Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2018 in paleobotany

From Wikipedia, the free encyclopedia

Overview of the events of 2018 in paleobotany
List of years in paleobotany
In arthropod paleontology
2015
2016
2017
2018
2019
2020
2021
In reptile paleontology
2015
2016
2017
2018
2019
2020
2021
In archosaur paleontology
2015
2016
2017
2018
2019
2020
2021
In mammal paleontology
2015
2016
2017
2018
2019
2020
2021
In paleoichthyology
2015
2016
2017
2018
2019
2020
2021

This article records newtaxa ofplants that are scheduled to bedescribed during the year 2018, as well as other significant discoveries and events related topaleobotany that occurred in the year 2018.

Flowering plants

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Alloberberis axelrodii[1]

Sp. nov

Valid

Doweld

Miocene

 United States
( Nevada)

A member of the familyBerberidaceae; a replacement name for the previously invalidly publishedMahonia sinuataAxelrod (1985), lackingholotype designation when published.

Alloberberis caeruleomontana[1]

Nom. nov

Valid

Doweld

Miocene

 United States
( Oregon)

A member of the familyBerberidaceae; a replacement name forIlex sinuata Chaney & Axelrod (1959).

Anacolosidites eosenonicus[2]

Sp. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

Apollen taxon, possibly a member of the familyLoranthaceae.

Aniba caucasica[3]

Nom. nov

Valid

Doweld

Pliocene

Abkhazia

A species ofAniba; a replacement name forAniba longifolia Kolakovsky & Schakryl (1958).

Anisodromum upchurchii[4]

Sp. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

Arosid described on the basis of fossil leaves.

Annona nepalensis[5]

Sp. nov

Valid

Prasadet al.

Miocene

Churia Formation

   Nepal

A species ofAnnona.

Araliaephyllum popovii[6]

Sp. nov

Valid

Golovneva

Early Cretaceous (Albian)

 Russia

A member ofLaurales described on the basis of fossil leaves.

Archeampelos betulifolia[7]

Sp. nov

Valid

Moiseeva, Kodrul & Herman

Paleocene

Zeya–Bureya Basin

 Russia

A flowering plant described on the basis of fossil leaves, similar to leaves of members of the familyBetulaceae.

Austrovideira[8]

Gen. et sp. nov

Valid

Rozefelds & Pace

EarlyOligocene

 Australia

A member ofVitaceae. Genus includes new speciesA. dettmannae.

Berberis miopannonica[1]

Nom. nov

Valid

Doweld

Miocene

 Romania

A species ofBerberis; a replacement name forBerberis lanceolata Givulescu (1985).

Berberis notata[1]

Nom. nov

Valid

Doweld

Miocene

 Austria

A species ofBerberis; a replacement name forIlex ambigua Unger (1847) andBerberis ambigua Kovar-Eder & Kvaček (2004).

Berryoxylon[9]

Gen. et sp. nov

Valid

Awasthi, Mehrotra & Shukla

LateMiocene–earlyPliocene

Cuddalore Sandstone Formation

 India

Afossil wood showing affinities with members of the genusBerrya. Genus includes new speciesB. cuddalorensis.

Bignonioxylon[10]

Gen. et sp. nov

Valid

Moya & Brea

LatePleistocene

Arroyo Feliciano Formation

 Argentina

A member ofBignoniaceae described on the basis of fossil wood. Genus includes new speciesB. americanum.

Burretiodendron guangxiensis[11]

Sp. nov

Valid

Dong & Sunin Donget al.

Oligocene

Ningming Formation

 China

A species ofBurretiodendron.

Buxus pliosinica[12]

Sp. nov

Valid

Huang, Su & Zhou

LatePliocene

Sanying Formation

 China

A species ofBuxus.

Canarium guangxiensis[13]

Sp. nov

Valid

Han & Manchesterin Hanet al.

LateOligocene to lateMiocene

Erzitang Formation
Foluo Formation
Yongning Formation

 China

A species ofCanarium

Carlquistoxylon australe[14]

Sp. nov

Valid

Pujanaet al.

Early Cretaceous (lateAlbian)

Cerro Barcino Formation

 Argentina

A flowering plant of uncertain phylogenetic placement, described on the basis offossil wood.

Castanopsis guangxiensis[15]

Sp. nov

Valid

Huanget al.

LateOligocene

Yongning Formation

 China

A species ofCastanopsis.

Castanopsis nanningensis[15]

Sp. nov

Valid

Huanget al.

LateOligocene

Yongning Formation

 China

A species ofCastanopsis.

Chenocybus[16]

Gen. et sp. nov

Valid

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement. Genus includes new speciesC. allodapus.

Chisochetonoxylon vastanensis[17]

Sp. nov

Valid

Shukla & Mehrota

EarlyEocene

Cambay Shale Formation

 India

A member of the familyMeliaceae described on the basis offossil wood.

Cladium transdnestrovicum[18]

Nom. nov

Valid

Doweld

Miocene (Serravallian)

Transnistria

A species ofCladium; a replacement name forCladium crassum Negru (1972), preoccupied by extantC. crassum (Thwaites) Kükenthal.

Clerodendrum sarmatiacum[3]

Nom. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species ofClerodendrum; a replacement name forClerodendrum ovalifolium Baikovskajain Kryshtofovich & Baikovskaja (1965).

Cobbania pharao[19]

Sp. nov

Valid

Coiffard & Mohr

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A member of the familyAraceae belonging or related to the subfamilyAroideae.

Concavistylon[20]

Gen. et 2 sp. nov

Valid

Manchester, Pigg & Devore

EarlyEocene to MiddleMiocene

Little Butte Volcanic Series

 United States( Oregon)

ATrochodendraceae genus. Type speciesC. kvacekii Manchester, Pigg & Devore (2018) from Oregon
C. wehrii Manchesteret al. (2018) from Washington state and British Columbia was originally described as a second species of this genus,[21] but subsequently it was transferred to the separate genusParaconcavistylon.[22]

Craspedodromophyllum boguchanicum[7]

Sp. nov

Valid

Moiseeva, Kodrul & Herman

Paleocene

Zeya–Bureya Basin

 Russia

A member of the familyBetulaceae.

Cretaceoxylon[23]

Gen. et sp. nov

Valid

Pujanain Pujanaet al.

Late Cretaceous (Campanian)

Santa Marta Formation

Antarctica
(James Ross Island)

Aeudicot of uncertain phylogenetic placement, described on the basis offossil wood. Genus includes new speciesC. heteropunctatum.

Cryptocaryoxylon lemnium[24]

Sp. nov

Valid

Mantzouka

EarlyMiocene

 Greece

A member of the familyLauraceae.

Cryptocaryoxylon lesbium[24]

Sp. nov

Valid

Mantzouka

EarlyMiocene

 Greece

A member of the familyLauraceae.

Cussoniophyllum[25]

Nom. nov

Valid

Doweld

Late Cretaceous (Cenomanian)

 Czech Republic

A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly publishedCussoniphyllum Velenovský (1889). Genus includes"Cussonia" partita Velenovský (1882).

Cyperus maii[18]

Nom. nov

Valid

Doweld

Miocene

 Germany

A species ofCyperus; a replacement name forDichostylis macrocarpa Mai (1987).

Cyperus waltheri[18]

Nom. nov

Valid

Doweld

Miocene

 Germany

A species ofCyperus; a replacement name forDichostylis minor Maiin Mai & Walther (1991).

Dakotanthus[26]

Gen. et comb. nov

Valid

Manchesteret al.

Cretaceous (lateAlbian toCenomanian)

Dakota Formation
Woodbine Formation

 United States
( Kansas
 Nebraska
 Texas)

An earlyeudicot; a new genus for"Carpites" cordiformis Lesquereux (1892).

Dalbergioxylon biseriatensis[27]

Sp. nov

Valid

Chenget al.

Pliocene

Yuanmou Basin

 China

A member of the familyFabaceae described on the basis offossil wood.

Diaphoranthus[16]

Gen. et sp. nov

Junior homonym

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement. Genus includes new speciesD. burmensis. The generic name is preoccupied byDiaphoranthus Meyen (1834); Poinar (2019) coined a replacement nameExalloanthum.[28]

Dicotylophyllum skogii[4]

Sp. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves.

Dioscorites palauensis[29]

Sp. nov

Valid

Guzmán-Vázquez, Calvillo-Canadell & Sánchez-Beristain

Late Cretaceous

Olmos Formation

 Mexico

A member of the familyDioscoreaceae.

Diplosophyllum[25]

Nom. nov

Valid

Doweld

Late Cretaceous (Cenomanian)

 Czech Republic
 Germany

A flowering plant described on the basis of fossil leaves; a replacement name for the preoccupiedDiplophyllum Velenovský & Viniklář (1929). Genus includes"Inga" cottae Ettingshausen (1867),"Diplophyllum" cretaceum Velenovský & Viniklář (1929),"Hymenaea" elongata Velenovský (1884),"Hymenaea" inaequalis Velenovský (1884) and"Hymenaea" primigenia de Saportain Velenovský (1884).

Dipterocarpuspollenites cretacea[30]

Sp. nov

Valid

Prasadet al.

Late Cretaceous (Maastrichtian)

 India

Apollen taxon belonging to the familyDipterocarpaceae.

Donlesia cheyennensis[31]

Sp. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Cheyenne Sandstone

 United States
( Kansas)

A member of the familyCeratophyllaceae.

Ebenoxylon cuddalorensis[9]

Sp. nov

Valid

Awasthi, Mehrotra & Shukla

LateMiocene–earlyPliocene

Cuddalore Sandstone Formation

 India

Afossil wood showing affinities with members of the familyEbenaceae.

Edencarpa[32]

Gen. et sp. nov

Valid

Atkinson, Stockey & Rothwell

Late Cretaceous (earlyConiacian)

 Canada
( British Columbia)

A member ofCornales. Genus includes new speciesE. grandis.

Endobeuthos[33]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement. Originally described as a possible relative of members of the familyDilleniaceae; Chambers & Poinar (2023) subsequently reinterpreted it as a member of the familyProteaceae,[34] but this interpretation was rejected by Lamont & Ladd (2024).[35] Genus includes new speciesE. paleosum.

Eucalyptoxylon cuddalorensis[9]

Sp. nov

Valid

Awasthi, Mehrotra & Shukla

LateMiocene–earlyPliocene

Cuddalore Sandstone Formation

 India

Afossil wood showing affinities with members of the genusEucalyptus.

Euphorbia pontiana[3]

Nom. nov

Valid

Doweld

Miocene

 Ukraine

A species ofEuphorbia; a replacement name forEuphorbia cylindrica Negru (1979).

Eydeia vancouverensis[32]

Sp. nov

Valid

Atkinson, Stockey & Rothwell

Late Cretaceous (earlyConiacian)

 Canada
( British Columbia)

A member ofCornales.

Ficophyllum angustifolium[36]

Nom. nov

Valid

Doweld

Late Cretaceous (Campanian)

 Germany

A replacement name forFicus angustifolia Hosius (1869).

Ficophyllum antiquum[36]

Nom. nov

Valid

Doweld

Late Cretaceous (Campanian)

 Germany

A replacement name forFicus crassinervis Hosius (1869).

Ficophyllum hosii[36]

Nom. nov

Valid

Doweld

Late Cretaceous (Santonian)

 Germany

A replacement name forFicus laurifolia Hosius & Marck (1880).

Ficophyllum magnolioides[36]

Nom. nov

Valid

Doweld

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

A replacement name forFicus magnoliifolia Lesquereux (1883).

Ficophyllum marckii[36]

Nom. nov

Valid

Doweld

Late Cretaceous (Campanian)

 Germany

A replacement name forFicus elongata Hosius (1869).

Ficus aenigmatica[36]

Nom. nov

Valid

Doweld

Eocene

Wilcox Formation

 United States
( Mississippi)

A species ofFicus; a replacement name forFicus schimperi Lesquereux (1868).

Ficus microtrivia[37]

Sp. nov

Valid

Huang & Zhouin Huanget al.

Miocene

Wenshan Basin

 China

A species ofFicus.

Ficus myrtoides[36]

Nom. nov

Valid

Doweld

Eocene

 United States
( Mississippi)

A species ofFicus; a replacement name forFicus myrtifolius Berry (1916).

Ficus slovenica[36]

Nom. nov

Valid

Doweld

Eocene

 Slovenia

A species ofFicus; a replacement name forFicus pilosa Ettingshausen (1872).

Ficus venustoides[36]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

A species ofFicus; a replacement name forFicus venusta Saporta (1861).

Ficus venustula[36]

Nom. nov

Valid

Doweld

Eocene

 Croatia

A species ofFicus; a replacement name forMalpighiastrum venustum Unger (1860).

Ficus yellowstonica[36]

Nom. nov

Valid

Doweld

Paleocene

 United States
( Wyoming)

A species ofFicus; a replacement name forFicus densifolia Knowlton (1899).

Fissistigma nanningense[38]

Sp. nov

Valid

Liet al.

Oligocene

Yongning Formation

 China

A species ofFissistigma.

Gardenia eocenicus[39]

Sp. nov

Valid

Shukla, Mehrotra & Nawaz Ali

EarlyEocene

Palana Formation

 India

A species ofGardenia.

Gastonispermum[40]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

A flowering plant with affinities toAustrobaileyales orNymphaeales. Genus includes new speciesG. portugallicum.

Gleditsioxylon jiangsuensis[41]

Sp. nov

Valid

Chenget al.

EarlyMiocene

 China

A member ofLeguminosae described on the basis of fossil wood.

Gmelina siwalika[42]

Sp. nov

Valid

Khan, Bera & Berain Khanet al.

Late Pliocene or early Pleistocene

Kimin Formation

 India

A species ofGmelina.

Goniothalamus miocenicus[5]

Sp. nov

Valid

Prasadet al.

Late Miocene

Middle Churia Formation

   Nepal

A species ofGoniothalamus.

Gouania miocenica[43]

Sp. nov

Valid

Hernandez-Hernández & Castañeda-Posadas

EarlyMiocene

Mexican amber

 Mexico

A species ofGouania.

Hederago[25]

Nom. nov

Valid

Doweld

Late Cretaceous (Cenomanian)

 Czech Republic

A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly publishedHederophyllum Velenovský (1889). Genus includes"Hedera" credneriifolia Velenovský (1882) and"Hedera" primordialis de Saporta (1879).

Hemitrapa alpina[44]

Sp. nov

Valid

Su & Zhouin Suet al.

EarlyOligocene

 China

A member of the familyLythraceae. Originally described as a species ofHemitrapa, but subsequently transferred to the genusPrimotrapa by Liet al. (2020).[45]

Hibiscus sarmatiacus[3]

Sp. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species ofHibiscus; a replacement name for the invalidly namedHibiscus splendens Baikovskaja.

Holigarna palaeograhamii[39]

Sp. nov

Valid

Shukla, Mehrotra & Nawaz Ali

EarlyEocene

Palana Formation

 India

A species ofHoligarna.

Hopenium tertiarum[9]

Sp. nov

Valid

Awasthi, Mehrotra & Shukla

LateMiocene–earlyPliocene

Cuddalore Sandstone Formation

 India

Afossil wood showing affinities with members of the genusHopea.

Ipomoea meghalayensis[46]

Sp. nov

Valid

Srivastava, Mehrotra & Dilcher

Paleocene (Thanetian)

 India

A species ofIpomoea.

Kirchheimeria[47]

Gen. et comb. nov

Valid

Kowalskiin Kowalski & Worobiec

Oligocene toPliocene

 Denmark
 Germany
 Poland
 Russia
( Kaliningrad Oblast)

A member ofEricaceae of uncertain phylogenetic placement. Genus includes"Elaeocarpus" globulus Menzel (1906).

Kvacekispermum[48]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Figueira da Foz Formation

 Portugal

A member of the familyChloranthaceae. Genus includes new speciesK. rugosum.

Lachnociona camptostylus[49]

Sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A flowering plant of uncertain phylogenetic placement, most similar to members of the familiesBrunelliaceae andCunoniaceae.

Lacinipetalum[50]

Gen. et sp. nov

Valid

Judet al.

Paleocene (earlyDanian)

UpperSalamanca Formation

 Argentina

A member ofCunoniaceae. Genus includes new speciesL. spectabilum.

Laurinoxylon rennerae[51]

Sp. nov

Valid

Estrada-Ruizet al.

Late Cretaceous (lateCampanian)

McRae Formation

 United States
( New Mexico)

A member ofLauraceae described on the basis of fossil wood.

Laurus ficoides[36]

Nom. nov

Valid

Doweld

Eocene

 France

A species ofLaurus; a replacement name forFicus reticulata Saporta (1863).

Lefipania[52]

Gen. et sp. nov

Valid

Martínez, Gandolfo & Cúneo

Late Cretaceous (Maastrichtian)

Lefipán Formation

 Argentina

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves. Genus includes new speciesL. padillae.

Leguminocarpum oguruiensis[53]

Sp. nov

Valid

Yabe & Nakagawa

Miocene

Shimo Formation

 Japan

A fossillegume fruit.

Ligustrum miovulgare[3]

Sp. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species ofLigustrum; a replacement name for the invalidly namedLigustrum vulgare var.fossilis Baikovskaja.

Lijinganthus[54]

Gen. et sp. nov

Valid

Liuet al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member ofPentapetalae of uncertain phylogenetic placement. Genus includes new speciesL. revoluta.

Limnobiophyllum stockeyana[19]

Sp. nov

Valid

Coiffard & Mohr

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A member of the familyAraceae belonging to the subfamilyLemnoideae.

Liquidambar fujianensis[55]

Sp. nov

Valid

Donget al.

MiddleMiocene

Fotan Group

 China

A species ofLiquidambar.

Lithocarpoxylon microporosum[27]

Sp. nov

Valid

Chenget al.

Pliocene

Yuanmou Basin

 China

A member of the familyFagaceae described on the basis offossil wood.

Lithocarpoxylon nanningensis[15]

Sp. nov

Valid

Huanget al.

LateOligocene

Yongning Formation

 China

A member ofFagaceae described on the basis of fossil wood.

Litseoxylon[56]

Gen. et sp. nov

Valid

Huanget al.

LateOligocene

Yongning Formation

 China

A member of the familyLauraceae. Genus includes new speciesL. nanningensis.

Luckowcarpa[57]

Gen. et sp. nov

Valid

Martínez

LateEocene

Esmeraldas Formation

 Colombia

A member ofFabaceae belonging to the groupDalbergieae. Genus includes new speciesL. gunnii.

Lusitanispermum[40]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

A flowering plant with affinities toAustrobaileyales orNymphaeales. Genus includes new speciesL. choffatii.

Lycopus europleistocenicus[3]

Sp. nov

Valid

Doweld

Pleistocene

 Belarus

A species ofLycopus; a replacement name for the invalidly namedLycopus intermedius Dorofeev (1963).

Malus antiqua[3]

Nom. nov

Valid

Doweld

Miocene

 Romania

A species ofMalus; a replacement name forMalus pulcherrima Givulescu (1980).

Maytenoxylon[58]

Gen. et sp. nov

Valid

Franco

Late Cenozoic

Ituzaingó Formation

 Argentina

A member ofCelastraceae described on the basis of fossil wood. Genus includes new speciesM. perforatum.

Mcraeoxylon[51]

Gen. et sp. nov

Valid

Estrada-Ruizet al.

Late Cretaceous (lateCampanian)

McRae Formation

 United States
( New Mexico)

A flowering plant described on the basis of fossil wood, with a suite of features seen in several families ofMalpighiales,Myrtales andOxalidales. Genus includes new speciesM. waddellii.

Meliosma antiqua[3]

Nom. nov

Valid

Doweld

Oligocene

 United Kingdom

A species ofMeliosma; a replacement name forCalvarinus reticulatus Reid & Reid (1910).

Menispermites calderensis[59]

Sp. nov

Valid

Judet al.

Eocene (Ypresian)

Huitrera Formation

 Argentina

A member of the familyMenispermaceae described on the basis of fossil leaves.

Menispermites olmosensis[29]

Sp. nov

Valid

Guzmán-Vázquez, Calvillo-Canadell & Sánchez-Beristain

Late Cretaceous

Olmos Formation

 Mexico

A member of the familyMenispermaceae.

Nelumbo jiayinensis[60]

Sp. nov

Valid

Lianget al.

Late Cretaceous (Santonian)

Yong'ancun Formation

 China

A species ofNelumbo.

Neofructus[61]

Gen. et sp. nov

Valid

Liu & Wang

Early Cretaceous (BarremianAptian)

Yixian Formation

 China

An early flowering plant. Genus includes new speciesN. lingyuanensis.

Nitaspermum[62]

Gen. et 5 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Maryland
 Virginia)

A fossil seed with affinities toAustrobaileyales andNymphaeales. Genus includes new speciesN. taylorii,N. hopewellense,N. crassum,N. virginiense andN. marylandense.

Nyssa givulescui[3]

Nom. nov

Valid

Doweld

Oligocene

 Romania

Atupelo; a replacement name forNyssa maxima Givulescu, Petrescu & Barbu (1997).

Obamacarpa[32]

Gen. et sp. nov

Valid

Atkinson, Stockey & Rothwell

Late Cretaceous (earlyConiacian)

 Canada
( British Columbia)

A member ofCornales. Genus includes new speciesO. edenensis.

Ocotea undulatoides[3]

Nom. nov

Valid

Doweld

Miocene

 Germany

A species ofOcotea; a replacement name forLaurophyllum undulatum Weyland & Kilpper (1963).

Paisia[63]

Gen. et sp. nov

Valid

Friis, Mendes & Pedersen

Early Cretaceous (lateBarremian–earlyAlbian)

Almargem Formation

 Portugal

An earlyeudicot. Genus includes new speciesP. pantoporata.

Palaeocarya huashanensis[64]

Sp. nov

Valid

Chenet al.

Oligocene

Ningming Formation

 China

A member of the familyJuglandaceae.

Paleoallium[65]

Gen. et sp. nov

Valid

Pigg, Bryan & DeVore

Eocene
Ypresian

Okanagan Highlands
Klondike Mountain Formation

 United States
 Washington

Amonocot similar to members ofAmaryllidaceae. Genus includes new speciesP. billgenseli.

Paleoallium billgenseli

Paliurus hirsuta[66]

Sp. nov

Valid

Dong & Sunin Donget al.

MiddleMiocene

Fotan Group

 China

A species ofPaliurus.

Palmoxylon araneus[67]

Sp. nov

Valid

Nour-El-Deen, El-Saadawi & Thomas

Oligocene (Rupelian)

Jebel Qatrani Formation

 Egypt

Palmoxylon elsaadawii[67]

Sp. nov

Valid

Nour-El-Deen & Thomasin Nour-El-Deen, Thomas & El-Saadawi

Oligocene (Rupelian)

Jebel Qatrani Formation

 Egypt

Palmoxylon qatraniense[67]

Sp. nov

Valid

Nour-El-Deen, El-Saadawi & Thomas

Oligocene (Rupelian)

Jebel Qatrani Formation

 Egypt

Paraalbizioxylon sinica[27]

Sp. nov

Valid

Chenget al.

Pliocene

Yuanmou Basin

 China

A member of the familyFabaceae described on the basis offossil wood.

Paraalbizioxylon yunnanensis[27]

Sp. nov

Valid

Chenget al.

Pliocene

Yuanmou Basin

 China

A member of the familyFabaceae described on the basis offossil wood.

Parahancornioxylon[68]

Gen. et comb. nov

Valid

Moya, Brea & Lutz

Pliocene

Andalhualá Formation

 Argentina

A member ofApocynaceae described on the basis of fossil wood; a new genus for"Menendoxylon" piptadiensis Lutz (1987).

Paraphyllanthoxylon antarcticum[23]

Sp. nov

Valid

Pujanain Pujanaet al.

Late Cretaceous (Campanian)

Santa Marta Formation

Antarctica
(James Ross Island)

A flowering plant of uncertain phylogenetic placement, described on the basis offossil wood.

Pazlia[40]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

A flowering plant with affinities toAustrobaileyales orNymphaeales. Genus includes new speciesP. hilaris.

Pazliopsis[40]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Almargem Formation

 Portugal

A flowering plant with affinities toAustrobaileyales orNymphaeales. Genus includes new speciesP. reyi.

Pentacentron[21]

Gen. et sp. nov

Valid

Manchesteret al.

Eocene
Ypresian

Okanagan Highlands
Klondike Mountain Formation

 United States
 Washington

A member of the familyTrochodendraceae. The type species isP. sternhartae.

Pentacentron sternhartae

Photinia sarmatiaca[3]

Sp. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species ofPhotinia; a replacement name for the invalidly namedPhotinia acuminata Baikovskajain Kryshtofovich & Baikovskaja (1965).

Pistacia miolentiscus[3]

Nom. nov

Valid

Doweld

Miocene

 Hungary

A species ofPistacia; a replacement name forPistacia lentiscoides Andreánszky & Czifferyin Andreánszky (1959).

Pistacia pliolentiscus[3]

Nom. nov

Valid

Doweld

Pliocene

 Netherlands

A species ofPistacia; a replacement name forPistacia acuminata Reid & Reid (1915).

Pistacioxylon ufuki[69]

Sp. nov

Valid

Akkemik & Poolein Akkemiket al.

EarlyMiocene

Haymana Basin

 Turkey

APistacia-like plant described on the basis offossil wood.

Polyalthioxylon arunachalensis[70]

Sp. nov

Valid

Srivastava, Mehrotra & Srikarni

LatePliocene–EarlyPleistocene

Kimin Formation

 India

A member of the familyAnnonaceae described on the basis offossil wood.

Priscophyllum[25]

Nom. nov

Valid

Doweld

Late Cretaceous (Cenomanian)

 Czech Republic

A flowering plant described on the basis of fossil leaves; a replacement name for the invalidly publishedGrevilleophyllum Velenovský (1889). Genus includes"Grevillea" constans Velenovský (1883).

Prunus hirsutipetala[71]

Sp. nov

Valid

Sokoloff, Remizowa & Nuralievin Sokoloffet al.

Eocene

Rovno amber

 Ukraine

A species ofPrunus.

Pseudoanacardium[72]

Gen. et comb. nov

Valid

Manchester & Balmaki

EarlyOligocene

 Peru

A fossil fruit of uncertain phylogenetic placement; a new genus for"Anacardium" peruvianum Berry (1924).

Pseudolimnobiophyllum[19]

Gen. et sp. nov

Valid

Coiffard & Mohr

Late Cretaceous (Campanian)

Quseir Formation

 Egypt

A member of the familyAraceae belonging to the subfamilyLemnoideae. Genus includes new speciesP. simile.

Pseudowinterapollis agatdalensis[73]

Sp. nov

Valid

Grímsson & Zetterin Grímssonet al.

Paleocene (Danian)

Agatdal Formation

 Greenland

Apollen taxon, a member of the familyWinteraceae.

Pterocaryoxylon huxii[27]

Sp. nov

Valid

Chenget al.

Pliocene

Yuanmou Basin

 China

A member of the familyJuglandaceae described on the basis offossil wood.

Pterygota eocenica[39]

Sp. nov

Valid

Shukla, Mehrotra & Nawaz Ali

EarlyEocene

Palana Formation

 India

A species ofPterygota.

Ranunculus eoreptans[3]

Nom. nov

Valid

Doweld

Pliocene

 Belarus

A species ofRanunculus; a replacement name forRanunculus pusillus Dorofeev (1987).

Retiacolpites pigafettaensis[30]

Sp. nov

Valid

Prasadet al.

Late Cretaceous (Maastrichtian)

 India

Apollen taxon resembling pollen of members of the genusPigafetta.

Reyispermum[40]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

Figueira da Foz Formation

 Portugal

A flowering plant with affinities toAustrobaileyales orNymphaeales. Genus includes new speciesR. parvum.

Rhododendron maii[3]

Nom. nov

Valid

Doweld

Pliocene

 Germany

A species ofRhododendron; a replacement name forRhododendron germanicum Mai & Walther (1988).

Rightcania[48]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (Albian)

Potomac Group

 United States
( Virginia)

A member of the familyChloranthaceae. Genus includes new speciesR. kvacekii.

Ripogonum palaeozeylandiae[74]

Sp. nov

Valid

Conran, Kennedy & Bannister

EarlyEocene

 New Zealand

A species ofRipogonum.

Ruprechtioxylon breae[58]

Sp. nov

Valid

Franco

Late Cenozoic

Ituzaingó Formation

 Argentina

A member ofPolygonaceae described on the basis of fossil wood.

Ryparosa churiaensis[5]

Sp. nov

Valid

Prasadet al.

Miocene

Churia Formation

   Nepal

A species ofRyparosa.

Salacia lombardii[75]

Sp. nov

Valid

Hernández-Damián, Gómez-Acevedo & Cevallos-Ferriz

Miocene

 Mexico

A species ofSalacia.

Sambucus sarmatiaca[3]

Sp. nov

Valid

Doweld

Miocene

 Russia
( Rostov Oblast)

A species ofSambucus; a replacement name for the invalidly namedSambucus palaeoracemosa Baikovskajain Kryshtofovich & Baikovskaja (1965).

Sapindopsis retallackii[4]

Sp. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas)

A member or a relative of the familyPlatanaceae described on the basis of fossil leaves.

Schoenoplectiella isolepioides[18]

Sp. nov

Valid

Doweld

Pliocene

 Germany

A member of the familyCyperaceae; a replacement name for the invalidly namedScirpus (Schoenoplectus) isolepioides Mai & Walther (1988).

Scirpus novorossicus[18]

Nom. nov

Valid

Doweld

Miocene (Tortonian)

 Ukraine

A species ofScirpus; a replacement name forScirpus leptocarpus Negru (1986), preoccupied by extantScirpus leptocarpus Mueller (1855).

Setitheca[76]

Gen. et sp. nov

Valid

Poinar & Chambers

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member ofLaurales of uncertain phylogenetic placement. Genus includes new speciesS. lativalva.

Silutanispermum[40]

Gen. et sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous

 Portugal

A flowering plant with affinities toAustrobaileyales orNymphaeales. Genus includes new speciesS. kvacekiorum.

Sloanea siwalika[77]

Sp. nov

Valid

Moreet al.

Pliocene

Geabdat Sandstone Formation

 India

A species ofSloanea.

Soepadmoa[78]

Gen. et sp. nov

Valid

Nixon, Crepet, Gandolfo &Grimaldi

Late Cretaceous (Turonian)

Raritan Formation
(New Jersey amber)

 United States
( New Jersey)

A member ofFagales of uncertain phylogenetic placement. Genus includes new speciesS. cupulata.

Staphylea spinosa[79]

Sp. nov

Valid

Huang & Momoharain Huang, Momohara & Wang

Pleistocene

Shobudani Formation

 Japan

A species ofStaphylea.

Stafylioxylon[8]

Gen. et comb. nov

Valid

Rozefelds & Pace

Eocene

London Clay

 United Kingdom

A member ofVitaceae; a new genus for"Vitaceoxylon" ramunculiformis Poole & Wilkinson (2000).

Stellatia[2]

Gen. et comb. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

Aphytoclast, possibly a member ofNymphaeaceae. Genus includesS. furcata (Duarte & Arai, 2010).

Stephania auriformis[80]

Comb nov

valid

(Hollick) Manchester & Han

Paleocene/Eocene

"King Salmon Lake flora"

 USA
 Alaska

Amoonseed species.
Moved fromDiploclisia auriformis (1994)[81]

Stephania jacquesii[80]

Sp. nov

Valid

Han & Manchesterin Hanet al.

LateEocene to lateOligocene

Clarno Formation
Yongning Formation

 China
 United States
( Oregon)

A species ofStephania.

Stephania psittaca[59]

Sp. nov

Valid

Jud & Gandolfoin Judet al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A species ofStephania.

Stephania wilfii[80]

Sp. nov

Valid

Han & Manchesterin Hanet al.

Paleocene toEocene

Green River Formation

 United States
( Wyoming)

A species ofStephania.

Sterculia acerina[3]

Nom. nov

Valid

Doweld

Eocene

 Czech Republic

A species ofSterculia; a replacement name forAcer crassinervium Ettingshausen (1869).

Symplocos hitchcockii[82]

Sp. nov

Valid

Tiffney, Manchester & Fritsch

EarlyMiocene

Brandon Lignite

 United States
( Vermont)

A species ofSymplocos.

Syzygium christophelii[83]

Sp. nov

Valid

Tarranet al.

EarlyMiocene

 Australia

A species ofSyzygium.

Syzygium gurhaensis[39]

Sp. nov

Valid

Shukla, Mehrotra & Nawaz Ali

EarlyEocene

Palana Formation

 India

A species ofSyzygium.

Tanispermum[84]

Gen. et 4 sp. nov

Valid

Friis, Crane & Pedersen

Early Cretaceous (earlyAptian to early to middleAlbian)

Potomac Group

 United States
( Maryland
 Virginia)

A flowering plant with affinities toAustrobaileyales orNymphaeales. Genus includes new speciesT. hopewellense,T. marylandense,T. drewriense andT. antiquum.

Teuschestanthes[85]

Gen. et sp. nov

Valid

Crepet, Nixon & Weeks

Late Cretaceous (Turonian)

LowerMagothy Formation

 United States
( New Jersey)

A member ofEricales of uncertain phylogenetic placement. Genus includes new speciesT. squamata.

Trichomites[2]

Gen. et 3 sp. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

Aphytoclast. Genus includes new speciesT. brevifurcatus (probably a member ofCampanulaceae),T. duplihelicoidus (affinity unknown) andT. simplex (adicotyledon of uncertain affinity).

Tricolpites joelcastroi[2]

Sp. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

Apollen taxon, an indeterminatedicotyledon.

Trochodendroides sittensis[86]

Sp. nov

Valid

Golovnevain Golovneva & Zolina

Early Cretaceous

 Russia

Taxon described on the basis of fossil leaves resembling leaves of members of the familyCercidiphyllaceae.

Trochodendron postnastae[20]

Sp. nov

Valid

Manchester, Pigg & Devore

MiddleMiocene

Little Butte Volcanic Series

 United States
( Oregon)

A species ofTrochodendron.

Trochodendron rosayi[20]

Sp. nov

Valid

Manchester, Pigg & Devore

MiddleMiocene

Little Butte Volcanic Series

 United States
( Idaho
 Oregon)

A species ofTrochodendron.

Turneroxylon[51]

Gen. et sp. nov

Valid

Estrada-Ruizet al.

Late Cretaceous (lateCampanian)

McRae Formation

 United States
( New Mexico)

Aeudicot with similarities to members ofDilleniaceae, described on the basis of fossil wood. Genus includes new speciesT. newmexicoense.

Ulmus maguanensis[87]

Sp. nov

Valid

Zhang & Xingin Zhanget al.

Miocene

Huazhige Formation

 China

Anelm.

Ulmus prelanceaefolia[87]

Sp. nov

Valid

Zhang & Xingin Zhanget al.

Miocene

Huazhige Formation

 China

Anelm.

Ulmus priamurica[88]

Sp. nov

Valid

Blokhina & Bondarenko

Miocene

Sazanka Formation

 Russia
( Amur Oblast)

Anelm.

Unona miocenica[5]

Sp. nov

Valid

Prasadet al.

Miocene

Churia Formation

   Nepal

A member of the familyAnnonaceae.

Viburnum pliolantana[3]

Nom. nov

Valid

Doweld

Pliocene

 Russia
( Bashkortostan)

A species ofViburnum; a replacement name forViburnum lantanoides Dorofeev (1977).

Weinmannioxylon trichospermoides[23]

Sp. nov

Valid

Pujanain Pujanaet al.

Late Cretaceous (Campanian)

Santa Marta Formation

Antarctica
(James Ross Island)

A member ofCunoniaceae described on the basis offossil wood.

Wilkinsoniphyllum[59]

Gen. et sp. nov

Valid

Judet al.

Paleocene (Danian)

Salamanca Formation

 Argentina

A member of the familyMenispermaceae described on the basis of fossil leaves. Genus includes new speciesW. menispermoides.

Wingia[4]

Gen. et comb. nov

Valid

Wang & Dilcher

Early Cretaceous (Albian)

Dakota Formation

 United States
( Kansas
 Nebraska)

A flowering plant of uncertain phylogenetic placement, described on the basis of fossil leaves. Genus includes"Dicotylophyllum" expansolobum Upchurch & Dilcher (1990).

Zanthoxylum pilari[3]

Nom. nov

Valid

Doweld

Miocene

 Croatia

A species ofZanthoxylum; a replacement name forZanthoxylum affine Pilar (1883).

Zanthoxylum tethyca[3]

Nom. nov

Valid

Doweld

Eocene

 United Kingdom

A species ofZanthoxylum; a replacement name forRutaspermum rugosum Chandler (1964).

Zelkovoxylon yesimae[69]

Sp. nov

Valid

Akkemik & Poolein Akkemiket al.

EarlyMiocene

Haymana Basin

 Turkey

AZelkova-like plant described on the basis offossil wood.

Zygogynum poratus[89]

Sp. nov

Valid

Liang & Zhouin Lianget al.

MiddleMiocene

 China

A species ofZygogynum.

Pinales

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Agathis immortalis[90]

Sp. nov

Valid

Escapaet al.

Paleocene (Danian)

 Argentina

A species ofAgathis.

Agathoxylon crasseradiatum[91]

Sp. nov

Valid

Lignier ex Philippeet al.

Early Cretaceous (lateAptian-Albian)

 France

A member ofAraucariaceae described on the basis offossil wood.

Agathoxylon holbavicum[92]

Sp. nov

Valid

Iamandei, Iamandei & Grădinaru

Early Jurassic

 Romania

Agathoxylon santacruzense[93]

Sp. nov

Valid

Kloster & Gnaedinger

Middle Jurassic

La Matilde Formation

 Argentina

Araucaria lefipanensis[94]

Sp. nov

Valid

Andruchow-Colomboet al.

Late Cretaceous

Lefipán Formation

 Argentina

A species ofAraucaria.

Atlanticoxylon ibiratinum[95]

Sp. nov

Valid

Fariaet al.

Permian (Artinskian)

Irati Formation

 Brazil

A conifer described on the basis offossil wood.

Brachyoxylon cristianicum[92]

Sp. nov

Valid

Iamandei, Iamandei & Grădinaru

Early Jurassic

 Romania

Brachyoxylon holbavicum[92]

Sp. nov

Valid

Iamandei, Iamandei & Grădinaru

Early Jurassic

 Romania

Brachyoxylon zhejiangense[96]

Sp. nov

Valid

Tian, Zhu & Wangin Tianet al.

Early Cretaceous

Guantou Formation

 China

A coniferous wood.

Chimaerostrobus[97]

Gen. et sp. nov

Valid

Atkinsonet al.

Early Jurassic(Pliensbachian-Toarcian)

Mawson Formation

Antarctica

A conifer pollen cone. Genus includes new speciesC. minutus.

Cryptomeria yunnanensis[98]

Sp. nov

Valid

Ding & Zhouin Dinget al.

Oligocene (Rupelian)

Lühe Basin

 China

A member ofCupressaceae, a species ofCryptomeria.

Cunninghamia shangcunica[99]

Sp. nov

Valid

Kodrulet al.

EarlyOligocene

Shangcun Formation

 China

A species ofCunninghamia.

Cyclusphaera annularis[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Apollen taxon with affinities with the familyAraucariaceae.

Cyclusphaera punnulosa[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Apollen taxon with affinities with the familyAraucariaceae.

Elatides laiyangensis[101]

Sp. nov

Valid

Jin & Sunin Jinet al.

Early Cretaceous

Laiyang Formation

 China

A conifer.

Hirandubia[102]

Gen. et sp. nov

Valid

Ghoshet al.

Early Cretaceous

Rajmahal Basin

 India

A member ofCupressaceae. Genus includes new speciesH. cupressoides.

Kirketapel salamanquensis[103]

Sp. nov

Valid

Andruchow-Colomboet al.

Paleocene (Danian)

Salamanca Formation

 Argentina

The oldest member of a scale-leaved clade ofPodocarpaceae.

Marskea heeriana[104]

Sp. nov

Valid

Nosova & Kiritchkova

Middle Jurassic

Irkutsk Coal Basin

 Russia

Morinostrobus[105]

Gen. et sp. nov

Valid

Stockeyet al.

Early Cretaceous (Valanginian)

 Canada
( British Columbia)

A member ofCupressaceae described on the basis of pollen cones. Genus includes new speciesM. holbergensis.

Pinus daflaensis[106]

Nom. nov

Valid

Khan & Bera

Miocene

Dafla Formation

 India

Apine; a replacement name forPinus arunachalensis Khan & Bera (2017) (preoccupied byPinus arunachalensis Srivastava, 2017).

Pinus enochii[107]

Sp. nov

Valid

Huerta Vergara & Cevallos-Ferriz

Late Cretaceous (lateCampanian)

Lutita Packard Formation

 Mexico

Apine.

Pinus leiophylloides[108]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

Apine; a replacement name forPinus pseudotaeda Saporta (1865).

Pinus microstrobus[108]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

Apine; a replacement name forPinus microcarpa Saporta (1865).

Pinus notata[108]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

Apine; a replacement name forPinus divaricata Saporta (1865).

Pinus pentaphylloides[108]

Nom. nov

Valid

Doweld

Late Cretaceous (Santonian)

 Japan

Apine; a replacement name forPinus hokkaidoensis Stockey & Ueda (1986).

Pinus tetraphylloides[108]

Nom. nov

Valid

Doweld

Oligocene (Chattian)

 France

Apine; a replacement name forPinus deflexa Saporta (1865).

Pinus uxui[107]

Sp. nov

Valid

Huerta Vergara & Cevallos-Ferriz

Late Cretaceous (lateCampanian)

Lutita Packard Formation

 Mexico

Apine.

Platycladus preorientalis[109]

Sp. nov

Valid

Heet al.

EarlyMiocene

 China

A species ofPlatycladus.

Podocarpospermum podocarpoides[102]

Sp. nov

Valid

Ghoshet al.

Early Cretaceous

Rajmahal Basin

 India

A member ofPodocarpaceae.

Protocedroxylon zhalantunense[110]

Sp. nov

Valid

Zhang, Tian & Wangin Zhanget al.

Middle Jurassic

Wanbao Formation

 China

A member of the familyPinaceae.

Protocedroxylon zhangii[110]

Sp. nov

Valid

Zhang, Tian & Wangin Zhanget al.

Middle Jurassic

Wanbao Formation

 China

A member of the familyPinaceae.

Protophyllocladoxylon holbavicum[92]

Sp. nov

Valid

Iamandei, Iamandei & Grădinaru

Early Jurassic

 Romania

Pseudofrenelopsis salesii[111]

Sp. nov

Valid

Batistaet al.

Early Cretaceous (Albian)

Romualdo Member

 Brazil

A member ofCheirolepidiaceae.

Rabagostrobus[112]

Gen. et sp. nov

Valid

Kvačeket al.

Early Cretaceous (Albian)

 Spain

An araucarian pollen cone. Genus includes new speciesR. hispanicus.

Sequoioxylon carneyvillense[113]

Sp. nov

Valid

Li, Jin & Manchester

Paleocene

Fort Union Formation

 United States
( Wyoming)

Fossil wood resemblingSequoia.

Sequoioxylon zhangii[114]

Sp. nov

Valid

Tianet al.

Late Cretaceous

 China

A member ofSequoioideae described on the basis offossil wood.

Taxocladus czeremchoviensis[115]

Sp. nov

Valid

Frolov & Mashchuk

Early Jurassic

Czeremkhovskaya Formation

 Russia

Possibly a member of the familyTaxaceae.

Yanliaoa daohugouensis[116]

Sp. nov

Valid

Tanet al.

Middle Jurassic

Daohugou Beds

 China

A member ofCupressaceaesensu lato.

Other seed plants

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Baiera telmensis[115]

Sp. nov

Valid

Frolovin Frolov & Mashchuk

Early Jurassic

Prisayanskaya Formation

 Russia

A member ofGinkgoales.

Calycosperma[117]

Gen. et sp. nov

Valid

Liuet al.

LateDevonian

Wutong Formation

 China

An early seed plant. Genus includes new speciesC. qii.

Carpolithes kurminensis[115]

Sp. nov

Valid

Frolovin Frolov & Mashchuk

Middle Jurassic

Taltsy Formation

 Russia

Seed of a gymnosperm of uncertain affinities.

Cordaites daviessensis[118]

Sp. nov

Valid

Šimůnek

Carboniferous (earlyWestphalian D)

Staunton Formation

 United States
( Indiana)

Cordaites kinneyensis[118]

Sp. nov

Valid

Šimůnek

Carboniferous (Stephanian B)

Atrasado Formation

 United States
( New Mexico)

Cordaites minshallensis[118]

Sp. nov

Valid

Šimůnek

Carboniferous (Bolsovian)

Brazil Formation

 United States
( Indiana)

Cordaites olneyensis[118]

Sp. nov

Valid

Šimůnek

Carboniferous (latePennsylvanian)

Mattoon Formation

 United States
( Illinois)

Cycadolepis ferrugineus[119]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Jurassic (PliensbachianAalenian)

 Australia

A member ofBennettitales belonging to the familyWilliamsoniaceae.

Cycadopites grossus[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Apollen taxon, similar to many of the moderncycad pollen types.

Czekanowskia ottenii[120]

Sp. nov

Valid

Kiritchkova, Kostina & Nosova

Jurassic

 Russia

Eamesia[121]

Gen. et sp. nov

Valid

Yanget al.

Early Cretaceous (Aptian)

Yixian Formation

 China

A member ofEphedraceae. Genus includes new speciesE. chinensis.

Eretmophyllum neimengguensis[122]

Sp. nov

Valid

Liet al.

Middle Jurassic

Yan'an Formation

 China

A member ofGinkgoales.

Eretmophyllum odintsovae[115]

Sp. nov

Valid

Frolov & Mashchuk

Middle Jurassic

Taltsy Formation

 Russia

A member of Ginkgoales.

Eretmophyllum olchaense[120]

Sp. nov

Valid

Kiritchkova, Kostina & Nosova

Jurassic

 Russia

Ginkgo cuneifolia[123]

Sp. nov

Valid

Tan, Dilcher, Wang & Sunin Sunet al.

Middle Jurassic

Jiulongshan Formation

 China

A species ofGinkgo.

Ginkgo daohugouensis[123]

Sp. nov

Valid

Tan, Dilcher, Wang & Sunin Sunet al.

Middle Jurassic

Jiulongshan Formation

 China

A species ofGinkgo.

Ginkgo glinkiensis[115]

Sp. nov

Valid

Frolov & Mashchuk

Early Jurassic

Czeremkhovskaya Formation

 Russia

Originally described as a species ofGinkgo, but subsequently transferred to the genusGinkgoites.[124]

Ginkgo parvifolia[123]

Sp. nov

Valid

Tan, Dilcher, Wang & Sunin Sunet al.

Middle Jurassic

Jiulongshan Formation

 China

A species ofGinkgo.

Ginkgophyllum rhipidomorphum[125]

Sp. nov

Valid

Gomankov

LatePermian

 Russia

Hexianthus[126]

Gen. et sp. nov

Valid

Wang & Sunin Wanget al.

EarlyPermian

Taiyuan Formation

 China

A cone fossil belonging to the groupCordaitopsida and the familyCordaitaceae. Genus includes new speciesH. shenii.

Jugasporites vellicoites[127]

Sp. nov

Valid

Zavattieri, Gutiérrez & Ezpeleta

Permian (Lopingian)

La Veteada Formation

 Argentina

A member ofVoltziales described on the basis of fossil pollen grains.

Nanjinganthus[128]

Gen. et sp. nov

Valid

Fuet al.

Early Jurassic

South Xiangshan Formation

 China

A seed plant of uncertain phylogenetic placement. Interpreted as an early fossil flower by Fuet al. (2018);[128] Coiro, Doyle & Hilton (2019) considered known specimens of this plant to be more similar to conifer cones.[129] Genus includes new speciesN. dendrostyla.

Nilssoniopteris crassiaxis[130]

Sp. nov

Valid

Zhao & Dengin Zhaoet al.

Middle Jurassic

Xishanyao Formation

 China

A member ofBennettitales.

Nilssoniopteris hamiensis[130]

Sp. nov

Valid

Zhao & Dengin Zhaoet al.

Middle Jurassic

Xishanyao Formation

 China

A member ofBennettitales.

Nilssoniopteris neimenguensis[131]

Nom. nov

Valid

Zhao & Dengin Zhaoet al.

Early andMiddle Jurassic

Hongqi Formation
Mentougou Formation

 China

A member ofBennettitales; a replacement name forNilssoniopteris angustifolia Wang (1984), preoccupied byNilssoniopteris angustifolia Doludenko and Svanidze (1969).

Nilssoniopteris shiveeovoensis[132]

Sp. nov

Valid

Herreraet al.

Early Cretaceous (AptianAlbian)

Khukhteeg Formation

 Mongolia

A member ofBennettitales.

Nilssoniopteris tomentosa[132]

Sp. nov

Valid

Herreraet al.

Early Cretaceous (AptianAlbian)

Tevshiingovi Formation

 Mongolia

A member ofBennettitales.

Otozamites toshioensoi[133]

Sp. nov

Valid

Yamada, Legrand & Nishida

Early Cretaceous (Albian)

Sasayama Group

 Japan

Ovalocarpus[134]

Gen. et sp. nov

Valid

Naugolnykh

EarlyPermian

 Russia

A member ofGinkgoales belonging to the familyCheirocladaceae. Genus includes new speciesO. ovoides.

Pachytestopsis[135]

Gen. et sp. nov

Valid

McLoughlin, Bomfleur & Drinnan

Permian (Changhsingian)

Fort Cooper Coal Measures

 Australia

A member ofGlossopteridales. Genus includes new speciesP. tayloriorum.

Phoenicopsis kurminensis[136]

Sp. nov

Valid

Frolovin Frolov & Mashchuk

Middle Jurassic

Irkutsk Basin

 Russia

A member of Leptostrobales (=Czekanowskiales).

Podozamites harrisii[137]

Sp. nov

Valid

Shiet al.

Early Cretaceous (AptianAlbian)

Tevshiin Govi Formation

 Mongolia

Aconifer belonging to the familyPodozamitaceae, described on the basis of leaves.

Pseudotorellia kiensis[138]

Sp. nov

Valid

Nosova & Golovneva

Late Cretaceous

 Russia

A member ofGinkgoales, described on the basis of leaves.

Pseudotorellia palustris[137]

Sp. nov

Valid

Shiet al.

Early Cretaceous (AptianAlbian)

Tevshiin Govi Formation

 Mongolia

A member ofGinkgoales, described on the basis of leaves.

Pseudotorellia parvifolia[138]

Sp. nov

Valid

Nosova & Golovneva

Early Cretaceous

 Russia

A member ofGinkgoales, described on the basis of leaves.

Pseudotorellia resinosa[137]

Sp. nov

Valid

Shiet al.

Early Cretaceous (AptianAlbian)

Tevshiin Govi Formation

 Mongolia

A member ofGinkgoales, described on the basis of leaves.

Pterophyllum philippoviae[139]

Sp. nov

Valid

Gnilovskaya & Golovneva

Late Cretaceous (TuronianConiacian)

 Russia
( Magadan Oblast)

A member ofBennettitales.

Pterophyllum terechoviae[139]

Sp. nov

Valid

Gnilovskaya & Golovneva

Late Cretaceous (Maastrichtian)

Kakanaut Formation

 Russia
( Koryak Okrug)

A member ofBennettitales.

Ptilozamites longifolia[140]

Sp. nov

Valid

Cariglino, Monti & Zavattieri

Middle Triassic

Quebrada de los Fósiles Formation

 Argentina

Aseed fern.

Rufloria glabra[141]

Sp. nov

Valid

Gomankov

Permian

 Russia

A member ofPinopsida belonging to the groupCordaitanthales and to the familyRufloriaceae.

Samaropsis shenii[126]

Sp. nov

Valid

Wang & Sunin Wanget al.

EarlyPermian

Taiyuan Formation

 China

A seed fossil belonging to the groupCordaitopsida and the familyCordaitaceae.

Solenites haojiagouensis[142]

Sp. nov

Valid

Yanget al.

Late Triassic

Haojiagou Formation

 China

A member ofCzekanowskiales.

Sphenopteris valentinii[143]

Sp. nov

Valid

Forte & Kerpin Forteet al.

Permian (Kungurian)

Tregiovo Formation

 Italy

A fern-like plant, probably aseed fern.

Trisquama[144]

Gen. et sp. nov

Valid

Gordenko & Broushkin

Middle Jurassic (Bathonian)

 Russia
( Kursk Oblast)

Agymnosperm of uncertain phylogenetic placement, belonging to the new orderTrisquamales. Genus includes new speciesT. valentinii.

Williamsonia durikaiensis[119]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Jurassic (PliensbachianAalenian)

 Australia

A member ofBennettitales belonging to the familyWilliamsoniaceae.

Williamsonia eskensis[119]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Middle Triassic

Esk Formation

 Australia

A member ofBennettitales belonging to the familyWilliamsoniaceae.

Williamsonia gracilis[119]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Early Cretaceous (BerriasianHauterivian)

Lees Sandstone

 Australia

A member ofBennettitales belonging to the familyWilliamsoniaceae.

Williamsonia ipsvicensis[119]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Late Triassic (Carnian or earliestNorian)

Blackstone Formation

 Australia

A member ofBennettitales belonging to the familyWilliamsoniaceae.

Williamsonia rugosa[119]

Sp. nov

Valid

McLoughlin, Pott & Sobbe

Middle Jurassic (AalenianBajocian)

 Australia

A member ofBennettitales belonging to the familyWilliamsoniaceae.

Wintucycas beatrizae[145]

Sp. nov

Valid

Martínez, Ottone & Artabe

Paleocene

Pichaihue Limestone

 Argentina

Acycad belonging to the groupEncephalartoideae.

Zamia nelliae[146]

Sp. nov

Valid

Erdei & Calonjein Erdeiet al.

LateEocene

Gatuncillo Formation

 Panama

Acycad, a species ofZamia.

Other plants

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Acitheca murphyi[147]

Sp. nov

Valid

Correiaet al.

Carboniferous (Gzhelian)

Douro Basin

 Portugal

Amarattialeanfern.

Adoketophyton pingyipuensis[148]

Sp. nov

Valid

Edwards & Li

EarlyDevonian

Pingyipu Group

 China

Apiculatasporites ruptus[149]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

 Argentina

Atrilete spore.

Aptychellites[150]

Gen. et sp. nov

Valid

Schäfer-Verwimp, Hedenäs, Ignatov & Heinrichsin Kaasalainenet al.

Miocene

Dominican amber

 Dominican Republic

Amoss resembling members of the extant genusAptychella of the familyPylaisiadelphaceae. Genus includes new speciesA. fossilis.

Arthropitys taoshuyuanensis[151]

Sp. nov

Valid

Chenet al.

Permian (Wuchiapingian)

Wutonggou Formation

 China

A member ofCalamitaceae.

Asinisetum plaatkopensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Azolla coloniensis[153]

Sp. nov

Valid

De Benedettiet al.

Late Cretaceous

 Argentina

A species ofAzolla.

Balenosetum[152]

Gen. et sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales. Genus includes new speciesB. candlewaxia.

Baoyinia[154]

Gen. et sp. nov

Valid

Edwards & Li

EarlyDevonian

Pingyipu Group

 China

Azosterophyll. Genus includes new speciesB. sichuanensis.

Calamospora fissurata[155]

Sp. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Ordóñez Formation

 Argentina

A spore taxon.

Cetistachys[152]

Gen. et sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales. Genus includes new speciesC. cetenis.

Cheilolejeunea lamyi[156]

Sp. nov

Valid

Heinrichset al.

Miocene

Dominican amber

 Dominican Republic

A member ofLejeuneaceae.

Cladophlebis akulovii[115]

Sp. nov

Valid

Frolovin Frolov & Mashchuk

Middle Jurassic

Taltsy Formation

 Russia

A fern of uncertain affinities.

Cladophlebis odintsovае[115]

Sp. nov

Valid

Frolov & Mashchuk

Middle Jurassic

Prisayanskaya Formation

 Russia

A fern of uncertain affinities.

Cooksonia barrandei[157]

Sp. nov

Valid

Libertínet al.

Early Silurian

Motol Formation

 Czech Republic

Coptospora santacrucensis[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Aspore taxon similar to spores of extant members of the familiesSphaerocarpaceae,Ricciaceae andRiellaceae.

Crybelosporites corrugatus[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Aspore taxon related to the familyMarsileaceae.

Culcita remberi[158]

Sp. nov

Valid

Pinson, Manchester & Sessa

Miocene

Clarkia fossil beds

 United States
( Idaho)

A species ofCulcita.

Cymatiosphaera robusta[149]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

 Argentina

Aprasinophyte.

Densoisporites patagonicus[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Aspore taxon with affinities with theLycopsida.

Dictyophyllum menendezii[159]

Sp. nov

Valid

Bodnaret al.

Middle Triassic (Ladinian)

Cortaderita Formation

 Argentina

Afern belonging to the familyDipteridaceae.

Digitopteris[160]

Gen. et sp. nov

Valid

Pott & Bomfleurin Pottet al.

Late Triassic (Carnian)

 Austria

Afern belonging to the familyDipteridaceae. Genus includes new speciesD. repanda.

Echinostachys tinensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales and the familyEchinostachyaceae.

Eddianna[161]

Gen. et sp. nov

Valid

Pfeiler & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

A member ofRhyniopsida. Genus includes new speciesE. gaspiana

Electorotheca[162]

Gen. et sp. nov

Valid

Morris,Edwards & Pedersen

Devonian (Lochkovian)

Freshwater West Formation

 United Kingdom

A plant of uncertain phylogenetic placement. Genus includes new speciesE. enigmatica.

Emphanisporites genselae[163]

Sp. nov

Valid

Wellman

Devonian (Pragian-earliestEmsian)

Val d'Amour Formation

 Canada
( New Brunswick)

A plant described on the basis of fossilspores.

Emphanisporites morrisae[163]

Sp. nov

Valid

Wellman

Devonian (Pragian-earliestEmsian)

Campbellton Formation
Val d'Amour Formation

 Canada
( New Brunswick)

A plant described on the basis of fossilspores.

Emphanisporites? tenuis[164]

Sp. nov

Valid

García Muro, Rubinstein & Steemans

Silurian (Přídolí)

Los Espejos Formation

 Argentina

A plant described on the basis of fossilspores.

Endosporites menendezi[155]

Nom. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Agua Colorada Formation

 Argentina

A spore taxon; a replacement name forEndosporites parvus Menéndez (1965).

Equisetites budagaevae[115]

Sp. nov

Valid

Frolovin Frolov & Mashchuk

Middle Jurassic

Prisayanskaya Formation

 Russia

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetites greenensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member of Equisetopsida belonging to the group Equisetales and the family Equisetaceae.

Equisetites kanensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetites kapokensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetites nuwensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetites pentapenensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetites umkensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys boesmansensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys calensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys cervensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys jaarensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys kroonensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys laggensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys luziensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys penensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Equisetostachys pokensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Escapia[165]

Gen. et sp. nov

Valid

Rothwell, Millay & Stockey

Early Cretaceous

 Canada
( British Columbia)

A member ofMarattiales. Genus includes new speciesE. christensenioides.

Frederica kurdistanensis[166]

Sp. nov

Valid

Bucuret al.

Paleogene

Khurmala Formation

 Iraq

Agreen alga belonging to the groupDasycladales.

Frullania grabenhorstii[167]

Sp. nov

Valid

Feldberget al.

Eocene

Bitterfeld amber

 Germany

Aliverwort, a species ofFrullania.

Frullania zerovii[168]

Sp. nov

Valid

Mamontov, Ignatov & Perkovsky

Eocene

Rovno amber

 Ukraine

Aliverwort, a species ofFrullania.

Geocalyx heinrichsii[169]

Sp. nov

Valid

Katagiri

Eocene

Baltic amber

Europe (Baltic Sea region)

Aliverwort.

Gleicheniorachis sinensis[170]

Sp. nov

Valid

Tianet al.

Late Jurassic

Manketouebo Formation

 China

Afern belonging to the familyGleicheniaceae.

Groenlandia pescheri[171]

Sp. nov

Valid

Uhl & Poschmann

Oligocene (Chattian)

Enspel Formation

 Germany

A species ofGroenlandia.

Heilongjiangcaulis[172]

Gen. et sp. nov

Valid

Cheng & Yang

Cretaceous

Songliao Basin

 China

Atree fern. Genus includes new speciesH. keshanensis.

Holttumopteris[173]

Gen. et sp. nov

Valid

Regaladoet al.

Cretaceous (AlbianCenomanian )

Burmese amber

 Myanmar

A eupolypodfern. Genus includes new speciesH. burmensis.

Horriditriletes chacoparanensis[155]

Sp. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Ordóñez Formation

 Argentina

A spore taxon.

Hypnites lycopodioides[174]

Nom. nov

Valid

Ignatov & Váňain Winterscheidet al.

LateOligocene

Rott Formation

 Germany

A member ofHypnales of uncertain phylogenetic placement; a replacement name forHypnum lycopodioides Weberin Wessel & Weber.

Jaffrezocodium[175]

Gen. et sp. nov

Valid

Granier

Cretaceous (Albian-Cenomanian)

 France
 Spain

Agreen alga belonging to the groupBryopsidales. Genus includes new speciesJ. bipennatus.

Jiangyounia[154]

Gen. et sp. nov

Valid

Edwards & Li

EarlyDevonian

Pingyipu Group

 China

Arhyniophyte. Genus includes new speciesJ. gengi.

Knorripteris taylorii[176]

Sp. nov

Valid

Galtieret al.

Triassic

 Germany

Apteridophyte of uncertain phylogenetic placement.

Kowieria[177]

Gen. et sp. nov

Valid

Gess & Prestianni

Devonian (Famennian)

Witpoort Formation

 South Africa

Alycopsid. Genus includes new speciesK. alveoformis.

Kraaiostachys[152]

Gen. et sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation
Santa Clara Formation

 Mexico
 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae. Genus includes new speciesK. plaatkopensis.

Leiosphaeridia ibateensis[2]

Sp. nov

Valid

Arai & Dias-Brito

Late Cretaceous (Santonian)

São Carlos Formation

 Brazil

Anacritarch, probably aprasinophyte.

Leiotriletes malanzanensis[155]

Nom. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Malanzán Formation

 Argentina

A spore taxon; a replacement name forLeiotriletes tenuis Azcuy (1975).

Lejeunea miocenica[150]

Sp. nov

Valid

Heinrichs, Schäfer-Verwimp, Renner & Leein Kaasalainenet al.

Miocene

Dominican amber

 Dominican Republic

Aliverwort, a species ofLejeunea.

Lilingostrobus[178]

Gen. et sp. nov

Valid

Gerrienneet al.

Devonian (Famennian)

Xikuangshan Formation

 China

A member ofLycopsida of uncertain phylogenetic placement. Genus includes new speciesL. chaloneri.

Marsilea mascogos[179]

Sp. nov

Valid

Estrada-Ruizet al.

Late Cretaceous (lateCampanian)

Olmos Formation

 Mexico

A species ofMarsilea.

Molaspora aspera[180]

Sp. nov

Valid

Zavialova & Batten

Late Cretaceous (Cenomanian)

 France

A member ofMarsileaceae described on the basis ofmegaspores.

Moltenomites[152]

Gen. et 2 sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales. Genus includes new speciesM. linearifolia andM. attenuatifolia.

Naybandoporella[181]

Gen. et sp. et comb. nov

Valid

Senowbari-Daryan

Late Triassic (Rhaetian)

Nayband Formation

 Greece
 Iran

Agreen alga belonging to the groupDasycladales, possibly a member of the familyTriploporellaceae. Genus includes new speciesN. rhaetica, as well as"Probolocupsis" sarmeikensisSenowbari-Daryan (2014).

Oleandra bangmaii[182]

Sp. nov

Valid

Xieet al.

LateMiocene

 China

A species ofOleandra.

Ornicephalum[148]

Gen. et comb. nov

Valid

Edwards & Li

EarlyDevonian

Pingyipu Group

 China

A member ofLycophytina; a new genus for"Zosterophyllum" sichuanensis Geng (1992).

?Osmunda weylandii[174]

Sp. nov

Valid

Kvaček & Winterscheidin Winterscheidet al.

LateOligocene

Rott Formation

 Germany

Afern, possibly a species ofOsmunda.

Osmundopsis zunigai[183]

Sp. nov

Valid

Coturelet al.

Late Triassic (Carnian)

Potrerillos Formation

 Argentina

Afern belonging to the familyOsmundaceae.

Paraschizoneura fredensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales and the familyEchinostachyaceae.

Paraschizoneura quadripenensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales and the familyEchinostachyaceae.

Paraschizoneura rooipoortensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales and the familyEchinostachyaceae.

Paraschizoneura telensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales and the familyEchinostachyaceae.

Peromonolites globosum[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Aspore taxon with affinities with theFilicales.

Pleurorhizoxylon[184]

Gen. et sp. nov

Valid

Zhanget al.

LateDevonian

 China

An earlyeuphyllophyte. Genus includes new speciesP. yixingense.

Polycladophyton[154]

Gen. et sp. nov

Valid

Edwards & Li

EarlyDevonian

Pingyipu Group

 China

Arhyniophyte. Genus includes new speciesP. gracilis.

Pterospermella simplex[149]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

 Argentina

Aprasinophyte.

Radula intecta[150]

Sp. nov

Valid

Renner, Schäfer-Verwimp & Heinrichsin Kaasalainenet al.

Miocene

Dominican amber

 Dominican Republic

A species ofRadula

Rafaherbstia[185]

Ge. et sp. nov

Valid

Vera & Césari

Early Cretaceous (Aptian)

Cerro Negro Formation

Antarctica
(Livingston Island)

Acyathealeantree fern. Genus includes new speciesR. nishidai.

Retitriletes ornatus[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Aspore taxon with affinities with theLycopodiales.

Retusotriletes archangelskyi[155]

Sp. nov

Valid

Gutiérrez & Balarino

Carboniferous (Pennsylvanian)

Ordóñez Formation

 Argentina

A spore taxon.

Schizoneura cucumis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales and the familyEchinostachyaceae.

Schizoneura koningensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEchinostachyales and the familyEchinostachyaceae.

Scleropteris iljiniana[120]

Sp. nov

Valid

Kiritchkova, Kostina & Nosova

Jurassic

 Russia

Sichuania[154]

Gen. et sp. nov

Valid

Edwards & Li

EarlyDevonian

Pingyipu Group

 China

Azosterophyll. Genus includes new speciesS. uskielloides.

Sphenophyllum changxingense[186]

Sp. nov

Valid

Huanget al.

LateDevonian

Wutong Formation

 China

Suppiluliumaella tarburensis[187]

Sp. nov

Valid

Rashidi & Schlagintweit

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

Agreen alga belonging to the groupDasycladales.

Tauridium elongatum[188]

Sp. nov

Valid

Jia & Song

LatePermian

Changxing Formation

 China

A member ofGymnocodiaceae.

Taurocusporites inaequalis[100]

Sp. nov

Valid

Perez Loinaze & Llorens

Early Cretaceous (Aptian)

Anfiteatro de Ticó Formation

 Argentina

Aspore taxon with affinities with the Bryophytasensu lato.

Tempskya zhangii[189]

Sp. nov

Valid

Xiaonan, Fengxiang & Yeming

Cretaceous

 China

Atree fern

Tiaomaphyton[190]

Gen. et sp. nov

Valid

Xu, Fu & Wang

MiddleDevonian

Tiaomachian Formation

 China

AColpodexylon-likelycopsid. Genus includes new speciesT. fui.

Townroviamites multifoliata[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Townroviamites petfredae[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Townroviamites stellata[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Tricarinella[191]

Gen. et sp. nov

Valid

Savorettiet al.

Early Cretaceous (Valanginian)

 Canada
( British Columbia)

Amoss belonging to the familyGrimmiaceae. Genus includes new speciesT. crassiphylla.

Viridistachys[152]

Gen. et 2 sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae. Genus includes new speciesV. moltenensis andV. gypsensis.

Zonulamites annumensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Zonulamites collensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Zonulamites elandensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Zonulamites viridensis[152]

Sp. nov

Valid

Anderson & Anderson

Late Triassic (Carnian)

Molteno Formation

 South Africa

A member ofEquisetopsida belonging to the groupEquisetales and the familyEquisetaceae.

Zosterophyllum ovatum[148]

Sp. nov

Valid

Edwards & Li

EarlyDevonian

Pingyipu Group

 China

General research

[edit]
  • A study attempting to establish a timescale of early land plant evolution is published by Morriset al. (2018).[192][193][194]
  • Assemblage of putativeOrdovician (Hirnantian) land plants is described from the Zbrza locality in the southernŚwiętokrzyskie Mountains (Poland) by Salamonet al. (2018).[195]
  • A study on the structure and variation of areolation patterns in leaves ofPaleozoicprotosphagnaleanmosses is published by Ivanov, Maslova & Ignatov (2018).[196]
  • A study on the phylogenetic relationships of theCretaceous mossesMeantoinea alophosioides andEopolytrichum antiquum withinPolytrichaceae is published by Bippus, Escapa & Tomescu (2018).[197]
  • Meristems of rooting axes belonging toAsteroxylon mackiei are described from theRhynie chert (United Kingdom) by Hetherington & Dolan (2018).[198]
  • A study re-examining the evidence on the speed of growth and life cycle of the tree-likelycophytes from theCarboniferous (Pennsylvanian) coal swamps, and in particular addressing an earlier study by Boyce & DiMichele (2016),[199] is published by Thomas & Cleal (2018).[200][201]
  • A study on the impact of increasedultraviolet irradation (caused by volcanism-inducedozone shield deterioration) on plants during thePermian–Triassic extinction event is published by Benca, Duijnstee & Looy (2018).[202]
  • A study on the composition of theLate Triassic flora of the American Southwest, based onpalynological data from the Chinle Formation, and indicative of a floral turnover occurring in the middleNorian, is published by Baranyiet al. (2018).[203]
  • A study on theMiddle Jurassic flora fromYorkshire (United Kingdom) as indicated by pollen and spores, and on the possible dinosaur-plant interactions in the area is published by Slateret al. (2018).[204]
  • Occurrence of thecharacean genusTolypella is reported from theLower Cretaceous of theGarraf Massif (Catalonia,Spain) by Martín-Closaset al. (2018), representing the oldest known record of the genus reported so far.[205]
  • A study on the spore wall structure and development inPsilophyton dawsonii is published by Noetinger, Strayer & Tomescu (2018).[206]
  • Lycopsidmegaspores preserved with fossilstarch, probably used to attract and reward animals for megaspore dispersal, are described from thePermian of northChina by Liuet al. (2018).[207]
  • A study on the phylogenetic relationships of extant and fossil members ofEquisetales is published by Elgorriagaet al. (2018).[208]
  • A study on the anatomy of theDevonian fern-like plantShougangia bella is published by Wanget al. (2018).[209]
  • A study on the phylogenetic relationships of a putativeTriassic fernPekinopteris, based on evaluation of specimens preserving fertilepinnae, is published by Axsmith, Skog & Pott (2018).[210]
  • A study on the anatomical structure ofConiopteris hymenophylloides (a fossilfern belonging to the familyDicksoniaceae) based on well-preserved materials from theMiddle JurassicYaojie Formation (China), including sterile and fertilepinnae,sporangia and in situspores,epidermalcuticles andstomatal complexes, is published by Xinet al. (2018).[211]
  • A study on the phylogenetic relationships of extant and fossilmarattialean ferns is published by Rothwell, Millay & Stockey (2018).[212]
  • A study on the phylogenetic relationships of members ofDipteridaceae based on data from extant and fossil taxa is published by Choo & Escapa (2018).[213]
  • A study on the phylogenetic relationships of earlyseed plants,aneurophytaleanprogymnosperms,Stenokoleales and severalDevonian plants of uncertain affinities is published by Toledo, Bippus & Tomescu (2018).[214]
  • Plant fossils representing the generaGlossopteris,Vertebraria,Samaropsis,Paracalamites,Sphenophyllum andDichotomopteris are described from thePermian strata in the Tabbowa Basin ofSri Lanka by Edirisooriya, Dharmagunawardhane & McLoughlin (2018), thus being the first representatives of the distinctive PermianGlossopteris flora reported from that country.[215]
  • Fossils of member of the genusGlossopteris related to the speciesGlossopteris communis fromIndia are described from thePermian deposits of southeasternGobi (Mongolia) by Naugolnykh & Uranbileg (2018).[216]
  • A study on the fossils of glossopterids from thePermian (Lopingian)Buckley Formation (Antarctica) will be published by DeWittet al. (2018), who present evidence of glossopterids shedding their pollen organs during a different time of the season thanGlossopteris leaves.[217]
  • Blomenkemperet al. (2018) report the discovery of mixed plant-fossil assemblages in Late Permian deposits on the margins of theDead Sea inJordan, including fossils of seed ferns, members ofBennettitales and the earliest records ofconifers reported so far.[218]
  • A study on the phylogeny of conifers, comparing the inferred phylogenetic relationships and estimated divergence ages with the paleobotanical record, is published by Leslieet al. (2018).[219]
  • A study on the atmosphericcarbon dioxide concentration levels in theEarly Cretaceous based on data from specimens of the fossil conifer speciesPseudofrenelopsis papillosa is published by Jing & Bainian (2018).[220]
  • A study on the phylogenetic relationships of members ofPinaceae based on data from extant and fossil taxa is published by Gernandtet al. (2018).[221]
  • A study on theepidermis of the leaves of the fossilpinePinus mikii and on the phylogenetic relationships of the species is published by Yamada & Yamada (2018).[222]
  • A study on the anatomy and phylogenetic relationships ofAustrohamia acanthobractea, based on data from leafy twigs with attached pollen cones and seed cones from the Middle Jurassic Daohugou Lagerstätte (China), is published by Donget al. (2018).[223]
  • Rediscovery of theholotype specimen ofWeltrichia fabrei is reported by Moreau & Thévenard (2018).[224]
  • Revision ofgymnosperm species known from theEoceneBaltic amber is published by Alekseev (2018).[225]
  • A study on the phylogenetic relationships of thevascular plants and the timescale of their evolution, attempting to establish when the flowering plants originated, is published by Barba-Montoyaet al. (2018).[226]
  • A study on the early evolution ofChloranthaceae, focusing on the phylogenetic relationships of the Cretaceous taxaCanrightiopsis andPseudoasterophyllites, is published by Doyle & Endress (2018).[227]
  • Fossil assemblage including plant and vertebrate remains is described from theTuronian Ferron Sandstone Member of theMancos Shale Formation (Utah,United States) by Judet al. (2018), who report turtle and crocodilian remains and anornithopodsacrum, as well as a large silicified log assigned to the genusParaphyllanthoxylon, representing the largest known pre-Campanian flowering plant reported so far and the earliest documented occurrence of an angiosperm tree more than 1.0 m in diameter.[228]
  • A study on the phylogenetic relationships of extant and fossil members ofZingiberales is published by Smithet al. (2018).[229]
  • A study on the phylogenetic relationships ofCornales based on data from extant and fossil taxa is published by Atkinson (2018).[230]
  • A study on the microstructure of the fossils assigned to the genusOperculifructus, and on its implications for inferring the phylogenetic relationships of this genus, is published by Hayeset al. (2018).[231]
  • A study on the phylogenetic relationships of the flowering plants andGnetales, as indicated by morphological data from extant and fossil taxa, is published by Coiro, Chomicki & Doyle (2018).[232]
  • Revision of the taxonomy of the Cretaceousmonocot genusViracarpon is published by Matsunagaet al. (2018), who transfer the speciesCoahuilocarpon phytolaccoides known from theCampanianCerro del Pueblo Formation (Mexico) to the genusViracarpon, thus rejecting the hypothesis thatViracarpon was endemic toIndia.[233]
  • Microfossil remains of earlygrasses extracted from a specimen of theEarly Cretaceous dinosaur speciesEquijubus normani fromChina are described by Wu, You & Li (2018).[234]
  • Cantisolanum daturoides from theEoceneLondon Clay Formation, previously suggested to be a member of the familySolanaceae, is reinterpreted as more likely to be acommelinidmonocot by Särkinenet al. (2018).[235]
  • A study on the lower threshold of extantpalm temperature tolerance, as well as on the potential of using the presence of palm fossils to infer past climate, is published by Reichgelt, West & Greenwood (2018).[236]
  • A study on the human use of rainforest plant resources of prehistoricSri Lanka, as indicated by data fromphytoliths from the Fahien Rock Shelter sediments, is published by Premathilake & Hunt (2018).[237]
  • A study on the occurrence of bananas in the archaeological sequence at Fahien Rock Shelter (south-west Sri Lanka), as indicated by seed and leaf phytolith evidence, is published by Premathilake & Hunt (2018).[238]
  • A study on the macroevolutionary dynamics of extinction and adaptation of palms withmegafaunal fruits in the lateCenozoic is published by Onsteinet al. (2018), who interpret their findings as indicating that progressive loss of megafaunalfrugivores during the lateCenozoic likely resulted in increased extinction rates of palms with megafaunal fruits.[239]
  • A study on the floral and fruit morphology of the earlyeudicot speciesRanunculaecarpus quinquecarpellatus is published by Manchesteret al. (2018).[240]
  • A study on the principalmorphological characters distinguishing shade and sun leaves in modern species ofLiquidambar, and on their implications for identifying leafpolymorphisms in fossil members of this genus that could otherwise be used to establish unwarranted new species, is published by Maslovaet al. (2018).[241]
  • A study on fossil pollen of members of the groupEricales from fiveEocene localities in theUnited Kingdom,Austria,Germany andChina, aiming to describe fossil pollen types and compare them with the most similar looking pollen of modern species, is published by Hofmann (2018).[242]
  • A new fossilLoranthaceae pollen type (the first representative of this family in the fossil record of Africa) is described from the earliestMiocene ofSaldanha Bay (South Africa) by Grímssonet al. (2018).[243]
  • A study on the types of fossiloak pollen grains from theLast Glacial Maximum sediments from the northernSouth China Sea, and on their implications for inferring regional climatic conditions in this area during the Last Glacial Maximum, is published by Dai, Hao & Mao (2018).[244]
  • Apistillate partialinflorescence of a member of the genusCastanopsis is described fromBaltic amber by Sadowski, Hammel & Denk (2018), representing the first record of this genus from Baltic amber and the first pistillate inflorescence ofFagaceae from Eurasia reported so far.[245]
  • A study on factors which influenced the diversification processes and diversity dynamics of Cenozoic woody flowering plants is published by Shionoet al. (2018).[246]
  • Description of plant remains andpalynomorphs preserved in thecoprolites produced by largedicynodonts from theTriassicChañares Formation (Argentina), and a study on the affinities of the plants preserved in those coprolites, is published by Perez Loinazeet al. (2018).[247]
  • A study on the nutritional value of plants grown under elevated CO2 levels, evaluating the hypothesis that constraints onsauropod diet quality were driven by Mesozoic CO2 concentration, is published by Gillet al. (2018).[248]
  • A study on the diversity, frequency and representation of insect damage of fossil plant specimens from thePermianLa Golondrina Formation (Argentina) is published by Cariglino (2018).[249]
  • A study on the insect herbivory on fossilginkgoalean andbennettitalean leaves from theMiddle JurassicDaohugou Beds (China), and ondefenses of these plants against insect herbivory, is published by Naet al. (2018).[250]
  • Diverse gymnosperm and angiosperm fossils, displaying affinities with the flora of the Araripe Basin (Santana Formation) as well as those identified in deposits from the North America (Potomac Group), are described from theLower CretaceousCodó Formation (Brazil) by Lindosoet al. (2018).[251]
  • A study on the impact of theCenomanian-Turonian boundary event on the continental flora, as indicated by spore-pollen fossil record, is published by Heimhoferet al. (2018).[252]
  • Insect and plant inclusions are reported from amber from the uppermostCampanianKabaw Formation of Tilin (Myanmar) by Zhenget al. (2018).[253]
  • Grimaldiet al. (2018) report biological inclusions (fungi, plants, arachnids and insects) in amber from thePaleogeneChickaloon Formation ofAlaska, representing the northernmost deposit of fossiliferous amber from theCenozoic.[254]
  • Organically preserved plant fossils, including leaves with cuticular preservation, are described from thePaleogeneLigorio Márquez Formation (Argentina) by Carpenter, Iglesias & Wilf (2018).[255]
  • A study on changes inEocene plant diversity and floristic composition atMessel (Germany) is published by Lenz & Wilde (2018).[256]
  • An amber layer is reported from the lower part of theDingqing Formation (lateOligocene) in Lunpola of central Tibet (representing the first record of amber from Tibet) by Wanget al. (2018), who interpret this amber as derived fromdipterocarp trees, and who interpret the amber layer as remains of the northernmost dipterocarp forest discovered so far.[257]
  • A study on CO2 concentrations during the early Miocene, as indicated bystomatal characteristics of fossil leaves from a late early Miocene assemblage fromPanama and a leaf gas-exchange model, is published by Londoñoet al. (2018).[258]
  • A study evaluating when the plants using theC4 photosynthetic pathway initially expanded on the Australian continent, as indicated by carbon isotope ratios of plant waxes from scientific ocean drilling sediments off north-western Australia, is published by Andraeet al. (2018).[259]
  • A study on the role of fire during the expansion of C4 grassland ecosystems in the Mio-Pliocene, based on data from molecular proxies frompaleosol samples of the Siwalik Group (Pakistan), is published by Karp, Behrensmeyer & Freeman (2018).[260]
  • A study on themacroevolutionary responses ofnoctuid moths from the groupSesamiina and their associated host-grasses to environmental changes during theNeogene is published by Kergoatet al. (2018).[261]
  • A study on the abundance of theC3 and C4 grasses in the central interior of southern Africa in the EarlyPleistocene, as indicated by enamel stable carbon and oxygen isotope data, associated faunal abundance andphytolith evidence from the site ofWonderwerk Cave (South Africa), is published by Eckeret al. (2018).[262]
  • A study on the changes of vegetation in the temperate zone of Asia during an interval containing the Mid-Pleistocene Transition, ~1.2–0.7 million years ago, as indicated by pollen data from a drilling core from theNorth China Plain, as well as on their effect on the large mammal fauna is published by Xinyinget al. (2018).[263]
  • A study on the use of plants by early modern humans during theMiddle Stone Age as indicated by analyses ofphytoliths from thePinnacle Point locality (South Africa) is published by Estebanet al. (2018).[264]
  • A study on the distance ofseed dispersal by extant and extinct mammalianfrugivores and on the impact of the extinction ofPleistocene megafauna on seed dispersal is published by Pireset al. (2018).[265]
  • A study evaluating how mega-herbivore animal species controlled plant community composition andnutrient cycling, relative to other factors during and after the LateQuaternary extinction event inGreat Britain andIreland, is published by Jefferset al. (2018).[266]
  • A study on the seeds preserved inmoacoprolites is published by Carpenteret al. (2018), who question the hypothesis that some of the largest-seeded plants ofNew Zealand weredispersed by moas.[267]
  • A study on the plant–insect interactions in the European forest plant communities in the UpperPlioceneLagerstätte ofWillershausen (Lower Saxony,Germany), the Upper Pliocene locality of Berga (Thuringia, Germany) and thePleistocene locality of Bernasso (France) is published by Adroitet al. (2018).[268]
  • A study on pollen recovered from hyaenacoprolites fromVanguard Cave (Gibraltar), and on its implications for reconstructing the vegetation landscapes in the environment inhabited by southern IberianNeanderthals during theMIS 3, is published by Carriónet al. (2018).[269]
  • A study on the inner structure of cuticles and carbonaceous compressions of Early Jurassic plants from Argentinian Patagonia, using Focused Ion Beam Scanning Electron Microscopy, is published by Senderet al. (2018).[270]
  • A study on the changing ecology of woodland vegetation of southern mainlandGreece during the latePleistocene and the early-midHolocene, and on the ecological context of the first introduction of crop domesticates in the southern Greek mainland, as indicated by data from carbonized fuel wood waste from theFranchthi Cave, is published by Asouti, Ntinou & Kabukcu (2018).[271]
  • Evidence of plant domestication and food production from the early and middle Holocene site of Teotonio (southwesternAmazonia,Brazil) is presented by Watlinget al. (2018).[272]
  • A study on changes in plantpathogen communities (fungi andoomycetes) in response to changing climate during lateQuaternary, as indicated by data from solidified deposits of rodentcoprolites and nesting material from the centralAtacama Desert spanning the last ca. 49,000 years, is published by Woodet al. (2018).[273]
  • A study on the timing of the origination of the East Asian flora (including Sino-Japanese FloraMetasequoia Flora and Sino-HimalayanRhododendron Flora), as indicated by molecular and fossil data, is published by Chenet al. (2018).[274]

References

[edit]
  1. ^abcdAlexander B. Doweld (2018). "New names of fossil Berberidaceae".Phytotaxa.351 (1):72–80.doi:10.11646/hytotaxa.351.1.6.
  2. ^abcdeMitsuru Arai; Dimas Dias-Brito (2018). "The Ibaté paleolake in SE Brazil: Record of an exceptional late Santonian palynoflora with multiple significance (chronostratigraphy, paleoecology and paleophytogeography)".Cretaceous Research.84:264–285.Bibcode:2018CrRes..84..264A.doi:10.1016/j.cretres.2017.11.014.hdl:11449/175605.
  3. ^abcdefghijklmnopqrstAlexander B. Doweld (2018). "Palaeoflora Europaea: Notulae Systematicae ad Palaeofloram Europaeam spectantes I. New names of fossil magnoliophytes of the European Tertiary. I. Miscellaneous families".Phytotaxa.379 (1):78–94.doi:10.11646/phytotaxa.379.1.8.S2CID 92221463.
  4. ^abcdHongshan Wang; David L. Dilcher (2018)."Early Cretaceous angiosperm leaves from the Dakota Formation, Hoisington III locality, Kansas, USA".Palaeontologia Electronica.21 (3): Article number 21.3.34A.doi:10.26879/841.
  5. ^abcdMahesh Prasad; Somlata Gautam; Nupur Bhowmik; Sanjeev Kumar; Sanjai Kumar Singh (2018)."New fossil leaves of Annonaceae and Achariaceae from Churia Group of Nepal and their phytogeographical implications".The Palaeobotanist.67 (1):47–66.doi:10.54991/jop.2018.47.S2CID 252304015.
  6. ^Lina B. Golovneva (2018). "Diversity of palmately lobed leaves in the early–middle Albian of eastern Russia".Cretaceous Research.84:18–31.Bibcode:2018CrRes..84...18G.doi:10.1016/j.cretres.2017.11.005.S2CID 133903556.
  7. ^abMaria G. Moiseeva; Tatiana M. Kodrul; Alexei B. Herman (2018). "Early Paleogene Boguchan flora of the Amur Region (Russian Far East): Composition, age and palaeoclimatic implications".Review of Palaeobotany and Palynology.253:15–36.Bibcode:2018RPaPa.253...15M.doi:10.1016/j.revpalbo.2018.03.003.S2CID 134765560.
  8. ^abAndrew C. Rozefelds; Marcelo R. Pace (2018)."The first record of fossil Vitaceae wood from the Southern Hemisphere, a new combination forVitaceoxylon ramunculiformis, and reappraisal of the fossil record of the grape family (Vitaceae) from the Cenozoic of Australia".Journal of Systematics and Evolution.56 (4):283–296.doi:10.1111/jse.12300.S2CID 196634173.
  9. ^abcdN. Awasthi; R.C. Mehrotra; A. Shukla (2018)."Some new fossil woods from the Cuddalore Sandstone of south India".The Palaeobotanist.67 (1):33–46.doi:10.54991/jop.2018.46.S2CID 252289545.
  10. ^Eliana Moya; Mariana Brea (2018). "First Pleistocene record of fossil wood of Bignoniaceae in the Americas and a comparison with the extantTabebuia alliance and Tecomeae".Botanical Journal of the Linnean Society.187 (2):303–318.doi:10.1093/botlinnean/boy019.hdl:11336/91302.
  11. ^Jun-Ling Dong; Bai-Nian Sun; Teng Mao; Chun-Hui Liu; Xue-Lian Wang; Ming-Xuan Sun; Fu-Jun Ma; Qiu-Jun Wang (2018). "The occurrence ofBurretiodendron from the Oligocene of South China and its geographic analysis".Palaeogeography, Palaeoclimatology, Palaeoecology.512:95–105.Bibcode:2018PPP...512...95D.doi:10.1016/j.palaeo.2017.07.004.S2CID 133617973.
  12. ^Hua-Sheng Huang; Tao Su; Zhe-Kun Zhou (2018). "Fossil leaves ofBuxus (Buxaceae) from the Upper Pliocene of Yunnan, SW China".Palaeoworld.27 (2):271–281.doi:10.1016/j.palwor.2017.12.003.S2CID 134796110.
  13. ^Meng Han; Steven R. Manchester; Yan Wu; Jianhua Jin; Cheng Quan (2018). "Fossil fruits ofCanarium (Burseraceae) from Eastern Asia and their implications for phytogeographical history".Journal of Systematic Palaeontology.16 (10):841–852.doi:10.1080/14772019.2017.1349624.S2CID 90812518.
  14. ^Cristina I. Nunes; Roberto R. Pujana; Ignacio H. Escapa; María A. Gandolfo; N. Rubén Cúneo (2018). "A new species ofCarlquistoxylon from the Early Cretaceous of Patagonia (Chubut province, Argentina): the oldest record of angiosperm wood from South America".IAWA Journal.39 (4):406–426.doi:10.1163/22941932-20170206.hdl:11336/117578.S2CID 92383900.
  15. ^abcLuliang Huang; Jianhua Jin; Cheng Quan; Alexei A. Oskolski (2018). "Mummified fossil woods of Fagaceae from the upper Oligocene of Guangxi, South China".Journal of Asian Earth Sciences.152:39–51.Bibcode:2018JAESc.152...39H.doi:10.1016/j.jseaes.2017.11.029.
  16. ^abGeorge Poinar, Jr. (2018). "Mid-Cretaceous angiosperm flowers in Myanmar amber". In Beatrice Welch; Micheal Wilkerson (eds.).Recent advances in plant research. Nova Science Publishers, Incorporated. pp. 187–218.ISBN 978-1-53614-170-2.
  17. ^Anumeha Shukla; R.C. Mehrotra (2018). "A new fossil wood from the highly diverse early Eocene equatorial forest of Gujarat (western India)".Palaeoworld.27 (3):392–398.doi:10.1016/j.palwor.2018.01.003.S2CID 134657292.
  18. ^abcdeAlexander B. Doweld (2018). "New names of fossil Cyperaceae of Northern Eurasia".Phytotaxa.356 (2):131–144.doi:10.11646/phytotaxa.356.2.3.S2CID 90599488.
  19. ^abcClément Coiffard; Barbara A. R. Mohr (2018). "Cretaceous tropical Alismatales in Africa: diversity, climate and evolution".Botanical Journal of the Linnean Society.188 (2):117–131.doi:10.1093/botlinnean/boy045.
  20. ^abcSteven Manchester; Kathleen B. Pigg; Melanie L. Devore (2018)."Trochodendraceous fruits and foliage in the Miocene of western North America"(PDF).Fossil Imprint.74 (1–2):45–54.doi:10.2478/if-2018-0004.S2CID 133942808.
  21. ^abSteven Manchester; Kathleen B. Pigg; Zlatko Kvaček; Melanie L. Devore; Richard M. Dillhoff (2018). "Newly recognized diversity in Trochodendraceae from the Eocene of western North America".International Journal of Plant Sciences.179 (8):663–676.doi:10.1086/699282.S2CID 92201595.
  22. ^Steven R. Manchester; Zlatko Kvaček; Walter S. Judd (2020)."Morphology, anatomy, phylogenetics and distribution of fossil and extant Trochodendraceae in the Northern Hemisphere".Botanical Journal of the Linnean Society.195 (3):467–484.doi:10.1093/botlinnean/boaa046.
  23. ^abcR.R. Pujana; A. Iglesias; M.E. Raffi; E.B. Olivero (2018). "Angiosperm fossil woods from the Upper Cretaceous of Western Antarctica (Santa Marta Formation)".Cretaceous Research.90:349–362.Bibcode:2018CrRes..90..349P.doi:10.1016/j.cretres.2018.06.009.hdl:11336/86736.S2CID 134433986.
  24. ^abDimitra Mantzouka (2018)."The first report ofCryptocaryoxylon from the Neogene (early Miocene) of Eurasia (Eastern Mediterranean: Lesbos and Lemnos Islands, Greece)"(PDF).Fossil Imprint.74 (1–2):29–36.doi:10.2478/if-2018-0002.S2CID 133942938.
  25. ^abcdAlexander B. Doweld (2018). "Cussoniophyllum,Diplosophyllum,Hederago andPriscophyllum, new generic names for Upper Cretaceous plants of Europe".Annales Botanici Fennici.55 (1–3):93–98.doi:10.5735/085.055.0111.S2CID 91026479.
  26. ^Steven R. Manchester; David L. Dilcher; Walter S. Judd; Brandon Corder; James F. Basinger (2018)."Early Eudicot flower and fruit:Dakotanthus gen. nov. from the Cretaceous Dakota Formation of Kansas and Nebraska, USA".Acta Palaeobotanica.58 (1):27–40.doi:10.2478/acpa-2018-0006.S2CID 133968437.
  27. ^abcdeYe-Ming Cheng; Yu-Fei Wang; Feng-Xiang Liu; Yue-Gao Jin; R.C. Mehrotra; Xiao-Mei Jiang; Cheng-Sen Li (2018). "The Neogene wood flora of Yuanmou, Yunnan, southwest China".IAWA Journal.39 (4):427–474.doi:10.1163/22941932-20170214.S2CID 91605892.
  28. ^George O. Poinar, Jr (2019)."Exalloanthum, a new name for a fossil angiosperm flower in Myanmar amber".Journal of the Botanical Research Institute of Texas.13 (2):475–476.doi:10.17348/jbrit.v13.i2.800.S2CID 244521650.
  29. ^abItzel Guzmán-Vázquez; Laura Calvillo-Canadell; Francisco Sánchez-Beristain (2018). "Leaves of Menispermaceae and Dioscoreaceae from the Olmos Formation (Upper Cretaceous) from the state of Coahuila, Northern Mexico".Review of Palaeobotany and Palynology.258:73–82.Bibcode:2018RPaPa.258...73G.doi:10.1016/j.revpalbo.2018.06.014.S2CID 133808069.
  30. ^abVandana Prasad; Anjum Farooqui; Srikanta Murthy; Omprakash S. Sarate; Sunil Bajpai (2018). "Palynological assemblage from the Deccan Volcanic Province, central India: Insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India".Cretaceous Research.86:186–198.Bibcode:2018CrRes..86..186P.doi:10.1016/j.cretres.2018.03.004.S2CID 134729292.
  31. ^Hongshan Wang; David L. Dilcher (2018)."A new species ofDonlesia (Ceratophyllaceae) from the Early Cretaceous of Kansas, USA".Review of Palaeobotany and Palynology.252:20–28.Bibcode:2018RPaPa.252...20W.doi:10.1016/j.revpalbo.2018.02.002.
  32. ^abcBrian A. Atkinson; Ruth A. Stockey; Gar W. Rothwell (2018). "Tracking the initial diversification of asterids: anatomically preserved cornalean fruits from the early Coniacian (Late Cretaceous) of western North America".International Journal of Plant Sciences.179 (1):21–35.doi:10.1086/695339.S2CID 91138180.
  33. ^George O. Poinar Jr.; Kenton L. Chambers (2018)."Endobeuthos paleosum gen. et sp. nov., fossil flowers of uncertain affinity from mid-Cretaceous Myanmar amber".Journal of the Botanical Research Institute of Texas.12 (1):133–139.doi:10.17348/jbrit.v12.i1.923.S2CID 244509639.
  34. ^Kenton L. Chambers; George O. Poinar Jr. (2023)."Reinterpretation of the mid-Cretaceous fossil flowerEndobeuthos paleosum as a capitular, unisexual inflorescence of Proteaceae".Journal of the Botanical Research Institute of Texas.17 (2):449–456.doi:10.17348/jbrit.v17.i2.1324.
  35. ^Byron B. Lamont; Philip G. Ladd (2024). "Endobeuthos paleosum in 99-million-year-old amber does not belong to the Proteaceae".Journal of the Botanical Research Institute of Texas.18 (1):143–147.doi:10.17348/jbrit.v18.i1.1343.
  36. ^abcdefghijklAlexander B. Doweld (2018). "New names inFicus (Moraceae) andFicophyllum, living and fossil".Kew Bulletin.73 (4): Article 48.doi:10.1007/s12225-018-9769-y.S2CID 53084786.
  37. ^Jian Huang; Tao Su; Lin-Bo Jia; Zhe-Kun Zhou (2018). "A fossil fig from the Miocene of southwestern China: Indication of persistent deep time karst vegetation".Review of Palaeobotany and Palynology.258:133–145.Bibcode:2018RPaPa.258..133H.doi:10.1016/j.revpalbo.2018.07.005.S2CID 135063147.
  38. ^Qijia Li; Yusheng (Christopher) Liu; Jianhua Jin; Cheng Quan (2018). "Late OligoceneFissistigma (Annonaceae) leaves from Guangxi, low-latitude China and its paleoecological implications".Review of Palaeobotany and Palynology.259:39–47.Bibcode:2018RPaPa.259...39L.doi:10.1016/j.revpalbo.2018.09.005.S2CID 134325932.
  39. ^abcdAnumeha Shukla; R.C. Mehrotra; Sheikh Nawaz Ali (2018). "Early Eocene leaves of northwestern India and their response to climate change".Journal of Asian Earth Sciences.166:152–161.Bibcode:2018JAESc.166..152S.doi:10.1016/j.jseaes.2018.07.035.S2CID 135136503.
  40. ^abcdefElse Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018)."Extinct taxa of exotestal seeds close to Austrobaileyales and Nymphaeales from the Early Cretaceous of Portugal"(PDF).Fossil Imprint.74 (1–2):135–158.doi:10.2478/if-2018-0010.S2CID 92585432.
  41. ^Ye-Ming Cheng; Xiao-Nan Yang; Zhe-Feng He; Bing Mao; Ya-Fang Yin (2018). "Early Miocene angiosperm woods from Sihong in the Jiangsu Province, Eastern China".IAWA Journal.39 (1):125–142.doi:10.1163/22941932-20170189.
  42. ^Mahasin Ali Khan; Meghma Bera; Robert A.Spicer; Teresa E.V. Spicer; Subir Bera (2018). "Evidence of simultaneous occurrence of tylosis formation and fungal interaction in a late Cenozoic angiosperm from the eastern Himalaya".Review of Palaeobotany and Palynology.259:171–184.Bibcode:2018RPaPa.259..171K.doi:10.1016/j.revpalbo.2018.10.004.S2CID 135278929.
  43. ^Maria de Jesus Hernandez-Hernández; Carlos Castañeda-Posadas (2018). "Gouania miocenica sp. nov. (Rhamnaceae), a Miocene fossil from Chiapas, México and paleobiological involvement".Journal of South American Earth Sciences.85:1–5.Bibcode:2018JSAES..85....1H.doi:10.1016/j.jsames.2018.04.018.S2CID 134428644.
  44. ^Tao Su; Shu-Feng Li; He Tang; Yong-Jiang Huang; Shi-Hu Li; Cheng-Long Deng; Zhe-Kun Zhou (2018). "Hemitrapa Miki (Lythraceae) from the earliest Oligocene of southeastern Qinghai-Tibetan Plateau and its phytogeographic implications".Review of Palaeobotany and Palynology.257:57–63.Bibcode:2018RPaPa.257...57S.doi:10.1016/j.revpalbo.2018.06.001.S2CID 135057777.
  45. ^Ya Li; Yi-Ming Cui; Carole T. Gee; Xiao-Qing Liang; Cheng-Sen Li (2020)."Primotrapa gen. nov., an extinct transitional genus bridging the evolutionary gap between Lythraceae and Trapoideae, from the early Miocene of North China".BMC Evolutionary Biology.20 (1): 150.doi:10.1186/s12862-020-01697-2.PMC 7661254.PMID 33183234.
  46. ^Gaurav Srivastava; Rakesh C. Mehrotra; David L. Dilcher (2018)."PaleoceneIpomoea (Convolvulaceae) from India with implications for an East Gondwana origin of Convolvulaceae".Proceedings of the National Academy of Sciences of the United States of America.115 (23):6028–6033.Bibcode:2018PNAS..115.6028S.doi:10.1073/pnas.1800626115.PMC 6003353.PMID 29784796.
  47. ^Rafał Kowalski; Elżbieta Worobiec (2018). "Revision ofComarostaphylis globula (Ericaceae) from Cenozoic of Central Europe".Review of Palaeobotany and Palynology.254:20–32.Bibcode:2018RPaPa.254...20K.doi:10.1016/j.revpalbo.2018.04.009.S2CID 134162165.
  48. ^abElse Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018)."Rightcania andKvacekispermum: Early Cretaceous seeds from eastern North America and Portugal provide further evidence of the early chloranthoid diversification"(PDF).Fossil Imprint.74 (1–2):65–76.doi:10.2478/if-2018-0006.S2CID 134825530.
  49. ^George O. Poinar Jr.; Kenton L. Chambers (2018)."Fossil flowers ofLachnociona camptostylus sp. nov., a second record for the genus in mid-Cretaceous Myanmar amber".Journal of the Botanical Research Institute of Texas.12 (2):655–666.doi:10.17348/jbrit.v12.i2.966.S2CID 195836349.
  50. ^Nathan A. Jud; Maria A. Gandolfo; Ari Iglesias; Peter Wilf (2018)."Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae)".Annals of Botany.121 (3):431–442.doi:10.1093/aob/mcx173.PMC 5838809.PMID 29309506.
  51. ^abcEmilio Estrada-Ruiz; Elisabeth A. Wheeler; Garland R. Upchurch Jr.; Greg H. Mack (2018). "Late Cretaceous angiosperm woods from the McRae Formation, south-central New Mexico, USA: Part 2".International Journal of Plant Sciences.179 (2):136–150.doi:10.1086/695503.S2CID 90756137.
  52. ^Camila Martínez; María A. Gandolfo; N. Rubén Cúneo (2018)."Angiosperm leaves and cuticles from the uppermost Cretaceous of Patagonia, biogeographic implications and atmospheric paleo-CO2 estimates".Cretaceous Research.89:107–118.Bibcode:2018CrRes..89..107M.doi:10.1016/j.cretres.2018.03.015.hdl:11336/98558.S2CID 135404931.
  53. ^Atsushi Yabe; Tomio Nakagawa (2018). "A new legume fruit species from the mid-Miocene Climatic Optimum in Japan".Review of Palaeobotany and Palynology.257:35–42.Bibcode:2018RPaPa.257...35Y.doi:10.1016/j.revpalbo.2018.06.006.S2CID 134964695.
  54. ^Zhong-Jian Liu; Diying Huang; Chenyang Cai; Xin Wang (2018)."The core eudicot boom registered in Myanmar amber".Scientific Reports.8 (1): Article number 16765.Bibcode:2018NatSR...816765L.doi:10.1038/s41598-018-35100-4.PMC 6233203.PMID 30425298.
  55. ^Junling Dong; Bainian Sun; Teng Mao; Defei Yan; Chunhui Liu; Zixi Wang; Peihong Jin (2018). "Liquidambar (Altingiaceae) and associated insect herbivory from the Miocene of southeastern China".Palaeogeography, Palaeoclimatology, Palaeoecology.497:11–24.Bibcode:2018PPP...497...11D.doi:10.1016/j.palaeo.2018.02.001.
  56. ^Lu-Liang Huang; Jin Sun; Jian-Hua Jin; Cheng Quan; Alexei A. Oskolski (2018). "Litseoxylon gen. nov. (Lauraceae): The most ancient fossil angiosperm wood with helical thickenings from southeastern Asia".Review of Palaeobotany and Palynology.258:223–233.Bibcode:2018RPaPa.258..223H.doi:10.1016/j.revpalbo.2018.08.006.S2CID 134584129.
  57. ^Camila Martínez (2018). "Dalbergieae (Fabaceae) samara fruits from the Late Eocene of Colombia".International Journal of Plant Sciences.179 (7):541–553.doi:10.1086/698937.S2CID 92370507.
  58. ^abMaría Jimena Franco (2018). "Small Celastraceae and Polygonaceae twigs from the Upper Cenozoic (Ituzaingó Formation) of the La Plata Basin, Argentina".Historical Biology: An International Journal of Paleobiology.30 (5):646–660.doi:10.1080/08912963.2017.1313840.hdl:11336/21859.S2CID 133509866.
  59. ^abcNathan A. Jud; Ari Iglesias; Peter Wilf; Maria A. Gandolfo (2018)."Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina)".American Journal of Botany.105 (5):927–942.doi:10.1002/ajb2.1092.hdl:11336/183708.PMID 29882954.
  60. ^Fei Liang; Ge Sun; Tao Yang; Shuchong Bai (2018). "Nelumbo jiayinensis sp. nov. from the Upper Cretaceous Yong'ancun Formation, Heilongjiang, Northeast China".Cretaceous Research.84:134–140.doi:10.1016/j.cretres.2017.11.007.
  61. ^Zhongjian Liu; Xin Wang (2018)."A novel angiosperm from the Early Cretaceous and its implications for carpel-deriving".Acta Geologica Sinica (English Edition).92 (4):1293–1298.doi:10.1111/1755-6724.13627.S2CID 133778531.
  62. ^Else Marie Friis; Peter R. Crane; Kaj R. Pedersen (2018). "Fossil seeds with affinities to Austrobaileyales and Nymphaeales from the Early Cretaceous (early to middle Albian) of Virginia and Maryland, USA: new evidence for extensive extinction near the base of the angiosperm tree". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.).Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 417–435.doi:10.1016/B978-0-12-813012-4.00017-6.ISBN 978-01-281-3012-4.
  63. ^Else Marie Friis; Mário Miguel Mendes; Kaj Raunsgaard Pedersen (2018)."Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal".Grana.57 (1–2):1–15.doi:10.1080/00173134.2017.1310292.hdl:10400.1/11975.S2CID 89962677.
  64. ^Yunfa Chen; Hongshan Wang; Yongqing Liufu; Qian Hu; Qiongyao Fu; Zhiming Xie (2018). "A new species ofPalaeocarya (Juglandaceae) from the Ningming Basin in Guangxi, South China".Phytotaxa.367 (1):55–62.doi:10.11646/phytotaxa.367.1.6.S2CID 91774942.
  65. ^Kathleen B. Pigg; Finley A. Bryan; Melanie L. DeVore (2018). "Paleoallium billgenseli gen. et sp. nov.: fossil monocot remains from the latest Early Eocene Republic Flora, northeastern Washington State, USA".International Journal of Plant Sciences.179 (6):477–486.doi:10.1086/697898.S2CID 91055581.
  66. ^Jun-Ling Dong; Bai-Nian Sun; Teng Mao; Pei-Hong Jin; Zi-Xi Wang (2018). "Two samaras of Rhamnaceae from the middle Miocene of southeast China".Review of Palaeobotany and Palynology.259:112–122.Bibcode:2018RPaPa.259..112D.doi:10.1016/j.revpalbo.2018.09.004.S2CID 133695350.
  67. ^abcSamar Nour-El-Deen; Romain Thomas; Wagieh El-Saadawi (2018). "First record of fossil Trachycarpeae in Africa: three new species ofPalmoxylon from the Oligocene (Rupelian) Gebel Qatrani Formation, Fayum, Egypt".Journal of Systematic Palaeontology.16 (9):741–766.doi:10.1080/14772019.2017.1343258.S2CID 134641364.
  68. ^Eliana Moya; Mariana Brea; Alicia I. Lutz (2018)."Redescription and reassignment of the fossil woodMenendoxylon piptadiensis from the Pliocene Andalhuala Formation, South America".Journal of Systematic Palaeontology.16 (13):1145–1157.doi:10.1080/14772019.2017.1386727.hdl:11336/41423.S2CID 90928608.
  69. ^abÜnal Akkemik; Gökhan Atıcı; Imogen Poole; Mehmet Çobankaya (2018). "Three new silicified woods from a newly discovered earliest Miocene forest site in the Haymana Basin (Ankara, Turkey)".Review of Palaeobotany and Palynology.254:49–64.Bibcode:2018RPaPa.254...49A.doi:10.1016/j.revpalbo.2018.04.012.S2CID 134850974.
  70. ^Gaurav Srivastava; R. C. Mehrotra; C. Srikarni (2018)."Fossil wood flora from the Siwalik Group of Arunachal Pradesh, India and its climatic and phytogeographic significance".Journal of Earth System Science.127 (1): Article 2.Bibcode:2018JESS..127....2S.doi:10.1007/s12040-017-0903-2.S2CID 134314695.
  71. ^Dmitry D. Sokoloff; Michael S. Ignatov; Margarita V. Remizowa; Maxim S. Nuraliev; Vladimir Blagoderov; Amin Garbout; Evgeny E. Perkovsky (2018). "Staminate flower ofPrunuss. l. (Rosaceae) from Eocene Rovno amber (Ukraine)".Journal of Plant Research.131 (6):925–943.doi:10.1007/s10265-018-1057-2.PMID 30032395.S2CID 51708343.
  72. ^Steven R. Manchester; Behnaz Balmaki (2018)."Spiny fruits revealed by nano-CT scanning:Pseudoanacardium peruvianum (Berry) gen. et comb. nov. from the early Oligocene Belén flora of Peru".Acta Palaeobotanica.58 (1):41–48.doi:10.2478/acpa-2018-0005.S2CID 134030486.
  73. ^Friðgeir Grímsson; Guido W. Grimm; Alastair J. Potts; Reinhard Zetter; Susanne S. Renner (2018). "A Winteraceae pollen tetrad from the early Paleocene of western Greenland, and the fossil record of Winteraceae in Laurasia and Gondwana".Journal of Biogeography.45 (3):567–581.doi:10.1111/jbi.13154.S2CID 91077162.
  74. ^John G. Conran; Elizabeth M. Kennedy; Jennifer M. Bannister (2018). "Early Eocene Ripogonaceae leaf macrofossils from New Zealand".Australian Systematic Botany.31 (1):8–15.doi:10.1071/SB17016.S2CID 90024792.
  75. ^A.L. Hernández-Damián; S.L. Gómez-Acevedo; S.R.S. Cevallos-Ferriz (2018). "Fossil flower ofSalacia lombardii sp. nov. (Salacioideae-Celastraceae) preserved in amber from Simojovel de Allende, Mexico".Review of Palaeobotany and Palynology.252:1–9.Bibcode:2018RPaPa.252....1H.doi:10.1016/j.revpalbo.2018.02.003.
  76. ^George O. Poinar Jr.; Kenton L. Chambers (2018)."Setitheca lativalva gen. et sp. nov., a fossil flower of Laurales from mid-Cretaceous Myanmar amber".Journal of the Botanical Research Institute of Texas.12 (2):643–653.doi:10.17348/jbrit.v12.i2.964.S2CID 195836861.
  77. ^Sandip More; Rajarshi Rit; Mahasin Ali Khan; Dipak Kumar Paruya; Suchana Taral; Tapan Chakraborty; Subir Bera (2018). "Record of leaf and pollen cf.Sloanea (Elaeocarpaceae) from the Middle Siwalik of Darjeeling sub-Himalaya, India and its palaeobiogeographic implications".Journal of the Geological Society of India.91 (3):301–306.doi:10.1007/s12594-018-0854-5.S2CID 134939533.
  78. ^Maria A. Gandolfo; Kevin C. Nixon; William L. Crepet; David A. Grimaldi (2018)."A late Cretaceous fagalean inflorescence preserved in amber from New Jersey".American Journal of Botany.105 (8):1424–1435.doi:10.1002/ajb2.1103.PMID 29901855.S2CID 49182536.
  79. ^Yongjiang Huang; Arata Momohara; Yuqing Wang (2018). "Selective extinction within a Tertiary relict genus in the Japanese Pleistocene explained by climate cooling and species-specific cold tolerance".Review of Palaeobotany and Palynology.258:1–12.Bibcode:2018RPaPa.258....1H.doi:10.1016/j.revpalbo.2018.06.009.S2CID 134792773.
  80. ^abcHan, M.; Manchester, S.; Fu, Q.-Y.; Jin, J.-H.; Quan, C. (2018). "Paleogene fossil fruits ofStephania (Menispermaceae) from North America and East Asia".Journal of Systematics and Evolution.56 (2):81–91.doi:10.1111/jse.12288.S2CID 90749898.
  81. ^Manchester, S.R. (1994). "Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon".Palaeontographica Americana.58:30–31.
  82. ^Bruce H. Tiffney; Steven R. Manchester; Peter W. Fritsch (2018)."Two new species ofSymplocos based on endocarps from the early Miocene Brandon Lignite of Vermont, USA".Acta Palaeobotanica.58 (2):185–198.doi:10.2478/acpa-2018-0008.S2CID 134618908.
  83. ^Myall Tarran; Peter G. Wilson; Rosemary Paull; Ed Biffin; Robert S. Hill (2018)."Identifying fossil Myrtaceae leaves: the first described fossils ofSyzygium from Australia".American Journal of Botany.105 (10):1748–1759.doi:10.1002/ajb2.1163.PMID 30276795.S2CID 52901156.
  84. ^Else Marie Friis; Peter R. Crane; Kaj Raunsgaard Pedersen (2018)."Tanispermum, a new genus of hemi-orthotropous to hemi-anatropous angiosperm seeds from the Early Cretaceous of eastern North America".American Journal of Botany.105 (8):1369–1388.doi:10.1002/ajb2.1124.PMID 30080239.S2CID 51920598.
  85. ^William L. Crepet; Kevin C. Nixon; Andrea Weeks (2018)."Mid-Cretaceous angiosperm radiation and an asterid origin of bilaterality: diverse and extinct "Ericales" from New Jersey".American Journal of Botany.105 (8):1412–1423.doi:10.1002/ajb2.1131.PMID 30075046.S2CID 51910883.
  86. ^L. B. Golovneva; A. A. Zolina (2018)."Fossil evidence of initial radiation of Cercidiphyllaceae".Paleobotanika.9:54–75.doi:10.31111/palaeobotany/2018.9.54.ISSN 2218-7235.
  87. ^abQiu-Yue Zhang; Jian Huang; Lin-Bo Jia; Tao Su; Zhe-Kun Zhou; Yao-Wu Xing (2018). "MioceneUlmus fossil fruits from Southwest China and their evolutionary and biogeographic implications".Review of Palaeobotany and Palynology.259:198–206.Bibcode:2018RPaPa.259..198Z.doi:10.1016/j.revpalbo.2018.10.007.S2CID 135184883.
  88. ^N. I. Blokhina; O. V. Bondarenko (2018). "Fossil wood ofUlmus priamurica sp. nov. (Ulmaceae) from the Miocene of the Erkovetskii Brown Coal Field, Amur Region, Russia".Paleontological Journal.52 (2):208–218.doi:10.1134/S003103011802003X.S2CID 90347236.
  89. ^Xiao-Qing Liang; Ping Lu; Jian-Wei Zhang; Tao Su; Zhe-Kun Zhou (2018). "First fossils ofZygogynum from the Middle Miocene of Central Yunnan, Southwest China, and their palaeobiogeographic significance".Palaeoworld.27 (3):399–409.doi:10.1016/j.palwor.2018.05.003.S2CID 135342481.
  90. ^Ignacio H. Escapa; Ari Iglesias; Peter Wilf; Santiago A. Catalano; Marcos A. Caraballo-Ortiz; N. Rubén Cúneo (2018)."Agathis trees of Patagonia's Cretaceous-Paleogene death landscapes and their evolutionary significance".American Journal of Botany.105 (8):1345–1368.doi:10.1002/ajb2.1127.hdl:11336/87592.PMID 30074620.S2CID 51908977.
  91. ^M. Philippe; M. Rioult; J.-Ph. Rioult; F. Thévenard (2018). "A reappraisal of Lignier's Mesozoic fossil wood collection: Ages, nomenclature and taxonomy".Review of Palaeobotany and Palynology.252:10–19.Bibcode:2018RPaPa.252...10P.doi:10.1016/j.revpalbo.2018.02.001.
  92. ^abcdStănilă Iamandei; Eugenia Iamandei; Eugen Grădinaru (2018). "Contributions to the study of the Early Jurassic petrified forest of Holbav and Cristian areas (Brașov region, South Carpathians, Romania). 1st part".Acta Palaeontologica Romaniae.14 (2):3–34.
  93. ^Adriana C. Kloster; Silvia C. Gnaedinger (2018). "Coniferous wood ofAgathoxylon from the La Matilde Formation, (Middle Jurassic), Santa Cruz, Argentina".Journal of Paleontology.92 (4):546–567.Bibcode:2018JPal...92..546K.doi:10.1017/jpa.2017.145.hdl:11336/91290.S2CID 134153671.
  94. ^Ana Andruchow-Colombo; Ignacio H. Escapa; N. Rubén Cúneo; María A. Gandolfo (2018)."Araucaria lefipanensis (Araucariaceae), a new species with dimorphic leaves from the Late Cretaceous of Patagonia, Argentina".American Journal of Botany.105 (6):1067–1087.doi:10.1002/ajb2.1113.hdl:11336/117605.PMID 29995329.S2CID 51618501.
  95. ^Rafael Souza Faria; Fresia Ricardi-Branco; Rosemarie Rohn; Marcelo Adorna Fernandes; Isabel Christiano-De-Souza (2018). "Permian woods with preserved primary structures from the southeast of Brazil (Irati Formation, Paraná basin)".Palaeobiodiversity and Palaeoenvironments.98 (3):385–401.doi:10.1007/s12549-018-0320-9.hdl:11449/176067.S2CID 134655745.
  96. ^Ning Tian; Zhi-Peng Zhu; Yong-Dong Wang; Si-Cong Wang (2018)."Occurrence ofBrachyoxylon Hollick et Jeffrey from the Lower Cretaceous of Zhejiang Province, southeastern China".Journal of Palaeogeography.7 (1): Article 8.doi:10.1186/s42501-018-0008-0.S2CID 52834161.
  97. ^Brian A. Atkinson; Rudolph Serbet; Timothy J. Hieger; Edith L. Taylor (2018)."Additional evidence for the Mesozoic diversification of conifers: Pollen cone ofChimaerostrobus minutus gen. et sp. nov. (Coniferales), from the Lower Jurassic of Antarctica".Review of Palaeobotany and Palynology.257:77–84.Bibcode:2018RPaPa.257...77A.doi:10.1016/j.revpalbo.2018.06.013.S2CID 133732087.
  98. ^Wen-Na Ding; Lutz Kunzmann; Tao Su; Jian Huang; Zhe-Kun Zhou (2018). "A new fossil species ofCryptomeria (Cupressaceae) from the Rupelian of the Lühe Basin, Yunnan, East Asia: Implications for palaeobiogeography and palaeoecology".Review of Palaeobotany and Palynology.248:41–51.Bibcode:2018RPaPa.248...41D.doi:10.1016/j.revpalbo.2017.09.003.
  99. ^Tatiana Kodrul; Natalia Gordenko; Aleksandra Sokolova; Natalia Maslova; Xinkai Wu; Jianhua Jin (2018). "A new Oligocene species ofCunninghamia R. Brown ex Richard et A. Richard (Cupressaceae) from the Maoming Basin, South China".Review of Palaeobotany and Palynology.258:234–247.Bibcode:2018RPaPa.258..234K.doi:10.1016/j.revpalbo.2018.09.003.S2CID 134577533.
  100. ^abcdefghiValeria S. Perez Loinaze; Magdalena Llorens (2018). "Palynology of the Baqueró Group (upper Aptian), Patagonia Argentina: An integrated study".Cretaceous Research.86:219–237.Bibcode:2018CrRes..86..219P.doi:10.1016/j.cretres.2018.02.004.hdl:11336/94848.S2CID 133840202.
  101. ^Pei-Hong Jin; Jun-Ling Dong; Zi-Xi Wang; Xiu-Cai Yuan; Yi-Fan Hua; Bao-Xia Du; Bai-Nian Sun (2018). "A new species ofElatides from the Lower Cretaceous in Shandong province, Eastern China and its geographic significance".Cretaceous Research.85:109–127.Bibcode:2018CrRes..85..109J.doi:10.1016/j.cretres.2017.11.022.
  102. ^abAmit K. Ghosh; Ratan Kar; Reshmi Chatterjee; Arindam Chakraborty; Jayasri Banerji (2018). "Two new conifers from the Early Cretaceous of the Rajmahal Basin, India: implications on palaeoecology and phytogeography".Ameghiniana.55 (4):437–450.doi:10.5710/AMGH.17.02.2018.3124.S2CID 134437542.
  103. ^Ana Andruchow-Colombo; Ignacio H. Escapa; Raymond J. Carpenter; Robert S. Hill; Ari Iglesias; Ana M. Abarzua; Peter Wilf (2018). "Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina".Alcheringa.43:127–145.doi:10.1080/03115518.2018.1517222.S2CID 133852107.
  104. ^N.V. Nosova; A.I. Kiritchkova (2018)."A new species ofMarskea Florin (Pinopsida) from the Middle Jurassic of the Irkutsk Coal Basin (East Siberia)".Paleontological Journal.52 (5):574–581.doi:10.1134/S0031030118050106.S2CID 91309728.
  105. ^Ruth A. Stockey; Nicholas J. P. Wiebe; Brian A. Atkinson; Gar W. Rothwell (2018). "Cupressaceous pollen cones from the Early Cretaceous of Vancouver Island, British Columbia:Morinostrobus holbergensis gen. et sp. nov".International Journal of Plant Sciences.179 (5):402–414.doi:10.1086/697728.S2CID 89890930.
  106. ^Mahasin Ali Khan; Subir Bera (2018). "Pinus daflaensis (Pinaceae), a replacement name forP. arunachalensis Khan & Bera".Phytotaxa.334 (2): 200.doi:10.11646/phytotaxa.334.2.9.
  107. ^abAlma R. Huerta Vergara; Sergio R.S. Cevallos-Ferriz (2018). "Vegetative and reproductive organs of Late CretaceousPinus spp. from Esqueda, Sonora, Mexico".Review of Palaeobotany and Palynology.259:134–141.Bibcode:2018RPaPa.259..134H.doi:10.1016/j.revpalbo.2018.10.003.S2CID 134939869.
  108. ^abcdeAlexander B. Doweld (2018). "New names of fossilPinus andPinuspollenites (Pinaceae) of Northern Eurasia".The Journal of Japanese Botany.93 (3):215–219.
  109. ^Wenlong He; Liang Xiao; Xiangchuan Li; Shuangxing Guo (2018). "An ancient example ofPlatycladus (Cupressceae) from the early Miocene of northern China: origin and biogeographical implications".Historical Biology: An International Journal of Paleobiology.30 (8):1123–1131.doi:10.1080/08912963.2017.1339038.S2CID 89824036.
  110. ^abYujin Zhang; Ning Tian; Zhipeng Zhu; Yongdong Wang; Xinwei Wu; Zhibin Zhang; Chao Zhang; Qiuliang Si; Yongfei Ma (2018)."Two new species ofProtocedroxylon Gothan (Pinaceae) from the Middle Jurassic of Eastern Inner Mongolia, NE China".Acta Geologica Sinica (English Edition).92 (5):1685–1699.doi:10.1111/1755-6724.13671.S2CID 134790757.
  111. ^Maria Edenilce P. Batista; Lutz Kunzmann; Francisco Irineudo Bezerra; José Artur F.G. de Andrade; Artur A. Sá; Maria Iracema B. Loiola (2018)."A new cheirolepidiaceous coniferPseudofrenelopsis salesii sp. nov. from the Early Cretaceous of Brazil (Romualdo Formation, Araripe Basin): Paleoecological and taphonomic significance".Review of Palaeobotany and Palynology.258:154–162.Bibcode:2018RPaPa.258..154B.doi:10.1016/j.revpalbo.2018.08.002.S2CID 135185679.
  112. ^Jiří Kvaček; Eduardo Barrón; Zuzana Heřmanová; Mário Miguel Mendes; Jakub Karch; Jan Žemlička; Jan Dudák (2018). "Araucarian conifer from late Albian amber of northern Spain".Papers in Palaeontology.4 (4):643–656.doi:10.1002/spp2.1223.S2CID 134837045.
  113. ^Long Li; Jian-Hua Jin; Steven R. Manchester (2018)."Cupressaceae fossil remains from the Paleocene of Carneyville, Wyoming".Review of Palaeobotany and Palynology.251:1–13.Bibcode:2018RPaPa.251....1L.doi:10.1016/j.revpalbo.2017.12.003.S2CID 133717549.
  114. ^Ning Tian; Zhipeng Zhu; Yongdong Wang; Marc Philippe; Chunyong Chou; Aowei Xie (2018). "Sequoioxylon zhangii sp. nov. (Sequoioideae, Cupressaceae s.l.), a new coniferous wood from the Upper Cretaceous in Heilongjiang Province, Northeastern China".Review of Palaeobotany and Palynology.257:85–94.Bibcode:2018RPaPa.257...85T.doi:10.1016/j.revpalbo.2018.07.008.S2CID 135269271.
  115. ^abcdefghAndrey O. Frolov; Irina M. Mashchuk (2018).Jurassic flora and vegetation of the Irkutsk Coal Basin. V.B. Sochava Institute of Geography SB RAS Publishers. pp. 1–541.ISBN 978-5-94797-328-0.
  116. ^Xiao Tan; David L. Dilcher; Hongshan Wang; Yi Zhang; Yu-Ling Na; Tao Li; Yun-Feng Li; Chun-Lin Sun (2018). "Yanliaoa, an extinct genus of Cupressaceaes. l. from the Middle Jurassic, northeastern China".Palaeoworld.27 (3):360–373.doi:10.1016/j.palwor.2018.03.001.S2CID 134801054.
  117. ^Le Liu; De-Ming Wang; Mei-Cen Meng; Pu Huang; Jin-Zhuang Xue (2018). "A new seed plant with multi-ovulate cupules from the Upper Devonian of South China".Review of Palaeobotany and Palynology.249:80–86.Bibcode:2018RPaPa.249...80L.doi:10.1016/j.revpalbo.2017.11.006.
  118. ^abcdZbyněk Šimůnek (2018)."Cuticular analysis of new Westphalian and StephanianCordaites species from the USA".Review of Palaeobotany and Palynology.253:1–14.Bibcode:2018RPaPa.253....1S.doi:10.1016/j.revpalbo.2018.03.001.S2CID 135323969.
  119. ^abcdefStephen McLoughlin; Christian Pott; Ian H. Sobbe (2018)."The diversity of Australian Mesozoic bennettitopsid reproductive organs".Palaeobiodiversity and Palaeoenvironments.98 (1):71–95.doi:10.1007/s12549-017-0286-z.S2CID 135237376.
  120. ^abcÀ.I Kiritchkova; E.I. Kostina; N.V. Nosova (2018)."Jurassic flora of the Irkutsk coal basin".Botanicheskii Zhurnal.103 (1):36–63.
  121. ^Yong Yang; Longbiao Lin; David K. Ferguson; Yingwei Wang (2018)."Macrofossil evidence unveiling evolution of male cones in Ephedraceae (Gnetidae)".BMC Evolutionary Biology.18 (1): 125.doi:10.1186/s12862-018-1243-9.PMC 6116489.PMID 30157769.
  122. ^Yun-Feng Li; Chun-Lin Sun; Hongshan Wang; David L. Dilcher; Xiao Tan; Tao Li; Yu-Ling Na (2018). "First record ofEretmophyllum (Ginkgoales) with well-preserved cuticle from the Middle Jurassic of the Ordos Basin, Inner Mongolia, China".Palaeoworld.27 (2):188–201.doi:10.1016/j.palwor.2017.09.002.S2CID 135110777.
  123. ^abcChun-Lin Sun; Xiao Tan; David L. Dilcher; Hongshan Wang; Yu-Ling Na; Tao Li; Yun-Feng Li (2018). "Middle JurassicGinkgo leaves from the Daohugou area, Inner Mongolia, China and their implication for palaeo-CO2 reconstruction".Palaeoworld.27 (4):467–481.doi:10.1016/j.palwor.2018.09.005.S2CID 134358537.
  124. ^Andrey O. Frolov; Irina M. Mashchuk (2022). "New Discoveries and New Combinations of the Fossil-genusGinkgoites Seward (Ginkgoales) from the Lower and Middle Jurassic of East Siberia (Russia)".Phytotaxa.567 (1):49–60.doi:10.11646/phytotaxa.567.1.4.S2CID 252650745.
  125. ^A.V. Gomankov (2018)."Rhipidopsis-like leaves in the Upper Permian of the Russian Platform and some evolutionary lineages in Ginkgoopsida"(PDF).Paleobotanicheskii Vremennik. Prilozhenie K Zhurnalu "Lethaea Rossica".3:41–49.
  126. ^abZixi Wang; Bainian Sun; Fankai Sun; Conghui Xiong; Yingquan Chen; Xuelian Wang (2018). "Microstructure and significance of cordaitean reproductive organs from the lower Permian of Gansu, Northwest China".Journal of Asian Earth Sciences.158:49–64.Bibcode:2018JAESc.158...49W.doi:10.1016/j.jseaes.2018.02.016.S2CID 134097850.
  127. ^Ana María Zavattieri; Pedro Raúl Gutiérrez; Miguel Ezpeleta (2018). "Gymnosperm pollen grains from the La Veteada Formation (Lopingian), Paganzo Basin, Argentina: biostratigraphic and palaeoecological implications".Alcheringa: An Australasian Journal of Palaeontology.42 (2):276–299.doi:10.1080/03115518.2017.1410571.hdl:11336/94041.S2CID 133757522.
  128. ^abQiang Fu; Jose Bienvenido Diez; Mike Pole; Manuel García Ávila; Zhong-Jian Liu; Hang Chu; Yemao Hou; Pengfei Yin; Guo-Qiang Zhang; Kaihe Du; Xin Wang (2018)."An unexpected noncarpellate epigynous flower from the Jurassic of China".eLife.7: e38827.doi:10.7554/eLife.38827.PMC 6298773.PMID 30558712.
  129. ^Mario Coiro; James A. Doyle; Jason Hilton (2019)."How deep is the conflict between molecular and fossil evidence on the age of angiosperms?"(PDF).New Phytologist.223 (1):83–99.doi:10.1111/nph.15708.PMID 30681148.S2CID 59250674.
  130. ^abYi Zhao; Shenghui Deng; Ping Shang; Qin Leng; Yuanzheng Lu; Guobin Fu; Xueying Ma (2018). "Two new species ofNilssoniopteris (Bennettitales) from the Middle Jurassic of Sandaoling, Turpan-Hami Basin, Xinjiang, NW China".Journal of Paleontology.92 (4):525–545.Bibcode:2018JPal...92..525Z.doi:10.1017/jpa.2017.133.S2CID 134658701.
  131. ^Yi Zhao; Yuanzheng Lu; Ping Shang; Shenghui Deng; Xunlian Wang (2018). "An amended species,Nilssoniopteris neimenguensis nom. nov., from the Lower Jurassic of the Xilinhot Basin, Inner Mongolia, northern China, with a reexamination ofNilssoniopteris species".Review of Palaeobotany and Palynology.255:22–34.Bibcode:2018RPaPa.255...22Z.doi:10.1016/j.revpalbo.2018.04.013.S2CID 134961715.
  132. ^abFabiany Herrera; Gongle Shi; Gombosuren Tsolmon; Niiden Ichinnorov; Masamichi Takahashi; Peter R. Crane; Patrick S. Herendeen (2018)."Exceptionally well-preserved Early Cretaceous leaves ofNilssoniopteris from central Mongolia".Acta Palaeobotanica.58 (2):135–157.doi:10.2478/acpa-2018-0016.S2CID 135266923.
  133. ^Toshihiro Yamada; Julien Legrand; Harufumi Nishida (2018). "Late Early Cretaceous (Albian) Sasayama flora from the Sasayama Group in Hyogo Prefecture, Japan".Paleontological Research.22 (2):112–128.doi:10.2517/2017PR014.S2CID 134386883.
  134. ^S.V. Naugolnykh (2018)."Ecology and paleoecology in context of geomonitoring aims as exemplified by the City of Krasnoufimsk (Sverdlovsk region)".Socialno-ecologicheskie Technologii.2018 (1):38–64.doi:10.31862/2500-2963-2018-1-38-64.
  135. ^Stephen McLoughlin; Benjamin Bomfleur; Andrew N. Drinnan (2018). "Pachytestopsis tayloriorum gen. et sp. nov., an anatomically preserved glossopterid seed from the Lopingian of Queensland, Australia". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.).Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 155–178.doi:10.1016/B978-0-12-813012-4.00009-7.ISBN 978-01-281-3012-4.
  136. ^A. O. Frolov; I. M. Mashchuk (2018). "A new species of the genusPhoenicopsis (Leptostrobales) from the Middle Jurassic of the Irkutsk Basin (Eastern Siberia)".Paleontological Journal.52 (4):463–468.doi:10.1134/S0031030118040068.S2CID 92483140.
  137. ^abcGongle Shi; Fabiany Herrera; Patrick S. Herendeen; Andrew B. Leslie; Niiden Ichinnorov; Masamichi Takahashi; Peter R. Crane (2018). "Leaves ofPodozamites andPseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships".Journal of Systematic Palaeontology.16 (2):111–137.doi:10.1080/14772019.2016.1274343.S2CID 90523531.
  138. ^abNatalya Nosova; Lina Golovneva (2018). "Phoenicopsis (Leptostrobales) andPseudotorellia (Ginkgoales) from the Cretaceous of North Asia".Cretaceous Research.86:149–162.Bibcode:2018CrRes..86..149N.doi:10.1016/j.cretres.2018.03.001.S2CID 134427457.
  139. ^abAnastasia A. Gnilovskaya; Lina B. Golovneva (2018). "The Late CretaceousPterophyllum (Bennettitales) in the North-East of Russia".Cretaceous Research.82:56–63.Bibcode:2018CrRes..82...56G.doi:10.1016/j.cretres.2017.09.013.
  140. ^Bárbara Cariglino; Mariana Monti; Ana María Zavattieri (2018). "A Middle Triassic macroflora from southwestern Gondwana (Mendoza, Argentina) with typical Northern Hemisphere elements: Biostratigraphic, palaeogeographic and palaeoenvironmental implications".Review of Palaeobotany and Palynology.257:1–18.Bibcode:2018RPaPa.257....1C.doi:10.1016/j.revpalbo.2018.06.004.S2CID 134353650.
  141. ^A.V. Gomankov (2018)."New species ofRufloria S. Meyen (Cordaitanthales, Rufloriaceae) and its significance for the stratigraphy of the Angaran Permian"(PDF).Lethaea Rossica.16:23–32.
  142. ^Tao Yang; Fei Liang; Shu-chong Bai; Xiao-rong Guo (2018). "New discovery ofSolenites (Czekanowskialean) from Upper Triassic Haojiagou Formation in Urumqi, Xinjiang".Global Geology.37 (1):1–8.doi:10.3969/j.issn.1004-5589.2018.01.001.
  143. ^Giuseppa Forte; Evelyn Kustatscher; Johanna H.A. van Konijnenburg-van Cittert; Hans Kerp (2018). "Sphenopterid diversity in the Kungurian of Tregiovo (Trento, NE-Italy)".Review of Palaeobotany and Palynology.252:64–76.Bibcode:2018RPaPa.252...64F.doi:10.1016/j.revpalbo.2018.02.006.
  144. ^N. V. Gordenko; A. V. Broushkin (2018)."Ovuliferous organs of Trisquamales Gordenko et Broushkin ordo. nov. (Gymnospermae) from the Middle Jurassic of the Kursk Region, European Russia".Paleontological Journal.52 (1):90–107.doi:10.1134/S0031030118010082.S2CID 90790977.
  145. ^L.C.A. Martínez; E.G. Ottone; A.E. Artabe (2018). "A new cycad trunk from the Palaeocene in the Neuquén Basin, Patagonia (Argentina)".Review of Palaeobotany and Palynology.256:1–12.Bibcode:2018RPaPa.256....1M.doi:10.1016/j.revpalbo.2018.05.006.hdl:11336/96006.S2CID 133628293.
  146. ^Boglárka Erdei; Michael Calonje; Austin Hendy; Nicolas Espinoza (2018)."A review of the Cenozoic fossil record of the genusZamia L. (Zamiaceae, Cycadales) with recognition of a new species from the late Eocene of Panama - evolution and biogeographic inferences".Bulletin of Geosciences.93 (2):185–204.doi:10.3140/bull.geosci.1671.S2CID 134577832.
  147. ^Pedro Correia; Zbynĕk Šimůnek; Artur A. Sá; Deolinda Flores (2018). "A new Late Pennsylvanian floral assemblage from the Douro Basin, Portugal".Geological Journal.53 (6):2507–2531.doi:10.1002/gj.3086.S2CID 134475039.
  148. ^abcDianne Edwards; Cheng-Sen Li (2018)."Diversity in affinities of plants with lateral sporangia from the Lower Devonian of Sichuan Province, China"(PDF).Review of Palaeobotany and Palynology.258:98–111.Bibcode:2018RPaPa.258...98E.doi:10.1016/j.revpalbo.2018.07.002.S2CID 135201524.
  149. ^abcSol Noetinger; Mercedes di Pasquo; Daniel Starck (2018). "Middle-Upper Devonian palynofloras from Argentina, systematic and correlation".Review of Palaeobotany and Palynology.257:95–116.Bibcode:2018RPaPa.257...95N.doi:10.1016/j.revpalbo.2018.07.009.hdl:11336/93134.S2CID 134590587.
  150. ^abcUlla Kaasalainen; Jochen Heinrichs; Matthew A. M. Renner; Lars Hedenäs; Alfons Schäfer-Verwimp; Gaik Ee Lee; Michael S. Ignatov; Jouko Rikkinen; Alexander R. Schmidt (2018). "A Caribbean epiphyte community preserved in Miocene Dominican amber".Earth and Environmental Science Transactions of the Royal Society of Edinburgh.107 (2–3):321–331.doi:10.1017/S175569101700010X.hdl:10138/234078.S2CID 134335842.
  151. ^Fayao Chen; Xiao Shi; Jianxin Yu; Hongfei Chi; Jun Zhu; Hui Li; Cheng Huang (2018). "Permineralized calamitean axes from the Upper Permian of Xinjiang, Northwest China and its paleoecological implication".Journal of Earth Science.29 (2):237–244.doi:10.1007/s12583-017-0941-3.S2CID 133735122.
  152. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiHeidi M. Anderson; John M. Anderson (2018). "Molteno sphenophytes: Late Triassic biodiversity in southern Africa".Palaeontologia Africana.53:1–391.hdl:10539/24672.
  153. ^Facundo De Benedetti; María del C. Zamaloa; María A. Gandolfo; Néstor Rubén Cúneo (2018). "Heterosporous ferns From Patagonia: the case ofAzolla". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.).Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 361–373.doi:10.1016/B978-0-12-813012-4.00015-2.ISBN 978-01-281-3012-4.
  154. ^abcdDianne Edwards; Cheng-Sen Li (2018)."Further insights into the Lower Devonian terrestrial vegetation of Sichuan Province, China"(PDF).Review of Palaeobotany and Palynology.253:37–48.Bibcode:2018RPaPa.253...37E.doi:10.1016/j.revpalbo.2018.03.004.S2CID 85457662.
  155. ^abcdePedro R. Gutiérrez; M. Lucía Balarino (2018)."The palynology of the Ordóñez Formation (Pennsylvanian) in the Chacoparaná Basin, northern Argentina".Acta Palaeobotanica.58 (1):3–26.doi:10.2478/acpa-2018-0002.S2CID 134158465.
  156. ^Jochen Heinrichs; Alfons Schäfer-Verwimp; Matthew A. M. Renner; Kathrin Feldberg (2018). "Cheilolejeunea lamyi sp. nov., a fossil Lejeuneaceae from Miocene Dominican amber".Cryptogamie, Bryologie.39 (2):155–161.doi:10.7872/cryb/v39.iss2.2018.155.S2CID 90214270.
  157. ^Milan Libertín; Jiří Kvaček; Jiří Bek; Viktor Žárský; Petr Štorch (2018). "Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous".Nature Plants.4 (5):269–271.doi:10.1038/s41477-018-0140-y.PMID 29725100.S2CID 19151297.
  158. ^Jerald B. Pinson; Steven R. Manchester; Emily B. Sessa (2018). "Culcita remberi sp. nov., an understory fern of Cyatheales from the Miocene of northern Idaho".International Journal of Plant Sciences.179 (8):635–639.doi:10.1086/698938.S2CID 51998343.
  159. ^Josefina Bodnar; Juan Martín Drovandi; Eduardo Manuel Morel; Daniel Gustavo Ganuza (2018)."Middle Triassic dipterid ferns from west-central Argentina and their relationship to palaeoclimatic changes".Acta Palaeontologica Polonica.63 (2):397–416.doi:10.4202/app.00459.2018.hdl:11336/86632.S2CID 54953430.
  160. ^Christian Pott; Johannes M. Bouchal; Thereis Y.S. Choo; Rihab Yousif; Benjamin Bomfleur (2018). "Ferns and fern allies from the Carnian (Upper Triassic) of Lunz am See, Lower Austria: A melting pot of Mesozoic fern vegetation".Palaeontographica Abteilung B.297 (1–6):1–101.Bibcode:2018PalAB.297....1P.doi:10.1127/palb/2018/0059.
  161. ^Kelly C. Pfeiler; Alexandru M. F. Tomescu (2018). "An Early Devonian permineralized rhyniopsid from the Battery Point Formation of Gaspé (Canada)".Botanical Journal of the Linnean Society.187 (2):292–302.doi:10.1093/botlinnean/boy011.
  162. ^Jennifer L. Morris; Dianne Edwards; John B. Richardson (2018). "The advantages and frustrations of a plant Lagerstätte as illustrated by a new taxon from the Lower Devonian of the Welsh Borderland, UK". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.).Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 49–67.doi:10.1016/B978-0-12-813012-4.00004-8.ISBN 978-01-281-3012-4.
  163. ^abCharles H. Wellman (2018)."The classic Lower Devonian plant-bearing deposits of northern New Brunswick, eastern Canada: dispersed spore taxonomy and biostratigraphy"(PDF).Review of Palaeobotany and Palynology.249:24–49.Bibcode:2018RPaPa.249...24W.doi:10.1016/j.revpalbo.2017.11.003.
  164. ^Victoria J. García Muro; Claudia V. Rubinstein; Philippe Steemans (2018)."Late Silurian palynomorphs from the Precordillera of San Juan, Argentina: Diversity, palaeoenvironmental, and palaeogeographic significance".Acta Palaeontologica Polonica.63 (1):41–61.doi:10.4202/app.00400.2017.hdl:11336/86935.S2CID 46636074.
  165. ^Gar W. Rothwell; Michael A. Millay; Ruth A. Stockey (2018). "Escapia gen. nov.: morphological evolution, paleogeographic diversification, and the environmental distribution of marattialean ferns through time". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.).Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 271–360.doi:10.1016/B978-0-12-813012-4.00014-0.ISBN 978-01-281-3012-4.
  166. ^Ioan I. Bucur; Kamal Haji Karim; Hyam Daoud; Bruno Granier; Polla Azad Khanaqa (2018). "A new organ-species dasycladalean green alga from Darbandikhan, Kurdistan, Iraq".Arabian Journal of Geosciences.11 (17): Article 484.doi:10.1007/s12517-018-3840-8.S2CID 134502574.
  167. ^Kathrin Feldberg; Alina S. Müller; Alfons Schäfer-Verwimp; Matt von Konrat; Alexander R. Schmidt; Jochen Heinrichs (2018). "Frullania grabenhorstii sp. nov., a fossil liverwort (Jungermanniopsida: Frullaniaceae) with perianth from Bitterfeld amber".Bryophyte Diversity and Evolution.40 (2):91–103.doi:10.11646/bde.40.2.7.S2CID 92419804.
  168. ^Yuriy S. Mamontov; Michael S. Ignatov; Evgeny E. Perkovsky (2018). "Hepatics from Rovno amber (Ukraine), 7.Frullania zerovii, sp. nov".Nova Hedwigia.106 (1–2):103–113.doi:10.1127/nova_hedwigia/2017/0446.
  169. ^Tomoyuki Katagiri (2018). "Geocalyx heinrichsii sp. nov., the first representative of Geocalycaceae (Jungermanniales, Marchantiophyta) in Baltic amber".Bryophyte Diversity and Evolution.40 (2):113–117.doi:10.11646/bde.40.2.9.S2CID 92217722.
  170. ^Ning Tian; Yong-Dong Wang; Wu Zhang; Shao-Lin Zheng; Zhi-Peng Zhu; Zhong-Jian Liu (2018). "Permineralized osmundaceous and gleicheniaceous ferns from the Jurassic of Inner Mongolia, NE China".Palaeobiodiversity and Palaeoenvironments.98 (1):165–176.doi:10.1007/s12549-017-0313-0.S2CID 134149095.
  171. ^Dieter Uhl; Markus Poschmann (2018)."Groenlandia pescheri sp. nov. (Potamogetonaceae) from the Late Oligocene Fossil-Lagerstätte Enspel (Westerwald, Germany)".Acta Palaeobotanica.58 (1):61–72.doi:10.2478/acpa-2018-0001.S2CID 135254198.
  172. ^Ye-Ming Cheng; Xiao-Nan Yang (2018). "A new tree fern stem,Heilongjiangcaulis keshanensis gen. et sp. nov., from the Cretaceous of the Songliao Basin, Northeast China: a representative of early Cyatheaceae".Historical Biology: An International Journal of Paleobiology.30 (4):518–530.doi:10.1080/08912963.2017.1301445.S2CID 90771901.
  173. ^Ledis Regalado; Alexander R. Schmidt; Michael Krings; Julia Bechteler; Harald Schneider; Jochen Heinrichs (2018). "Fossil evidence of eupolypod ferns in the mid-Cretaceous of Myanmar".Plant Systematics and Evolution.304 (1):1–13.doi:10.1007/s00606-017-1439-2.S2CID 21617872.
  174. ^abHeinrich Winterscheid; Zlatko Kvaček; Jiří Váña; Michael S. Ignatov (2018). "Systematic-taxonomic revision of the flora from the late Oligocene Fossillagerstätte Rott near Bonn (Germany). Part 1: Introduction; Bryidae, Polypodiidae, and Pinidae".Palaeontographica Abteilung B.297 (1–6):103–141.Bibcode:2018PalAB.297..103W.doi:10.1127/palb/2018/0058.S2CID 134350523.
  175. ^Bruno Granier (2018). "A new and unique bodyplan in fossil Bryopsidales, with description ofJaffrezocodium bipennatus n. gen., n. sp., an ( ?) Albian-Cenomanian calcareous green alga".Cretaceous Research.85:207–213.Bibcode:2018CrRes..85..207G.doi:10.1016/j.cretres.2018.01.011.
  176. ^Jean Galtier; Carla J. Harper; Ronny Rößler; Evelyn Kustatscher; Michael Krings (2018). "Enigmatic, structurally preserved stems from the Triassic of Central Europe: a fern or not a fern?". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.).Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 187–209.doi:10.1016/B978-0-12-813012-4.00011-5.ISBN 978-01-281-3012-4.
  177. ^R.W. Gess; C. Prestianni (2018)."Kowieria alveoformis gen. nov. sp. nov., a new heterosporous lycophyte from the Latest Devonian of Southern Africa"(PDF).Review of Palaeobotany and Palynology.249:1–8.Bibcode:2018RPaPa.249....1G.doi:10.1016/j.revpalbo.2017.10.002.
  178. ^Philippe Gerrienne; Borja Cascales-Minana; Cyrille Prestianni; Philippe Steemans; Li Cheng-Sen (2018)."Lilingostrobus chaloneri gen. et sp. nov., a Late Devonian woody lycopsid from Hunan, China".PLOS ONE.13 (7): e0198287.Bibcode:2018PLoSO..1398287G.doi:10.1371/journal.pone.0198287.PMC 6050970.PMID 29995908.
  179. ^Emilio Estrada-Ruiz; Naylet K. Centeno-González; Felisa Aguilar-Arellano; Hugo I. Martínez-Cabrera (2018). "New record of the aquatic fernMarsilea, from the Olmos Formation (Upper Campanian), Coahuila, Mexico".International Journal of Plant Sciences.179 (6):487–496.doi:10.1086/697729.S2CID 90429663.
  180. ^Natalia Zavialova; David J. Batten (2018). "Species of the water-fern megaspore genusMolaspora from a Cenomanian deposit in western France: occurrence, sporoderm ultrastructure and evolutionary relationships".Grana.57 (5):325–344.doi:10.1080/00173134.2017.1417475.S2CID 90852432.
  181. ^Baba Senowbari-Daryan (2018). "Algae (Dasycladales) from the Upper Triassic Nayband Formation (northeast Iran)".Geopersia.8 (1):35–42.doi:10.22059/geope.2017.235449.648331.
  182. ^San-Ping Xie; Si-Hang Zhang; Tian-Yu Chen; Xian-Chun Zhang; Xu Zeng; Yang Yu (2018). "Late Miocene occurrence of monogeneric family Oleandraceae from southwest China and its implications on evolution of eupolypods I".Review of Palaeobotany and Palynology.256:13–19.Bibcode:2018RPaPa.256...13X.doi:10.1016/j.revpalbo.2018.05.002.S2CID 134549827.
  183. ^Eliana P. Coturel; Josefina Bodnar; Eduardo M. Morel; Daniel G. Ganuza; Ana J. Sagasti; Marisol Beltrán (2018)."New species of osmundaceous fertile leaves from the Upper Triassic of Argentina".Acta Palaeobotanica.58 (2):107–119.doi:10.2478/acpa-2018-0014.S2CID 133644558.
  184. ^Yingying Zhang; Christopher M. Berry; Deming Wang; Jinzhuang Xue; Le Liu (2018)."Pleurorhizoxylon yixingense gen. et sp. nov., a euphyllophyte axis with anatomically preserved adventitious roots from the Late Devonian of South China"(PDF).International Journal of Plant Sciences.179 (7):523–540.doi:10.1086/698710.S2CID 89754022.
  185. ^Ezequiel Ignacio Vera; Silvia Nélida Césari (2018). "Cyathealean Antarctic ferns from the Aptian Cerro Negro Formation:Rafaherbstia nishidai gen. et sp. nov. and associated fertile organs".Review of Palaeobotany and Palynology.254:33–48.Bibcode:2018RPaPa.254...33V.doi:10.1016/j.revpalbo.2018.04.011.hdl:11336/93137.S2CID 134696973.
  186. ^Pu Huang; Lu Liu; Min Qin; Le Liu; Zhenzhen Deng; Deming Wang; James F. Basinger; Jinzhuang Xue (2018). "NewSphenophyllum plant from the Upper Devonian of Zhejiang Province, China".Historical Biology: An International Journal of Paleobiology.30 (7):917–927.doi:10.1080/08912963.2017.1322077.S2CID 135210353.
  187. ^K. Rashidi; F. Schlagintweit (2018). "Zittelina? arumaensis (Okla 1995) nov. comb., andSuppiluliumaella tarburensis n. sp. (Dasycladales) from the upper Maastrichtian of Iran".Arabian Journal of Geosciences.11 (17): Article 478.doi:10.1007/s12517-018-3839-1.S2CID 134047995.
  188. ^Enhao Jia; Haijun Song (2018). "End-Permian mass extinction of calcareous algae and microproblematica from Liangfengya, South China".Geobios.51 (5):401–418.Bibcode:2018Geobi..51..401J.doi:10.1016/j.geobios.2018.08.007.S2CID 134488092.
  189. ^Yang Xiaonan; Liu Fengxiang; Cheng Yeming (2018). "A new tree fern stem,Tempskya zhangii sp. nov. (Tempskyaceae) from the Cretaceous of Northeast China".Cretaceous Research.84:188–199.Bibcode:2018CrRes..84..188Y.doi:10.1016/j.cretres.2017.11.016.
  190. ^Hong-He Xu; Qiang Fu; Yao Wang (2018). "A new protolepidodendrid lycopsid from the Middle Devonian of Hunan, South China and its palaeogeographic implications".Review of Palaeobotany and Palynology.256:63–69.Bibcode:2018RPaPa.256...63X.doi:10.1016/j.revpalbo.2018.06.003.S2CID 134214365.
  191. ^Adolfina Savoretti; Alexander C. Bippus; Ruth A. Stockey; Gar W. Rothwell; Alexandru M. F. Tomescu (2018)."Grimmiaceae in the Early Cretaceous:Tricarinella crassiphylla gen. et sp. nov. and the value of anatomically preserved bryophytes".Annals of Botany.121 (7):1275–1286.doi:10.1093/aob/mcy015.PMC 6007789.PMID 29444206.
  192. ^Jennifer L. Morris; Mark N. Puttick; James W. Clark; Dianne Edwards; Paul Kenrick; Silvia Pressel; Charles H. Wellman; Ziheng Yang; Harald Schneider; Philip C. J. Donoghue (2018)."The timescale of early land plant evolution".Proceedings of the National Academy of Sciences of the United States of America.115 (10):E2274 –E2283.Bibcode:2018PNAS..115E2274M.doi:10.1073/pnas.1719588115.PMC 5877938.PMID 29463716.
  193. ^S. Blair Hedges; Qiqing Tao; Mark Walker; Sudhir Kumar (2018)."Accurate timetrees require accurate calibrations".Proceedings of the National Academy of Sciences of the United States of America.115 (41):E9510 –E9511.Bibcode:2018PNAS..115E9510B.doi:10.1073/pnas.1812558115.PMC 6187123.PMID 30266795.
  194. ^Jennifer L. Morris; Mark N. Puttick; James W. Clark; Dianne Edwards; Paul Kenrick; Silvia Pressel; Charles H. Wellman; Ziheng Yang; Harald Schneider; Philip C. J. Donoghue (2018)."Reply to Hedges et al.: Accurate timetrees do indeed require accurate calibrations".Proceedings of the National Academy of Sciences of the United States of America.115 (41):E9512 –E9513.Bibcode:2018PNAS..115E9512M.doi:10.1073/pnas.1812816115.PMC 6187173.PMID 30266794.
  195. ^Mariusz A. Salamon; Philippe Gerrienne; Philippe Steemans; Przemysław Gorzelak; Paweł Filipiak; Alain Le Hérissé; Florentin Paris; Borja Cascales-Miñana; Tomasz Brachaniec; Magdalena Misz-Kennan; Robert Niedźwiedzki; Wiesław Trela (2018)."Putative Late Ordovician land plants"(PDF).New Phytologist.218 (4):1305–1309.doi:10.1111/nph.15091.hdl:2268/222752.PMID 29542135.
  196. ^Oleg V. Ivanov; Elena V. Maslova; Michael S. Ignatov (2018)."Development of the sphagnoid areolation pattern in leaves of Palaeozoic protosphagnalean mosses".Annals of Botany.122 (5):915–925.doi:10.1093/aob/mcy046.PMC 6215045.PMID 29659704.
  197. ^Alexander C. Bippus; Ignacio E. Escapa; Alexandru M. F. Tomescu (2018)."Wanted dead or alive (probably dead): Stem group Polytrichaceae".American Journal of Botany.105 (8):1243–1263.doi:10.1002/ajb2.1096.hdl:11336/98858.PMID 29893495.S2CID 48360747.
  198. ^Alexander J. Hetherington; Liam Dolan (2018)."Stepwise and independent origins of roots among land plants".Nature.561 (7722):235–238.Bibcode:2018Natur.561..235H.doi:10.1038/s41586-018-0445-z.PMC 6175059.PMID 30135586.
  199. ^C. Kevin Boyce; William A. DiMichele (2016)."Arborescent lycopsid productivity and lifespan: Constraining the possibilities".Review of Palaeobotany and Palynology.227:97–110.Bibcode:2016RPaPa.227...97B.doi:10.1016/j.revpalbo.2015.10.007.
  200. ^Barry A. Thomas; Christopher J. Cleal (2018)."Arborescent lycophyte growth in the late Carboniferous coal swamps".New Phytologist.218 (3):885–890.doi:10.1111/nph.14903.PMID 29282734.
  201. ^C. Kevin Boyce; William A. DiMichele (2018)."Fast or slow for the arborescent lycopsids?".New Phytologist.218 (3):891–893.doi:10.1111/nph.15059.PMID 29457227.
  202. ^Jeffrey P. Benca; Ivo A. P. Duijnstee; Cindy V. Looy (2018)."UV-B–induced forest sterility: Implications of ozone shield failure in Earth's largest extinction".Science Advances.4 (2): e1700618.doi:10.1126/sciadv.1700618.PMC 5810612.PMID 29441357.
  203. ^Viktória Baranyi; Tammo Reichgelt; Paul E. Olsen; William G. Parker; Wolfram M. Kürschner (2018). "Norian vegetation history and related environmental changes: New data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA)".GSA Bulletin.130 (5–6):775–795.Bibcode:2018GSAB..130..775B.doi:10.1130/B31673.1.S2CID 85509995.
  204. ^Sam M. Slater; Charles H. Wellman; Michael Romano; Vivi Vajda (2018)."Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK".Palaeobiodiversity and Palaeoenvironments.98 (1):139–151.doi:10.1007/s12549-017-0309-9.S2CID 135123262.
  205. ^Carles Martín-Closas; Alba Vicente; Jordi Pérez-Cano; Josep Sanjuan; Telm Bover-Arnal (2018). "On the earliest occurrence ofTolypella sectionTolypella in the fossil record and the age of major clades in extant Characeae".Botany Letters.165 (1):23–33.doi:10.1080/23818107.2017.1387078.S2CID 90936897.
  206. ^Sol Noetinger; Sandra L. Strayer; Alexandru M.F. Tomescu (2018)."Spore wall ultrastructure and development in a basal euphyllophyte:Psilophyton dawsonii from the Lower Devonian of Quebec (Canada)".American Journal of Botany.105 (7):1212–1223.doi:10.1002/ajb2.1137.hdl:11336/96552.PMID 30075048.S2CID 51911608.
  207. ^Feng Liu; Benjamin Bomfleur; Huiping Peng; Quan Li; Hans Kerp; Huaicheng Zhu (2018). "280-m.y.-old fossil starch reveals early plant–animal mutualism".Geology.46 (5):423–426.Bibcode:2018Geo....46..423L.doi:10.1130/G39929.1.
  208. ^Andrés Elgorriaga; Ignacio H. Escapa; Gar W. Rothwell; Alexandru M. F. Tomescu; N. Rubén Cúneo (2018)."Origin ofEquisetum: Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida".American Journal of Botany.105 (8):1286–1303.doi:10.1002/ajb2.1125.PMID 30025163.S2CID 51701070.
  209. ^De-Ming Wang; Ying-Ying Zhang; Le Liu; Hong-He Xu; Min Qin; Lu Liu (2018). "Reinvestigation of the Late DevonianShougangia bella and new insights into the evolution of fern-like plants".Journal of Systematic Palaeontology.16 (4):309–324.doi:10.1080/14772019.2017.1289269.S2CID 90226865.
  210. ^Brian Axsmith; Judith Skog; Christian Pott (2018). "A Triassic mystery solved: fertilePekinopteris from the Triassic of North Carolina, United States". In Michael Krings; Carla J. Harper; Néstor Rubén Cúneo; Gar W. Rothwell (eds.).Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press. pp. 179–186.doi:10.1016/B978-0-12-813012-4.00010-3.ISBN 978-01-281-3012-4.
  211. ^Cunlin Xin; Luhan Wang; Baoxia Du; Yamei Zhang; Jingjing Wang (2018)."Cuticles and spores in situ ofConiopteris hymenophylloides from the Middle Jurassic in Gansu, northwestern China".Acta Geologica Sinica (English Edition).92 (3):904–914.doi:10.1111/1755-6724.13582.S2CID 134468562.
  212. ^Gar W. Rothwell; Michael A. Millay; Ruth A. Stockey (2018)."Resolving the overall pattern of marattialean fern phylogeny".American Journal of Botany.105 (8):1304–1314.doi:10.1002/ajb2.1115.PMID 30001474.S2CID 51619531.
  213. ^Thereis Y. S. Choo; Ignacio H. Escapa (2018)."Assessing the evolutionary history of the fern family Dipteridaceae (Gleicheniales) by incorporating both extant and extinct members in a combined phylogenetic study".American Journal of Botany.105 (8):1315–1328.doi:10.1002/ajb2.1121.hdl:11336/98938.PMID 30091784.S2CID 51943224.
  214. ^Selin Toledo; Alexander C. Bippus; Alexandru M. F. Tomescu (2018)."Buried deep beyond the veil of extinction: Euphyllophyte relationships at the base of the spermatophyte clade".American Journal of Botany.105 (8):1264–1285.doi:10.1002/ajb2.1102.PMID 29893501.S2CID 48357231.
  215. ^G. Edirisooriya; H.A. Dharmagunawardhane; Stephen McLoughlin (2018)."The first record of the PermianGlossopteris flora from Sri Lanka: implications for hydrocarbon source rocks in the Mannar Basin".Geological Magazine.155 (4):907–920.Bibcode:2018GeoM..155..907E.doi:10.1017/S0016756816001114.S2CID 132766516.
  216. ^Serge V. Naugolnykh; L. Uranbileg (2018). "A new discovery ofGlossopteris in southeastern Mongolia as an argument for distant migration of Gondwanan plants".Journal of Asian Earth Sciences.154:142–148.Bibcode:2018JAESc.154..142N.doi:10.1016/j.jseaes.2017.11.039.
  217. ^Shelby DeWitt; Brooke Kelly; Margarita Araiza; Patricia E. Ryberg (2018)."Growth habit indicators from Permian Antarctic glossopterids".Review of Palaeobotany and Palynology.248:34–40.Bibcode:2018RPaPa.248...34D.doi:10.1016/j.revpalbo.2017.10.003.
  218. ^Patrick Blomenkemper; Hans Kerp; Abdalla Abu Hamad; William A. DiMichele; Benjamin Bomfleur (2018)."A hidden cradle of plant evolution in Permian tropical lowlands".Science.362 (6421):1414–1416.Bibcode:2018Sci...362.1414B.doi:10.1126/science.aau4061.PMID 30573628.S2CID 56582195.
  219. ^Andrew B. Leslie; Jeremy Beaulieu; Garth Holman; Christopher S. Campbell; Wenbin Mei; Linda R. Raubeson; Sarah Mathews (2018). "An overview of extant conifer evolution from the perspective of the fossil record".American Journal of Botany.105 (9):1531–1544.doi:10.1002/ajb2.1143.PMID 30157290.S2CID 52120430.
  220. ^Dai Jing; Sun Bainian (2018). "Early Cretaceous atmospheric CO2 estimates based on stomatal index ofPseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China".Cretaceous Research.85:232–242.Bibcode:2018CrRes..85..232J.doi:10.1016/j.cretres.2017.08.011.
  221. ^David S. Gernandt; Cecelic Reséndiz Arias; Teresa Terrazas; Xitlali Aguirre Dugua; Ann Willyard (2018)."Incorporating fossils into the Pinaceae tree of life".American Journal of Botany.105 (8):1329–1344.doi:10.1002/ajb2.1139.PMID 30091785.S2CID 51939922.
  222. ^Mariko Yamada; Toshihiro Yamada (2018). "Relicts of the Mid-Miocene Climatic Optimum may contribute to the floristic diversity of Japan: a case study ofPinus mikii (Pinaceae) and its extant relatives".Journal of Plant Research.131 (2):239–244.doi:10.1007/s10265-017-0993-6.PMID 29101488.S2CID 3517246.
  223. ^Chong Dong; Yong-Dong Wang; Xiao-Ju Yang; Bai-Nian Sun (2018). "Whole-plant reconstruction and updated phylogeny ofAustrohamia acanthobractea (Cupressaceae) from the Middle Jurassic of Northeast China".International Journal of Plant Sciences.179 (8):640–662.doi:10.1086/699665.S2CID 92540071.
  224. ^Jean-David Moreau; Frédéric Thévenard (2018)."Rediscovery of the allegedly "destroyed" holotype ofWeltrichia fabrei Saporta, 1891 from the Rhaetian?/Hettangian of Lozère (Southern France)".Geodiversitas.40 (21):521–527.doi:10.5252/geodiversitas2018v40a21.S2CID 134517333.
  225. ^P.I. Alekseev (2018)."The revision of gymnosperm species from Eocene Baltic Amber".Botanicheskii Zhurnal.103 (2):229–245.
  226. ^Jose Barba-Montoya; Mario dos Reis; Harald Schneider; Philip C. J. Donoghue; Ziheng Yang (2018)."Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution".New Phytologist.218 (2):819–834.doi:10.1111/nph.15011.PMC 6055841.PMID 29399804.
  227. ^James A. Doyle; Peter K. Endress (2018)."Phylogenetic analyses of Cretaceous fossils related to Chloranthaceae and their evolutionary implications".The Botanical Review.84 (2):156–202.doi:10.1007/s12229-018-9197-6.S2CID 46980346.
  228. ^Nathan A. Jud; Michael D. D'Emic; Scott A. Williams; Josh C. Mathews; Katie M. Tremaine; Janok Bhattacharya (2018)."A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous)".Science Advances.4 (9): eaar8568.doi:10.1126/sciadv.aar8568.PMC 6157959.PMID 30263954.
  229. ^Selena Y. Smith; William J. D. Iles; John C. Benedict; Chelsea D. Specht (2018)."Building the monocot tree of death: Progress and challenges emerging from the macrofossil-rich Zingiberales".American Journal of Botany.105 (8):1389–1400.doi:10.1002/ajb2.1123.PMID 30071130.S2CID 51909421.
  230. ^Brian A. Atkinson (2018)."The critical role of fossils in inferring deep-node phylogenetic relationships and macroevolutionary patterns in Cornales".American Journal of Botany.105 (8):1401–1411.doi:10.1002/ajb2.1084.PMID 29797563.
  231. ^Reilly F. Hayes; Selena Y. Smith; Marisol Montellano-Ballesteros; Gerardo Álvarez-Reyes; René Hernandez-Rivera; David E. Fastovsky (2018)."Cornalean affinities, phylogenetic significance, and biogeographic implications ofOperculifructus infructescences from the Late Cretaceous (Campanian) of Mexico".American Journal of Botany.105 (11):1911–1928.doi:10.1002/ajb2.1179.hdl:2027.42/146566.PMID 30359466.S2CID 53097233.
  232. ^Mario Coiro; Guillaume Chomicki; James A. Doyle (2018). "Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales".Paleobiology.44 (3):490–510.Bibcode:2018Pbio...44..490C.doi:10.1017/pab.2018.23.S2CID 91488394.
  233. ^Kelly K.S. Matsunaga; Selena Y. Smith; Steven R. Manchester; Dashrath Kapgate; Deepak Ramteke; Amin Garbout; Herminso Villarraga-Gómez (2018)."Reinvestigating an enigmatic Late Cretaceous monocot: morphology, taxonomy, and biogeography ofViracarpon".PeerJ.6: e4580.doi:10.7717/peerj.4580.PMC 5890723.PMID 29637023.
  234. ^Yan Wu; Hai-Lu You; Xiao-Qiang Li (2018)."Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China".National Science Review.5 (5):721–727.doi:10.1093/nsr/nwx145.
  235. ^Tiina Särkinen; Sören Kottner; Wolfgang Stuppy; Farah Ahmed; Sandra Knapp (2018)."A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae".American Journal of Botany.105 (1):95–107.doi:10.1002/ajb2.1009.PMID 29532926.
  236. ^Tammo Reichgelt; Christopher K. West; David R. Greenwood (2018)."The relation between global palm distribution and climate".Scientific Reports.8 (1): Article number 4721.Bibcode:2018NatSR...8.4721R.doi:10.1038/s41598-018-23147-2.PMC 5856843.PMID 29549297.
  237. ^Rathnasiri Premathilake; Chris O. Hunt (2018)."Late Pleistocene humans in Sri Lanka used plant resources: A phytolith record from Fahien rock shelter"(PDF).Palaeogeography, Palaeoclimatology, Palaeoecology.505:1–17.Bibcode:2018PPP...505....1P.doi:10.1016/j.palaeo.2018.05.015.S2CID 133979583.
  238. ^Rathnasiri Premathilake; Chris O. Hunt (2018)."EarliestMusa banana from the late Quaternary sequence at Fahien Rock Shelter in Sri Lanka"(PDF).Journal of Quaternary Science.33 (6):624–638.Bibcode:2018JQS....33..624P.doi:10.1002/jqs.3041.S2CID 134053728.
  239. ^Renske E. Onstein; William J. Baker; Thomas L. P. Couvreur; Søren Faurby; Leonel Herrera-Alsina; Jens-Christian Svenning; W. Daniel Kissling (2018)."To adapt or go extinct? The fate of megafaunal palm fruits under past global change".Proceedings of the Royal Society B: Biological Sciences.285 (1880): 20180882.doi:10.1098/rspb.2018.0882.PMC 6015859.PMID 29899077.
  240. ^Steven R. Manchester; Lina B. Golovneva; Dmitry D. Sokoloff; Else Marie Friis (2018)."Early eudicot reproductive structure: Fruit and flower morphology ofRanunculaecarpus Samyl. from the Early Cretaceous of eastern Siberia".Acta Palaeobotanica.58 (2):121–133.doi:10.2478/acpa-2018-0017.S2CID 134370620.
  241. ^Natalia P. Maslova; Eugeny V. Karasev; Tatiana M. Kodrul; Robert A. Spicer; Lyudmila D. Volkova; Teresa E. V. Spicer; Jianhua Jin; Xiaoyan Liu (2018). "Sun and shade leaf variability inLiquidambar chinensis andLiquidambar formosana (Altingiaceae): implications for palaeobotany".Botanical Journal of the Linnean Society.188 (3):296–315.doi:10.1093/botlinnean/boy047.
  242. ^Christa-Ch. Hofmann (2018). "Light and scanning electron microscopic investigations of pollen of Ericales (Ericaceae, Sapotaceae, Ebenaceae, Styracaceae and Theaceae) from five lower and mid-Eocene localities".Botanical Journal of the Linnean Society.187 (4):550–578.doi:10.1093/botlinnean/boy035.
  243. ^Friðgeir Grímsson; Alexandros Xafis; Frank H. Neumann; Louis Scott; Marion K. Bamford; Reinhard Zetter (2018)."The first Loranthaceae fossils from Africa".Grana.57 (4):249–259.doi:10.1080/00173134.2018.1430167.PMC 5940175.PMID 29780299.
  244. ^Lu Dai; Qinghe Hao; Limi Mao (2018)."Morphological diversity ofQuercus fossil pollen in the northern South China Sea during the last glacial maximum and its paleoclimatic implication".PLOS ONE.13 (10): e0205246.Bibcode:2018PLoSO..1305246D.doi:10.1371/journal.pone.0205246.PMC 6185724.PMID 30312322.
  245. ^Eva-Maria Sadowski; Jörg U. Hammel; Thomas Denk (2018)."Synchrotron X-ray imaging of a dichasium cupule ofCastanopsis from Eocene Baltic amber".American Journal of Botany.105 (12):2025–2036.doi:10.1002/ajb2.1202.PMID 30548995.S2CID 56484290.
  246. ^Takayuki Shiono; Buntarou Kusumoto; Moriaki Yasuhara; Yasuhiro Kubota (2018). "Roles of climate niche conservatism and range dynamics in woody plant diversity patterns through the Cenozoic".Global Ecology and Biogeography.27 (7):865–874.doi:10.1111/geb.12755.
  247. ^Valeria Susana Perez Loinaze; Ezequiel Ignacio Vera; Lucas Ernesto Fiorelli; Julia Brenda Desojo (2018). "Palaeobotany and palynology of coprolites from the Late Triassic Chañares Formation of Argentina: implications for vegetation provinces and the diet of dicynodonts".Palaeogeography, Palaeoclimatology, Palaeoecology.502:31–51.Bibcode:2018PPP...502...31P.doi:10.1016/j.palaeo.2018.04.003.hdl:11336/81031.S2CID 134075049.
  248. ^Fiona L. Gill; Jürgen Hummel; A. Reza Sharifi; Alexandra P. Lee; Barry H. Lomax (2018)."Diets of giants: the nutritional value of sauropod diet during the Mesozoic".Palaeontology.61 (5):647–658.Bibcode:2018Palgy..61..647G.doi:10.1111/pala.12385.PMC 6099296.PMID 30147151.
  249. ^Bárbara Cariglino (2018). "Patterns of insect-mediated damage in a PermianGlossopteris flora from Patagonia (Argentina)".Palaeogeography, Palaeoclimatology, Palaeoecology.507:39–51.Bibcode:2018PPP...507...39C.doi:10.1016/j.palaeo.2018.06.022.hdl:11336/93129.S2CID 135270585.
  250. ^Yu-Ling Na; Chun-Lin Sun; Hongshan Wang; David L. Dilcher; Zhen-Yuan Yang; Tao Li; Yun-Feng Li (2018)."Insect herbivory and plant defense on ginkgoalean and bennettitalean leaves of the Middle Jurassic Daohugou Flora from Northeast China and their paleoclimatic implications".Palaeoworld.27 (2):202–210.doi:10.1016/j.palwor.2017.08.002.S2CID 90613956.
  251. ^Rafael Matos Lindoso; Tânia Lindner Dutra; Ismar de Souza Carvalho; Manuel Alfredo Medeiros (2018). "New plant fossils from the Lower Cretaceous of the Parnaíba Basin, Northeastern Brazil: Southern Laurasia links".Brazilian Journal of Geology.48 (1):127–145.doi:10.1590/2317-4889201820170071.
  252. ^Ulrich Heimhofer; Nina Wucherpfennig; Thierry Adatte; Stefan Schouten; Elke Schneebeli-Hermann; Silvia Gardin; Gerta Keller; Sarah Kentsch; Ariane Kujau (2018)."Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2".Nature Communications.9 (1): Article number 3832.Bibcode:2018NatCo...9.3832H.doi:10.1038/s41467-018-06319-6.PMC 6148089.PMID 30237441.
  253. ^Daran Zheng; Su-Chin Chang; Vincent Perrichot; Suryendu Dutta; Arka Rudra; Lin Mu; Richard S. Kelly; Sha Li; Qi Zhang; Qingqing Zhang; Jean Wong; Jun Wang; He Wang; Yan Fang; Haichun Zhang; Bo Wang (2018)."A Late Cretaceous amber biota from central Myanmar".Nature Communications.9 (1): Article number 3170.Bibcode:2018NatCo...9.3170Z.doi:10.1038/s41467-018-05650-2.PMC 6085374.PMID 30093646.
  254. ^David A. Grimaldi; David Sunderlin; Georgene A. Aaroe; Michelle R. Dempsky; Nancy E. Parker; George Q. Tillery; Jaclyn G. White; Phillip Barden; Paul C. Nascimbene; Christopher J. Williams (2018)."Biological inclusions in amber from the Paleogene Chickaloon Formation of Alaska".American Museum Novitates (Submitted manuscript) (3908):1–37.doi:10.1206/3908.1.hdl:2246/6909.S2CID 91866682.
  255. ^Raymond J. Carpenter; Ari Iglesias; Peter Wilf (2018)."Early Cenozoic vegetation in Patagonia: new insights from organically preserved plant fossils (Ligorio Márquez Formation, Argentina)".International Journal of Plant Sciences.179 (2):115–135.doi:10.1086/695488.hdl:11336/95634.S2CID 89701097.
  256. ^Olaf K. Lenz; Volker Wilde (2018). "Changes in Eocene plant diversity and composition of vegetation: the lacustrine archive of Messel (Germany)".Paleobiology.44 (4):709–735.Bibcode:2018Pbio...44..709L.doi:10.1017/pab.2018.25.S2CID 92445077.
  257. ^He Wang; Suryendu Dutta; Richard S. Kelly; Arka Rudra; Sha Li; Qing-Qing Zhang; Qian-Qi Zhang; Yi-Xiao Wu; Mei-Zhen Cao; Bo Wang; Jian-Guo Li; Hai-Chun Zhang (2018). "Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet".Palaeoworld.27 (4):506–513.doi:10.1016/j.palwor.2018.09.006.S2CID 134436795.
  258. ^Liliana Londoño; Dana L. Royer; Carlos Jaramillo; Jaime Escobar; David A. Foster; Andrés L. Cárdenas-Rozo; Aaron Wood (2018). "Early Miocene CO2 estimates from a Neotropical fossil leaf assemblage exceed 400 ppm".American Journal of Botany.105 (11):1929–1937.doi:10.1002/ajb2.1187.hdl:10784/26743.PMID 30418663.S2CID 53277803.
  259. ^J. W. Andrae; F. A. McInerney; P. J. Polissar; J. M. K. Sniderman; S. Howard; P. A. Hall; S. R. Phelps (2018). "Initial expansion of C4 vegetation in Australia during the Late Pliocene".Geophysical Research Letters.45 (10):4831–4840.Bibcode:2018GeoRL..45.4831A.doi:10.1029/2018GL077833.hdl:11343/284011.S2CID 134000940.
  260. ^Allison T. Karp; Anna K. Behrensmeyer; Katherine H. Freeman (2018)."Grassland fire ecology has roots in the late Miocene".Proceedings of the National Academy of Sciences of the United States of America.115 (48):12130–12135.Bibcode:2018PNAS..11512130K.doi:10.1073/pnas.1809758115.PMC 6275532.PMID 30429316.
  261. ^Gael J. Kergoat; Fabien L. Condamine; Emmanuel F. A. Toussaint; Claire Capdevielle-Dulac; Anne-Laure Clamens; Jérôme Barbut; Paul Z. Goldstein; Bruno Le Ru (2018)."Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion".Nature Communications.9 (1): Article number 5089.Bibcode:2018NatCo...9.5089K.doi:10.1038/s41467-018-07537-8.PMC 6269479.PMID 30504767.
  262. ^Ecker, Michaela; Brink, James S.; Rossouw, Lloyd; Chazan, Michael; Horwitz, Liora K.;Lee-Thorp, Julia A. (2018)."The palaeoecological context of the Oldowan–Acheulean in southern Africa".Nature Ecology & Evolution.2 (7):1080–1086.doi:10.1038/s41559-018-0560-0.PMID 29784982.S2CID 29153986.
  263. ^Zhou Xinying; Yang Jilong; Wang Shiqi; Xiao Guoqiao; Zhao Keliang; Zheng Yan; Shen Hui; Li Xiaoqiang (2018). "Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene Transition in temperate northern East Asia".Palaeogeography, Palaeoclimatology, Palaeoecology.505:287–294.Bibcode:2018PPP...505..287Z.doi:10.1016/j.palaeo.2018.06.007.S2CID 134868767.
  264. ^Irene Esteban; Curtis W. Marean; Erich C. Fisher; Panagiotis Karkanas; Dan Cabanes; Rosa M. Albert (2018)."Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa)".PLOS ONE.13 (6): e0198558.Bibcode:2018PLoSO..1398558E.doi:10.1371/journal.pone.0198558.PMC 5986156.PMID 29864147.
  265. ^Mathias M. Pires; Paulo R. Guimarães; Mauro Galetti; Pedro Jordano (2018)."Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services".Ecography.41 (1):153–163.doi:10.1111/ecog.03163.S2CID 31921405.
  266. ^Elizabeth S. Jeffers; Nicki J. Whitehouse; Adrian Lister; Gill Plunkett; Phil Barratt; Emma Smyth; Philip Lamb; Michael W. Dee; Stephen J. Brooks; Katherine J. Willis; Cynthia A. Froyd; Jenny E. Watson; Michael B. Bonsall (2018)."Plant controls on Late Quaternary whole ecosystem structure and function".Ecology Letters.21 (6):814–825.doi:10.1111/ele.12944.hdl:10026.1/10853.PMID 29601664.S2CID 4493047.
  267. ^Joanna K. Carpenter; Jamie R. Wood; Janet M. Wilmshurst; Dave Kelly (2018)."An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds".Proceedings of the Royal Society B: Biological Sciences.285 (1877): 20180352.doi:10.1098/rspb.2018.0352.PMC 5936733.PMID 29669903.
  268. ^Benjamin Adroit; Vincent Girard; Lutz Kunzmann; Jean-Frédéric Terral; Torsten Wappler (2018)."Plant-insect interactions patterns in three European paleoforests of the late-Neogene—early-Quaternary".PeerJ.6: e5075.doi:10.7717/peerj.5075.PMC 6015487.PMID 29942705.
  269. ^J.S. Carrión; J. Ochando; S. Fernández; R. Blasco; J. Rosell; M. Munuera; G. Amorós; I. Martín-Lerma; S. Finlayson; F. Giles; R. Jennings; G. Finlayson; F. Giles-Pacheco; J. Rodríguez-Vidal; C. Finlayson (2018)."Last Neanderthals in the warmest refugium of Europe: Palynological data from Vanguard Cave"(PDF).Review of Palaeobotany and Palynology.259:63–80.Bibcode:2018RPaPa.259...63C.doi:10.1016/j.revpalbo.2018.09.007.S2CID 135278171.
  270. ^L.M. Sender; I. Escapa; A. Benedetti; R. Cúneo; J.B. Diez (2018). "Exploring the interior of cuticles and compressions of fossil plants by FIB-SEM milling and image microscopy".Journal of Microscopy.269 (1):48–58.doi:10.1111/jmi.12607.hdl:11336/40931.PMID 28745429.S2CID 440196.
  271. ^Eleni Asouti; Maria Ntinou; Ceren Kabukcu (2018)."The impact of environmental change on Palaeolithic and Mesolithic plant use and the transition to agriculture at Franchthi Cave, Greece".PLOS ONE.13 (11): e0207805.Bibcode:2018PLoSO..1307805A.doi:10.1371/journal.pone.0207805.PMC 6245798.PMID 30458046.
  272. ^Jennifer Watling; Myrtle P. Shock; Guilherme Z. Mongeló; Fernando O. Almeida; Thiago Kater; Paulo E. De Oliveira; Eduardo G. Neves (2018)."Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre".PLOS ONE.13 (7): e0199868.Bibcode:2018PLoSO..1399868W.doi:10.1371/journal.pone.0199868.PMC 6059402.PMID 30044799.
  273. ^Jamie R. Wood; Francisca P. Díaz; Claudio Latorre; Janet M. Wilmshurst; Olivia R. Burge; Rodrigo A. Gutiérrez (2018)."Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile".Scientific Reports.8 (1): Article number 17208.Bibcode:2018NatSR...817208W.doi:10.1038/s41598-018-35299-2.PMC 6249261.PMID 30464240.
  274. ^Yong-Sheng Chen; Tao Deng; Zhuo Zhou; Hang Sun (2018)."Is the East Asian flora ancient or not?".National Science Review.5 (6):920–932.doi:10.1093/nsr/nwx156.
Retrieved from "https://en.wikipedia.org/w/index.php?title=2018_in_paleobotany&oldid=1260707089"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp