biology: An International Journal of Paleobiology.31 (8):1082–1088.Bibcode:2019HBio...31.1082G.doi:10.1080/08912963.2017.1418340.hdl:11336/49686.S2CID 90573957.
  152. ^Aaron L. Woodruff; Blaine W. Schubert (2019)."Seasonal denning behavior and population dynamics of the late Pleistocene peccaryPlatygonus compressus (Artiodactyla: Tayassuidae) from Bat Cave, Missouri".PeerJ.7: e7161.doi:10.7717/peerj.7161.PMC 6612422.PMID 31308997.
  153. ^Hailay G. Reda; Ignacio A. Lazagabaster; Yohannes Haile-Selassie (2019). "Newly discovered crania ofNyanzachoerus jaegeri (Tetraconodontinae, Suidae, Mammalia) from the Woranso-Mille (Ethiopia) and reappraisal of its generic status".Journal of Mammalian Evolution.26 (2):179–199.doi:10.1007/s10914-017-9398-5.S2CID 27755239.
  154. ^Sukuan Hou; Denise F. Su; Jay Kelley; Tao Deng; Nina G. Jablonski; Lawrence J. Flynn; Xueping Ji; Jiayong Cao; Xin Yang (2019). "New fossil suid specimens from the terminal Miocene hominoid locality of Shuitangba, Zhaotong, Yunnan Province, China".Journal of Mammalian Evolution.26 (4):557–571.doi:10.1007/s10914-018-9431-3.S2CID 90790322.
  155. ^Ignacio A. Lazagabaster (2019). "Dental microwear texture analysis of Pliocene Suidae from Hadar and Kanapoi in the context of early hominin dietary breadth expansion".Journal of Human Evolution.132:80–100.Bibcode:2019JHumE.132...80L.doi:10.1016/j.jhevol.2019.04.010.PMID 31203853.S2CID 182123522.
  156. ^Nicolás Roberto Chimento; José Ignacio Zuccari; José María Marchetto; Lorena Berbach (2019)."New remains of deers (Cervidae, Mammalia) of the Pleistocene from the Pampean Region (Argentina): paleobiogeographic and paleoecological considerations".Revista Brasileira de Paleontologia.22 (1):67–85.doi:10.4072/rbp.2019.1.06.
  157. ^George A. Lyras; Aggeliki Giannakopoulou; Theodoros Lillis; Alexandra A.E. van der Geer (2019). "Paradise lost: Evidence for a devastating metabolic bone disease in an insular Pleistocene deer".International Journal of Paleopathology.24:213–226.doi:10.1016/j.ijpp.2018.12.003.PMID 30572299.S2CID 58613732.
  158. ^Hao-Wen Tong; Bei Zhang (2019). "New fossils ofEucladoceros boulei (Artiodactyla, Mammalia) from Early Pleistocene Nihewan Beds, China".Palaeoworld.28 (3):403–424.doi:10.1016/j.palwor.2019.05.003.S2CID 181562188.
  159. ^Thekla Pfeiffer-Deml (2019). "Distinction ofArvernoceros ardei andCervus perrieri (Cervidae, Mammalia) from the late Pliocene site of Perrier (France) based on the postcranial skeleton: taxonomic and phylogenetic conclusions".PalZ.94 (2):377–408.doi:10.1007/s12542-019-00473-y.S2CID 199474572.
  160. ^Rolf W. Mathewes; Michael Richards; Thomas E. Reimchen (2019). "Late Pleistocene age, size, and paleoenvironment of a caribou antler from Haida Gwaii, British Columbia".Canadian Journal of Earth Sciences.56 (6):688–692.Bibcode:2019CaJES..56..688M.doi:10.1139/cjes-2018-0246.S2CID 135409724.
  161. ^Hiroyuki Taruno; Kiyoshi Okumura; Shinogu Ishida (2019). "Antler morphology of the Yabe's giant deer – revision based on their ontogenetic variation".Bulletin of the Osaka Museum of Natural History (in Japanese).73:37–58.doi:10.20643/00001334.
  162. ^Adrian M. Lister; Anthony J. Stuart (2019)."The extinction of the giant deerMegaloceros giganteus (Blumenbach): New radiocarbon evidence".Quaternary International.500:185–203.Bibcode:2019QuInt.500..185L.doi:10.1016/j.quaint.2019.03.025.
  163. ^Ada J. Klinkhamer; Nicholas Woodley; James M. Neenan; William C. H. Parr; Philip Clausen; Marcelo R. Sánchez-Villagra; Gabriele Sansalone; Adrian M. Lister; Stephen Wroe (2019)."Head to head: the case for fighting behaviour inMegaloceros giganteus using finite-element analysis".Proceedings of the Royal Society B: Biological Sciences.286 (1912): Article ID 20191873.doi:10.1098/rspb.2019.1873.PMC 6790765.PMID 31594504.
  164. ^C. M. Stimpson; B. Utting; S. O'Donnell; N. T. M. Huong; T. Kahlert; B. V. Manh; P. S. Khanh; R. J. Rabett (2019)."An 11 000-year-old giant muntjac subfossil from Northern Vietnam: implications for past and present populations".Royal Society Open Science.6 (3): Article ID 181461.Bibcode:2019RSOS....681461S.doi:10.1098/rsos.181461.PMC 6458398.PMID 31032005.
  165. ^Mathias Wirkner; Christine Hertler (2019)."Feeding ecology of late PleistoceneMuntiacus muntjak in the Padang Highlands (Sumatra)".Comptes Rendus Palevol.18 (5):541–554.Bibcode:2019CRPal..18..541W.doi:10.1016/j.crpv.2019.03.004.
  166. ^Manuela Aiglstorfer; Gina M. Semprebon (2019)."Hungry for fruit? – A case study on the ecology of middle Miocene Moschidae (Mammalia, Ruminantia)".Geodiversitas.41 (10):385–399.doi:10.5252/geodiversitas2019v41a10.S2CID 182534548.
  167. ^Bastien Mennecart; Manuela Aiglstorfer; Ursula B. Göhlich; Gudrun Daxner-Höck (2019)."On the oldest Mongolian moschids (Mammalia, Ruminantia) and the early moschid evolution".Palaeontologia Electronica.22 (2): Article number 22.2.53.doi:10.26879/959.
  168. ^Bastien Mennecart; Daniel Zoboli; Loïc Costeur; Gian Luigi Pillola (2019). "On the systematic position of the oldest insular ruminantSardomeryx oschiriensis (Mammalia, Ruminantia) and the early evolution of the Giraffomorpha".Journal of Systematic Palaeontology.17 (8):691–704.Bibcode:2019JSPal..17..691M.doi:10.1080/14772019.2018.1472145.S2CID 90166259.
  169. ^Sukuan Hou; Michael Cydylo; Melinda Danowitz; Nikos Solounias (2019)."Comparisons ofSchansitherium tafeli withSamotherium boissieri (Giraffidae, Mammalia) from the Late Miocene of Gansu Province, China".PLOS ONE.14 (2): e0211797.Bibcode:2019PLoSO..1411797H.doi:10.1371/journal.pone.0211797.PMC 6376930.PMID 30753231.
  170. ^Elnaz Parizad; Majid Mirzaie Ataabadi; Marjan Mashkour; Nikos Solounias (2019). "First giraffid skulls (Bohlinia attica) from the late Miocene Maragheh fauna, Northwest Iran".Geobios.53:23–34.Bibcode:2019Geobi..53...23P.doi:10.1016/j.geobios.2019.02.007.S2CID 135123622.
  171. ^María Ríos; Jorge Morales (2019)."A new skull ofDecennatherium rex Ríos, Sánchez and Morales, 2017 from Batallones-4 (upper Vallesian, MN10, Madrid, Spain)".Palaeontologia Electronica.22 (2): Article number 22.2.vpc_1.doi:10.26879/965.
  172. ^Alexandros Xafis; Evangelia Tsoukala; Nikos Solounias; Oleg Mandic; Mathias Harzhauser; Friðgeir Grímsson; Doris Nagel (2019)."Fossil Giraffidae (Mammalia, Artiodactyla) from the late Miocene of Thermopigi (Macedonia, Greece)".Palaeontologia Electronica.22 (3): Article number 22.3.67.doi:10.26879/889.
  173. ^Yuichiro Nishioka; Masanaru Takai; Takehisa Tsubamoto; Naoko Egi; Takeshi Nishimura; Reiko Kono; Shinkai Ogino; Thaung-Htike; Zin-Maung-Maung-Thein; Chavalit Vidthayanon (2019)."Bovidae (Mammalia, Artiodactyla) from the Neogene Irrawaddy beds, Myanmar".Palaeontographica Abteilung A.314 (1–3):11–68.Bibcode:2019PalAA.314...11N.doi:10.1127/pala/2019/0088.S2CID 202898080.
  174. ^Marco Cherin; Vittorio D'Allestro; Federico Masini (2019). "New bovid remains from the Early Pleistocene of Umbria (Italy) and a reappraisal ofLeptobos merlai".Journal of Mammalian Evolution.26 (2):201–224.doi:10.1007/s10914-017-9421-x.S2CID 27349875.
  175. ^Weipeng Bai; Wei Dong; Limin Zhang; Qi Wei; Wenhui Liu; Zheying Chen (2019). "New material of the Early Pleistocene spiral horned antelopeSpirocerus (Artiodactyla, Mammalia) from North China and discussion on its evolution".Quaternary International.522:94–102.Bibcode:2019QuInt.522...94B.doi:10.1016/j.quaint.2019.06.029.S2CID 197584468.
  176. ^Shi-Qi Wang; Qing Yang; Ya Zhao; Chun-Xiao Li; Qin-Qin Shi; Li-Yi Zong; Jie Ye (2019). "NewOlonbulukia material and its related assemblage reveal an early radiation of stem Caprini along the north of the Tibetan Plateau".Journal of Paleontology.93 (2):385–397.Bibcode:2019JPal...93..385W.doi:10.1017/jpa.2018.65.S2CID 133846271.
  177. ^Da Bin Kim; Kyung Ah Koo; Hyun Hee Kim; Ga Young Hwang; Woo Seok Kong (2019). "Reconstruction of the habitat range suitable for long-tailed goral (Naemorhedus caudatus) using fossils from the Paleolithic sites".Quaternary International.519:101–112.Bibcode:2019QuInt.519..101K.doi:10.1016/j.quaint.2019.05.021.S2CID 182440980.
  178. ^Wighart v. Koenigswald; Achim H. Schwermann; Mark Keiter; Frank Menger (2019). "First evidence of PleistoceneBubalus murrensis in France and the stratigraphic occurrences ofBubalus in Europe".Quaternary International.522:85–93.Bibcode:2019QuInt.522...85K.doi:10.1016/j.quaint.2019.06.019.S2CID 197559857.
  179. ^Gaimi Davies; Blake McCann; Jay Sturdevant; Fern Swenson; Igor V. Ovchinnikov (2019)."Isotopic paleoecology of Northern Great Plains bison during the Holocene".Scientific Reports.9 (1): Article number 16637.Bibcode:2019NatSR...916637D.doi:10.1038/s41598-019-52873-4.PMC 6851189.PMID 31719547.
  180. ^Stéphane Ducrocq; Yaowalak Chaimanee; Jean-Jacques Jaeger (2019)."First record of Entelodontidae (Mammalia, Artiodactyla) from the late Eocene of Southeast Asia".Comptes Rendus Palevol.18 (2):186–190.Bibcode:2019CRPal..18..186D.doi:10.1016/j.crpv.2018.10.001.
  181. ^Ari Grossman; Ran Calvo; Raquel López-Antoñanzas; Fabien Knoll; Gideon Hartman; Rivka Rabinovich (2019)."First record ofSivameryx (Cetartiodactyla, Anthracotheriidae) from the lower Miocene of Israel highlights the importance of the Levantine Corridor as a dispersal route between Eurasia and Africa"(PDF).Journal of Vertebrate Paleontology.39 (2): e1599901.Bibcode:2019JVPal..39E9901G.doi:10.1080/02724634.2019.1599901.S2CID 155302108.
  182. ^Elehna Bethune; Thomas M. Kaiser; Ellen Schulz-Kornas; Daniela E. Winkler (2019)."Multiproxy dietary trait reconstruction in Pleistocene Hippopotamidae from the Mediterranean islands".Palaeogeography, Palaeoclimatology, Palaeoecology.533: Article 109210.Bibcode:2019PPP...53309210B.doi:10.1016/j.palaeo.2019.05.032.S2CID 181824675.
  183. ^Advait M. Jukar; Rajeev Patnaik; Parth R. Chauhan; Hong-Chun Li; Jih-Pai Lin (2019). "The youngest occurrence ofHexaprotodon Falconer and Cautley, 1836 (Hippopotamidae, Mammalia) from South Asia with a discussion on its extinction".Quaternary International.528:130–137.Bibcode:2019QuInt.528..130J.doi:10.1016/j.quaint.2019.01.005.S2CID 133765385.
  184. ^Stéphane Ducrocq (2019). "Pakkokuhyus andProgenitohyus (Artiodactyla, Mammalia) from the Eocene of Southeast Asia are not Helohyidae: paleobiogeographical implications".PalZ.93 (1):105–113.Bibcode:2019PalZ...93..105D.doi:10.1007/s12542-018-0425-5.S2CID 134077215.
  185. ^Qigao Jiangzuo; John J. Flynn (2020). "A new species ofAgriotherium from North America, and implications for understanding transformations in the metaconid-entoconid complex of bears".Journal of Mammalian Evolution.27 (4):775–787.doi:10.1007/s10914-019-09480-x.S2CID 201064589.
  186. ^Qigao Jiangzuo; Congyu Yu; John J. Flynn (2019). "Indarctos and other Caniformia fossils of G.E. Lewis' YPM collection from the Siwaliks".Historical Biology: An International Journal of Paleobiology.33 (4):543–557.doi:10.1080/08912963.2019.1648449.S2CID 201211953.
  187. ^Qigao Jiangzuo; Chunxiao Li; Shiqi Wang; Danhui Sun (2019). "Amphicyon zhanxiangi, sp. nov., a new amphicyonid (Mammalia, Carnivora) from northern China".Journal of Vertebrate Paleontology.38 (6): e1539857.doi:10.1080/02724634.2018.1539857.S2CID 91998860.
  188. ^Damián Ruiz-Ramoni; Ascanio D. Rincón; Marisol Montellano-Ballesteros (2019). "Taxonomic revision of a Machairodontinae (Felidae) from the Late Hemphillian of México".Historical Biology: An International Journal of Paleobiology.32 (10):1312–1319.doi:10.1080/08912963.2019.1583750.S2CID 91277834.
  189. ^Marina Sotnikova; Alexey Klementiev; Alexander Sizov; Alexey Tesakov (2020). "New species ofBallusia Ginsburg and Morales, 1998 (Ursidae, Carnivora) from Miocene of Eastern Siberia, Russia".Historical Biology: An International Journal of Paleobiology.33 (4):486–497.doi:10.1080/08912963.2019.1637864.S2CID 199637789.
  190. ^Ryan Paterson; Joshua X. Samuels; Natalia Rybczynski; Michael J Ryan; Hillary C Maddin (2019). "The earliest mustelid in North America".Zoological Journal of the Linnean Society.188 (4):1318–1339.doi:10.1093/zoolinnean/zlz091.
  191. ^Michael Morlo; Ellen R. Miller; Katharina Bastl; Mohamed Korany AbdelGawad; Mohammed Hamdan; Ahmed N. El-Barkooky; Doris Nagel (2019)."New Amphicyonids (Mammalia, Carnivora) from Moghra, Early Miocene, Egypt".Geodiversitas.41 (21):731–745.doi:10.5252/geodiversitas2019v41a21.S2CID 208284245.
  192. ^Jorge Morales; Martin Pickford (2022)."The taxonomic status of"Ysengrinia" ginsburgi Moraleset al. 1998 (Amphicyonidae, Carnivora) from the basal middle Miocene of Arrisdrift, Namibia"(PDF).Communications of the Geological Survey of Namibia.24:1–16.
  193. ^abQigao Jiangzuo; Shiqi Wang; Chunxiao Li; Danhui Sun; Xiaoxiao Zhang (2019). "New material ofGobicyon (Carnivora, Amphicyonidae, Haplocyoninae) from northern China and a review of Aktaucyonini evolution".Papers in Palaeontology.7 (1):307–327.doi:10.1002/spp2.1283.S2CID 204264754.
  194. ^Alberto Valenciano; Qigao Jiangzuo; Shiqi Wang; Chunxiao Li; Xiaoxiao Zhang; Je Ye (2019)."First record ofHoplictis (Carnivora, Mustelidae) in East Asia from the Halamagai and Kekemaideng formations, Ulungur River area, Xinjiang, northwest China".Acta Geologica Sinica (English Edition).93 (2):251–264.doi:10.1111/1755-6724.13820.S2CID 133900941.
  195. ^Jorge Morales; Serdar Mayda; Alberto Valenciano; Daniel DeMiguel; Tanju Kaya (2019)."A new lophocyonid,Izmirictis cani gen. et sp. nov. (Carnivora: Mammalia), from the lower Miocene of Turkey".Journal of Systematic Palaeontology.17 (16):1347–1358.Bibcode:2019JSPal..17.1347M.doi:10.1080/14772019.2018.1529000.hdl:10261/223616.S2CID 91268744.
  196. ^Alberto Valenciano; Serdar Mayda; Berna Alpagut (2019). "First record ofLartetictis (Carnivora, Mustelidae, Lutrinae) in Turkey from the middle Miocene hominoid locality of Paşala".Historical Biology: An International Journal of Paleobiology.32 (10):1–16.doi:10.1080/08912963.2019.1588894.S2CID 92013654.
  197. ^Manuel J. Salesa; Gema Siliceo; Mauricio Antón; Stéphane Peigné; Jorge Morales (2019). "Functional and systematic implications of the postcranial anatomy of a late Miocene feline (Carnivora, Felidae) from Batallones-1 (Madrid, Spain)".Journal of Mammalian Evolution.26 (1):101–131.doi:10.1007/s10914-017-9414-9.hdl:10261/225344.S2CID 19719645.
  198. ^Lars Werdelin (2019)."Middle Miocene Carnivora and Hyaenodonta from Fort Ternan, western Kenya".Geodiversitas.41 (6):267–283.doi:10.5252/geodiversitas2019v41a6.S2CID 146620949.
  199. ^Jorge Morales; Oldřich Fejfar; Elmar Heizmann; Jan Wagner; Alberto Valenciano; Juan Abella (2019)."A new Thaumastocyoninae (Amphicyonidae, Carnivora) from the early Miocene of Tuchořice, the Czech Republic".Fossil Imprint.75 (3–4):397–411.doi:10.2478/if-2019-0025.S2CID 210921722.
  200. ^abLouis de Bonis; Axelle Gardin; Cécile Blondel (2019)."Carnivora from the early Oligocene of the 'Phosphorites du Quercy' in southwestern France".Geodiversitas.41 (15):601–621.doi:10.5252/geodiversitas2019v41a15.S2CID 202670809.
  201. ^Michael Morlo; Anne Le Maitre; Katharina Bastl; Thomas Engel; Herbert Lutz; Bastian Lischewsky; Axel von Berg; Doris Nagel (2019). "First record of the mustelidTrochictis (Carnivora, Mammalia) from the early Late Miocene (MN 9/10) of Germany and a re-appraisal of the genusTrochictis".Historical Biology: An International Journal of Paleobiology.33 (8):1183–1195.doi:10.1080/08912963.2019.1683172.S2CID 209607263.
  202. ^Julia A. Schwab; Jürgen Kriwet; Gerhard W. Weber; Cathrin Pfaff (2019)."Carnivoran hunting style and phylogeny reflected in bony labyrinth morphometry".Scientific Reports.9 (1): Article number 70.Bibcode:2019NatSR...9...70S.doi:10.1038/s41598-018-37106-4.PMC 6329752.PMID 30635617.
  203. ^Rachel H. Dunn; Candice Cooper; Joshua Lemert; Natalie Mironov; Julie A. Meachen (2019). "Locomotor correlates of the scapholunar of living and extinct carnivorans".Journal of Morphology.280 (8):1197–1206.doi:10.1002/jmor.21024.PMID 31188504.S2CID 186205259.
  204. ^Gema Siliceo; Mauricio Antón; Jorge Morales; Manuel J. Salesa (2019). "Built for strength: functional insights from the thoracolumbar and sacrocaudal regions of the late Miocene amphicyonidMagericyon anceps (Carnivora, Amphicyonidae) from Batallones-1 (Madrid, Spain)".Journal of Mammalian Evolution.27 (3):497–518.doi:10.1007/s10914-019-09477-6.S2CID 199491763.
  205. ^Blaine W. Schubert; James C. Chatters; Joaquin Arroyo-Cabrales; Joshua X. Samuels; Leopoldo H. Soibelzon; Francisco J. Prevosti; Christopher Widga; Alberto Nava; Dominique Rissolo; Pilar Luna Erreguerena (2019)."Yucatán carnivorans shed light on the Great American Biotic Interchange".Biology Letters.15 (5): Article ID 20190148.doi:10.1098/rsbl.2019.0148.PMC 6548739.PMID 31039726.
  206. ^Thibault Daguenet; Sevket Sen (2019)."Phylogenetic relationships ofNyctereutes Temminck, 1838 (Canidae, Carnivora, Mammalia) from early Pliocene of Çalta, Turkey".Geodiversitas.41 (18):663–667.doi:10.5252/geodiversitas2019v41a18.S2CID 204791208.
  207. ^Rebekka Volmer; Alexandra A.E. van der Geer; Patricia Andrea Cabera; Wibowo Unggul Prasetyo; Iwan Kurniawan (2019). "When didCuon reach Java? – Reinvestigation of canid fossils fromHomo erectus faunas".Geobios.55:89–102.Bibcode:2019Geobi..55...89V.doi:10.1016/j.geobios.2019.06.004.S2CID 198403467.
  208. ^Damián Ruiz-Ramoni; Marisol Montellano-Ballesteros (2019)."Taxonomía y biogeografía del extinto lobo gigante,Canis dirus Leidy, 1858, en México".Boletín de la Sociedad Geológica Mexicana.71 (1):121–137.doi:10.18268/BSGM2019v71n1a7.
  209. ^Marta Maria Ciucani; Davide Palumbo; Marco Galaverni; Patrizia Serventi; Elena Fabbri; Gloria Ravegnini; Sabrina Angelini; Elena Maini; Davide Persico; Romolo Caniglia; Elisabetta Cilli (2019)."Old wild wolves: ancient DNA survey unveils population dynamics in Late Pleistocene and Holocene Italian remains".PeerJ.7: e6424.doi:10.7717/peerj.6424.PMC 6441319.PMID 30944772.
  210. ^Angela Perri; Chris Widga; Dennis Lawler; Terrance Martin; Thomas Loebel; Kenneth Farnsworth; Luci Kohn; Brent Buenger (2019)."New evidence of the earliest domestic dogs in the Americas"(PDF).American Antiquity.84 (1):68–87.doi:10.1017/aaq.2018.74.S2CID 165366371.
  211. ^Carly Ameen; Tatiana R. Feuerborn; Sarah K. Brown; Anna Linderholm; Ardern Hulme-Beaman; Ophélie Lebrasseur; Mikkel-Holger S. Sinding; Zachary T. Lounsberry; Audrey T. Lin; Martin Appelt; Lutz Bachmann; Matthew Betts; Kate Britton; John Darwent; Rune Dietz; Merete Fredholm; Shyam Gopalakrishnan; Olga I. Goriunova; Bjarne Grønnow; James Haile; Jón Hallsteinn Hallsson; Ramona Harrison; Mads Peter Heide-Jørgensen; Rick Knecht; Robert J. Losey; Edouard Masson-MacLean; Thomas H. McGovern; Ellen McManus-Fry; Morten Meldgaard; Åslaug Midtdal; Madonna L. Moss; Iurii G. Nikitin; Tatiana Nomokonova; Albína Hulda Pálsdóttir; Angela Perri; Aleksandr N. Popov; Lisa Rankin; Joshua D. Reuther; Mikhail Sablin; Anne Lisbeth Schmidt; Scott Shirar; Konrad Smiarowski; Christian Sonne; Mary C. Stiner; Mitya Vasyukov; Catherine F. West; Gro Birgit Ween; Sanne Eline Wennerberg; Øystein Wiig; James Woollett; Love Dalén; Anders J. Hansen; M. Thomas P. Gilbert; Benjamin N. Sacks; Laurent Frantz; Greger Larson; Keith Dobney; Christyann M. Darwent; Allowen Evin (2019)."Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic".Proceedings of the Royal Society B: Biological Sciences.286 (1916): Article ID 20191929.doi:10.1098/rspb.2019.1929.PMC 6939252.PMID 31771471.
  212. ^Juan Abella; Daniel Hontecillas; Alberto Valenciano; Plinio Montoya; Jorge Morales; María Dolores Pesquero; Luis Alcalá (2019)."The last record of an ailuropod bear from the Iberian Peninsula".Geodiversitas.41 (23):797–809.doi:10.5252/geodiversitas2019v41a23.S2CID 213478471.
  213. ^Han Han; Wei Wei; Yibo Hu; Yonggang Nie; Xueping Ji; Li Yan; Zejun Zhang; Xiaoxue Shi; Lifeng Zhu; Yunbing Luo; Weicai Chen; Fuwen Wei (2019)."Diet evolution and habitat contraction of giant pandas via stable isotope analysis".Current Biology.29 (4): 664–669.e2.Bibcode:2019CBio...29E.664H.doi:10.1016/j.cub.2018.12.051.PMID 30713107.S2CID 73432116.
  214. ^Gui-Lian Sheng; Nikolas Basler; Xue-Ping Ji; Johanna L.A. Paijmans; Federica Alberti; Michaela Preick; Stefanie Hartmann; Michael V. Westbury; Jun-Xia Yuan; Nina G. Jablonski; Georgios Xenikoudakis; Xin-Dong Hou; Bo Xiao; Jian-Hui Liu; Michael Hofreiter; Xu-Long Lai; Axel Barlow (2019)."Paleogenome reveals genetic contribution of extinct giant panda to extant populations".Current Biology.29 (10): 1695–1700.e6.Bibcode:2019CBio...29E1695S.doi:10.1016/j.cub.2019.04.021.PMID 31080081.S2CID 148572091.
  215. ^Carlo Meloro; Alessandro Marques de Oliveira (2019)."Elbow joint geometry in bears (Ursidae, Carnivora): a tool to infer paleobiology and functional adaptations of Quaternary fossils".Journal of Mammalian Evolution.26 (1):133–146.doi:10.1007/s10914-017-9413-x.S2CID 25839635.
  216. ^María Eugenia Arnaudo; Néstor Toledo; Leopoldo Soibelzon; Paula Bona (2019)."Phylogenetic signal analysis in the basicranium of Ursidae (Carnivora, Mammalia)".PeerJ.7: e6597.doi:10.7717/peerj.6597.PMC 6422017.PMID 30891368.
  217. ^Qigao Jiangzuo; Jinyi Liu; Jin Chen (2019)."Morphological homology, evolution, and proposed nomenclature for bear dentition".Acta Palaeontologica Polonica.64 (4):693–710.doi:10.4202/app.00629.2019.
  218. ^Deano D. Stynder; Larisa R. G. DeSantis; Shelly L. Donohue; Blaine W. Schubert; Peter S. Ungar (2019). "A dental microwear texture analysis of the early Pliocene African ursidAgriotherium africanum (Mammalia, Carnivora, Ursidae)".Journal of Mammalian Evolution.26 (4):505–515.doi:10.1007/s10914-018-9436-y.S2CID 4990447.
  219. ^Luca Bellucci; Italo Biddittu; Mauro Brilli; Jacopo Conti; Marco Germani; Francesca Giustini; Dawid Adam Iurino; Ilaria Mazzini; Raffaele Sardella (2019). "First occurrence of the short-faced bearAgriotherium (Ursidae, Carnivora) in Italy: biochronological and palaeoenvironmental implications".Italian Journal of Geosciences.138 (1):124–135.doi:10.3301/IJG.2018.31.hdl:10261/171952.S2CID 133855617.
  220. ^Tsegai Medin; Bienvenido Martínez-Navarro; Joan Madurell-Malapeira; Borja Figueirido; Giorgi Kopaliani; Florent Rivals; Gocha Kiladze; Paul Palmqvist; David Lordkipanidze (2019)."The bears from Dmanisi and the first dispersal of earlyHomo out of Africa".Scientific Reports.9 (1): Article number 17752.Bibcode:2019NatSR...917752M.doi:10.1038/s41598-019-54138-6.PMC 6882906.PMID 31780699.
  221. ^Hervé Bocherens (2019). "Isotopic insights on cave bear palaeodiet".Historical Biology: An International Journal of Paleobiology.31 (4):410–421.Bibcode:2019HBio...31..410B.doi:10.1080/08912963.2018.1465419.S2CID 89753117.
  222. ^Anneke H. van Heteren; Mikel Arlegi; Elena Santos; Juan-Luis Arsuaga; Asier Gómez-Olivencia (2019)."Cranial and mandibular morphology of Middle Pleistocene cave bears (Ursus deningeri): implications for diet and evolution".Historical Biology: An International Journal of Paleobiology.31 (4):485–499.Bibcode:2019HBio...31..485V.doi:10.1080/08912963.2018.1487965.S2CID 92294179.
  223. ^Alejandro Pérez-Ramos; Kornelius Kupczik; Anneke H. Van Heteren; Gernot Rabeder; Aurora Grandal-D'Anglade; Francisco J. Pastor; Francisco J. Serrano; Borja Figueirido (2019). "A three-dimensional analysis of tooth-root morphology in living bears and implications for feeding behaviour in the extinct cave bear".Historical Biology: An International Journal of Paleobiology.31 (4):461–473.Bibcode:2019HBio...31..461P.doi:10.1080/08912963.2018.1525366.S2CID 91721909.
  224. ^Gabriele Terlato; Hervé Bocherens; Matteo Romandini; Nicola Nannini; Keith A. Hobson; Marco Peresani (2019)."Chronological and Isotopic data support a revision for the timing of cave bear extinction in Mediterranean Europe".Historical Biology: An International Journal of Paleobiology.31 (4):474–484.Bibcode:2019HBio...31..474T.doi:10.1080/08912963.2018.1448395.S2CID 90029163.
  225. ^Doris Döppes; Gernot Rabeder; Christine Frischauf; Nadja Kavcik-Graumann; Bernd Kromer; Susanne Lindauer; Ronny Friedrich;Wilfried Rosendahl (2019). "Extinction pattern of Alpine cave bears - new data and climatological interpretation".Historical Biology: An International Journal of Paleobiology.31 (4):422–428.Bibcode:2019HBio...31..422D.doi:10.1080/08912963.2018.1487422.S2CID 90533707.
  226. ^Gennady Baryshnikov; Dmitry Gimranov; Pavel Kosintsev (2019)."Variability of the upper incisors in the cave bears (Carnivora, Ursidae) from the Caucasus and Urals".Comptes Rendus Palevol.18 (2):209–222.Bibcode:2019CRPal..18..209B.doi:10.1016/j.crpv.2018.08.001.
  227. ^Gennady F. Baryshnikov; Andrey Y. Puzachenko (2019). "Morphometry of upper cheek teeth of cave bears (Carnivora, Ursidae)".Boreas.48 (3):581–604.Bibcode:2019Borea..48..581B.doi:10.1111/bor.12360.S2CID 134017986.
  228. ^Daniel Charters; Grégory Abrams; Isabelle De Groote; Kévin Di Modica; Dominique Bonjean; Carlo Meloro (2019)."Temporal variation in cave bear (Ursus spelaeus) dentition: The stratigraphic sequence of Scladina Cave, Belgium"(PDF).Quaternary Science Reviews.205:76–85.Bibcode:2019QSRv..205...76C.doi:10.1016/j.quascirev.2018.12.012.S2CID 135302242.
  229. ^Iván Ramírez-Pedraza; Carlos Tornero; Spyridoula Pappa; Sahra Talamo; Domingo C. Salazar-García; Ruth Blasco; Jordi Rosell; Florent Rivals (2019)."Microwear and isotopic analyses on cave bear remains from Toll Cave reveal both short-term and long-term dietary habits".Scientific Reports.9 (1): Article number 5716.Bibcode:2019NatSR...9.5716R.doi:10.1038/s41598-019-42152-7.PMC 6450970.PMID 30952915.
  230. ^Iván Ramírez-Pedraza; Spyridoula Pappa; Ruth Blasco; Maite Arilla; Jordi Rosell; Ferran Millán; Julià Maroto; Joaquim Soler; Narcís Soler; Florent Rivals (2019). "Dietary habits of the cave bear from the Late Pleistocene in the northeast of the Iberian Peninsula".Quaternary International.557:63–69.doi:10.1016/j.quaint.2019.09.043.S2CID 204261124.
  231. ^Christoph Spötl; Denis Scholz; Gernot Rabeder; Paula J. Reimer (2019)."Cave bear occupation in Schwabenreith Cave, Austria, during the early last glacial: constraints from230Th/U-dated speleothems".Journal of Quaternary Science.34 (6):424–432.Bibcode:2019JQS....34..424S.doi:10.1002/jqs.3110.
  232. ^Marius Robu; Jonathan Wynn; Cristina Montana Puşcaş; Ioana Nicoleta Meleg; Jeremy E. Martin; Silviu Constantin (2019)."Palaeoecology and palaeoclimatic context of Romanian Carpathian MIS 3 cave bears using stable isotopes (δ13C and δ18O)".Palaeogeography, Palaeoclimatology, Palaeoecology.534: Article 109288.Bibcode:2019PPP...53409288R.doi:10.1016/j.palaeo.2019.109288.S2CID 200060685.
  233. ^Joscha Gretzinger; Martyna Molak; Ella Reiter; Saskia Pfrengle; Christian Urban; Judith Neukamm; Michel Blant; Nicholas J. Conard; Christophe Cupillard; Vesna Dimitrijević; Dorothée G. Drucker; Emilia Hofman-Kamińska; Rafał Kowalczyk; Maciej T. Krajcarz; Magdalena Krajcarz; Susanne C. Münzel; Marco Peresani; Matteo Romandini; Isaac Rufí; Joaquim Soler; Gabriele Terlato; Johannes Krause; Hervé Bocherens; Verena J. Schuenemann (2019)."Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear".Scientific Reports.9 (1): Article number 10700.Bibcode:2019NatSR...910700G.doi:10.1038/s41598-019-47073-z.PMC 6695494.PMID 31417104.
  234. ^Alba Rey-Iglesia; Ana García-Vázquez; Eve C. Treadaway; Johannes van der Plicht; Gennady F. Baryshnikov; Paul Szpak; Hervé Bocherens; Gennady G. Boeskorov; Eline D. Lorenzen (2019)."Evolutionary history and palaeoecology of brown bear in North-East Siberia re-examined using ancient DNA and stable isotopes from skeletal remains".Scientific Reports.9 (1): Article number 4462.Bibcode:2019NatSR...9.4462R.doi:10.1038/s41598-019-40168-7.PMC 6418263.PMID 30872771.
  235. ^Adrian Marciszak; Charles Schouwenburg; Grzegorz Lipecki; Sahra Talamo; Andrey Shpansky; Dmitriy Malikov; Wiktoria Gornig (2019). "Steppe brown bearUrsus arctos "priscus" from the Late Pleistocene of Europe".Quaternary International.534:158–170.Bibcode:2019QuInt.534..158M.doi:10.1016/j.quaint.2019.02.042.S2CID 133750923.
  236. ^Ana García-Vázquez; Ana Cristina Pinto Llona; Aurora Grandal-d'Anglade (2019). "Post-glacial colonization of Western Europe brown bears from a cryptic Atlantic refugium out of the Iberian Peninsula".Historical Biology: An International Journal of Paleobiology.31 (5):618–630.Bibcode:2019HBio...31..618G.doi:10.1080/08912963.2017.1384473.hdl:2183/34731.S2CID 90970319.
  237. ^Erik Ersmark; Gennady Baryshnikov; Thomas Higham; Alain Argant; Pedro Castaños; Doris Döppes; Mihaly Gasparik; Mietje Germonpré; Kerstin Lidén; Grzegorz Lipecki; Adrian Marciszak; Rebecca Miller; Marta Moreno-García; Martina Pacher; Marius Robu; Ricardo Rodriguez-Varela; Manuel Rojo Guerra; Martin Sabol; Nikolai Spassov; Jan Storå; Christina Valdiosera; Aritza Villaluenga; John R. Stewart; Love Dalén (2019)."Genetic turnovers and northern survival during the last glacial maximum in European brown bears".Ecology and Evolution.9 (10):5891–5905.Bibcode:2019EcoEv...9.5891E.doi:10.1002/ece3.5172.PMC 6540696.PMID 31161006.
  238. ^Alixandra N. Prybyla; Zhijie Jack Tseng; John J. Flynn (2019)."Biomechanical simulations ofLeptarctus primus (Leptarctinae, Carnivora), and new evidence for a badger-like feeding capability".Journal of Vertebrate Paleontology.38 (6): e1531290.doi:10.1080/02724634.2018.1531290.S2CID 91204388.
  239. ^Mauro Ignacio Schiaffini; Prevosti Francisco Juan (2019). "Taxonomy and systematic of fossil hog-nosed skunks, genusConepatus (Carnivora: Mephitidae) from Argentina".Journal of South American Earth Sciences.89:140–157.Bibcode:2019JSAES..89..140S.doi:10.1016/j.jsames.2018.11.010.hdl:11336/81423.S2CID 135182588.
  240. ^Qigao Jiangzuo; Jinyuan Liu; Changzhu Jin; Yayun Song; Sizhao Liu; Sheng Lü; Yuan Wang; Jinyi Liu (2019). "Discovery ofEnhydrictis (Mustelidae, Carnivora, Mammalia) cranium in Puwan, Dalian, Northeast China demonstrates repeated intracontinental migration during the Pleistocene".Quaternary International.513:18–29.Bibcode:2019QuInt.513...18J.doi:10.1016/j.quaint.2019.01.024.S2CID 133825348.
  241. ^Beniamino Mecozzi; Donato Coppola; Dawid A. Iurino; Raffaele Sardella; Anna M. De Marinis (2019). "The Late Pleistocene European badgerMeles meles from Grotta Laceduzza (Brindisi, Apulia, Southern Italy): the analysis of the morphological and biometric variability".The Science of Nature.106 (5–6): Article 13.Bibcode:2019SciNa.106...13M.doi:10.1007/s00114-019-1604-2.PMID 30945055.S2CID 92997298.
  242. ^Chris J. Law (2019)."Evolutionary shifts in extant mustelid (Mustelidae: Carnivora) cranial shape, body size and body shape coincide with the Mid-Miocene Climate Transition".Biology Letters.15 (5): Article ID 20190155.doi:10.1098/rsbl.2019.0155.PMC 6548733.PMID 31138097.
  243. ^Russell K. Engelman; Darin A. Croft (2019)."Strangers in a strange land: Ecological dissimilarity to metatherian carnivores may partly explain early colonization of South America byCyonasua-group procyonids".Paleobiology.45 (4):598–611.Bibcode:2019Pbio...45..598E.doi:10.1017/pab.2019.29.S2CID 209308325.
  244. ^Sarah S. Kienle; Annalisa Berta (2019). "The evolution of feeding strategies in phocid seals (Pinnipedia, Phocidae)".Journal of Vertebrate Paleontology.38 (6): e1559172.doi:10.1080/02724634.2018.1559172.S2CID 109863777.
  245. ^Ana Valenzuela-Toro; Nicholas D. Pyenson (2019)."What do we know about the fossil record of pinnipeds? A historiographical investigation".Royal Society Open Science.6 (11): Article ID 191394.Bibcode:2019RSOS....691394V.doi:10.1098/rsos.191394.PMC 6894555.PMID 31827869.
  246. ^Morgan Churchill; Mark D. Uhen (2019)."Taxonomic implications of morphometric analysis of earless seal limb bones".Acta Palaeontologica Polonica.64 (2):213–230.doi:10.4202/app.00607.2019.
  247. ^Leonard Dewaele; Olivier Lambert; Michel Laurin; Tim De Kock; Stephen Louwye; Vivian de Buffrénil (2019)."Generalized osteosclerotic condition in the skeleton ofNanophoca vitulinoides, a dwarf seal from the Miocene of Belgium"(PDF).Journal of Mammalian Evolution.26 (4):517–543.doi:10.1007/s10914-018-9438-9.S2CID 20885865.
  248. ^Jorge Velez-Juarbe; Ana M. Valenzuela-Toro (2019)."Oldest record of monk seals from the North Pacific and biogeographic implications".Biology Letters.15 (5): Article ID 20190108.doi:10.1098/rsbl.2019.0108.PMC 6548721.PMID 31064312.
  249. ^Casey T. Clark; Lara Horstmann; Anne de Vernal; Anne M. Jensen; Nicole Misarti (2022). "Pacific walrus diet across 4000 years of changing sea ice conditions".Quaternary Research.108:26–42.Bibcode:2022QuRes.108...26C.doi:10.1017/qua.2018.140.S2CID 135073145.
  250. ^Abdul Ghaffar; Muhammad Akhtar; Muhammad Akbar Khan; Muhammad Babar (2019)."Comments onPercrocuta carnifex based on the new fossil material from the Nagri Formation (Middle Siwaliks) Hasnot, Pakistan".Geologica Acta.17 (3):1–9.doi:10.1344/GeologicaActa2019.17.3.
  251. ^Lindsay Renee Meador; Laurie Rohde Godfrey; Jean Claude Rakotondramavo; Lovasoa Ranivoharimanana; Andrew Zamora; Michael Reed Sutherland; Mitchell T. Irwin (2019). "Cryptoprocta spelea (Carnivora: Eupleridae): What Did It Eat and How Do We Know?".Journal of Mammalian Evolution.26 (2):237–251.doi:10.1007/s10914-017-9391-z.S2CID 22837727.
  252. ^Brigette F. Cohen; Hannah J. O'Regan; Christine M. Steininger (2019). "Mongoose Manor: Herpestidae remains from the Early Pleistocene Cooper 's D locality in the Cradle of Humankind, Gauteng, South Africa".Palaeontologia Africana.53:97–113.hdl:10539/26300.
  253. ^Wu-Yang Xiong (2019)."Basicranial morphology of Late MioceneDinocrocuta gigantea (Carnivora: Hyaenidae) from Fugu, Shaanxi".Vertebrata PalAsiatica.57 (4):274–307.doi:10.19615/j.cnki.1000-3118.190710.
  254. ^Z. Jack Tseng; Grant Zazula; Lars Werdelin (2019)."First fossils of hyenas (Chasmaporthetes, Hyaenidae, Carnivora) from north of the Arctic Circle".Open Quaternary.5 (1): Article 6.doi:10.5334/oq.64.
  255. ^Matthew Aleksander Wysocki (2019)."Fossil evidence of evolutionary convergence in juvenile dental morphology and upper canine replacement in sabertooth carnivores".Ecology and Evolution.9 (22):12649–12657.Bibcode:2019EcoEv...912649W.doi:10.1002/ece3.5732.PMC 6875571.PMID 31788204.
  256. ^George A. Lyras; Aggeliki Giannakopoulou; Lars Werdelin (2019). "The brain anatomy of an early Miocene felid from Ginn Quarry (Nebraska, USA)".PalZ.93 (2):345–355.Bibcode:2019PalZ...93..345L.doi:10.1007/s12542-018-00444-9.S2CID 150052167.
  257. ^Marcos Fernández-Monescillo; Mauricio Antón; Manuel J. Salesa (2019). "Palaeoecological implications of the sympatric distribution of two species ofMachairodus (Felidae, Machairodontinae, Homotherini) in the Late Miocene of Los Valles de Fuentidueña (Segovia, Spain)".Historical Biology: An International Journal of Paleobiology.31 (7):903–913.Bibcode:2019HBio...31..903F.doi:10.1080/08912963.2017.1402894.hdl:11336/57309.S2CID 135103217.
  258. ^Mauricio Antón; Gema Siliceo; Juan Francisco Pastor; Jorge Morales; Manuel J. Salesa (2019). "The early evolution of the sabre-toothed felid killing bite: the significance of the cervical morphology ofMachairodus aphanistus (Carnivora: Felidae: Machairodontinae)".Zoological Journal of the Linnean Society.188 (1):319–342.doi:10.1093/zoolinnean/zlz086.
  259. ^Ashley R. Reynolds; Kevin L. Seymour; David C. Evans (2019). "Late Pleistocene records of felids from Medicine Hat, Alberta, including the first Canadian record of the sabre-toothed catSmilodon fatalis".Canadian Journal of Earth Sciences.56 (10):1052–1060.Bibcode:2019CaJES..56.1052R.doi:10.1139/cjes-2018-0272.hdl:1807/96725.S2CID 134586651.
  260. ^Devin M. O'Brien (2019). "Static scaling and the evolution of extreme canine size in a saber-toothed cat (Smilodon fatalis)".Integrative and Comparative Biology.59 (5):1303–1311.doi:10.1093/icb/icz054.PMID 31120517.
  261. ^Nicolás R. Chimento; Federico L. Agnolin; Leopoldo Soibelzon; Javier G. Ochoa; Viviana Buide (2019)."Evidence of intraspecific agonistic interactions inSmilodon populator (Carnivora, Felidae)".Comptes Rendus Palevol.18 (4):449–454.Bibcode:2019CRPal..18..449C.doi:10.1016/j.crpv.2019.02.006.
  262. ^Marcos Dario Ercoli; Mariano A. Ramírez; Miriam M. Morales; Alicia Álvarez; Adriana M. Candela (2019). "First record of Carnivora (puma lineage, Felidae) in the Uquía Formation (late Pliocene–early Pleistocene, NW Argentina) and its significance in the Great American Biotic Interchange".Ameghiniana.56 (3):195–212.doi:10.5710/AMGH.31.03.2019.3206.S2CID 134828799.
  263. ^Víctor Adrián Pérez-Crespo; Peter Schaaf; Gabriela Solís-Pichardo; Joaquín Arroyo-Cabrales; José Ramón Torres-Hernández (2019). "Investigation of the mobility of American lion (Panthera atrox) from México (Cedral, San Luis Potosí) using Sr isotopes".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.291 (3):351–357.doi:10.1127/njgpa/2019/0806.S2CID 202184467.
  264. ^Yoshikazu Hasegawa; Yuji Takakuwa; Kumiko Nenoki; Toshiyuki Kimura (2019)."Fossil tiger from limestone mine of Tsukumi City, Oita Prefecture, Kyushu Island, Japan"(PDF).Bulletin of Gunma Museum of Natural History.23:1–11.
  265. ^Valentina V. Rosina; Sergei Kruskop; Yuriy Semenov (2019). "New Late Miocene plecotine bats (Chiroptera, Vespertilionidae: Plecotini) from Gritsev, Ukraine".Palæovertebrata.42 (1): e2.doi:10.18563/pv.42.1.e2.S2CID 134515543.
  266. ^Gary S. Morgan; Nicholas J. Czaplewski; Nancy B. Simmons (2019)."A new mormoopid bat from the Oligocene (Whitneyan and early Arikareean) of Florida, and phylogenetic relationships of the major clades of Mormoopidae (Mammalia, Chiroptera)".Bulletin of the American Museum of Natural History.2019 (434):1–146.doi:10.1206/0003-0090.434.1.1.hdl:2246/6944.S2CID 196676892.
  267. ^Ivan Horáček; Eva Trávníčková (2019)."Myotis gerhardstorchi sp. n. and comments on the European fossil record ofMyotis frater group (Mammalia, Chiroptera)".Fossil Imprint.75 (3–4):315–342.doi:10.2478/if-2019-0021.S2CID 210921764.
  268. ^Nicholas Czaplewski; Jeff Person; Clint Boyd; Robert Emry (2019). "A new species of bat (Chiroptera: Vespertilionidae) from the early Oligocene global cooling period, Brule Formation, North Dakota, USA".Palæovertebrata.42 (2): e2.doi:10.18563/pv.42.2.e2.S2CID 213529243.
  269. ^Emily E. Brown; Daniel D. Cashmore; Nancy B. Simmons; Richard J. Butler (2019)."Quantifying the completeness of the bat fossil record".Palaeontology.62 (5):757–776.Bibcode:2019Palgy..62..757B.doi:10.1111/pala.12426.
  270. ^Lucila I. Amador; Nancy B. Simmons; Norberto P. Giannini (2019)."Aerodynamic reconstruction of the primitive fossil batOnychonycteris finneyi (Mammalia: Chiroptera)".Biology Letters.15 (3): Article ID 20180857.doi:10.1098/rsbl.2018.0857.PMC 6451380.PMID 30862309.
  271. ^Leonardo Salari; Paolo Agnelli; Lucio Calcagnile; Jessica Di Maita; Rosario Grasso; Gianluca Quarta; Corrado Santoro; Maria Teresa Spena (2019)."The fossil bat assemblages from the Grotta dei Pipistrelli in Pantalica (southeastern Sicily, Italy): Chronological and palaeoecological implications".Comptes Rendus Palevol.18 (4):417–441.Bibcode:2019CRPal..18..417S.doi:10.1016/j.crpv.2019.01.007.
  272. ^B. Vera (2019). "A new species and the record ofHemihegetotherium (Notoungulata, Hegetotheriidae) in the middle to Late Miocene of Patagonia, Argentina".Journal of South American Earth Sciences.93:23–35.Bibcode:2019JSAES..93...23V.doi:10.1016/j.jsames.2019.04.017.S2CID 150193668.
  273. ^Nicolás Bauzá; Javier N. Gelfo; Guillermo M. López (2019)."Early steps in the radiation of notoungulate mammals in southern South America: A new henricosborniid from the Eocene of Patagonia".Acta Palaeontologica Polonica.64 (3):597–603.doi:10.4202/app.00565.2018.
  274. ^Andrés Solórzano; Alfonso Encinas; René Bobe; Reyes Maximiliano; Gabriel Carrasco (2019). "The Early to late Middle Miocene mammalian assemblages from the Cura-Mallín Formation, at Lonquimay, southern Central Andes, Chile (~38°S): Biogeographical and paleoenvironmental implications".Journal of South American Earth Sciences.96: Article 102319.Bibcode:2019JSAES..9602319S.doi:10.1016/j.jsames.2019.102319.S2CID 202174453.
  275. ^Andréa Filippo; Daniela C. Kalthoff; Guillaume Billet; Helder Gomes Rodrigues (2019)."Evolutionary and functional implications of incisor enamel microstructure diversity in Notoungulata (Placentalia, Mammalia)".Journal of Mammalian Evolution.27 (2):211–236.doi:10.1007/s10914-019-09462-z.S2CID 76662912.
  276. ^Malena Lorente; Javier N. Gelfo; Guillermo M. López (2019). "First skeleton of the notoungulate mammalNotostylops murinus and palaeobiology of Eocene Notostylopidae".Lethaia.52 (2):244–259.Bibcode:2019Letha..52..244L.doi:10.1111/let.12310.S2CID 135127572.
  277. ^Daniel A. García-López; Virginia Deraco; Guillermo W. Rougier; Cecilia del Papa; Judith Babot; Sara Bertelli; Claudia M. Herrera; Norberto P. Giannini (2019). "New record ofPampahippus secundus (Mammalia, Notoungulata) from the Upper Lumbrera Formation, Eocene of northwestern Argentina".Journal of Vertebrate Paleontology.39 (2): e1582537.Bibcode:2019JVPal..39E2537G.doi:10.1080/02724634.2019.1582537.S2CID 146032926.
  278. ^Santiago Hernández Del Pino; Mercedes Fernández; Esperanza Cerdeño; Juan C. Fernicola (2019). "Anatomy and systematics ofNotohippus toxodontoides Ameghino, 1891 (Mammalia, Notoungulata), from the Miocene of Santa Cruz Province, Argentina".Journal of Vertebrate Paleontology.39 (1): e1577870.Bibcode:2019JVPal..39E7870H.doi:10.1080/02724634.2019.1577870.S2CID 164241447.
  279. ^Mercedes Fernández; Juan C. Fernicola; Esperanza Cerdeño (2019)."The genusPatriarchus Ameghino, 1889 (Mammalia, Notoungulata, Typotheria), from the Santa Cruz Formation, Santa Cruz Province, Argentina".Journal of Vertebrate Paleontology.39 (2): e1613416.Bibcode:2019JVPal..39E3416F.doi:10.1080/02724634.2019.1613416.S2CID 198262303.
  280. ^Marcos Fernández-Monescillo; Pierre-Olivier Antoine; François Pujos; Helder Gomes Rodrigues; Bernardino Mamani Quispe; Maeva Orliac (2019). "Virtual endocast morphology of Mesotheriidae (Mammalia, Notoungulata, Typotheria): new insights and implications on notoungulate encephalization and brain evolution".Journal of Mammalian Evolution.26 (1):85–100.doi:10.1007/s10914-017-9416-7.hdl:11336/57321.S2CID 25227641.
  281. ^Marcos Fernández-Monescillo; Pierre-Olivier Antoine; Bernardino Mamani Quispe; Philippe Münch; Rubén Andrade Flores; Laurent Marivaux; François Pujos (2019)."Multiple skeletal and dental pathologies in a late Miocene mesotheriid (Mammalia, Notoungulata) from the Altiplano of Bolivia: Palaeoecological inferences"(PDF).Palaeogeography, Palaeoclimatology, Palaeoecology.534: Article 109297.Bibcode:2019PPP...53409297F.doi:10.1016/j.palaeo.2019.109297.S2CID 201299558.
  282. ^Bárbara Vera; Laureano González Ruiz; Nelson Novo; Gabriel Martin; Agustina Reato; Marcelo F. Tejedor (2019). "The Interatheriinae (Mammalia, Notoungulata) of the Friasian sensu stricto and Mayoan (middle to late Miocene), and the fossils from Cerro Zeballos, Patagonia, Argentina".Journal of Systematic Palaeontology.17 (13):1143–1163.Bibcode:2019JSPal..17.1143V.doi:10.1080/14772019.2018.1511387.S2CID 92416681.
  283. ^Federico Damián Seoane; Esperanza Cerdeño (2019). "Systematic revision ofHegetotherium andPachyrukhos (Hegetotheriidae, Notoungulata) and a new phylogenetic analysis of Hegetotheriidae".Journal of Systematic Palaeontology.17 (19):1635–1663.Bibcode:2019JSPal..17.1635S.doi:10.1080/14772019.2018.1545146.S2CID 92218443.
  284. ^Federico Damián Seoane; Esperanza Cerdeño; Hayley Singleton (2019)."Re-assessment of the Oligocene generaProsotherium andPropachyrucos (Hegetotheriidae, Notoungulata)".Comptes Rendus Palevol.18 (6):643–662.Bibcode:2019CRPal..18..643S.doi:10.1016/j.crpv.2019.07.001.
  285. ^Marcos D. Ercoli; Alicia Álvarez; Adriana M. Candela (2019)."Sciuromorphy outside rodents reveals an ecomorphological convergence between squirrels and extinct South American ungulates".Communications Biology.2: Article number 202.doi:10.1038/s42003-019-0423-5.PMC 6546766.PMID 31231692.
  286. ^Malena Lorente (2019). "The limb anatomy ofIsotemnus, one of the most basal toxodontid notoungulates".Ameghiniana.57 (2):80–89.doi:10.5710/AMGH.18.10.2019.3272.S2CID 210343055.
  287. ^Luca Pandolfi; Antonella Cinzia Marra; Giuseppe Carone; Leonardo Maiorino; Lorenzo Rook (2020)."A new rhinocerotid (Mammalia, Rhinocerotidae) from the latest Miocene of Southern Italy".Historical Biology: An International Journal of Paleobiology.33 (2):194–208.doi:10.1080/08912963.2019.1602615.S2CID 150015826.
  288. ^Constance Bronnert; Emmanuel Gheerbrant; Marc Godinot; Grégoire Métais (2019). "First European 'Isectolophidae' (Mammalia, Perissodactyla):Chowliia europea, sp. nov., from the lower Eocene of Le Quesnoy, France".Journal of Vertebrate Paleontology.38 (4): (1)–(9).doi:10.1080/02724634.2018.1487448.S2CID 109102098.
  289. ^Bin Bai; Jin Meng; Fang-Yuan Mao; Zhao-Qun Zhang; Yuan-Qing Wang (2019)."A new early Eocene deperetellid tapiroid illuminates the origin of Deperetellidae and the pattern of premolar molarization in Perissodactyla".PLOS ONE.14 (11): e0225045.Bibcode:2019PLoSO..1425045B.doi:10.1371/journal.pone.0225045.PMC 6839866.PMID 31703104.
  290. ^Jean A. Remy; Gabriel Krasovec; Éric Lopez; Bernard Marandat; Fabrice Lihoreau (2019)."The Palaeotheriidae (Equoidea, Perissodactyla, Mammalia) from the Eocene fauna of Aumelas (Hérault department, France)".Geodiversitas.41 (13):525–585.doi:10.5252/geodiversitas2019v41a13.S2CID 199873804.
  291. ^Damien Becker; Jérémy Tissier (2019). "Rhinocerotidae from the early middle Miocene locality Gračanica (Bugojno Basin, Bosnia-Herzegovina)".Palaeobiodiversity and Palaeoenvironments.100 (2):395–412.doi:10.1007/s12549-018-0352-1.S2CID 133963909.
  292. ^Rachel A. Short; Steven C. Wallace; Laura G. Emmert (2019)."A new species ofTeleoceras (Mammalia, Rhinocerotidae) from the late Hemphillian of Tennessee"(PDF).Bulletin of the Florida Museum of Natural History.56 (5):183–260.doi:10.58782/flmnh.kpcf8483.
  293. ^Jamie A. MacLaren; Sandra Nauwelaerts (2019). "Modern tapirs as morphofunctional analogues for locomotion in endemic Eocene European perissodactyls".Journal of Mammalian Evolution.27 (2):245–263.doi:10.1007/s10914-019-09460-1.hdl:10067/1580640151162165141.S2CID 66951945.
  294. ^Yanxin Gong; Yuanqing Wang; Yang Wang; Fangyuan Mao; Bin Bai; Haibing Wang; Qian Li; Xun Jin; Xu Wang; Jin Meng (2019). "Dietary adaptations and palaeoecology of Lophialetidae (Mammalia, Tapiroidea) from the Eocene of the Erlian Basin, China: combined evidence from mesowear and stable isotope analyses".Palaeontology.63 (4):547–564.doi:10.1111/pala.12471.S2CID 214053761.
  295. ^Quentin Vautrin; Rodolphe Tabuce; Yves Laurent; Dominique Vidalenc; Fabrice Lihoreau (2019). "Intraspecific variation ofEolophiodon laboriense, a basal Lophiodontidae (Mammalia, Perissodactyla) from the early Eocene of Southern France".Geobios.53:51–63.Bibcode:2019Geobi..53...51V.doi:10.1016/j.geobios.2019.02.005.S2CID 135420945.
  296. ^Bryn J. Mader (2019)."The narial morphology ofMetarhinus andSphenocoelus (Mammalia, Perissodactyla, Brontotheriidae)".Palaeontologia Electronica.22 (1): Article number 22.1.8.doi:10.26879/919.
  297. ^Claire Jame; Jérémy Tissier; Olivier Maridet; Damien Becker (2019)."Early Agenian rhinocerotids from Wischberg (Canton Bern, Switzerland) and clarification of the systematics of the genusDiaceratherium".PeerJ.7: e7517.doi:10.7717/peerj.7517.PMC 6717501.PMID 31523499.
  298. ^Bian Wang; Ross Secord (2019)."Paleoecology ofAphelops andTeleoceras (Rhinocerotidae) through an interval of changing climate and vegetation in the Neogene of the Great Plains, central United States".Palaeogeography, Palaeoclimatology, Palaeoecology.542: Article 109411.doi:10.1016/j.palaeo.2019.109411.
  299. ^Enrico Cappellini; Frido Welker; Luca Pandolfi; Jazmín Ramos-Madrigal; Diana Samodova; Patrick L. Rüther; Anna K. Fotakis; David Lyon; J. Víctor Moreno-Mayar; Maia Bukhsianidze; Rosa Rakownikow Jersie-Christensen; Meaghan Mackie; Aurélien Ginolhac; Reid Ferring; Martha Tappen; Eleftheria Palkopoulou; Marc R. Dickinson; Thomas W. Stafford Jr; Yvonne L. Chan; Anders Götherström; Senthilvel K. S. S. Nathan; Peter D. Heintzman; Joshua D. Kapp; Irina Kirillova; Yoshan Moodley; Jordi Agusti; Ralf-Dietrich Kahlke; Gocha Kiladze; Bienvenido Martínez-Navarro; Shanlin Liu; Marcela Sandoval Velasco; Mikkel-Holger S. Sinding; Christian D. Kelstrup; Morten E. Allentoft; Ludovic Orlando; Kirsty Penkman; Beth Shapiro; Lorenzo Rook; Love Dalén; M. Thomas P. Gilbert; Jesper V. Olsen; David Lordkipanidze; Eske Willerslev (2019)."Early Pleistocene enamel proteome from Dmanisi resolvesStephanorhinus phylogeny".Nature.574 (7776):103–107.Bibcode:2019Natur.574..103C.doi:10.1038/s41586-019-1555-y.PMC 6894936.PMID 31511700.
  300. ^Pavel Kosintsev; Kieren J. Mitchell; Thibaut Devièse; Johannes van der Plicht; Margot Kuitems; Ekaterina Petrova; Alexei Tikhonov; Thomas Higham; Daniel Comeskey; Chris Turney; Alan Cooper; Thijs van Kolfschoten; Anthony J. Stuart; Adrian M. Lister (2019)."Evolution and extinction of the giant rhinocerosElasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions".Nature Ecology & Evolution.3 (1):31–38.doi:10.1038/s41559-018-0722-0.PMID 30478308.S2CID 53726338.
  301. ^Naoto Handa; Naoki Kohno; Yuichiro Kudo (2019). "Reappraisal of a middle Pleistocene rhinocerotid (Mammalia, Perissodactyla) from the Matsugae Cave, Fukuoka Prefecture, southwestern Japan".Historical Biology: An International Journal of Paleobiology.33 (2):1–12.doi:10.1080/08912963.2019.1604699.S2CID 145930245.
  302. ^Sandra Engels; Julia A. Schultz (2019). "Evolution of the power stroke in early Equoidea (Perissodactyla, Mammalia)".Palaeobiodiversity and Palaeoenvironments.99 (2):271–291.Bibcode:2019PdPe...99..271E.doi:10.1007/s12549-018-0341-4.S2CID 133808650.
  303. ^Jenelle P. Wallace; Brooke E. Crowley; Joshua H. Miller (2019). "Investigating equid mobility in Miocene Florida, USA using strontium isotope ratios".Palaeogeography, Palaeoclimatology, Palaeoecology.516:232–243.Bibcode:2019PPP...516..232W.doi:10.1016/j.palaeo.2018.11.036.S2CID 134084354.
  304. ^Guillem Orlandi-Oliveras; Carmen Nacarino-Meneses; Meike Köhler (2019)."Dental histology of late Miocene hipparionins compared with extantEquus, and its implications for Equidae life history".Palaeogeography, Palaeoclimatology, Palaeoecology.528:133–146.Bibcode:2019PPP...528..133O.doi:10.1016/j.palaeo.2019.04.016.S2CID 146342987.
  305. ^George D. Koufos; Theodora D. Vlachou (2019). "New material and revision of hipparions from the upper Miocene locality Ravin des Zouaves-5, RZO of Axios Valley (Macedonia, Greece)".Geobios.57:33–52.Bibcode:2019Geobi..57...33K.doi:10.1016/j.geobios.2019.10.004.S2CID 213969965.
  306. ^Yangfan Li; Tao Deng; Hong Hua; Boyang Sun; Yunxiang Zhang (2019). "Locomotor adaptations of 7.4 Ma Hipparionine fossils from the middle reaches of the Yellow River and their palaeoecological significance".Historical Biology: An International Journal of Paleobiology.33 (7):927–940.doi:10.1080/08912963.2019.1669592.S2CID 204139653.
  307. ^Advait Mahesh Jukar; Boyang Sun; Avinash C. Nanda; Raymond L. Bernor (2019)."The first occurrence ofEurygnathohippus Van Hoepen, 1930 (Mammalia, Perissodactyla, Equidae) outside Africa and its biogeographic significance".Bollettino della Società Paleontologica Italiana.58 (2):171–179.doi:10.4435/BSPI.2019.13 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  308. ^Oscar Carranza-Castañeda (2019)."Dinohippus mexicanus (early-late, late, and latest Hemphillian) and the transition to genusEquus, in central Mexico faunas".Frontiers in Earth Science.7: Article 89.Bibcode:2019FrEaS...7...89C.doi:10.3389/feart.2019.00089.S2CID 160010963.
  309. ^Christine M. Janis; Raymond L. Bernor (2019)."The evolution of equid monodactyly: a review including a new hypothesis".Frontiers in Ecology and Evolution.7: Article 119.doi:10.3389/fevo.2019.00119.S2CID 108293123.
  310. ^Brianna K. McHorse; Andrew A. Biewener; Stephanie E. Pierce (2019)."The evolution of a single toe in horses: causes, consequences, and the way forward".Integrative and Comparative Biology.59 (3):638–655.doi:10.1093/icb/icz050.PMID 31127281.
  311. ^Nikos Solounias; Melinda Danowitz; Irvind Buttar; Zachary Coopee (2019)."Hypsodont crowns as additional roots: a new explanation for hypsodonty".Frontiers in Ecology and Evolution.7: Article 135.doi:10.3389/fevo.2019.00135.S2CID 143431790.
  312. ^Lorenzo Rook; Raymond L. Bernor; Leonardo S. Avilla; Omar Cirilli; Lawrence Flynn; Advait Jukar; William Sanders; Eric Scott; Xiaoming Wang (2019)."Mammal biochronology (Land Mammal Ages) around the world from late Miocene to middle Pleistocene and major events in horse evolutionary history".Frontiers in Ecology and Evolution.7: Article 278.doi:10.3389/fevo.2019.00278.S2CID 198248974.
  313. ^Shaw Badenhorst; Christine M. Steininger (2019)."The Equidae from Cooper's D, an early Pleistocene fossil locality in Gauteng, South Africa".PeerJ.7: e6909.doi:10.7717/peerj.6909.PMC 6525595.PMID 31143541.
  314. ^Jun-Xia Yuan; Xin-Dong Hou; Axel Barlow; Michaela Preick; Ulrike H. Taron; Federica Alberti; Nikolas Basler; Tao Deng; Xu-Long Lai; Michael Hofreiter; Gui-Lian Sheng (2019)."Molecular identification of late and terminal PleistoceneEquus ovodovi from northeastern China".PLOS ONE.14 (5): e0216883.Bibcode:2019PLoSO..1416883Y.doi:10.1371/journal.pone.0216883.PMC 6522033.PMID 31095634.
  315. ^Flavia Strani; Diana Pushkina; Hervé Bocherens; Luca Bellucci; Raffaele Sardella; Daniel DeMiguel (2019)."Dietary adaptations of Early and Middle Pleistocene equids from the Anagni Basin (Frosinone, central Italy)".Frontiers in Ecology and Evolution.7: Article 176.doi:10.3389/fevo.2019.00176.S2CID 157058204.
  316. ^Raymond L. Bernor; Omar Cirilli; Advait M. Jukar; Richard Potts; Maia Buskianidze; Lorenzo Rook (2019)."Evolution of earlyEquus in Italy, Georgia, the Indian Subcontinent, East Africa, and the origins of African zebras".Frontiers in Ecology and Evolution.7: Article 166.doi:10.3389/fevo.2019.00166.S2CID 167210725.
  317. ^Nicolas Boulbes; Eline N. van Asperen (2019)."Biostratigraphy and palaeoecology of EuropeanEquus".Frontiers in Ecology and Evolution.7: Article 301.doi:10.3389/fevo.2019.00301.S2CID 201212032.
  318. ^Boyang Sun; Tao Deng (2019)."TheEquus Datum and the early radiation ofEquus in China".Frontiers in Ecology and Evolution.7: Article 429.doi:10.3389/fevo.2019.00429.S2CID 207958593.
  319. ^Helena Machado; Leonardo Avilla (2019)."The diversity of South AmericanEquus: did size really matter?".Frontiers in Ecology and Evolution.7: Article 235.doi:10.3389/fevo.2019.00235.S2CID 195769122.
  320. ^Natalia A. Villavicencio; Derek Corcoran; Pablo A. Marquet (2019)."Assessing the causes behind the Late Quaternary extinction of horses in South America using species distribution models".Frontiers in Ecology and Evolution.7: Article 226.doi:10.3389/fevo.2019.00226.S2CID 195656032.
  321. ^Victor Manuel Bravo-Cuevas; Eduardo Jiménez-Hidalgo (2019)."Evolutionary significance of Equinae from the Mexican Neogene".Frontiers in Ecology and Evolution.7: Article 287.doi:10.3389/fevo.2019.00287.S2CID 198986626.
  322. ^Eduardo Jiménez-Hidalgo; Gerardo Carbot-Chanona; Rosalía Guerrero-Arenas; Victor Manuel Bravo-Cuevas; Genevieve Safi Holdridge; Isabel Israde-Alcántara (2019)."Species diversity and paleoecology of Late Pleistocene horses from southern Mexico".Frontiers in Ecology and Evolution.7: Article 394.doi:10.3389/fevo.2019.00394.S2CID 204754305.
  323. ^Carmen Nacarino-Meneses; Guillem Orlandi-Oliveras (2019)."The life history of European Middle Pleistocene equids: first insights from bone histology".Historical Biology: An International Journal of Paleobiology.33 (5):1–11.doi:10.1080/08912963.2019.1655011.S2CID 202014714.
  324. ^Antoine Fages; Kristian Hanghøj; Naveed Khan; Charleen Gaunitz; Andaine Seguin-Orlando; Michela Leonardi; Christian McCrory Constantz; Cristina Gamba; Khaled A.S. Al-Rasheid; Silvia Albizuri; Ahmed H. Alfarhan; Morten Allentoft; Saleh Alquraishi; David Anthony; Nurbol Baimukhanov; James H. Barrett; Jamsranjav Bayarsaikhan; Norbert Benecke; Eloísa Bernáldez-Sánchez; Luis Berrocal-Rangel; Fereidoun Biglari; Sanne Boessenkool; Bazartseren Boldgiv; Gottfried Brem; Dorcas Brown; Joachim Burger; Eric Crubézy; Linas Daugnora; Hossein Davoudi; et al. (2019)."Tracking five millennia of horse management with extensive ancient genome time series".Cell.177 (6): 1419–1435.e31.doi:10.1016/j.cell.2019.03.049.PMC 6547883.PMID 31056281.
  325. ^Christina I. Barrón-Ortiz; Leonardo S. Avilla; Christopher N. Jass; Víctor M. Bravo-Cuevas; Helena Machado; Dimila Mothé (2019)."What isEquus? Reconciling taxonomy and phylogenetic analyses".Frontiers in Ecology and Evolution.7: Article 343.doi:10.3389/fevo.2019.00343.S2CID 202550199.
  326. ^Jorge Felipe Moura; Flávio Góis; Fernando Carlos Galliari; Marcelo Adorna Fernandes (2019). "A new and most complete pampathere (Mammalia, Xenarthra, Cingulata) from the Quaternary of Bahia, Brazil".Zootaxa.4661 (3):401–444.doi:10.11646/zootaxa.4661.3.1.PMID 31716695.S2CID 202858857.
  327. ^Victoria M. Arbour; Lindsay E. Zanno (2019). "Tail weaponry in ankylosaurs and glyptodonts: an example of a rare but strongly convergent phenotype".The Anatomical Record.303 (4):988–998.doi:10.1002/ar.24093.PMID 30835954.S2CID 73488683.
  328. ^Daniel Perea; Pablo Toriño; Martín Ghizzoni (2019). "First endoskeletal remains ofNeuryurus (Xenarthra, Glyptodontidae), an emended diagnosis of the genus, and body mass estimations".Journal of Vertebrate Paleontology.39 (4): e1668400.Bibcode:2019JVPal..39E8400P.doi:10.1080/02724634.2019.1668400.S2CID 208554276.
  329. ^Francisco Cuadrelli; Alfredo E. Zurita; Pablo Toriño; Ángel R. Miño-Boilini; Santiago Rodríguez-Bualó; Daniel Perea; Gabriel E. Acuña Suárez (2019). "Late Pleistocene Glyptodontinae (Mammalia, Xenarthra, Glyptodontidae) from southern South America: a comprehensive review".Journal of Vertebrate Paleontology.38 (5): e1525390.doi:10.1080/02724634.2018.1525390.S2CID 92335544.
  330. ^Claudia M. R. Herrera; Graciela I. Esteban; Martín R. Ciancio; Cecilia Del Papa (2019). "New specimen ofPucatherium parvum (Xenarthra, Dasypodidae), a singular dasypodid of the Paleogene (Eocene) of northwest Argentina:importance in the early evolution of armadillos".Journal of Vertebrate Paleontology.39 (4): e1670669.Bibcode:2019JVPal..39E0669H.doi:10.1080/02724634.2019.1670669.S2CID 208565189.
  331. ^Esteban Soibelzon (2019)."Using paleoclimate and the fossil record to explain past and present distributions of armadillos (Xenarthra, Dasypodidae)".Journal of Mammalian Evolution.26 (1):61–70.doi:10.1007/s10914-017-9395-8.hdl:11336/56634.S2CID 24389494.
  332. ^M. R. Ciancio; C. M. Krmpotic; A. C. Scarano; M. B. Epele (2019)."Internal morphology of osteoderms of extinct armadillos and its relationship with environmental conditions".Journal of Mammalian Evolution.26 (1):71–83.doi:10.1007/s10914-017-9404-y.S2CID 39630502.
  333. ^Luciano Brambilla; Damián Alberto Ibarra (2019). "Archaeomylodon sampedrinensis, gen. et sp. nov., a new mylodontine from the middle Pleistocene of Pampean Region, Argentina".Journal of Vertebrate Paleontology.38 (6): e1542308.doi:10.1080/02724634.2018.1542308.S2CID 91874640.
  334. ^Cástor Cartelle; Gerardo De Iuliis; Alberto Boscaini; François Pujos (2019). "Anatomy, possible sexual dimorphism, and phylogenetic affinities of a new mylodontine sloth from the late Pleistocene of intertropical Brazil".Journal of Systematic Palaeontology.17 (23):1957–1988.Bibcode:2019JSPal..17.1957C.doi:10.1080/14772019.2019.1574406.S2CID 132092534.
  335. ^Luciano Varela; P. Sebastián Tambusso; H. Gregory McDonald; Richard A. Fariña (2019). "Phylogeny, macroevolutionary trends and historical biogeography of sloths: insights from a Bayesian morphological clock analysis".Systematic Biology.68 (2):204–218.doi:10.1093/sysbio/syy058.PMID 30239971.S2CID 52308176.
  336. ^Frédéric Delsuc; Melanie Kuch; Gillian C. Gibb; Emil Karpinski; Dirk Hackenberger; Paul Szpak; Jorge G. Martínez; Jim I. Mead; H. Gregory McDonald; Ross D.E. MacPhee; Guillaume Billet; Lionel Hautier; Hendrik N. Poinar (2019)."Ancient mitogenomes reveal the evolutionary history and biogeography of sloths".Current Biology.29 (12): 2031–2042.e6.Bibcode:2019CBio...29E2031D.doi:10.1016/j.cub.2019.05.043.PMID 31178321.S2CID 177661447.
  337. ^Samantha Presslee; Graham J. Slater; François Pujos; Analía M. Forasiepi; Roman Fischer; Kelly Molloy; Meaghan Mackie; Jesper V. Olsen; Alejandro Kramarz; Matías Taglioretti; Fernando Scaglia; Maximiliano Lezcano; José Luis Lanata; John Southon; Robert Feranec; Jonathan Bloch; Adam Hajduk; Fabiana M. Martin; Rodolfo Salas Gismondi; Marcelo Reguero; Christian de Muizon; Alex Greenwood; Brian T. Chait;Kirsty Penkman; Matthew Collins; Ross D. E. MacPhee (2019)."Palaeoproteomics resolves sloth relationships"(PDF).Nature Ecology & Evolution.3 (7):1121–1130.Bibcode:2019NatEE...3.1121P.doi:10.1038/s41559-019-0909-z.PMID 31171860.S2CID 174813630.
  338. ^Fernando H. de S. Barbosa; Kleberson de O. Porpino; Hermínio I. de Araújo-Júnior; Lilian P. Bergqvist; Bruce M. Rothschild (2019). "Articular and vertebral lesions in the Pleistocene sloths (Xenarthra, Folivora) from the Brazilian Intertropical Region".Historical Biology: An International Journal of Paleobiology.31 (5):544–558.Bibcode:2019HBio...31..544B.doi:10.1080/08912963.2017.1376191.S2CID 89910254.
  339. ^Santiago Patiño; Jorge Pérez Zerpa; Richard A. Fariña (2019). "Finite element and morphological analysis in extant mammals' claws and quaternary sloths' ungual phalanges".Historical Biology: An International Journal of Paleobiology.33 (6):857–867.doi:10.1080/08912963.2019.1664504.S2CID 203877218.
  340. ^Alberto Boscaini; François Pujos; Timothy J. Gaudin (2019). "A reappraisal of the phylogeny of Mylodontidae (Mammalia, Xenarthra) and the divergence of mylodontine and lestodontine sloths".Zoologica Scripta.48 (6):691–710.doi:10.1111/zsc.12376.S2CID 201194980.
  341. ^Alberto Boscaini; Timothy J. Gaudin; Bernardino Mamani Quispe; Philippe Münch; Pierre-Olivier Antoine; François Pujos (2019)."New well-preserved craniodental remains ofSimomylodon uccasamamensis (Xenarthra: Mylodontidae) from the Pliocene of the Bolivian Altiplano: phylogenetic, chronostratigraphic and palaeobiogeographical implications"(PDF).Zoological Journal of the Linnean Society.185 (2):459–486.doi:10.1093/zoolinnean/zly075.
  342. ^Alberto Boscaini; Timothy J. Gaudin; Néstor Toledo; Bernardino Mamani Quispe; Pierre-Olivier Antoine; François Pujos (2019). "The earliest well-documented occurrence of sexual dimorphism in extinct sloths: evolutionary and palaeoecological insights".Zoological Journal of the Linnean Society.187 (1):229–239.doi:10.1093/zoolinnean/zlz011.
  343. ^Dilson Vargas-Peixoto; Cícero Schneider Colusso; Átila Augusto Stock Da-Rosa; Leonardo Kerber (2019). "A new record ofLestodon armatus Gervais 1855 (Xenarthra, Mylodontidae) from the Quaternary of southern Brazil and remarks on its postcranial anatomy".Historical Biology: An International Journal of Paleobiology.33 (2):159–175.doi:10.1080/08912963.2019.1597075.S2CID 132892318.
  344. ^Ángel R. Miño-Boilini; Martín De Los Reyes; Alfredo E. Zurita; María J. Arrouy; Daniel G. Poiré (2019)."Pliocene Scelidotheriinae (Xenarthra, Tardigrada) from the Pampean region of Argentina: Morphology, chronology, and comments on the diversity of the subfamily".Comptes Rendus Palevol.18 (3):325–334.Bibcode:2019CRPal..18..325M.doi:10.1016/j.crpv.2019.01.005.
  345. ^H. Gregory McDonald; Robert S. Feranec; Norton Miller (2019). "First record of the extinct ground sloth,Megalonyx jeffersonii, (Xenarthra, Megalonychidae) from New York and contributions to its paleoecology".Quaternary International.530–531:42–46.Bibcode:2019QuInt.530...42M.doi:10.1016/j.quaint.2018.11.021.S2CID 134302769.
  346. ^Robert K. McAfee; Sophia M. Beery (2019). "Intraspecific variation of Megalonychid sloths from Hispaniola and the taxonomic implications".Historical Biology: An International Journal of Paleobiology.33 (3):371–386.doi:10.1080/08912963.2019.1618294.S2CID 195403443.
  347. ^Robert K. McAfee; Renato O. Rimoli (2019). "Easternmost occurrences ofNeocnus (Mammalia, Pilosa, Megalonychidae) from the late Pleistocene–early Holocene of the Dominican Republic (Hispaniola)".Journal of Vertebrate Paleontology.39 (3): e1624971.Bibcode:2019JVPal..39E4971M.doi:10.1080/02724634.2019.1624971.S2CID 198238303.
  348. ^Diego Brandoni; Laureano González Ruiz; Joaquín Bucher (2019). "Evolutive implications ofMegathericulus patagonicus (Xenarthra, Megatheriinae) from the Miocene of Patagonia Argentina".Journal of Mammalian Evolution.27 (3):445–460.doi:10.1007/s10914-019-09469-6.S2CID 163164163.
  349. ^Javiera Peralta-Prato; Andrés Solórzano (2019)."How many species of the aquatic slothThalassocnus (Xenarthra: Megatheriidae) were in Chile?: new evidences from the Bahía Inglesa Formation, with a reappraisal of their biochronological affinities".Andean Geology.46 (3):693–702.doi:10.5027/andgeoV46n3-3221.
  350. ^Diego Brandoni; Raúl I. Vezzosi (2019). "Nothrotheriops sp. (Mammalia, Xenarthra) from the Late Pleistocene of Argentina: implications for the dispersion of ground sloths during the Great American Biotic Interchange".Boreas.48 (4):879–890.Bibcode:2019Borea..48..879B.doi:10.1111/bor.12401.S2CID 181709381.
  351. ^Jean T. Larmon; H. Gregory McDonald; Stanley Ambrose; Larisa R. G. DeSantis; Lisa J. Lucero (2019)."A year in the life of a giant ground sloth during the Last Glacial Maximum in Belize".Science Advances.5 (2): eaau1200.Bibcode:2019SciA....5.1200L.doi:10.1126/sciadv.aau1200.PMC 6392778.PMID 30820449.
  352. ^Renato Pereira Lopes; Jamil Corrêa Pereira (2019)."On the presence ofMegatherium Cuvier, 1796 (Xenarthra, Pilosa) in fossiliferous deposits of the Coastal Plain of Southern Brazil".Revista Brasileira de Paleontologia.22 (1):38–52.doi:10.4072/rbp.2019.1.04.
  353. ^Andy D. Grass (2019). "Inferring differential behavior between giant ground sloth adults and juveniles through scapula morphology".Journal of Vertebrate Paleontology.39 (1): e1569018.Bibcode:2019JVPal..39E9018G.doi:10.1080/02724634.2019.1569018.S2CID 132603649.
  354. ^Martín Zamorano (2019)."Phylogenetic analysis of Xenarthra (Mammalia) based on bone elements of the hyoid apparatus: aspects on the monophyly of glyptodontids".Revista Brasileira de Paleontologia.22 (1):53–66.doi:10.4072/rbp.2019.1.05.
  355. ^Alejandro Gustavo Kramarz; Alberto Garrido; Mariano Bond (2019). "Astrapotherium from the Middle Miocene Collón Cura Formation and the decline of astrapotheres in southern South America".Ameghiniana.56 (4):290–306.doi:10.5710/AMGH.15.07.2019.3258.S2CID 199099778.
  356. ^Floréal Solé; Bastien Mennecart (2019)."A large hyaenodont from the Lutetian of Switzerland expands the body mass range of the European mammalian predators during the Eocene".Acta Palaeontologica Polonica.64 (2):275–290.doi:10.4202/app.00581.2018.
  357. ^Alexander O. Averianov (2019). "Reappraisal of arctostylopid mammalKazachostylops occidentalis from the late Paleocene of Kazakhstan and phylogenetic relationships within Arctostylopida".Journal of Paleontology.94 (3):568–579.doi:10.1017/jpa.2019.93.S2CID 212827856.
  358. ^abcdFloréal Solé; Olivia Plateau; Kévin Le Verger; Alain Phélizon (2019)."New paroxyclaenid mammals from the early Eocene of the Paris Basin (France) shed light on the origin and evolution of these endemic European cimolestans"(PDF).Journal of Systematic Palaeontology.17 (20):1711–1743.Bibcode:2019JSPal..17.1711S.doi:10.1080/14772019.2018.1551248.S2CID 92487920.
  359. ^A. V. Lavrov (2019)."New material on small hyenodons (Hyaenodontinae, Creodonta) from the Paleogene of Mongolia".Paleontological Journal.53 (4):418–431.Bibcode:2019PalJ...53..418L.doi:10.1134/S0031030119040063.S2CID 201654889.
  360. ^Bin Bai; Yuan-Qing Wang; Jin Meng (2019). "A new late Paleocene phenacodontid 'condylarth'Lophocion from the Clark's Fork Basin of Wyoming".Historical Biology: An International Journal of Paleobiology.33 (5):652–659.doi:10.1080/08912963.2019.1652283.S2CID 202017719.
  361. ^Zhichao Li; Yongxiang Li; Xiangxu Xue; Wenhou Li; Yunxiang Zhang; Fu Yang (2019)."A new fossil Erinaceidae from the Shajingyi area in the Lanzhou Basin, China".Acta Geologica Sinica (English Edition).93 (4):789–798.Bibcode:2019AcGlS..93..789L.doi:10.1111/1755-6724.13797.S2CID 135012649.
  362. ^Shawn P. Zack; Kenneth D. Rose; Luke T. Holbrook; Kishor Kumar; Rajendra S. Rana; Thierry Smith (2019)."An enigmatic new ungulate-like mammal from the early Eocene of India".Papers in Palaeontology.7 (1):497–520.doi:10.1002/spp2.1288.
  363. ^Shawn P. Zack (2019)."The first North AmericanPropterodon (Hyaenodonta: Hyaenodontidae), a new species from the late Uintan of Utah".PeerJ.7: e8136.doi:10.7717/peerj.8136.PMC 6876642.PMID 31772846.
  364. ^Javier N. Gelfo; Ricardo N. Alonso; Richard H. Madden; Alfredo A. Carlini (2019). "An Eocene bunodont South American native ungulate (Didolodontidae) from the Lumbrera Formation, Salta Province, Argentina".Ameghiniana.57 (2):132–145.doi:10.5710/AMGH.29.11.2019.3293.S2CID 212862646.
  365. ^Matthew R. Borths; Nancy J. Stevens (2019)."Simbakubwa kutokaafrika, gen. et sp. nov. (Hyainailourinae, Hyaenodonta, 'Creodonta,' Mammalia), a gigantic carnivore from the earliest Miocene of Kenya".Journal of Vertebrate Paleontology.39 (1): e1570222.Bibcode:2019JVPal..39E0222B.doi:10.1080/02724634.2019.1570222.S2CID 145972918.
  366. ^Andrea Corona; Daniel Perea; Martín Ubilla (2019). "A new genus of Proterotheriinae (Mammalia, Litopterna) from the Pleistocene of Uruguay".Journal of Vertebrate Paleontology.39 (1): e-1567523.Bibcode:2019JVPal..39E7523C.doi:10.1080/02724634.2019.1567523.S2CID 145907219.
  367. ^Achim H. Schwermann; Kai He; Benjamin J. Peters; Thorsten Plogschties; Gabriele Sansalone (2019). "Systematics and macroevolution of extant and fossil scalopine moles (Mammalia, Talpidae)".Palaeontology.62 (4):661–676.Bibcode:2019Palgy..62..661S.doi:10.1111/pala.12422.S2CID 134096608.
  368. ^Vicente D. Crespo; Ana Fagoaga; Plini Montoya; Francisco J. Ruiz-Sánchez (2019)."Old-timers and newcomers: The shrews and heterosoricids from the Ribesalbes-Alcora Basin (East of Spain)".Palaeontologia Electronica.22 (3): Article number 22.3.64.doi:10.26879/999.
  369. ^Shawn P. Zack; Tonya A. Penkrot (2019). "Tarsals of the miniscule insectivorous mammalBatodonoides from the Eocene of San Diego County, California".Journal of Vertebrate Paleontology.39 (4): e1672076.Bibcode:2019JVPal..39E2076Z.doi:10.1080/02724634.2019.1672076.S2CID 209439991.
  370. ^Joe Cameron; Sarah L. Shelley; Thomas E. Williamson; Stephen L. Brusatte (2019)."The brain and inner ear of the early Paleocene 'condylarth'Carsioptychus coarctatus: Implications for early placental mammal neurosensory biology and behavior".The Anatomical Record.302 (2):306–324.doi:10.1002/ar.23903.hdl:20.500.11820/e5581cdd-31bc-42c9-bde2-d2597c424998.PMID 30290063.S2CID 52925480.
  371. ^Ornella C. Bertrand; Sarah L. Shelley; John R. Wible; Thomas E. Williamson; Luke T. Holbrook; Stephen G.B. Chester; Ian B. Butler; Stephen L. Brusatte (2019)."Virtual endocranial and inner ear endocasts of the Paleocene "condylarth"Chriacus: new insight into the neurosensory system and evolution of early placental mammals".Journal of Anatomy.236 (1):21–49.doi:10.1111/joa.13084.PMC 6904649.PMID 31667836.
  372. ^Christian de Muizon; Guillaume Billet; Sandrine Ladevèze (2019)."New remains of kollpaniine "condylarths" (Panameriungulata) from the early Palaeocene of Bolivia shed light on hypocone origins and molar proportions among ungulate-like placentals".Geodiversitas.41 (25):841–874.doi:10.5252/geodiversitas2019v41a25.S2CID 213555736.
  373. ^Alejandro G. Kramarz; Mariano Bond; Alfredo A. Carlini (2019)."Astrapotheres from Cañadón Vaca, middle Eocene of central Patagonia. New insights on diversity, anatomy and early evolution of Astrapotheria".Palaeontologia Electronica.22 (2): Article number 22.2.52.doi:10.26879/986.
  374. ^Tábata Zanesco; Lílian P. Bergqvist; Ágatha Agnes Pereira (2019). "Intraspecific variation of one of the oldest Litopterna (Mammalia),Protolipterna ellipsodontoides, and redescription of the species".Ameghiniana.56 (5):380–401.doi:10.5710/AMGH.11.08.2019.3250.S2CID 202196250.
  375. ^Andrew J. McGrath; John J. Flynn; André R. Wyss (2019). "Proterotheriids and macraucheniids (Litopterna: Mammalia) from the Pampa Castillo Fauna, Chile (early Miocene, Santacrucian SALMA) and a new phylogeny of Proterotheriidae".Journal of Systematic Palaeontology.18 (9):717–738.doi:10.1080/14772019.2019.1662500.S2CID 204142828.
  376. ^Andrea Corona; Martín Ubilla; Daniel Perea (2019)."New records and diet reconstruction using dental microwear analysis forNeolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae)".Andean Geology.46 (1):153–167.doi:10.5027/andgeoV46n1-3136.
  377. ^Elizabeth Morosi; Martin Ubilla (2019). "Dietary and palaeoenvironmental inferences inNeolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay)".Historical Biology: An International Journal of Paleobiology.31 (2):196–202.Bibcode:2019HBio...31..196M.doi:10.1080/08912963.2017.1355914.S2CID 133673644.
  378. ^Gabriela Ines Schmidt; Esperanza Cerdeño; Santiago Hernández Del Pino (2019)."Macraucheniidae and Proterotheriidae (Mammalia, Litopterna) from Quebrada Fiera (Late Oligocene), Mendoza Province, Argentina".Andean Geology.46 (2):368–382.doi:10.5027/andgeoV46n2-3109.
  379. ^Selina V. Robson; Nicholas A. Famoso; Edward Byrd Davis; Samantha S.B. Hopkins (2019)."First mesonychid from the Clarno Formation (Eocene) of Oregon, USA".Palaeontologia Electronica.22 (2): Article number 22.2.35.doi:10.26879/856.
  380. ^Kumiko Matsui; Takanobu Tsuihiji (2019)."The phylogeny of desmostylians revisited: proposal of new clades based on robust phylogenetic hypotheses".PeerJ.7: e7430.doi:10.7717/peerj.7430.PMC 6800978.PMID 31637114.
  381. ^Rachel H. Dunn; K. E. Beth Townsend (2019). "New pantolestids from the Uinta Formation, Utah".Journal of Vertebrate Paleontology.39 (4): e1652622.Bibcode:2019JVPal..39E2622D.doi:10.1080/02724634.2019.1652622.S2CID 208602464.
  382. ^Matthew R. Borths; Nancy J. Stevens (2019). "Taxonomic affinities of the enigmaticPrionogale breviceps, early Miocene, Kenya".Historical Biology: An International Journal of Paleobiology.31 (6):784–793.Bibcode:2019HBio...31..784B.doi:10.1080/08912963.2017.1393075.S2CID 91104783.
  383. ^Morgane Dubied; Floréal Solé; Bastien Mennecart (2019). "The cranium ofProvierra typica (Mammalia, Hyaenodonta) and its impact on hyaenodont phylogeny and endocranial evolution".Palaeontology.62 (6):983–1001.Bibcode:2019Palgy..62..983D.doi:10.1111/pala.12437.S2CID 201310577.
  384. ^Shawn P. Zack (2019). "A skeleton of a Uintan machaeroidine 'creodont' and the phylogeny of carnivorous eutherian mammals".Journal of Systematic Palaeontology.17 (8):653–689.Bibcode:2019JSPal..17..653Z.doi:10.1080/14772019.2018.1466374.S2CID 89934728.
  385. ^Lawrence J. Flynn; Chang-Zhu Jin; Jay Kelley; Nina G. Jablonski; Xue-Ping Ji; Denise F. Su; Tao Deng; Qiang Li (2019). "Late Miocene fossil calibration from Yunnan Province for the striped rabbitNesolagus".Vertebrata PalAsiatica.57 (3):214–224.doi:10.19615/j.cnki.1000-3118.190326.
  386. ^Simon J. M. Davis (2019). "Rabbits and Bergmann's rule: how cold was Portugal during the last glaciation?".Biological Journal of the Linnean Society.128 (3):526–549.doi:10.1093/biolinnean/blz098.
  387. ^Stephen G.B. Chester; Thomas E. Williamson; Mary T. Silcox; Jonathan I. Bloch; Eric J. Sargis (2019). "Skeletal morphology of the early Paleocene plesiadapiformTorrejonia wilsoni (Euarchonta, Palaechthonidae)".Journal of Human Evolution.128:76–92.Bibcode:2019JHumE.128...76C.doi:10.1016/j.jhevol.2018.12.004.PMID 30825983.S2CID 73480049.
  388. ^Douglas M. Boyer; Philip D. Gingerich (2019). "Skeleton of Late PaleocenePlesiadapis cookei (Mammalia, Euarchonta): life history, locomotion, and phylogenetic relationships".University of Michigan Papers on Paleontology.38:1–269.hdl:2027.42/151767.
  389. ^Thomas J. D. Halliday; Mario dos Reis; Asif U. Tamuri; Henry Ferguson-Gow; Ziheng Yang; Anjali Goswami (2019)."Rapid morphological evolution in placental mammals post-dates the origin of the crown group".Proceedings of the Royal Society B: Biological Sciences.286 (1898): Article ID 20182418.doi:10.1098/rspb.2018.2418.PMC 6458320.PMID 30836875.
  390. ^Matthew R. McCurry; Alistair R. Evans; Erich M. G. Fitzgerald; Colin R. McHenry; Joseph Bevitt; Nicholas D. Pyenson (2019)."The repeated evolution of dental apicobasal ridges in aquatic-feeding mammals and reptiles".Biological Journal of the Linnean Society.127 (2):245–259.doi:10.1093/biolinnean/blz025.
  391. ^Olivier Maridet; Marguerite Hugueney; Loïc Costeur (2019)."Aubenas-les-Alpes (S-E France). Part III – Last and final part of the mammalian assemblage with some comments on the palaeoenvironment and palaeobiogeography"(PDF).Annales de Paléontologie.105 (2):139–153.Bibcode:2019AnPal.105..139M.doi:10.1016/j.annpal.2019.03.001.S2CID 134457412.
  392. ^George A. Lyras (2019)."Brain changes during phyletic dwarfing in elephants and hippos".Brain, Behavior and Evolution.92 (3–4):167–181.doi:10.1159/000497268.PMID 30943507.S2CID 93002129.
  393. ^Gina M. Semprebon; Florent Rivals; Christine M. Janis (2019)."The role of grass vs. exogenous abrasives in the paleodietary patterns of North American ungulates".Frontiers in Ecology and Evolution.7: Article 65.doi:10.3389/fevo.2019.00065.S2CID 81979585.
  394. ^Manuela Aiglstorfer; Elmar P.J. Heizmann; Stéphane Peigné (2019). "Who killedMicromeryx flourensianus? A case study of taphonomy and predation on ruminants in the middle Miocene of France".Lethaia.52 (3):429–444.Bibcode:2019Letha..52..429A.doi:10.1111/let.12322.S2CID 134899372.
  395. ^Daniel De Miguel; Beatriz Azanza; Jorge Morales (2019). "Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world".Palaeontology.62 (1):77–92.Bibcode:2019Palgy..62...77D.doi:10.1111/pala.12382.S2CID 133968515.
  396. ^Nikolay Spassov; Denis Geraads; Latinka Hristova; Georgi N. Markov (2019)."The late Miocene mammal fauna from Gorna Sushitsa, southwestern Bulgaria, and the early/middle Turolian transition"(PDF).Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.291 (3):317–350.doi:10.1127/njgpa/2019/0804.S2CID 241805936.
  397. ^Marcos D. Ercoli; Alicia Álvarez; Carla Santamans; Sonia A. González Patagua; Juan Pablo Villalba Ulberich; Ornela E. Constantini (2019). "Los Alisos, a new fossiliferous locality for Guanaco Formation (late Miocene) in Jujuy (Argentina), and a first approach of its paleoecological and biochronology implications".Journal of South American Earth Sciences.93:203–213.Bibcode:2019JSAES..93..203E.doi:10.1016/j.jsames.2019.04.024.hdl:11336/121466.S2CID 155281728.
  398. ^J. Tyler Faith; John Rowan; Andrew Du (2019)."Early hominins evolved within non-analog ecosystems".Proceedings of the National Academy of Sciences of the United States of America.116 (43):21478–21483.Bibcode:2019PNAS..11621478F.doi:10.1073/pnas.1909284116.PMC 6815188.PMID 31591246.
  399. ^Tom Weihmann (2020)."Species richness and composition are not sufficient for determining the functionality of ancient ecosystems".Proceedings of the National Academy of Sciences of the United States of America.117 (7):3368–3369.Bibcode:2020PNAS..117.3368W.doi:10.1073/pnas.1920054117.PMC 7035617.PMID 32019877.
  400. ^J. Tyler Faith; John Rowan; Andrew Du (2020)."Reply to Weihmann: Fifty gazelles do not equal an elephant, and other ecological misunderstandings".Proceedings of the National Academy of Sciences of the United States of America.117 (7):3370–3371.Bibcode:2020PNAS..117.3370F.doi:10.1073/pnas.1920565117.PMC 7035609.PMID 32019886.
  401. ^Laurence Dumouchel; René Bobe (2019). "Paleoecological implications of dental mesowear and hypsodonty in fossil ungulates from Kanapoi".Journal of Human Evolution.140: Article 102548.doi:10.1016/j.jhevol.2018.11.004.PMID 30638945.S2CID 58605235.
  402. ^James S. Oliver; Thomas W. Plummer; Fritz Hertel; Laura C. Bishop (2019)."Bovid mortality patterns from Kanjera South, Homa Peninsula, Kenya and FLK-Zinj, Olduvai Gorge, Tanzania: Evidence for habitat mediated variability in Oldowan hominin hunting and scavenging behavior"(PDF).Journal of Human Evolution.131:61–75.Bibcode:2019JHumE.131...61O.doi:10.1016/j.jhevol.2019.03.009.PMID 31182207.S2CID 145903983.
  403. ^K. O'Brien; D.B. Patterson; M.D. Biernat; D.R. Braun; T.E. Cerling; A. McGrosky; J.T. Faith (2019). "Ungulate turnover in the Koobi Fora Formation: Spatial and temporal variation in the Early Pleistocene".Journal of African Earth Sciences.161: Article 103658.doi:10.1016/j.jafrearsci.2019.103658.S2CID 210297719.
  404. ^Fajun Sun; Yang Wang; Yuan Wang; Chang-zhu Jin; Tao Deng; Burt Wolff (2019). "Paleoecology of Pleistocene mammals and paleoclimatic change in South China: Evidence from stable carbon and oxygen isotopes".Palaeogeography, Palaeoclimatology, Palaeoecology.524:1–12.Bibcode:2019PPP...524....1S.doi:10.1016/j.palaeo.2019.03.021.S2CID 134558136.
  405. ^Wei Dong; Wen-Hui Liu; Wei-Peng Bai (2019)."Cladistic approach on chronological relationship of the Pleistocene mammalian faunas from China".Vertebrata PalAsiatica.58 (1):67–81.doi:10.19615/j.cnki.1000-3118.190525.S2CID 244315483.
  406. ^Kantapon Suraprasit; Sutee Jongautchariyakul; Chotima Yamee; Cherdchan Pothichaiya; Hervé Bocherens (2019). "New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand".Quaternary Science Reviews.221: Article 105861.Bibcode:2019QSRv..22105861S.doi:10.1016/j.quascirev.2019.105861.S2CID 202196643.
  407. ^Meir Orbach; Reuven Yeshurun (2019). "The hunters or the hunters: Human and hyena prey choice divergence in the Late Pleistocene Levant".Journal of Human Evolution.160: 102572.doi:10.1016/j.jhevol.2019.01.005.PMID 30850235.S2CID 73485932.
  408. ^Ana Fagoaga; César Laplana; Rafael Marquina-Blasco; Jorge Machado; M. Dolores Marin-Monfort; Vicente D. Crespo; Cristo M. Hernández; Carolina Mallol; Bertila Galván; Francisco J. Ruiz-Sánchez (2019). "Palaeoecological context for the extinction of the Neanderthals: A small mammal study of Stratigraphic Unit V of the El Salt site, Alcoi, eastern Spain".Palaeogeography, Palaeoclimatology, Palaeoecology.530:163–175.Bibcode:2019PPP...530..163F.doi:10.1016/j.palaeo.2019.05.007.S2CID 200019385.
  409. ^E. Morin; J. Meier; K. El Guennouni; A.-M. Moigne; L. Lebreton; L. Rusch; P. Valensi; J. Conolly; D. Cochard (2019)."New evidence of broader diets for archaicHomo populations in the northwestern Mediterranean".Science Advances.5 (3): eaav9106.Bibcode:2019SciA....5.9106M.doi:10.1126/sciadv.aav9106.PMC 6402852.PMID 30854435.
  410. ^Virginie Sinet-Mathiot; Geoff M. Smith; Matteo Romandini; Arndt Wilcke; Marco Peresani; Jean-Jacques Hublin; Frido Welker (2019)."Combining ZooMS and zooarchaeology to study Late Pleistocene hominin behaviour at Fumane (Italy)".Scientific Reports.9 (1): Article number 12350.Bibcode:2019NatSR...912350S.doi:10.1038/s41598-019-48706-z.PMC 6710433.PMID 31451791.
  411. ^Carlos Sánchez-Hernández; Lionel Gourichon; Eric Pubert; William Rendu; Ramón Montes; Florent Rivals (2019)."Combined dental wear and cementum analyses in ungulates reveal the seasonality of Neanderthal occupations in Covalejos Cave (Northern Iberia)".Scientific Reports.9 (1): Article number 14335.Bibcode:2019NatSR...914335S.doi:10.1038/s41598-019-50719-7.PMC 6778078.PMID 31586143.
  412. ^Rodrigo Portero; Marián Cueto; Jesús F. Jordá Pardo; Julián Bécares Pérez; Esteban Álvarez-Fernández (2019). "The persistence of red deer (Cervus elaphus) in the human diet during the Lower Magdalenian in northern Spain: Insights from El Cierro cave (Asturias, Spain)".Quaternary International.506:35–45.Bibcode:2019QuInt.506...35P.doi:10.1016/j.quaint.2019.01.016.hdl:10902/16204.S2CID 134893010.
  413. ^D. Esker; S.L. Forman; C. Widga; J.D. Walker; J.E. Andrew (2019). "Home range of the Columbian mammoths (Mammuthus columbi) and grazing herbivores from the Waco Mammoth National Monument, (Texas, USA) based on strontium isotope ratios from tooth enamel bioapatite".Palaeogeography, Palaeoclimatology, Palaeoecology.534: Article 109291.Bibcode:2019PPP...53409291E.doi:10.1016/j.palaeo.2019.109291.S2CID 201312289.
  414. ^C.S. Churcher (2019). "Pleistocene mammals from Extinction Cave, Belize".Canadian Journal of Earth Sciences.57 (3):366–376.doi:10.1139/cjes-2018-0178.S2CID 182629185.
  415. ^S. Lorena Dávila; Sarah R. Stinnesbeck; Silvia Gonzalez; Susanne Lindauer; Juan Escamilla; Wolfgang Stinnesbeck (2019). "Guatemala's Late Pleistocene (Rancholabrean) fauna: Revision and interpretation".Quaternary Science Reviews.219:277–296.Bibcode:2019QSRv..219..277D.doi:10.1016/j.quascirev.2019.07.011.S2CID 201306819.
  416. ^Gustavo G. Politis; Pablo G. Messineo; Thomas W. Stafford Jr; Emily L. Lindsey (2019)."Campo Laborde: A Late Pleistocene giant ground sloth kill and butchering site in the Pampas".Science Advances.5 (3): eaau4546.Bibcode:2019SciA....5.4546P.doi:10.1126/sciadv.aau4546.PMC 6402857.PMID 30854426.
  417. ^Thaís Rabito Pansani; Fellipe Pereira Muniz; Alexander Cherkinsky; Mírian Liza Alves Forancelli Pacheco; Mário André Trindade Dantas (2019). "Isotopic paleoecology (δ13C, δ18O) of Late Quaternary megafauna from Mato Grosso do Sul and Bahia States, Brazil".Quaternary Science Reviews.221: Article 105864.Bibcode:2019QSRv..22105864P.doi:10.1016/j.quascirev.2019.105864.S2CID 202200336.
  418. ^Juliana de Almeida da Silva; Luciano Artemio Leal; Alexander Cherkinsky; Mário André Trindade Dantas (2019). "Late Pleistocene meso-megamammals from Anagé, Bahia, Brazil: Taxonomy and isotopic paleoecology (δ13C)".Journal of South American Earth Sciences.96: Article 102362.Bibcode:2019JSAES..9602362S.doi:10.1016/j.jsames.2019.102362.S2CID 203135941.
  419. ^Steven D. Emslie; David J. Meltzer (2019). "Late Quaternary vertebrates from the Upper Gunnison Basin, Colorado, and small-mammal community resilience to climate change since the last glacial maximum".Quaternary Research.92 (2):388–407.Bibcode:2019QuRes..92..388E.doi:10.1017/qua.2019.26.S2CID 198418756.
  420. ^Larisa R.G. DeSantis; Jonathan M. Crites; Robert S. Feranec; Kena Fox-Dobbs; Aisling B. Farrell; John M. Harris; Gary T. Takeuchi; Thure E. Cerling (2019)."Causes and consequences of Pleistocene megafaunal extinctions as revealed from Rancho La Brea mammals".Current Biology.29 (15): 2488–2495.e2.Bibcode:2019CBio...29E2488D.doi:10.1016/j.cub.2019.06.059.PMID 31386836.S2CID 199469362.
  421. ^Christina I. Barrón-Ortiz; Christopher N. Jass; Raúl Barrón-Corvera; Jennifer Austen; Jessica M. Theodor (2019). "Enamel hypoplasia and dental wear of North American late Pleistocene horses and bison: an assessment of nutritionally based extinction models".Paleobiology.45 (3):484–515.Bibcode:2019Pbio...45..484B.doi:10.1017/pab.2019.17.hdl:1880/113843.S2CID 216592968.
  422. ^Anikó B. Tóth; S. Kathleen Lyons; W. Andrew Barr; Anna K. Behrensmeyer; Jessica L. Blois; René Bobe; Matt Davis; Andrew Du; Jussi T. Eronen; J. Tyler Faith; Danielle Fraser; Nicholas J. Gotelli; Gary R. Graves; Advait M. Jukar; Joshua H. Miller; Silvia Pineda-Munoz; Laura C. Soul; Amelia Villaseñor; John Alroy (2019)."Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction".Science.365 (6459):1305–1308.Bibcode:2019Sci...365.1305T.doi:10.1126/science.aaw1605.PMID 31604240.S2CID 202699089.
  423. ^Fidel Hernández; Carlos Ríos; Humberto L. Perotto-Baldivieso (2019). "Evolutionary history of herbivory in the Patagonian steppe: The role of climate, ancient megafauna, and guanaco".Quaternary Science Reviews.220:279–290.Bibcode:2019QSRv..220..279H.doi:10.1016/j.quascirev.2019.07.014.S2CID 202179132.
  424. ^A.Yu. Puzachenko; A.K. Markova (2019). "Evolution of mammal species composition and species richness during the Late Pleistocene - Holocene transition in Europe: A general view at the regional scale".Quaternary International.530–531:88–106.Bibcode:2019QuInt.530...88P.doi:10.1016/j.quaint.2018.12.025.S2CID 135285162.
  425. ^Normunds Stivrins; Aija Cerina; Mariusz Gałka; Atko Heinsalu; Lembi Lõugas; Siim Veski (2019). "Large herbivore population and vegetation dynamics 14,600–8300 years ago in central Latvia, northeastern Europe".Review of Palaeobotany and Palynology.266:42–51.Bibcode:2019RPaPa.266...42S.doi:10.1016/j.revpalbo.2019.04.005.S2CID 146562971.
  426. ^M. C. Stahlschmidt; T. C. Collin; D. M. Fernandes; G. Bar-Oz; A. Belfer-Cohen; Z. Gao; N. Jakeli; Z. Matskevich; T. Meshveliani; J. K. Pritchard; F. McDermott; R. Pinhasi (2019)."Ancient mammalian and plant DNA from late Quaternary stalagmite layers at Solkota cave, Georgia".Scientific Reports.9 (1): Article number 6628.Bibcode:2019NatSR...9.6628S.doi:10.1038/s41598-019-43147-0.PMC 6488622.PMID 31036834.
  427. ^Peter M. Kappeler; Charles L. Nunn; Alexander Q. Vining; Steven M. Goodman (2019)."Evolutionary dynamics of sexual size dimorphism in non-volant mammals following their independent colonization of Madagascar".Scientific Reports.9 (1): Article number 1454.Bibcode:2019NatSR...9.1454K.doi:10.1038/s41598-018-36246-x.PMC 6363729.PMID 30723219.
  428. ^Jamie R. Wood; Janet M. Wilmshurst (2019)."Comparing the effects of asynchronous herbivores on New Zealand montane vegetation communities".PLOS ONE.14 (4): e0214959.Bibcode:2019PLoSO..1414959W.doi:10.1371/journal.pone.0214959.PMC 6448933.PMID 30947249.
  429. ^Fredrick K. Manthi; Alisa J. Winkler (2019). "Rodents and other terrestrial small mammals from Kanapoi, north-western Kenya".Journal of Human Evolution.140: Article 102694.doi:10.1016/j.jhevol.2019.102694.PMID 31759619.S2CID 208274769.
  430. ^María Judith Babot; Guillermo W. Rougier; Daniel García-Lopez; Brian M. Davis (2020). "New small bunodont metatherian from the Late Eocene of the Argentinean Puna".Journal of Mammalian Evolution.27 (3):373–384.doi:10.1007/s10914-019-09468-7.S2CID 170078262.
  431. ^Kenny J. Travouillon; Bruno F. Simões; Roberto Portela Miguez; Selina Brace; Philippa Brewer; David Stemmer; Gilbert J. Price; Jonathan Cramb; Julien Louys (2019). "Hidden in plain sight: reassessment of the pig-footed bandicoot,Chaeropus ecaudatus (Peramelemorphia, Chaeropodidae), with a description of a new species from central australia, and use of the fossil record to trace its past distribution".Zootaxa.4566 (1): zootaxa.4566.1.1.doi:10.11646/zootaxa.4566.1.1.PMID 31716448.S2CID 92165477.
  432. ^Caio César Rangel; Leonardo Melo Carneiro; Lilian Paglarelli Bergqvist; Edison Vicente Oliveira; Francisco Javier Goin; María Judith Babot (2019). "Diversity, affinities and adaptations of the South American basal sparassodontPatene Simpson, 1935 (Mammalia, Metatheria)".Ameghiniana.56 (4):263–289.doi:10.5710/AMGH.06.05.2019.3222.S2CID 195547494.
  433. ^Jaelyn J. Eberle; William A. Clemens; Paul J. McCarthy; Anthony R. Fiorillo; Gregory M. Erickson; Patrick S. Druckenmiller (2019). "Northernmost record of the Metatheria: a new Late Cretaceous pediomyid from the North Slope of Alaska".Journal of Systematic Palaeontology.17 (21):1805–1824.Bibcode:2019JSPal..17.1805E.doi:10.1080/14772019.2018.1560369.S2CID 92613824.
  434. ^María Alejandra Abello; Adriana Magdalena Candela (2019)."Paleobiology ofArgyrolagus (Marsupialia, Argyrolagidae): an astonishing case of bipedalism among South American mammals".Journal of Mammalian Evolution.27 (3):419–444.doi:10.1007/s10914-019-09470-z.S2CID 174802743.
  435. ^Analía M. Forasiepi; Ross D.E. Macphee; Santiago Hernández del Pino (2019)."Caudal cranium ofThylacosmilus atrox (Mammalia, Metatheria, Sparassodonta), a South American predaceous sabertooth".Bulletin of the American Museum of Natural History.2019 (433):1–66.doi:10.1206/0003-0090.433.1.1.hdl:2246/6943.S2CID 196653788.
  436. ^Robin M. D. Beck; Matias L. Taglioretti (2019)."A nearly complete juvenile skull of the marsupialSparassocynus derivatus from the Pliocene of Argentina, the affinities of "sparassocynids", and the diversification of opossums (Marsupialia; Didelphimorphia; Didelphidae)".Journal of Mammalian Evolution.27 (3):385–417.doi:10.1007/s10914-019-09471-y.S2CID 198190603.
  437. ^Wendy Den Boer; Nicolás E. Campione; Benjamin P. Kear (2019)."Climbing adaptations, locomotory disparity and ecological convergence in ancient stem 'kangaroos'".Royal Society Open Science.6 (2): Article ID 181617.Bibcode:2019RSOS....681617D.doi:10.1098/rsos.181617.PMC 6408368.PMID 30891280.
  438. ^Manuela Cascini; Kieren J. Mitchell; Alan Cooper; Matthew J. Phillips (2019). "Reconstructing the evolution of giant extinct kangaroos: comparing the utility of DNA, morphology, and total evidence".Systematic Biology.68 (3):520–537.doi:10.1093/sysbio/syy080.PMID 30481358.S2CID 53757324.
  439. ^D. Rex Mitchell; Stephen Wroe (2019). "Biting mechanics determines craniofacial morphology among extant diprotodont herbivores: dietary predictions for the giant extinct short-faced kangaroo,Simosthenurus occidentalis".Paleobiology.45 (1):167–181.Bibcode:2019Pbio...45..167M.doi:10.1017/pab.2018.46.S2CID 196669141.
  440. ^D. Rex Mitchell (2019)."The anatomy of a crushing bite: The specialised cranial mechanics of a giant extinct kangaroo".PLOS ONE.14 (9): e0221287.Bibcode:2019PLoSO..1421287M.doi:10.1371/journal.pone.0221287.PMC 6738596.PMID 31509570.
  441. ^Hazel L. Richards; Rod T. Wells; Alistair R. Evans; Erich M. G. Fitzgerald; Justin W. Adams (2019)."The extraordinary osteology and functional morphology of the limbs in Palorchestidae, a family of strange extinct marsupial giants".PLOS ONE.14 (9): e0221824.Bibcode:2019PLoSO..1421824R.doi:10.1371/journal.pone.0221824.PMC 6744111.PMID 31518353.
  442. ^Tony Thulborn; Susan Turner (2003)."The last dicynodont: an Australian Cretaceous relict".Proceedings of the Royal Society B: Biological Sciences.270 (1518):985–993.doi:10.1098/rspb.2002.2296.JSTOR 3558635.PMC 1691326.PMID 12803915.
  443. ^Espen M. Knutsen; Emma Oerlemans (2019). "The last dicynodont? Re-assessing the taxonomic and temporal relationships of a contentious Australian fossil".Gondwana Research.77:184–203.doi:10.1016/j.gr.2019.07.011.S2CID 202908716.
  444. ^Michael C. Westaway; Gilbert Price; Tony Miscamble; Jane McDonald; Jonathon Cramb; Jeremy Ringma; Rainer Grün; Darryl Jones; Mark Collard (2019). "A palaeontological perspective on the proposal to reintroduce Tasmanian devils to mainland Australia to suppress invasive predators".Biological Conservation.232:187–193.Bibcode:2019BCons.232..187W.doi:10.1016/j.biocon.2019.02.002.S2CID 91322919.
  445. ^Douglass S. Rovinsky; Alistair R. Evans; Justin W. Adams (2019)."The pre-Pleistocene fossil thylacinids (Dasyuromorphia: Thylacinidae) and the evolutionary context of the modern thylacine".PeerJ.7: e7457.doi:10.7717/peerj.7457.PMC 6727838.PMID 31534836.
  446. ^Natalie M. Warburton; Kenny J. Travouillon; Aaron B. Camens (2019)."Skeletal atlas of the Thylacine (Thylacinus cynocephalus)".Palaeontologia Electronica.22 (2): Article number 22.2.29.doi:10.26879/947.
  447. ^Thomas Martin; Alexander O. Averianov; Julia A. Schultz; Achim H. Schwermann; Oliver Wings (2019). "Late Jurassic multituberculate mammals from Langenberg Quarry (Lower Saxony, Germany) and palaeobiogeography of European Jurassic multituberculates".Historical Biology: An International Journal of Paleobiology.33 (5):616–629.doi:10.1080/08912963.2019.1650274.S2CID 201201555.
  448. ^Lucas N. Weaver; Gregory P. Wilson; L. J. Krumenacker; Kayla Mclaughlin; Jason R. Moore; David J. Varricchio (2019). "New multituberculate mammals from the mid-Cretaceous (lower Cenomanian) Wayan Formation of southeastern Idaho and implications for the early evolution of Cimolodonta".Journal of Vertebrate Paleontology.39 (2): e1604532.Bibcode:2019JVPal..39E4532W.doi:10.1080/02724634.2019.1604532.S2CID 196655261.
  449. ^Nao Kusuhashi; Yuan-Qing Wang; Xun Jin (2020). "A new eobaatarid multituberculate (Mammalia) from the Lower Cretaceous Fuxin Formation, Fuxin-Jinzhou Basin, Liaoning, northeastern China".Journal of Mammalian Evolution.27 (4):605–623.doi:10.1007/s10914-019-09481-w.S2CID 201283262.
  450. ^Nao Kusuhashi; Yuan-Qing Wang; Chuan-Kui Li; Xun Jin (2020). "New gobiconodontid (Eutriconodonta, Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, Liaoning, China".Vertebrata PalAsiatica.58 (1):45–66.doi:10.19615/j.cnki.1000-3118.190724.
  451. ^Patrick M. O'Connor; David W. Krause; Nancy J. Stevens; Joseph R. Groenke; Ross D.E. MacPhee; Daniela C. Kalthoff; Eric M. Roberts (2019)."A new mammal from the Turonian–Campanian (Upper Cretaceous) Galula Formation, southwestern Tanzania".Acta Palaeontologica Polonica.64 (1):65–84.doi:10.4202/app.00568.2018.
  452. ^John R. Wible; Sarah L. Shelley; Shundong Bi (2019)."New genus and species of djadochtatheriid multituberculate (Allotheria, Mammalia) from the Upper Cretaceous Bayan Mandahu Formation of Inner Mongolia".Annals of Carnegie Museum.85 (4):285–327.doi:10.2992/007.085.0401.S2CID 210840006.
  453. ^Haibing Wang; Jin Meng; Yuanqing Wang (2019). "Cretaceous fossil reveals a new pattern in mammalian middle ear evolution".Nature.576 (7785):102–105.Bibcode:2019Natur.576..102W.doi:10.1038/s41586-019-1792-0.PMID 31776514.S2CID 208330587.
  454. ^abAlexander O. Averianov; Thomas Martin; Alexey V. Lopatin; Julia A. Schultz; Rico Schellhorn; Sergei Krasnolutskii; Pavel Skutschas; Stepan Ivantsov (2019). "Haramiyidan mammals from the Middle Jurassic of Western Siberia, Russia. Part 1: Shenshouidae andMaiopatagium".Journal of Vertebrate Paleontology.39 (4): e1669159.Bibcode:2019JVPal..39E9159A.doi:10.1080/02724634.2019.1669159.S2CID 209439988.
  455. ^Chang-Fu Zhou; Bhart-Anjan S. Bhullar; April I. Neander; Thomas Martin; Zhe-Xi Luo (2019). "New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones".Science.365 (6450):276–279.Bibcode:2019Sci...365..276Z.doi:10.1126/science.aau9345.PMID 31320539.S2CID 197663503.
  456. ^Fangyuan Mao; Yaoming Hu; Chuankui Li; Yuanqing Wang; Morgan Hill Chase; Andrew K. Smith; Jin Meng (2020). "Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal".Science.367 (6475):305–308.Bibcode:2020Sci...367..305M.doi:10.1126/science.aay9220.PMID 31806694.S2CID 208768326.
  457. ^Fang-Yuan Mao; Jin Meng (2019). "A new haramiyidan mammal from the Jurassic Yanliao Biota and comparisons with other haramiyidans".Zoological Journal of the Linnean Society.186 (2):529–552.doi:10.1093/zoolinnean/zly088.
  458. ^Thomas Martin; Alexander O. Averianov; Kai R. K. Jäger; Achim H. Schwermann; Oliver Wings (2019)."A large morganucodontan mammaliaform from the Late Jurassic of Germany".Fossil Imprint.75 (3–4):504–509.doi:10.2478/if-2019-0030.S2CID 210921885.
  459. ^Kai R. K. Jäger; Pam G. Gill; Ian Corfe; Thomas Martin (2019). "Occlusion and dental function ofMorganucodon andMegazostrodon".Journal of Vertebrate Paleontology.39 (3): e1635135.Bibcode:2019JVPal..39E5135J.doi:10.1080/02724634.2019.1635135.S2CID 203408846.
  460. ^Fang-Yuan Mao; Xiao-Ting Zheng; Xiao-Li Wang; Yuan-Qing Wang; Shun-Dong Bi; Jin Meng (2019). "Evidence of diphyodonty and heterochrony for dental development in euharamiyidan mammals from Jurassic Yanliao Biota".Vertebrata PalAsiatica.57 (1):51–76.doi:10.19615/j.cnki.1000-3118.180803.
  461. ^Jin Meng; Fangyuan Mao; Gang Han; Xiao-Ting Zheng; Xiao-Li Wang; Yuanqing Wang (2019)."A comparative study on auditory and hyoid bones of Jurassic euharamiyidans and contrasting evidence for mammalian middle ear evolution".Journal of Anatomy.236 (1):50–71.doi:10.1111/joa.13083.PMC 6904648.PMID 31498899.
  462. ^Fangyuan Mao; Jin Meng (2019). "Tooth microwear and occlusal modes of euharamiyidans from the Jurassic Yanliao Biota reveal mosaic tooth evolution in Mesozoic allotherian mammals".Palaeontology.62 (4):639–660.Bibcode:2019Palgy..62..639M.doi:10.1111/pala.12421.S2CID 134374987.
  463. ^Elsa Panciroli; Julia A. Schultz; Zhe-Xi Luo (2019)."Morphology of the petrosal and stapes ofBorealestes (Mammaliaformes, Docodonta) from the Middle Jurassic of Skye, Scotland".Papers in Palaeontology.5 (1):139–156.Bibcode:2019PPal....5..139P.doi:10.1002/spp2.1233.
  464. ^Elsa Panciroli; Roger B. J. Benson; Zhe-Xi Luo (2019)."The mandible and dentition ofBorealestes serendipitus (Docodonta) from the Middle Jurassic of Skye, Scotland"(PDF).Journal of Vertebrate Paleontology.39 (3): e1621884.Bibcode:2019JVPal..39E1884P.doi:10.1080/02724634.2019.1621884.hdl:20.500.11820/75714386-2baa-4512-b4c8-add5719f129b.S2CID 199637122.
  465. ^Julia A. Schultz; Bhart-Anjan S. Bhullar; Zhe-Xi Luo (2019). "Re-examination of the Jurassic mammaliaformDocodon victor by computed tomography and occlusal functional analysis".Journal of Mammalian Evolution.26 (1):9–38.doi:10.1007/s10914-017-9418-5.S2CID 43555632.
  466. ^Tony Harper; Guillermo W. Rougier (2019)."Petrosal morphology and cochlear function in Mesozoic stem therians".PLOS ONE.14 (8): e0209457.Bibcode:2019PLoSO..1409457H.doi:10.1371/journal.pone.0209457.PMC 6693738.PMID 31412094.
  467. ^Neil F. Adams; Emily J. Rayfield; Philip G. Cox; Samuel N. Cobb; Ian J. Corfe (2019)."Functional tests of the competitive exclusion hypothesis for multituberculate extinction".Royal Society Open Science.6 (3): Article ID 181536.Bibcode:2019RSOS....681536A.doi:10.1098/rsos.181536.PMC 6458384.PMID 31032010.
  468. ^Thorsten Plogschties; Thomas Martin (2019). "New information on the maxilla, dentary, and dentition ofMaotherium sinense, with comments on the zhangheotheriid dental formulae".PalZ.94 (1):155–165.doi:10.1007/s12542-019-00460-3.S2CID 189950277.
  469. ^K. R. K. Jäger; Z.-X. Luo; T. Martin (2019). "Postcranial skeleton ofHenkelotherium guimarotae (Cladotheria, Mammalia) and locomotor adaptation".Journal of Mammalian Evolution.27 (3):349–372.doi:10.1007/s10914-018-09457-2.S2CID 145881918.
  470. ^Tony Harper; Ana Parras; Guillermo W. Rougier (2019). "Reigitherium (Meridiolestida, Mesungulatoidea) an enigmatic Late Cretaceous mammal from Patagonia, Argentina: morphology, affinities, and dental evolution".Journal of Mammalian Evolution.26 (4):447–478.doi:10.1007/s10914-018-9437-x.hdl:11336/81478.S2CID 21654055.
  471. ^Aitor Navarro-Díaz; Borja Esteve-Altava; Diego Rasskin-Gutman (2019)."Disconnecting bones within the jaw-otic network modules underlies mammalian middle ear evolution".Journal of Anatomy.235 (1):15–33.doi:10.1111/joa.12992.PMC 6579944.PMID 30977522.
  472. ^Katrina E. Jones; Kenneth D. Angielczyk; Stephanie E. Pierce (2019)."Stepwise shifts underlie evolutionary trends in morphological complexity of the mammalian vertebral column".Nature Communications.10 (1): Article number 5071.Bibcode:2019NatCo..10.5071J.doi:10.1038/s41467-019-13026-3.PMC 6838112.PMID 31699978.
  473. ^Meng Chen; Caroline A. E. Strömberg; Gregory P. Wilson (2019)."Assembly of modern mammal community structure driven by Late Cretaceous dental evolution, rise of flowering plants, and dinosaur demise".Proceedings of the National Academy of Sciences of the United States of America.116 (20):9931–9940.Bibcode:2019PNAS..116.9931C.doi:10.1073/pnas.1820863116.PMC 6525522.PMID 31036651.
  474. ^Gemma Louise Benevento; Roger B. J. Benson; Matt Friedman (2019)."Patterns of mammalian jaw ecomorphological disparity during the Mesozoic/Cenozoic transition".Proceedings of the Royal Society B: Biological Sciences.286 (1902): Article ID 20190347.doi:10.1098/rspb.2019.0347.PMC 6532522.PMID 31039714.
  475. ^Tai Kubo; Manabu Sakamoto; Andrew Meade; Chris Venditti (2019)."Transitions between foot postures are associated with elevated rates of body size evolution in mammals".Proceedings of the National Academy of Sciences of the United States of America.116 (7):2618–2623.Bibcode:2019PNAS..116.2618K.doi:10.1073/pnas.1814329116.PMC 6377445.PMID 30692262.
  476. ^Malena Lorente (2019)."What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna".Journal of Anatomy.235 (6):1024–1035.doi:10.1111/joa.13065.PMC 6875937.PMID 31373392.
  477. ^David M. Grossnickle; Stephanie M. Smith; Gregory P. Wilson (2019). "Untangling the multiple ecological radiations of early mammals".Trends in Ecology & Evolution.34 (10):936–949.Bibcode:2019TEcoE..34..936G.doi:10.1016/j.tree.2019.05.008.PMID 31229335.S2CID 195327500.
  478. ^Bhart-Anjan S. Bhullar; Armita R. Manafzadeh; Juri A. Miyamae; Eva A. Hoffman; Elizabeth L. Brainerd; Catherine Musinsky; Alfred W. Crompton (2019). "Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function".Nature.566 (7745):528–532.Bibcode:2019Natur.566..528B.doi:10.1038/s41586-019-0940-x.PMID 30760927.S2CID 61155882.
  479. ^David W. Krause; Joseph J.W. Sertich; Patrick M. O'Connor; Kristina Curry Rogers; Raymond R. Rogers (2019). "The Mesozoic biogeographic history of Gondwanan terrestrial vertebrates: insights from Madagascar's fossil record".Annual Review of Earth and Planetary Sciences.47:519–553.Bibcode:2019AREPS..47..519K.doi:10.1146/annurev-earth-053018-060051.S2CID 135425174.
  480. ^Raquel Moya-Costa; Gloria Cuenca-Bescós; Blanca Bauluz (2019)."Protocol for the reconstruction of micromammals from fossils. Two case studies: The skulls ofBeremendia fissidens andDolinasorex glyphodon".PLOS ONE.14 (3): e0213174.Bibcode:2019PLoSO..1413174M.doi:10.1371/journal.pone.0213174.PMC 6426217.PMID 30893322.
  481. ^Joëlle Barido-Sottani; Gabriel Aguirre-Fernández; Melanie J. Hopkins; Tanja Stadler; Rachel Warnock (2019)."Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process".Proceedings of the Royal Society B: Biological Sciences.286 (1902): Article ID 20190685.doi:10.1098/rspb.2019.0685.PMC 6532507.PMID 31064306.
  482. ^Borja Figueirido; Paul Palmqvist; Juan A. Pérez-Claros; Christine M. Janis (2019)."Sixty-six million years along the road of mammalian ecomorphological specialization".Proceedings of the National Academy of Sciences of the United States of America.116 (26):12698–12703.Bibcode:2019PNAS..11612698F.doi:10.1073/pnas.1821825116.PMC 6600985.PMID 31182613.
  483. ^Sergio Daniel Tarquini; Maria Amelia Chemisquy; Sandrine Ladevèze; Francisco Juan Prevosti (2019)."The scope of traditional and geometric morphometrics for inferences of diet in carnivorous fossil mammals".Ameghiniana.56 (4):307–318.doi:10.5710/AMGH.24.07.2019.3255.S2CID 201189256.
  484. ^Javier N. Gelfo; Francisco J. Goin; Nicolás Bauzá; Marcelo A. Reguero (2019)."The fossil record of Antarctic land mammals: commented review and hypotheses for future research".Advances in Polar Science.30 (3):274–292.doi:10.13679/j.advps.2019.0021.
  485. ^Estevan Eltink; Mariela Castro; Felipe Chinaglia Montefeltro; Mario André Trindade Dantas; Carolina Saldanha Scherer; Paulo Victor de Oliveira; Max Cardoso Langer (2019). "Mammalian fossils from Gruta do Ioiô cave and past of the Chapada Diamantina, northeastern Brazil, using taphonomy, radiocarbon dating and paleoecology".Journal of South American Earth Sciences.98: Article 102379.doi:10.1016/j.jsames.2019.102379.S2CID 210295440.
  486. ^Graham Gower; Lindsey E. Fenderson; Alexander T. Salis; Kristofer M. Helgen; Ayla L. van Loenen; Holly Heiniger; Emilia Hofman-Kamińska; Rafał Kowalczyk; Kieren J. Mitchell; Bastien Llamas; Alan Cooper (2019)."Widespread male sex bias in mammal fossil and museum collections".Proceedings of the National Academy of Sciences of the United States of America.116 (38):19019–19024.Bibcode:2019PNAS..11619019G.doi:10.1073/pnas.1903275116.PMC 6754617.PMID 31481609.
  487. ^Lovegrove, Barry G. (2019). "Obligatory Nocturnalism in Triassic Archaic Mammals: Preservation of Sperm Quality?".Physiological and Biochemical Zoology.92 (6):544–553.doi:10.1086/705440.PMID 31560253.S2CID 203569050.
Retrieved from "https://en.wikipedia.org/w/index.php?title=2019_in_paleomammalogy&oldid=1285600660"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp