Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2017 in paleomammalogy

From Wikipedia, the free encyclopedia

Overview of the events of 2017 in paleomammalogy
List of years in paleomammalogy
In arthropod paleontology
2014
2015
2016
2017
2018
2019
2020
In paleoichthyology
2014
2015
2016
2017
2018
2019
2020
In reptile paleontology
2014
2015
2016
2017
2018
2019
2020
In archosaur paleontology
2014
2015
2016
2017
2018
2019
2020

Thispaleomammalogy list records newfossilmammaltaxa that weredescribed during the year 2017, as well as notes other significant paleomammalogy discoveries and events which occurred during that year.

Metatherians

[edit]

Research

[edit]
  • A study on themorphology and phylogenetic relationships ofEobrasilia coutoi is published by Carneiro & Oliveira (2017).[1]
  • New information on the skull anatomy ofPeratherium cuvieri is published by Selva & Ladevèze (2017).[2]
  • Zeusdelphys complicatus from theEocene ofBrazil is interpreted as a member ofHatcheriformes by Carneiro & Oliveira (2017).[3]
  • Description of the skullmorphology ofEpidolops ameghinoi and a study on the phylogenetic relationships ofPolydolopimorphia is published by Beck (2017).[4]
  • A study on the causes of decline and extinction ofsparassodonts is published by López-Aguirreet al. (2017).[5]
  • A study on the age of a specimen ofZygomaturus trilobus recovered from the Willandra Lakes locality (Australia), indicating that this species persisted for a considerable time after the first arrival ofIndigenous Australians, is published by Westaway, Olley & Grün (2017).[6]
  • A study evaluating whether the decline of Australianmegafaunal population in thePleistocene, leading to megafaunal extinction in Australia, was caused by the climate changes is published by van der Kaarset al. (2017).[7]
  • A study on the environmental setting and diet of marsupials from two concentrated, fossil bone horizons atCuddie Springs (Australia: one from the middlePleistocene, and the second from the late Pleistocene, based on isotopic data and teeth microwear, is published by DeSantiset al. (2017).[8]
  • A study on thePleistocene marsupialDiprotodon optatum, indicating it undertook seasonal, two-waymigration in easternSahul, is published by Priceet al. (2017).[9]
  • A study on the species richness and relative abundance ofmacropodiform marsupials fromRiversleigh is published by Butleret al. (2017).[10]
  • A study exploring the potential of the collagen fingerprinting method also known as Zooarchaeology by Mass Spectrometry in studying Australian vertebrate palaeobiodiversity, using it to identify Late Pleistocene kangaroo fossils from two caves inTasmania, is published by Buckleyet al. (2017).[11]
  • A study on the Oligo-Miocene local faunas from theRiversleigh World Heritage Area (Australia), aiming to identify potential mammalianpalaeocommunities and palaeocommunity types, is published by Myerset al. (2017).[12]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Anatoliadelphys[13]

Gen. et sp. nov

Valid

Maga & Beck

Eocene (Lutetian)

Uzunçarşıdere Formation

 Turkey

A probable non-marsupial member ofMarsupialiformes. The type species isA. maasae.

Barinya kutjamarpensis[14]

Sp. nov

Valid

Binfieldet al.

Miocene

Wipajiri Formation

 Australia

Perameles wilkinsonorum[15]

Sp. nov

Valid

Travouillonet al.

Pliocene

 Australia

Abandicoot, a species ofPerameles.

Silvicultor[15]

Gen. et comb. et 2 sp. nov

Valid

Travouillonet al.

Pliocene

 Australia

Abandicoot. The type species is"Peroryctes" tedfordi Turnbull, Ludelius & Archer (2003); genus also includes new speciesS. karae andS. hamiltonensis.

Wakaleo schouteni[16]

Sp. nov

Valid

Gillespie,Archer & Hand

LateOligocene and earlyMiocene

Riversleigh World Heritage Area

 Australia

A member of the familyThylacoleonidae.

Eutherians

[edit]

Research

[edit]
  • A study on the timing of the diversification ofplacental mammals based on genomic data, indicating that the placentals underwent a continuous radiation across theCretaceous–Paleogene boundary without apparent interruption by theCretaceous–Paleogene extinction event, is published by Liuet al. (2017).[17][18][19]
  • A study on the completeness of theeutherian fossil record, intending to establish whether the lack of placental mammal fossils in theCretaceous is more likely to be caused by poor fossil record or by genuine absence of placental mammals in the Cretaceous, is published by Davieset al. (2017).[20]
  • Revision of the fossil material of the species assigned to thebasal eutherian genusProkennalestes and a study on theirmorphological and size variability is published by Lopatin & Averianov (2017).[21]
  • A study on the impact of biotic (competition pressure) and abiotic factors (environmental change) on the evolutionary success, decline and extinction of large fossil herbivorous mammals from North America, Europe andTurkana Basin in Africa is published by Žliobaitė, Fortelius & Stenseth (2017).[22]
  • A study on the impacts of temperature and human activities in causing extirpations on local and regional scales, as well as on the causes of the extinction or major extirpations of fourmegafauna mammalian groups (i.e. mammoth, rhinoceros, horse and deer) in the LatePleistocene andHolocene, is published by Wang & Zhang (2017).[23]
  • A study of the phylogenetic relationships of thePaleoceneplacental mammals is published by Halliday, Upchurch and Goswami (2017).[24]
  • A study on the impact of theEocene Thermal Maximum 2 on the evolution of the body size in four placental lineages, especially in the earlyequid lineageArenahippus pernix, is published by D'Ambrosiaet al. (2017).[25]
  • A study evaluating whether the extinction of thePleistocenemegafauna ofNorth America was caused by rapid overhunting after the appearance of humans by comparing the dates of the last appearances of megafauna and first appearances of humans across North America is published by Emery-Wetherell, McHorse & Davis (2017).[26]
  • Menéndezet al. (2017) infer the climatic variables for the middleMiocene of the Somosaguas vertebrate fossil site (Spain) on the basis of the body size structure of the mammal fauna known from the site, which is intimately related to climate and vegetation.[27]
  • Carnivore marks are identified on mammal bones from thePleistocene ofArgentina, including threeground sloth bones and onetoxodontid bone, by Chichkoyanet al. (2017).[28]
  • Description of theosteology of the skull of thepampathereHolmesina floridanus based on the fossils from theBlancan ofFlorida is published by Gaudin & Lyon (2017).[29]
  • A study on the diet ofPleistoceneglyptodonts andground sloths from thePleistocene ofArgentina as indicated byδ13C values in bone collagen and carbonate is published by Bocherenset al. (2017).[30][31][32]
  • A study on the phylogenetic placement of members of the genusThalassocnus withinMegatheria is published by Amson, de Muizon & Gaudin (2017).[33]
  • Description of newmylodontinesloth remains from the latePleistocene ofEcuador andPeru and a revision of the taxonomy of the genusGlossotherium is published by De Iuliiset al. (2017), who considerGlossotherium tropicorum to be a valid species.[34]
  • A study on a specimen ofStegomastodon platensis (orNotiomastodon platensis) recovered fromPleistocene fluvial sediments in the Santiago Basin (Chile), recovering life history information relating to the final four years of life and the season of death, is published by El Adliet al. (2017).[35]
  • An incomplete juvenile skull ofGomphotherium wimani from theMioceneHujialiang Formation and cheek teeth of a member of the same species from the MioceneDongxiang Formation (China) are described by Yang, Li & Wang (2017).[36]
  • A study on the dietary differences between members of the generaSinomastodon,Stegodon andElephas from thePleistocene of SouthChina is published by Zhanget al. (2017).[37]
  • Pleistoceneproboscidean remains associated with human teeth are described from the Mawokou Cave (Guizhou,China) by Wanget al. (2017), who assign this fossil material to the speciesStegodon orientalis andElephas maximus.[38]
  • A study on the population dynamics of themammoths andmastodons in the North American Midwest during the latePleistocene and the possible causes of their regional extinction is published by Widgaet al. (2017).[39]
  • A study on the regional variability of the diet of the Americanmastodon (Mammut americanum) is published by Green, DeSantis & Smith (2017).[40]
  • Meyeret al. (2017) report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two fossils of thestraight-tusked elephant (Palaeoloxodon antiquus), the analysis of which indicated that the straight-tusked elephant was a close relative of theAfrican forest elephant.[41]
  • A study on the detrimental mutations in members of the relict,Holocene population of thewoolly mammoth from theWrangel Island prior to the extinction of the population is published by Rogers & Slatkin (2017).[42]
  • A study on the phylogenetic relationships of the latePleistocene woolly mammoth populations based on the data set of 143 mammoth mitochondrial genomes is published by Changet al. (2017).[43]
  • A study determining the sex of 98 woolly mammoth specimens collected at various locations throughout Siberia is published by Pečnerováet al. (2017), who report a significant skew toward males among the studied specimens and search for possible explanations of the observed skew in sex ratio.[44]
  • Fellows Yateset al. (2017) identify and generate twenty woolly mammoth mitochondrial genomes based on Late Pleistocene material from central Europe.[45]
  • A study on the habitat preferences of thedesmostyliansDesmostylus andPaleoparadoxia as indicated by their fossil occurrences is published by Matsuiet al. (2017).[46]
  • A study on thehumeralmorphology of the desmostylians, intending to establish whether different desmostylian genera can be distinguished on the basis of their humeri, is published by Matsui (2017).[47]
  • Description of cranial and postcranial remains ofPyrotherium from theOligocene locality of Quebrada Fiera (Mendoza Province,Argentina) is published by Cerdeño & Vera (2017).[48]
  • A study on the diversity ofbats ofHaiti through time based on fossil evidence is published by Soto-Centeno, Simmons & Steadman (2017).[49]
  • A study on the body size variation inNeogeneodd-toed ungulates andeven-toed ungulates from Europe and North America and on whether it is correlated with origination and/or extinction rates acrossclades and regions is published by Huanget al. (2017).[50]
  • A redescription of the skull anatomy of the holotype specimen ofEoastrapostylops riolorense, with an emphasis on the auditory region, is published by Kramarz, Bond & Rougier (2017), who interpret this species as a member of abasalmeridiungulate lineage that diverged before the differentiation amongastrapotheres,pyrotheres andnotoungulates.[51]
  • A description of themicrostructure of thetooth enamel ofCarodnia vieirai is published by Bergqvist & von Koenigswald (2017).[52]
  • A fossil of thelitoptern speciesNeolicaphrium recens is described from thePleistocene deposits of the Río Dulce (Santiago del Estero Province,Argentina) by Gaudiosoet al. (2017), representing the northernmost and westernmost record of the species.[53]
  • A nearly completemitochondrial genome of the litopternMacrauchenia patachonica is recovered by Westburyet al. (2017).[54]
  • A study on variation in teeth growth and eruption innotoungulates in the context of geological, climatic and environmental changes taking place inSouth America from the latePaleocene onwards is published by Gomes Rodrigues, Herrel & Billet (2017).[55]
  • A systematic revision of members of the familyArchaeopithecidae from theEocene of Patagonia (Argentina) is published by Vera (2017), who recognizesArchaeopithecus rogeri as the only valid species.[56]
  • A study on the phylogenetic relationships ofhegetotheriid notoungulates, as well as their possible ancestral area andvicariance,dispersal and extinction events, is published by Seoane, Roig Juñent & Cerdeño (2017).[57]
  • Revision of the content of the hegetotheriid speciesProhegetotherium sculptum based on a reexamination of the type specimens and a study on the phylogenetic relationships of hegetotheriids is published by Kramarz & Bond (2017).[58]
  • Description of a skeleton ofThomashuxleya externa with a well-preserved skull and jaws associated with postcrania, recovered from theEocene of Cañadón Vaca (Argentina), and a study on the phylogenetic relationships of the species is published by Carrillo & Asher (2017).[59]
  • A study comparing toothmorphology and development inmesotheriid notoungulates and extantgundis is published by Gomes Rodrigueset al. (2017).[60]
  • A study on the diet of the three most abundant ungulates from theLa Brea Tar Pits (Bison antiquus,Camelops hesternus andEquus occidentalis) is published by Jones & DeSantis (2017).[61]
  • Description of themorphology of the skeleton ofHyrachyus modestus is published by Baiet al. (2017).[62]
  • A description of new fossil material of thehelaletidtapiroidsParacolodon fissus andDesmatotherium mongoliense from theEoceneIrdin Manha Formation (Inner Mongolia,China) and a study on the phylogenetic relationships of these species is published by Baiet al. (2017).[63]
  • A study on the phylogenetic relationships of therhinoceros genusStephanorhinus based on ancient protein sequences is published by Welkeret al. (2017).[64]
  • Skull ofStephanorhinus kirchbergensis is described from theChondon River valley (ArcticYakutia,Russia) by Kirillovaet al. (2017), representing the first find of a member of the genusStephanorhinus above theArctic Circle.[65]
  • A study on the incidence of developmental abnormalities in the neck vertebrae (the presence of cervical ribs) in the late Pleistocene population of thewoolly rhinoceros (Coelodonta antiquitatis) is published by van der Geer & Galis (2017).[66]
  • Skeleton of a pregnant mare ofEurohippus messelensis with preserved soft tissues is described from theEoceneMessel pit (Germany) by Franzen & Habersetzer (2017).[67]
  • A study on thespeciation rates and the evolution of body size and toothmorphology inNeogene andQuaternaryradiation of horses is published by Cantalapiedraet al. (2017).[68]
  • A study on the fossil horsemetapodials, testing how locomotor bone stresses changed with digit reduction and increasing body size across the horse lineage, is published by McHorse, Biewener & Pierce (2017).[69]
  • A study on theontogenetic changes in the teeth of the lateMiocenehipparionines based on fossils fromFugu (Shaanxi,China) is published by Liet al. (2017).[70]
  • A study on the diet and habitat of specimens ofDinohippus mexicanus andNeohipparion eurystyle known from the lateHemphillian localities in centralMexico as indicated by stable carbon and oxygen isotopes determined inmolarenamel is published by Pérez-Crespoet al. (2017).[71]
  • A study on the number of species of horses that inhabited the Western Interior of North America prior to the end-Pleistocene extinction, based on cheek toothmorphology andancient mtDNA, is published by Barrón-Ortizet al. (2017).[72]
  • A study on the growth pattern of the first lowermolar in extant and extinct species ofEquus and its relationship with life history events is published by Nacarino-Meneseset al. (2017).[73]
  • A study on the morphology of themiddle ear andbony labyrinth of theanoplotheriideven-toed ungulateDiplobune minor and their implications for the locomotion of members of this species is published by Orliac, Araújo & Lihoreau (2017).[74]
  • Fossils of a member of thecamelid genusHemiauchenia are described from the latePliocene ofArgentina by Gaspariniet al. (2017), representing the oldest record of the tribeLamini inSouth America reported so far.[75]
  • DNA sequence data is generated for samples of 12flat-headed peccary specimens from theSheriden Cave (Ohio,United States) by Perryet al. (2017).[76]
  • A study on themorphology of thebony labyrinth of extant and extinctdeers and on the phylogenetic relationships of fossil deers is published by Mennecartet al. (2017).[77]
  • Deer fossil (almost completehumerus) is reported from the lateMiocene sedimentary sequence of theBira Formation at Hagal Stream (western margin of the Jordan Valley,Israel) by Rozenbaumet al. (2017), representing the first record of a terrestrial mammal reported from the sequence.[78]
  • Anossicone and postcranial remains ofgiraffes of uncertain specific assignment are described from theMiocene of thePotwar Plateau (Pakistan) by Danowitz, Barry & Solounias (2017).[79]
  • Mouflon bones are reported from the latePleistocene of easternJordan by Yeomans, Martin & Richter (2017).[80]
  • A study on the diet of theMiocenebovidHezhengia bohlini as indicated byenamel microwear is published by Semprebon, Solounias & Tao (2017).[81]
  • A study on the timing ofbison arrival in North America as indicated by mitochondrial genomes extracted from fossil specimens is published by Froeseet al. (2017).[82][83]
  • A study on the phylogenetic relationships of thePleistocene speciesBison schoetensacki as indicated by recovered ancient DNA is published by Palacioet al. (2017).[84]
  • Partial skeleton of a bison related to thesteppe bison is described from the middleHolocene (~ 5,400 years ago) ofYukon (Canada) by Zazulaet al. (2017), confirming local survival of northern steppe bison populations into the Holocene.[85]
  • Description of newdental remains of theanthracothereHemimeryx blanfordi from LateOligocene deposits of theBugti Hills (Chitarwata Formation,Pakistan), representing the first undisputed Oligocene occurrence of the species, and a study on themolarenamelmicrostructure and the phylogenetic relationships of the species is published by Lihoreauet al. (2017).[86]
  • Description of thebony labyrinth of twoEocene (Lutetian)protocetid specimens from Kpogamé (Togo) and a study on the implications of the anatomy of the specimens for the hearing abilities of early whales is published by Mourlam & Orliac (2017).[87]
  • A detailed description of the holotype specimen ofCynthiacetus peruvianus and a study on the phylogenetic relationships ofarchaeocetes (especiallybasilosaurids) is published by Martínez-Cáceres, Lambert & de Muizon (2017).[88]
  • A study on the anatomy of theinner ear ofOligocenemammalodontid andaetiocetidcetaceans and their ability to detect low frequencies is published by Parket al. (2017).[89]
  • New Oligo-Mioceneeomysticetid specimens are described fromNew Zealand by Boessenecker & Fordyce (2017), including a member of the genusWaharoa from the earliestMiocene (the most recent eomysticetid specimen reported so far).[90]
  • Fivexenorophid specimens (four specimens belonging to the speciesAlbertocetus meffordorum and one member of the genusEchovenator) are described from theOligocene ofNorth andSouth Carolina (United States) by Boessenecker, Ahmed & Geisler (2017).[91]
  • Two teeth of a large toothed whale from the groupPhyseteroidea (belonging or related to the genusZygophyseter) are described from the Middle or UpperMiocene of Netherlands by Reumer, Mens & Post (2017).[92]
  • A study on the phylogenetic relationships ofAraeodelphis natator (Miocene relative of theSouth Asian river dolphin) is published by Godfrey, Barnes & Lambert (2017).[93]
  • A study of the fossil record of themysticetes, testing when and how gigantism evolved in mysticetes, is published by Slater, Goldbogen & Pyenson (2017).[94]
  • A study on the teeth sharpness and function in archaic mysticetes is published by Hockinget al. (2017).[95]
  • Exceptionally preservedbaleen apparatus ofPiscobalaena nana from theMiocenePisco Formation (Peru) is described by Marxet al. (2017).[96]
  • Pygmy right whale fossils are described from thePleistocene ofItaly andJapan by Tsaiet al. (2017).[97]
  • A study on the anatomy and phylogenetic relationships of theMiocenebalaenidMorenocetus parvus is published by Buonoet al. (2017).[98]
  • A partial skull of aright whale (a member or a relative of the genusEubalaena) is described from thePlioceneTjörnes Formation (Iceland) by Fieldet al. (2017).[99]
  • AMiocene breeding site forParietobalaena yamaokai known fromItahashi Formation (Japan) is reported by Tsai (2017).[100]
  • The oldest known fossil of afin whale (atympanic bulla) is described from the EarlyPleistocene of NorthernCalifornia by Tsai & Boessenecker (2017).[101]
  • A study on the correlates between themorphology of thecalcaneum and the locomotor mode in extantcarnivorans, and their implications for determining the locomotor mode in extinct carnivorans andcreodonts, is published by Panciroliet al. (2017).[102]
  • A study on the morphology of theprimary teeth and teeth eruption sequence inhyainailouroidhyaenodonts is published by Borths & Stevens (2017).[103]
  • A study on the anatomy of thebony labyrinth ofHyaenodon exiguus and its implications for thepaleobiology of the species is published by Pfaffet al. (2017).[104]
  • Anincus ofHyaenodon (the first knownauditory ossicle of this genus and of anyhyaenodont mammal so far) is described and compared to a large set of includes of extantcarnivorans by Bastl, Nagel & Solé (2017).[105]
  • A study on the frequency of traumatic injuries across skeletal elements in thesaber-toothed catSmilodon fatalis and thedire wolf (Canis dirus) fromLa Brea Tar Pits is published by Brownet al. (2017).[106]
  • A revision ofcanid fossils from the latePliocene site of Kvabebi (Georgia), revealing the co-occurrence of members of the generaNyctereutes,Eucyon andVulpes, is published by Rooket al. (2017).[107]
  • A study on the morphological adaptations linked to grasping and digging ability, substrate preference and locomotory mode in the forelimb ofCyonasua is published by Tarquiniet al. (2017).[108]
  • A reevaluation of theMiocenemustelidHadrictis fricki is published by Valencianoet al. (2017), who considerHadrictis to be a junior synonym of the genusEomellivora and transferH. fricki to the genusEomellivora.[109]
  • An uppercarnassial of thetayra (Eira barbara) is described from the LatePleistocene ofEntre Ríos (Argentina) by Schiaffiniet al. (2017).[110]
  • FossilotterEnhydritherium terraenovae is reported from the lateMiocene deposits of Juchipila Basin (Mexico) by Tsenget al. (2017).[111]
  • A study on themandibular feeding capability of the fossil otterSiamogale melilutra is published by Tsenget al. (2017).[112]
  • Teeth andhumerus of the fossil otterLutra simplicidens are described from the early MiddlePleistocene site of Voigtstedt (Germany) by Cherin (2017).[113]
  • A description of the skull and neckmorphology and a study on the feeding behaviour of thebear dogMagericyon anceps is published by Siliceoet al. (2017).[114]
  • A revision of the fossil bear species"Ursus" abstrusus Bjork (1970) based on new remains from thePliocene ofEllesmere Island (Nunavut,Canada) is published by Wanget al. (2017), who transfer this species to the genusProtarctos.[115]
  • A study on the absolute and relative brain size of thecave bear (Ursus spelaeus), comparing it with brain size of extant bear species, an on potential variables affecting their brain size evolution is published by Veitschegger (2017).[116]
  • A study estimating the extinction time of the cave bear andUrsus ingressus is published by Mackiewiczet al. (2017).[117]
  • A revision and a study on the phylogenetic relationships of theMioceneearless seals assigned to the generaProphoca andLeptophoca is published by Dewaele, Lambert & Louwye (2017).[118]
  • A skull ofHyaenictis aff.almerai, representing the most complete European specimen of the genus, is described from the Miocene of Spain by Vinuesaet al. (2017).[119]
  • A study on the dietary ecology of the PleistocenehyenaCrocuta crocuta ultima fromChina, evaluating its similarity to the dietary ecology of the extantspotted hyena, is published by DeSantiset al. (2017).[120]
  • A study on the evolution of the fore- and hindlimbs of sabretooth carnivorans is published by Martín-Serra, Figueirido & Palmqvist (2017).[121]
  • A study on the growth of forelimb bones ofSmilodon fatalis as indicated by the anatomy of specimens recovered from theLa Brea Tar Pits is published by Longet al. (2017).[122]
  • Paijmanset al. (2017) present partialmitochondrial genomes ofSmilodon populator and members of the genusHomotherium, and identify a latePleistocene (~28,000 years old)mandible recovered from the Brown Bank region in theNorth Sea as a fossil of a member of the genusHomotherium.[123]
  • A study on the phylogenetic relationships of"Felis" pamiri Ozansoy (1959) from the late Miocene of Turkey is published by Geraads & Peigné (2017).[124]
  • A study on the braincase anatomy of theAmerican lion (Panthera atrox) is published by Cuff, Stockey & Goswami (2017).[125]
  • Cuff, Goswami & Hutchinson (2017) estimate the size of the musculature of the limbs and vertebral column of the American lion.[126]
  • Fossils of a largefelid from the late Pleistocene localities at southernChile andArgentina are interpreted as fossils of the American lion by Chimento & Agnolin (2017).[127]
  • A study on the toothmorphology of extant and extinctmurine and non-arvicolinecricetidrodents and its implications for inferring thepaleoecology of theNeogene rodents from southernFrance andIberian Peninsula is published by Gomez Canoet al. (2017).[128]
  • First known fossil remains of theIlin Island cloudrunner (Crateromys paulus) are described by Reyeset al. (2017).[129]
  • Description of new specimens of thecastoridrodentPropalaeocastor irtyshensis from theOligoceneIrtysh River Formation (China and a study on the phylogenetic relationships among early castorids is published by Liet al. (2017).[130]
  • Virtualcranialendocast of theOligocenesciuridCedromus wilsoni is reconstructed by Bertrand, Amador-Mughal & Silcox (2017).[131]
  • The oldest knownplesiadapiform skeleton (partial skeleton ofTorrejonia wilsoni) is described from the earlyPaleoceneNacimiento Formation (New Mexico,United States) by Chesteret al. (2017).[132]
  • Report on the discovery of atalus bone ofDonrussellia provincialis and a study on the anatomy of this bone and on the phylogenetic relationships of this species is published by Boyer, Toussaint & Godinot (2017).[133]
  • A study on the locomotion and lifestyle ofAdapis parisiensis as indicated byinner earmorphology is published by Bernardi & Couette (2017).[134]
  • New material attributed toAgerinia smithorum, consisting of isolated teeth and a fragment ofcalcaneus, is described from theEocene locality of Casa Retjo-1 (Spain) by Femenias-Gualet al. (2017).[135]
  • Jaws referred to the speciesNotharctus tenebrosus are described from the middleEoceneSheep Pass Formation (Nevada,United States) by Perry, Gunnell & Emry (2017).[136]
  • The first known nearly complete female skull of thegelada subspeciesTheropithecus oswaldi leakeyi is described from thePleistocene site of Makuyuni (Tanzania) by Frostet al. (2017).[137]
  • A study on the anatomy of the teeth ofMesopithecus pentelicus and its implication for dietary preferences of members of the species is published by Thieryet al. (2017).[138]
  • New fossil material ofKrishnapithecus krishnaii is described from the lateMiocene ofHimachal Pradesh (India) by Sankhyan, Kelley & Harrison (2017), who confirm thepliopithecoid affinities of the species.[139]
  • A study on themorphology of the teeth and jaws ofMorotopithecus bishopi andAfropithecus turkanensis, indicating them to be likely distinct species with dissimilar feeding adaptations, is published by Deane (2017).[140]
  • A study on the phylogenetic relationships ofGraecopithecus, indicating its possible affinity with hominins (humans and their non-ape ancestors), is published by Fusset al. (2017);[141] a different analysis, aiming to refute the hypothesis thatGraecopithecus is a member of the hominin clade, is subsequently published by Benoit & Thackeray (2017).[142][143]
  • A study on the age of the fossils ofGraecopithecus freybergi, and on the environmental conditions under which it thrived, is published byBöhmeet al. (2017).[144]
  • Putative tetrapod footprints with hominin-like characteristics are described from the late Miocene ofCrete (Greece) by Gierlińskiet al. (2017);[145] the study is subsequently criticized byMeldrum &Sarmiento (2018) in regards to the interpretation of the putative footprints[146] and by Zachariasse & Lourens (2022) in regards to their age.[147]
  • A study on the evolution of body mass and stature of hominins is published by Will, Pablos & Stock (2017).[148]
  • Partial skeleton ofAustralopithecus afarensis, preserving all seven neck vertebrae and 12 rib-bearing vertebrae (like humans, rather than 13 like African apes) is described fromDikika (Ethiopia) by Wardet al. (2017).[149]
  • New fossils attributable to the speciesAustralopithecus anamensis are described fromKanapoi (Kenya) by Ward, Plavcan & Manthi (2017).[150]
  • A study on the skeletal maturation ofAustralopithecus sediba is published by Cameronet al. (2017).[151]
  • A study on themorphology of the holotype skull ofAustralopithecus sediba and its implications for the phylogenetic relationships of the species is published by Kimbel & Rak (2017).[152]
  • A study on the aridity in eastern Africa over the past 4.4 million years as indicated by oxygen isotope ratios in fossil herbivoretooth enamel, and on its implications for inferring the role of climate in shaping early hominin environments, is published by Blumenthalet al. (2017).[153]
  • A study on the environmental changes in the lowerAwash Valley andTurkana Basin from 3.5 to 1 million years ago (with a focus on the latestPliocene) based on new analyses of mammal communities and new stable carbon isotope data for mammaliantooth enamel, including that of the earliest members of the genusHomo, is published by Robinsonet al. (2017).[154]
  • A study on the modified mammalian bones from the Plio–Pleistocene ofEthiopia is published by Sahle, El Zaatari & White (2017), who interpret the marks on some of these bones as more likely to be produced by crocodiles than byhominids usingstone tools.[155]
  • A study on theknapping skills of the hominins inhabiting NorthChina during earlyPleistocene as indicated by stone tools from theDonggutuo locality is published by Yanget al. (2017).[156]
  • A study on the phylogenetic relationships ofHomo floresiensis is published by Argueet al. (2017).[157]
  • A study on the age of the fossils ofHomo naledi is published by Dirkset al. (2017).[158]
  • New fossils ofHomo naledi are described from the Lesedi Chamber of theRising Star Cave system byHawkset al. (2017).[159]
  • A study on the phylogenetic relationships ofHomo naledi as indicated by skullmorphology is published by Schroederet al. (2017).[160]
  • Studies on the anatomy of the skeleton ofHomo naledi are published by Lairdet al. (2017),[161] Williamset al. (2017),[162] Feuerriegelet al. (2017)[163] and Marchiet al. (2017).[164]
  • A study on the location, number, and severity of fractures in the teeth ofHomo naledi and their implications for the diet of the taxon is published by Towle, Irish & De Groote (2017).[165]
  • A study on the body size, proportions and absolute and relative brain size inHomo naledi is published by Garvinet al. (2017).[166]
  • A study on the tooth formation and eruption inHomo naledi is published by Cofran & Walker (2017).[167]
  • Aphenetic analysis of the fossils ofHomo naledi is published by Neves, Bernardo & Pantaleoni (2017), who consider bothHomo naledi andAustralopithecus sediba to be likelyjunior synonyms ofHomo habilis.[168]
  • A study on the age of theVallonnet site (France) and on its implications for the knowledge of the first dispersals of members of the genusHomo during the earlyPleistocene (Calabrian) in this area ofEurope is published by Michelet al. (2017).[169]
  • Two skulls of archaic members of the genusHomo of uncertain phylogenetic placement are described from thePleistocene ofChina by Liet al. (2017).[170]
  • A study on the affinities of thePleistocene hominin cranium from Dali inShaanxi Province, China is published by Athreya & Wu (2017).[171]
  • A description of a hominin skull recovered from the Aroeira cave inPortugal, dated as approximately 400,000 years old, and a study on its implications for the diversity of the MiddlePleistocene European hominins is published by Dauraet al. (2017).[172]
  • A 130,000-year-old rocks interpreted as hammerstones and stone anvils, associated with remains of amastodon (Mammut americanum) showing signs of breakage, are described from theCerutti Mastodon site inCalifornia by Holenet al. (2017), who interpret the finding as indicating that an unidentified species ofHomo reached North America during the early latePleistocene;[173][174] the study is subsequently criticized by Haynes (2017), Brajeet al. (2017), Ferraroet al. (2018), Ferrell (2019) and Sutton, Parkinson & Rosen (2019).[175][176][177][178][179][180][181][182]
  • Traces of ancient mammalian DNA, includingNeanderthal andDenisovan DNA, are identified inPleistocene cave sediments, including those lacking skeletal remains, by Slonet al. (2017).[183]
  • A study on the evolutionary history of Neanderthals and Denisovans based on genetic data is published by Rogers, Bohlender & Huff (2017).[184][185][186]
  • Slonet al. (2017) report the retrieval of DNA from amolar of a Denisovan, considered by the authors to be one of the oldest hominin remains discovered atDenisova Cave.[187]
  • A study on the age of Neanderthal remains recovered fromVindija Cave (Croatia) is published by Devièseet al. (2017).[188]
  • Prüferet al. (2017) sequence the genome of a Neanderthal woman known from remains found in Vindija Cave.[189]
  • CompletemtDNA is reported from a Neanderthalfemur from theHohlenstein-Stadel cave (Germany) by Posthet al. (2017), who evaluate the implications of this finding for the knowledge of the timing of geneticintrogression event from African hominins into Neanderthal populations.[190]
  • A study on the growth patterns of Neanderthals based on a partial skeleton of a Neanderthal child from theEl Sidrón site (Spain) is published by Rosaset al. (2017).[191][192][193]
  • A study on the genetic contribution of Neanderthals tophenotypic variation in modern humans is published by Dannemann & Kelso (2017).[194]
  • A reconstruction of the internalnasal cavity of a Neanderthal and a study comparing the breathing cycle in Neanderthals and modern humans is published by de Azevedoet al. (2017).[195][196][197]
  • A study on the hunting strategies of the Neanderthals based on data from the deer and horse remains from the Abric Romaní site (Catalonia,Spain) is published by Marínet al. (2017).[198]
  • The first genetic analysis ofdental calculus from five Neanderthal individuals fromEl Sidrón cave inSpain,Spy Cave inBelgium and Breuil Grotta inItaly is published by Weyrichet al. (2017), who also evaluate the implications of their findings for inferring Neanderthal diet, behaviour, and disease;[199] the authors' interpretation of their results is subsequently criticized by Charlier, Gaultier & Héry-Arnaud (2019).[200]
  • Fossils of earlyhumans (Homo sapiens) are described from theMiddle Stone Age site ofJebel Irhoud (Morocco) by Hublinet al. (2017)[201] and their age is estimated by Richteret al. (2017).[202]
  • Teeth of modern humans recovered from the Lida Ajer cave inSumatra (Indonesia) are dated as between 73,000 and 63,000 years old by Westawayet al. (2017).[203]
  • Artifacts recovered atMadjedbebe, a rock shelter in northernAustralia, indicating that humans colonized Australia at least 65,000 years ago, are reported by Clarksonet al. (2017);[204] their conclusions about the age of these artifacts are subsequently questioned byAllen (2017)[205][206] andO'Connellet al. (2018).[207]
  • A study on the diet of the oldest anatomically modern humans from southeast Europe, based on isotopic data from human bones from thePleistocene ofCrimea, is published by Druckeret al. (2017).[208]

New taxa

[edit]

Xenarthrans

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Baraguatherium[209]

Gen. et sp. nov

Valid

Rincónet al.

Early Miocene

Castillo Formation

 Venezuela

Amylodontoidsloth. The type species isBaraguatherium takumara.

Epipeltephilus caraguensis[210]

Sp. nov

Valid

Montoya-Sanhuezaet al.

Late Miocene

Huaylas Formation

 Chile

Anarmadillo.

Eutatus crispianii[211]

Sp. nov

Valid

Brambilla & Ibarra

Lujanian

Saladillo Formation

 Argentina

Anarmadillo.

Lumbreratherium[212]

Gen. et sp. nov

Valid

Herreraet al.

Eocene

Lumbrera Formation

 Argentina

Anarmadillo. The type species isL. oblitum.

Nohochichak[213]

Gen. et sp. nov

Valid

McDonald, Chatters & Gaudin

LatePleistocene

 Mexico

Aground sloth belonging to the familyMegalonychidae. The type species isN. xibalbahkah.

Panochthus hipsilis[214]

Sp. nov

Valid

Zuritaet al.

Pleistocene

 Bolivia

Aglyptodont.

Proeocoleophorus[215]

Gen. et sp. nov

Valid

Sedoret al.

Probably late middleEocene

Guabirotuba Formation

 Brazil

A member ofCingulata. Genus includes new speciesP. carlinii.

Ronwolffia[216]

Gen. et sp. nov

Valid

Shockey

LateOligocene (Deseadan)

Salla Formation

 Bolivia

A member ofCingulata belonging to the familyPeltephilidae. Genus includes new speciesR. pacifica.

Xibalbaonyx[217]

Gen. et sp. nov

Valid

Stinnesbecket al.

LatePleistocene

 Mexico

Aground sloth belonging to the familyMegalonychidae. The type species isX. oviceps.

Zacatzontli[218]

Gen. et sp. nov

Valid

McDonald & Carranza-Castañeda

LateMiocene (Hemphillian)

 Mexico

Aground sloth belonging to the familyMegalonychidae. The type species isZ. tecolotlanensis.

Afrotherians

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Gomphotherium tassyi[219]

Sp. nov

Valid

Wanget al.

Late middleMiocene

Hujialiang Formation

 China

Italosiren[220]

Gen. et comb. nov

Valid

Voss, Sorbi & Domning

Oligocene (lateChattian)

Belluno Glauconitic Sandstone Formation

 Italy

A member ofDugongidae; a new genus for"Halitherium" bellunense De Zigno (1875).

Kaupitherium[221]

Gen. et sp. et comb. nov

Valid

Voss & Hampe

Oligocene (Rupelian)

Alzey Formation
Bodenheim Formation
Böhlen Formation
Boom Clay Formation

 Belgium
 France
 Germany
 Hungary
  Switzerland

A member ofDugongidae. The type species isK. gruelli; genus also includes"Halitherium" bronni Krauss (1858).

Libysiren[222]

Gen. et sp. nov

Valid

Domning, Heal & Sorbi

Eocene (Lutetian)

 Libya

A member ofProtosirenidae. Genus includes new speciesL. sickenbergi.

Tetralophodon euryrostris[223]

Sp. nov

Valid

Wanget al.

LateMiocene

Linxia Basin

 China

Bats

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Amazonycteris[224]

Gen. et sp. nov

Valid

Czaplewski & Campbell

LateMiocene

Içá Formation

 Brazil

A member of the familyThyropteridae. The type species isA. divisus.

Myotis belgicus[225]

Sp. nov

Valid

Gunnell, Smith & Smith

Oligocene (Rupelian)

Borgloon Formation

 Belgium

Amouse-eared bat.

Pipistrellus rouresi[226]

Sp. nov

Valid

Crespoet al.

Late Miocene

 Spain

Avesper bat, a species ofPipistrellus.

Rhinolophus antonioi[226]

Sp. nov

Valid

Crespoet al.

Late Miocene

 Spain

Ahorseshoe bat.

Xylonycteris[227]

Gen. et sp. nov

Valid

Hand & Sigé

Eocene (Ypresian)

 France

A member of the familyArchaeonycteridae. The type species isX. stenodon.

Odd-toed ungulates

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Haringtonhippus[228]

Gen. et comb. nov

Valid

Heintzmanet al.

Pleistocene

Lissie Formation

 Canada
( Yukon
 Alberta?)
 United States
( Nevada
 New Mexico
 Texas
 Wyoming
 Alaska?)
 Mexico?

A member of the familyEquidae belonging to the subfamilyEquinae and the tribeEquini; a new genus for"Equus" francisciHay (1915).

Lophiohippus[229]

Gen. et comb. nov

Disputed

Bai

Eocene

Lunan Basin

 China

A member of the familyPalaeotheriidae belonging to the subfamilyPachynolophinae; a new genus for"Lophialetes" yunnanensis Huang & Qi (1982). Subsequently Bai (2022) considered it a possiblejunior synonym of the genusLunania.[230]

Orolophus[231]

Gen. et comb. nov

Valid

Remy

Eocene

 France

Apalaeotheriid; a new genus for"Pachynolophus" maldani Lemoine (1878).

Paraceratherium huangheense[232]

Sp. nov

Valid

Liet al.

EarlyOligocene

Hanjiajing Formation

 China

Pliolophus quesnoyensis[233]

Sp. nov

Valid

Bronnertet al.

EarlyEocene

 France

Samburuceros[234]

Gen. et sp. nov

Valid

Handaet al.

LateMiocene

 Kenya

Arhinoceros belonging to the tribeElasmotheriini. Genus includes new speciesS. ishidai.

Even-toed ungulates

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Afrotragus[235]

Gen. et comb. nov

Valid

Geraads

Miocene

Nawata Formation

 Kenya

A member of the familyBovidae; a new genus for"Aepyceros" premelampus Harris (2003).

Archaeopotamus qeshta[236]

Sp. nov

Valid

Boisserieet al.

LateMiocene

Baynunah Formation

 United Arab Emirates

A member of the familyHippopotamidae.

Beatragus vrbae[237]

Sp. nov

Valid

Bibi, Rowan & Reed

LatePliocene

 Ethiopia

A relative of thehirola

Bubalus grovesi[238]

Sp. nov

Valid

Rozzi

LatePleistocene-Holocene

 Indonesia

A species ofBubalus.

Choeromorus ibericus[239]

Sp. nov

Valid

Pickford

Miocene

 France
 Spain

A member ofSuoidea belonging to the familySiderochoeridae.

Choeromorus petersbuchensis[239]

Sp. nov

Valid

Pickford

Miocene

 Germany

A member ofSuoidea belonging to the familySiderochoeridae.

Chororatherium[240]

Gen. et sp. nov

Valid

Boisserieet al.

LateMiocene

 Ethiopia

A member of the familyHippopotamidae. Genus includes new speciesC. roobii.

Decennatherium rex[241]

Sp. nov

Valid

Ríos, Sánchez & Morales

Miocene (lateVallesian)

 Spain

A member of the familyGiraffidae.

Grevenobos[242]

Gen. et sp. nov

Valid

Crégut-Bonnoure & Tsoukala

Late Pliocene

 Greece

A member of the familyBovidae belonging to the tribeBovini. Genus includes new speciesG. antiquus.

Merycobunodon? walshi[243]

Sp. nov

Valid

Murphey & Kelly

Uintan

Bridger Formation

 United States
( Wyoming)

A member of the familyOromerycidae.

Micromeryx? eiselei[244]

Sp. nov

Valid

Aiglstorferet al.

Miocene

 Germany

A member of the familyMoschidae, possibly a species ofMicromeryx.

Muknalia[245]

Gen. et sp. nov

Disputed

Stinnesbecket al.

Probably latestPleistocene

 Mexico

Apeccary. The type species isM. minima. Schubertet al. (2020) considered this species to besynonymous with thecollared peccary (Pecari tajacu).[246][247][248]

Paalitherium[249]

Gen. et sp. nov

Valid

Métais, Mennecart & Roohi

Oligocene

Chitarwata Formation

 Pakistan

Astem-pecoran. Genus includes new speciesP. gurki.

Parabos savelisi[250]

Sp. nov

Valid

Crégut-Bonnoure & Tsoukala

Pliocene

 Greece

A member of the familyBovidae belonging to the tribeBoselaphini.

Praeelaphus australorientalis[251]

Sp. nov

Valid

Croitor

Early Pliocene

 Romania
 Ukraine

AnOld World deer.

Protherohyus[252]

Gen. et comb. nov

Valid

Parisi Dutraet al.

Hemphillian

 Mexico
 United States

Apeccary; a new genus for"Desmathyus" brachydontus Dalquest & Mooser (1980).

Siderochoerus[239]

Gen. et sp. nov

Valid

Pickford

Miocene

 Germany

A member ofSuoidea belonging to the familySiderochoeridae. Genus includes new speciesS. minimus.

Turkanatragus[235]

Gen. et sp. nov

Valid

Geraads

Miocene

Nawata Formation

 Kenya

A member of the familyBovidae. The type species isT. marymuunguae.

Urmiatherium kassandriensis[253]

Sp. nov

Valid

Lazaridiset al.

LateMiocene

 Greece

Anovibovine-likebovid.

Cetaceans

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Africanacetus gracilis[254]

Sp. nov

Valid

Ichishimaet al.

Uncertain (middleMiocene-earlyPliocene)

São Paulo Ridge (offshore)

 Brazil

Abeaked whale.

Beneziphius cetariensis[255]

Sp. nov

Valid

Miján, Louwye & Lambert

MiddleMiocene to earlyPliocene

 Spain

Abeaked whale.

Brujadelphis[256]

Gen. et sp. nov

Valid

Lambertet al.

Miocene (Serravallian to earlyTortonian)

Pisco Formation

 Peru

A member ofInioidea. The type species isB. ankylorostris.

Coronodon[257]

Gen. et sp. nov

Valid

Geisleret al.

Oligocene (Rupelian)

Ashley Formation

 United States
( South Carolina)

Abasal member ofMysticeti. The type species isC. havensteini.

Dilophodelphis[258]

Gen. et sp. nov

Valid

Boersma, McCurry & Pyenson

Miocene (earlyBurdigalian)

Astoria Formation

 United States
( Oregon)

A relative of theSouth Asian river dolphin. The type species isD. fordycei.

Eubalaena ianitrix[259]

Sp. nov

Valid

Bisconti, Lambert & Bosselaers

Pliocene (Piacenzian)

Lillo Formation

 Belgium

Aright whale.

Inermorostrum[260]

Gen. et sp. nov

Valid

Boesseneckeret al.

Oligocene

 United States
( South Carolina)

A member of the familyXenorophidae. The type species isI. xenops.

Inticetus[261]

Gen. et sp. nov

Valid

Lambertet al.

Miocene (Burdigalian)

Chilcatay Formation

 Peru

Adolphin of uncertain phylogenetic placement, assigned to the new familyInticetidae. The type species isI. vertizi.

Koristocetus[262]

Gen. et sp. nov

Valid

Collaretaet al.

Miocene (latestTortonian orMessinian)

Pisco Formation

 Peru

A member of the familyKogiidae. The type species isK. pescei.

Mystacodon[263]

Gen. et sp. nov

Valid

Lambertet al.

Eocene (earlyPriabonian)

Yumaque Formation

 Peru

Abasal member ofMysticeti. The type species isM. selenensis.

Olympicetus[264]

Gen. et sp. nov

Valid

Vélez-Juarbe

LateOligocene

Pysht Formation

 United States
( Washington)

Astem-odontocete. The type species isO. avitus.

Scaldiporia[265]

Gen. et sp. nov

Valid

Post, Louwye & Lambert

LateMiocene or earliestPliocene

Breda Formation

 Netherlands

A relative of theLa Plata dolphin. The type species isS. vandokkumi.

Tiucetus[266]

Gen. et sp. nov

Valid

Marx, Lambert & de Muizon

Miocene (Serravallian to earlyTortonian)

Pisco Formation

 Peru

A member of the familyCetotheriidae. The type species isT. rosae.

Urkudelphis[267]

Gen. et sp. nov

Valid

Tanakaet al.

Oligocene (probablyChattian)

Dos Bocas Formation

 Ecuador

A member ofPlatanistoidea. The type species isU. chawpipacha.

Carnivorans

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Amphictis timucua[268]

Sp. nov

Valid

Baskin

EarlyHemingfordian

 United States
( Florida)

A member of the familyAiluridae.

Canis othmanii[269]

Sp. nov

Valid

Amriet al.

Early MiddlePleistocene

 Tunisia

A member of the familyCanidae.

Eotaria citrica[270]

Sp. nov

Valid

Velez-Juarbe

Miocene (lateBurdigalian to earlyLanghian)

 United States
( California)

Astemeared seal.

Floridictis[268]

Gen. et sp. nov

Valid

Baskin

EarlyHemingfordian

 United States
( Florida)

A member of the familyMustelidae belonging to the subfamilyOligobuninae. Genus includes new speciesF. kerneri.

Leptofelis[271]

Gen. et comb. nov

Valid

Salesaet al.

LateMiocene

 Spain

A member of the familyFelidae belonging to the subfamilyFelinae; a new genus for"Styriofelis" vallesiensis Salesaet al. (2012). Announced in 2017; the final version of the article naming it was published in 2019.

Megantereon microta[272]

Sp. nov

Valid

Zhuet al.

Early Pleistocene

 China

Amachairodontinefelid, a species ofMegantereon.

Miomaci[273]

Gen. et sp. nov

Valid

De Boniset al.

Miocene (Vallesian)

 Hungary

A relative of thegiant panda. The type species isM. panonnicum.

Nanophoca[274]

Gen. et comb. nov

Valid

Dewaeleet al.

Miocene

Berchem Formation
Diest Formation
Kattendijk Formation

 Belgium

Anearless seal; a new genus for"Phoca" vitulinoides Van Beneden (1871).

Panthera spelaea intermedia[275]

Subsp. nov

Valid

Argant & Brugal

Late MiddlePleistocene

 France

A subspecies of the Eurasian cave lion.

Parabrachypsalis[268]

Gen. et sp. nov

Valid

Baskin

EarlyHemingfordian

 United States
( Florida)

A member of the familyMustelidae belonging to the subfamilyOligobuninae. Genus includes new speciesP. janisae.

Paramachaerodus transasiaticus[276]

Sp. nov

Valid

Li & Spassov

LateMiocene

 Bulgaria
 China

Amachairodontinefelid.

Siamogale melilutra[277]

Sp. nov

Valid

Wanget al.

Late Miocene-Pliocene

Yushe Basin
Zhaotong Basin

 China

Anotter, a species ofSiamogale.

Terranectes[278]

Gen. et 2 sp. nov

Valid

Rahmatet al.

LateMiocene

Eastover Formation
St. Marys Formation

 United States
( Virginia)

Anearless seal belonging to the subfamilyMonachinae. The type species isT. magnus; genus also includesT. parvus.

Lagomorphs

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Alilepus parvus[279]

Sp. nov

Valid

Wu & Flynn

LateNeogene

Yushe Basin

 China

A member of the familyLeporidae.

Hypolagus mazegouensis[279]

Sp. nov

Valid

Wu & Flynn

LatePliocene

Yushe Basin

 China

A member of the familyLeporidae.

Ochotonoides teilhardi[279]

Sp. nov

Valid

Wu & Flynn

LatePliocene

Yushe Basin

 China

Apika.

Paludotona minor[280]

Sp. nov

Valid

Angelone, Čermák & Rook

Miocene (Turolian)

 Italy

A member ofLagomorpha of uncertain phylogenetic placement.

Sericolagus yushecus[279]

Sp. nov

Valid

Wu & Flynn

LateNeogene

Yushe Basin

 China

A member of the familyLeporidae.

Sinolagomys badamae[281]

Sp. nov

Valid

Erbajevaet al.

Late Oligocene

 Mongolia

Apika.

Rodents

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Acarechimys pascuali[282]

Sp. nov

Valid

Verzi, Olivares & Morgan

Early Miocene (Santacrucian)

Santa Cruz Formation

 Argentina

Astem-abrocomid, a species ofAcarechimys.

Acritoparamys naomugengensis[283]

Sp. nov

Valid

Li, Mao & Wang

Eocene

Erlian Basin

 China

A member of the familyIschyromyidae.

Allactaga fru[284]

Sp. nov

Valid

Nesin & Kovalchuk

Miocene (earlyTurolian)

 Ukraine

Ajerboa, a species ofAllactaga.

Allocricetus primitivus[285]

Sp. nov

Valid

Wu & Flynn

Pliocene

Yushe Basin

 China

Ahamster.

Altasciurus[286]

Gen. et comb. nov

Valid

Korth & Tabrum

Oligocene (Orellan toWhitneyan)

 United States
( Colorado
 Montana
 Nebraska
 South Dakota
 Wyoming)

A member of the familyAplodontidae belonging to the subfamilyProsciurinae. The type species is"Paramys" relictus Cope (1873); genus also includesA. albiclivus (Korth, 1994) andA. clausulus (Korth, 2009).

Ameghinomys[282]

Gen. et comb. nov

Valid

Verzi, Olivares & Morgan

Early Miocene

 Argentina

Astem-abrocomid; a new genus for"Acarechimys" constans (Ameghino, 1887).

Apeomys asiaticus[287]

Sp. nov

Valid

Qiu

Late Early Miocene

Xiacaowan Formation

 China

A member of the familyEomyidae.

Apeomys oldrichi[288]

Sp. nov

Valid

Mörs & Flink

EarlyMiocene

 Germany

A member of the familyEomyidae.

Apocricetus darderi[289]

Sp. nov

Valid

Torres-Roiget al.

Pliocene (Zanclean)

 Spain

A member of the familyCricetidae.

Argyromys cicigei[290]

Sp. nov

Valid

López-Guerreroet al.

LateOligocene

 China
 Mongolia

A member of the familyCricetidae.

Cardiomys leufuensis[291]

Sp. nov

Valid

Pérez, Deschamps & Vucetich

LateMiocene (Chasicoan)

Arroyo Chasicó Formation

 Argentina

A relative of thecapybara.

Cavia cabrerai[292]

Sp. nov

Valid

Candela & Bonini

MiocenePliocene boundary

Andalhuala Formation

 Argentina

A species ofCavia (a relative of theguinea pig).

Caviodon andalhualensis[291]

Sp. nov

Valid

Pérez, Deschamps & Vucetich

Miocene (Messinian)

Andalhuala Formation

 Argentina

A relative of thecapybara.

Collimys caucasicus[293]

Sp. nov

Valid

Tesakovin Tesakovet al.

Miocene (Turolian)

 Russia
( Adygea)

A member of the familyCricetidae.

Cricetinus mesolophidos[285]

Sp. nov

Valid

Wu & Flynn

Pliocene

Yushe Basin

 China

Ahamster.

Cricetodon goklerensis[294]

Sp. nov

Valid

Joniaket al.

EarlyMiocene

 Turkey

Cricetops auster[295]

Sp. nov

Valid

Liet al.

Early Oligocene

Caijiachong Formation

 China

Amuroid rodent, a species ofCricetops.

Debruijnia kostakii[296]

Sp. nov

Valid

De Bruijn

Early Miocene

 Greece

A member ofSpalacinae.

Democricetodon fejfari[297]

Sp. nov

Valid

Lindsay

MiddleMiocene

 India[298] Pakistan

A member of the familyCricetidae.

Democricetodon haltmari[294]

Sp. nov

Valid

Joniaket al.

EarlyMiocene

 Turkey

Desmodillus magnus[299]

Sp. nov

Valid

Denys & Matthews

EarlyPliocene

Varswater Formation

 South Africa

A relative of theCape short-eared gerbil.

Eobranisamys javierpradoi[300]

Sp. nov

Valid

Boivinet al.

Late middleEocene

Pozo Formation

 Peru

A member ofCaviomorpha belonging to the superfamilyCavioidea.

Eomys helveticus[301]

Sp. nov

Valid

Engesser & Kälin

Oligocene (Chattian)

  Switzerland

A member of the familyEomyidae.

Eomys schluneggeri[301]

Sp. nov

Valid

Engesser & Kälin

Oligocene (Chattian)

  Switzerland

A member of the familyEomyidae.

Eumyarion lukasi[294]

Sp. nov

Valid

Joniaket al.

EarlyMiocene

 Turkey

Extrarius[302]

Gen. et sp. nov

Valid

Erten

Quaternary

Tosunlar Formation

 Turkey

A member of the familyMuridae. The type species isE. orhuni.

Ferigolomys[303]

Gen. et sp. nov

Valid

Kerberet al.

LateMiocene

Solimões Formation

 Brazil

A member ofDinomyidae. Genus includes new speciesF. pacarana.

Germanomys progressiva[304]

Sp. nov

Valid

Wu & Flynn

Pliocene

Mazegou Formation

 China

A member ofArvicolinae.

Germanomys yusheica[304]

Sp. nov

Valid

Wu & Flynn

Pliocene

Gaozhuang Formation

 China

A member ofArvicolinae.

Glirudinus matusi[294]

Sp. nov

Valid

Joniaket al.

EarlyMiocene

 Turkey

Heosminthus nomogenesis[305]

Sp. nov

Valid

Li, Gong & Wang

Late Eocene

 China

A member ofDipodidae.

Hispanomys romeroi[306]

Sp. nov

Valid

Piñero & Agustí

 Spain

A member of the familyCricetidae.

Hydrochoeropsis wayuu[307]

Sp. nov

Valid

Pérezet al.

LatePliocene

Ware Formation
Cocinetas Basin

 Colombia

A member ofHydrochoerinae.

Hylopetes yuncuensis[308]

Sp. nov

Valid

Qiu

LateNeogene

Yushe Basin

 China

Asquirrel, a species ofHylopetes.

Inopinatia[309]

Gen. et sp. nov

Valid

Markovićet al.

EarlyOligocene

 Serbia

A member of the familyDiatomyidae. The type species isI. balkanica.

Karnimata fejfari[310]

Sp. nov

Valid

Kimura, Flynn & Jacobs

LateMiocene

Nagri Formation

 Pakistan

A member of the familyMuridae.

Latocricetodon[294]

Gen. et comb. nov

Valid

Joniaket al.

EarlyMiocene

 Turkey

A new genus for"Spanocricetodon" sinuosus Theocharopoulos (2000).

Lophicylindrodon[286]

Gen. et sp. nov

Valid

Korth & Tabrum

Oligocene (Whitneyan)

 United States
( Montana)

A member of the familyCylindrodontidae. The type species isL. expiratus.

Metanoiamys norejkoi[311]

Sp. nov

Valid

Korth & Tabrum

PossiblyChadronian

Beaverhead Basin

 United States
( Montana)

A member of the familyEomyidae.

Milimonggamys[312]

Gen. et sp. nov

Turveyet al.

LateHolocene

 Indonesia

A member of the familyMuridae belonging to the subfamilyMurinae and the tribeRattini. The type species isM. juliae.

Montanacastor[286]

Gen. et sp. nov

Valid

Korth & Tabrum

Oligocene (Whitneyan)

 United States
( Montana)

A member of the familyCastoridae. The type species isM. simplicidens.

Mubhammys atlanticus[313]

Sp. nov

Valid

Marivauxet al.

Oligocene (earliestRupelian)

UpperSamlat Formation

Western Sahara

A member ofPhiomorpha of uncertain phylogenetic placement.

Neocometes magna[314]

Sp. nov

Valid

Qiu & Jin

ProbablyMiocene

 China

A member of the familyPlatacanthomyidae.

Neocometes sinensis[314]

Sp. nov

Valid

Qiu & Jin

ProbablyMiocene

 China

A member of the familyPlatacanthomyidae.

Neophiomys minutus[313]

Sp. nov

Valid

Marivauxet al.

Oligocene (earliestRupelian)

UpperSamlat Formation

Western Sahara

A member ofPhiomorpha of uncertain phylogenetic placement.

Orelladjidaumo exiguus[286]

Sp. nov

Valid

Korth & Tabrum

Oligocene (Whitneyan)

 United States
( Montana)

A member of the familyEomyidae.

Palaeocavia? mawka[315]

Sp. nov

Valid

Madozzo-Jaén & Pérez

Late Miocene

Chiquimil Formation

 Argentina

A member ofCaviinae, possibly a species ofPalaeocavia.

Parapodemus badgleyae[310]

Sp. nov

Valid

Kimura, Flynn & Jacobs

LateMiocene

Nagri Formation

 Pakistan

A member of the familyMuridae.

Phenacophiomys[313]

Gen. et sp. nov

Valid

Marivauxet al.

Oligocene (earliestRupelian)

UpperSamlat Formation

Western Sahara

A member of the familyPhiomyidae. The type species isP. occidentalis.

Plesiosminthus margaritae[316]

Sp. nov

Valid

Freudenthal & Martín-Suárez

LateOligocene

 Spain

A member of the familyDipodidae.

Plesiosminthus moniqueae[316]

Sp. nov

Valid

Freudenthal & Martín-Suárez

LateOligocene

 France

A member of the familyDipodidae.

Pliosiphneus antiquus[317]

Sp. nov

Valid

Zheng

LateNeogene

Gaozhuang Formation

 China

Azokor.

Pozomys[300]

Gen. et sp. nov

Valid

Boivinet al.

Late middleEocene

Pozo Formation

 Peru

A member ofCaviomorpha of uncertain phylogenetic placement. The type species isP. ucayaliensis.

Priusaulax wilsoni[318]

Sp. nov

Valid

Korth

Miocene (Hemingfordian)

Pawnee Creek Formation
Runningwater Formation

 United States
( Colorado
 Nebraska
 Wyoming)

A member of the familyCastoridae.

Progonomys morganae[310]

Sp. nov

Valid

Kimura, Flynn & Jacobs

LateMiocene

Nagri Formation

 India[298]
 Pakistan

A member of the familyMuridae.

Proischyromys[319]

Gen. et sp. nov

Valid

Samuels & Korth

Eocene (Chadronian)

John Day Formation

 United States
( Oregon)

A member of the familyIschyromyidae. The type species isP. perditus.

Raksasamys[312]

Gen. et sp. nov

Turveyet al.

LateHolocene

 Indonesia

A member of the familyMuridae belonging to the subfamilyMurinae and the tribeRattini. The type species isR. tikusbesar.

Sayimys sihongensis[287]

Sp. nov

Valid

Qiu

Late Early Miocene

Xiacaowan Formation

 China

Agundi.

Sciuravus inclinatus[320]

Sp. nov

Valid

Anderson

Bridgerian

Bridger Formation

 United States
( Wyoming)

A member of the familySciuravidae.

Sciuravus metalinguas[320]

Sp. nov

Valid

Anderson

Bridgerian

Bridger Formation

 United States
( Wyoming)

A member of the familySciuravidae.

Sciuravus nexus[320]

Sp. nov

Valid

Anderson

Bridgerian

Bridger Formation

 United States
( Wyoming)

A member of the familySciuravidae.

Spalax denizliensis[321]

Sp. nov

Valid

Erten

EarlyPleistocene

Tosunlar Formation

 Turkey

A species ofSpalax.

Spurimus hoffmani[311]

Sp. nov

Valid

Korth & Tabrum

PossiblyChadronian

Beaverhead Basin

 United States
( Montana)

A member of the familyIschyromyidae.

Tedfordomys[322]

Gen. et sp. nov

Valid

Wu, Flynn & Qiu

LateMiocene

Gaozhuang Formation
Mahui Formation

 China

A member ofMurinae. The type species isT. jinensis.

Willeumys argosorus[286]

Sp. nov

Valid

Korth & Tabrum

Oligocene (Whitneyan)

 United States
( Montana)

A member of the familyCricetidae belonging to the subfamilyEumyinae.

Yuneomys[287]

Gen. et comb. nov

Valid

Qiu

Late Miocene

Shihuiba Formation

 China

A member of the familyEomyidae; a new genus for"Leptodontomys" pusillus Qiu (2006).

Yuomys altunensis[323]

Sp. nov

Valid

Wang

Middle Eocene

Xishuigou Formation

 China

A relative of thegundis.

Yuomys magnus[324]

Sp. nov

Valid

Li

Eocene

 China

A relative of thegundis.

Primates

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Agerinia marandati[325]

Sp. nov

Valid

Femenias-Gualet al.

EarlyEocene

Corçà Formation

 Spain

Kalepithecus kogolensis[326]

Sp. nov

Valid

Pickfordet al.

Miocene

 Uganda

A small ape.

Masradapis[327]

Gen. et sp. nov

Valid

Seiffertet al.

LateEocene

Birket Qarun Formation

 Egypt

A member ofAdapiformes belonging to the subfamilyCaenopithecinae. The type species isM. tahai.

Microchoerus hookeri[328]

Sp. nov

Valid

Minwer-Barakatet al.

Late Eocene

 Spain

A member ofOmomyidae.

Mioeuoticus kichotoi[329]

Sp. nov

Valid

Kunimatsuet al.

Early MiddleMiocene

Aka Aiteputh Formation

 Kenya

A member of the familyLorisidae.

Nyanzapithecus alesi[330]

Sp. nov

Valid

Nengoet al.

MiddleMiocene

 Kenya

Anape.

Ramadapis[331]

Gen. et sp. nov

Valid

Gilbertet al.

Miocene

 India

A member ofSivaladapidae. The type species isR. sahnii.

Other eutherians

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Bharatlestes[332][333]

Gen. et sp. nov

Valid

Kapuret al.

EarlyEocene

Cambay Shale Formation

 India

A member of the familyAdapisoriculidae. Genus includes new speciesB. kalamensis.

Carpolestes twelvemilensis[334]

Sp. nov

Valid

Mattingly, Sanisidro & Beard

Paleocene (lateTiffanian)

 United States
( Wyoming)

A member ofPlesiadapiformes.

Crustulus[335]

Gen. et sp. nov

Valid

Clemens

Paleocene (latestPuercan)

Tullock Member of theFort Union Formation

 United States
( Montana)

Probably a member ofPantodonta. The type species isC. fontanus.

Deinogalerix samniticus[336]

Sp. nov

Valid

Savorelliet al.

Miocene (Tortonian)

Lithothamnion Limestone

 Italy

Agymnure.

Durlstodon[337]

Gen. et sp. nov

Valid

Sweetman, Smith & Martill

Early Cretaceous (Berriasian)

Purbeck Group

 United Kingdom

An early eutherian of uncertain phylogenetic placement. The type species isD. ensomi.

Durlstotherium (A),Durlstodon (B)

Durlstotherium[337]

Gen. et sp. nov

Valid

Sweetman, Smith & Martill

Early Cretaceous (Berriasian)

Purbeck Group

 United Kingdom

An early eutherian of uncertain phylogenetic placement. The type species isD. newmani.

Entomolestes westgatei[243]

Sp. nov

Valid

Murphey & Kelly

Uintan

Bridger Formation

 United States
( Wyoming)

A member of the familyErinaceidae.

Exiguodon[338]

Gen. et comb. nov

Valid

Morales &Pickford

EarlyMiocene

 Kenya
 Uganda

A member ofHyaenodonta belonging to the groupHyainailourinae. The type species is"Hyaenodon" pilgrimi Savage (1965).

Falcatodon[338]

Gen. et comb. nov

Valid

Morales &Pickford

Oligocene (Rupelian)

Jebel Qatrani Formation

 Egypt

A member ofHyaenodonta belonging to the groupHyainailourinae. The type species is"Metapterodon" schlosseri Holroyd (1999).

Hapalodectes lopatini[339]

Sp. nov

Valid

Soléet al.

MiddlePaleocene

UpperDoumu Formation

 China

Ahapalodectidmesonychian.

Masrasector nananubis[340]

Sp. nov

Valid

Borths & Seiffert

Eocene (latestPriabonian)

Jebel Qatrani Formation

 Egypt

A member ofHyaenodonta belonging to the groupHyainailouroidea and the subfamilyTeratodontinae.

Notiolofos regueroi[341]

Sp. nov

Valid

Gelfo, López & Santillana

Eocene (Ypresian)

La Meseta Formation

 Antarctica

A member ofLitopterna belonging to the familySparnotheriodontidae.

Nyctitherium gunnelli[243]

Sp. nov

Valid

Murphey & Kelly

Uintan

Bridger Formation

 United States
( Wyoming)

A member ofSoricomorpha belonging to the familyNyctitheriidae.

Pakakali[342]

Gen. et sp. nov

Valid

Borths & Stevens

LateOligocene

Nsungwe Formation

 Tanzania

A member ofHyaenodonta belonging to the groupHyainailouroidea. The type species isP. rukwaensis.

Pampahippus powelli[343]

Sp. nov

Valid

García-López, Deraco & del Papa

Eocene

Quebrada de los Colorados Formation

 Argentina

Anotoungulate.

Percymygale[344]

Gen. et comb. nov

Valid

Hugueney & Maridet

LateEocene to earlyMiocene

 Czech Republic
 France
 Germany
 United Kingdom

A member ofTalpidae belonging to the tribeUrotrichini. The type species is"Myxomygale" minor Ziegler (1990); genus also includes"Myxomygale" vauclusensis Crochet (1995).

Plesiodimylus ilercavonicus[345]

Sp. nov

Valid

Crespoet al.

Early Miocene

 Spain

A member ofDimylidae.

Plesiosorex fejfari[346]

Sp. nov

Valid

Oshima, Tomida & Orihara

EarlyMiocene

Nakamura Formation

 Japan

A member ofEulipotyphla belonging to the familyPlesiosoricidae.

Protypotherium colloncurensis[347]

Sp. nov

Valid

Nardoni, Reguero & González Ruiz

Miocene (Colloncuran)

Collón Cura Formation

 Argentina

Aninteratheriidnotoungulate.

Sectisodon[338]

Gen. et sp. et comb. nov

Valid

Morales &Pickford

Oligocene and EarlyMiocene

 Egypt
 Uganda

A member ofHyaenodonta belonging to the groupHyainailourinae. The type species isS. occultus; genus also includes"Metapterodon" markgrafi Holroyd (1999).

Taizimylus[348]

Gen. et sp. nov

Valid

Maoet al.

Late Paleocene

 China

Astem-rodent belonging to the familyEurymylidae. The type species isT. tongi.

Tegulariscaptor[349]

Gen. et comb. nov

Valid

Sansaloneet al.

EarlyOligocene

 Germany

A member ofTalpidae; a new genus for"Geotrypus" minor Ziegler (2012).

Xotodon maimarensis[350]

Sp. nov

Valid

Boniniet al.

LateMiocene–earlyPliocene

Maimará Formation

 Argentina

Atoxodontidnotoungulate.

Yanshuella yushensis[351]

Sp. nov

Valid

Flynn & Wu

LateNeogene

Yushe Basin

 China

Amole belonging to the tribeScalopini.

Other mammals

[edit]

Research

[edit]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeUnitLocationNotesImages

Arboroharamiya allinhopsoni[363]

Sp. nov

Valid

Hanet al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A member ofEuharamiyida belonging to the family Arboroharamiyidae.

Baidabatyr[364]

Gen. et sp. nov

Valid

Averianovet al.

Early Cretaceous

Ilek Formation

 Russia

Amultituberculate of uncertain phylogenetic placement. The type species isB. clivosus.

Fluctuodon[365]

Gen. et sp. nov

Valid

Debuysschere

Late Triassic (Rhaetian)

 France

A member ofKuehneotheriidae. The type species isF. necmergor.

Kuehneotherium stanislavi[365]

Sp. nov

Valid

Debuysschere

Late Triassic (Rhaetian)

 France
 Luxembourg

A member ofKuehneotheriidae.

Maiopatagium[366]

Gen. et sp. nov

Valid

Menget al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A member ofHaramiyida belonging to the groupEleutherodontida. The type species isM. furculiferum.

Vilevolodon[367]

Gen. et sp. nov

Valid

Luoet al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

A member ofHaramiyida belonging to the familyEleutherodontidae. The type species isV. diplomylos.

References

[edit]
  1. ^Leonardo M. Carneiro; Édison Vicente de Oliveira (2017)."Systematic affinities of the extinct metatherianEobrasilia coutoi Simpson, 1947, a South American Early Eocene Stagodontidae: implications for "Eobrasiliinae"".Revista Brasileira de Paleontologia.20 (3):355–372.doi:10.4072/rbp.2017.3.07.
  2. ^Charlène Selva; Sandrine Ladevèze (2017). "Computed microtomography investigation of the skull of Cuvier's famous 'opossum' (Marsupialiformes, Herpetotheriidae) from the Eocene of Montmartre".Zoological Journal of the Linnean Society.180 (3):672–693.doi:10.1111/zoj.12495.
  3. ^Leonardo M. Carneiro; Édison Vicente Oliveira (2017)."The Eocene South American metatherianZeusdelphys complicatus is not a protodidelphidid but a hatcheriform: Paleobiogeographic implications".Acta Palaeontologica Polonica.62 (3):497–507.doi:10.4202/app.00351.2017.
  4. ^Robin M. D. Beck (2017)."The Skull ofEpidolops ameghinoi from the Early Eocene Itaboraí Fauna, Southeastern Brazil, and the Affinities of the Extinct Marsupialiform Order Polydolopimorphia".Journal of Mammalian Evolution.24 (4):373–414.doi:10.1007/s10914-016-9357-6.PMC 5684316.PMID 29187780.
  5. ^Camilo López-Aguirre; Michael Archer; Suzanne J. Hand; Shawn W. Laffan (2017)."Extinction of South American sparassodontans (Metatheria): environmental fluctuations or complex ecological processes?".Palaeontology.60 (1):91–115.Bibcode:2017Palgy..60...91L.doi:10.1111/pala.12272.S2CID 132584097.
  6. ^Michael C. Westaway; Jon Olley; Rainer Grün (2017). "At least 17,000 years of coexistence: Modern humans and megafauna at the Willandra Lakes, South-Eastern Australia".Quaternary Science Reviews.157:206–211.Bibcode:2017QSRv..157..206W.doi:10.1016/j.quascirev.2016.11.031.
  7. ^Sander van der Kaars; Gifford H. Miller; Chris S. M. Turney; Ellyn J. Cook; Dirk Nürnberg; Joachim Schönfeld; A. Peter Kershaw; Scott J. Lehman (2017)."Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia".Nature Communications.8: Article number 14142.Bibcode:2017NatCo...814142V.doi:10.1038/ncomms14142.PMC 5263868.PMID 28106043.
  8. ^Larisa R. G. DeSantis; Judith H. Field; Stephen Wroe; John R. Dodson (2017)."Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change".Paleobiology.43 (2):181–195.Bibcode:2017Pbio...43..181D.doi:10.1017/pab.2016.50.S2CID 13134989.
  9. ^Gilbert J. Price; Kyle J. Ferguson; Gregory E. Webb; Yue-xing Feng; Pennilyn Higgins; Ai Duc Nguyen; Jian-xin Zhao; Renaud Joannes-Boyau; Julien Louys (2017)."Seasonal migration of marsupial megafauna in Pleistocene Sahul (Australia–New Guinea)".Proceedings of the Royal Society B: Biological Sciences.284 (1863): 20170785.doi:10.1098/rspb.2017.0785.PMC 5627191.PMID 28954903.
  10. ^Kaylene Butler; Kenny J. Travouillon; Gilbert J. Price; Michael Archer; Suzanne J. Hand (2017). "Species abundance, richness and body size evolution of kangaroos (Marsupialia: Macropodiformes) throughout the Oligo-Miocene of Australia".Palaeogeography, Palaeoclimatology, Palaeoecology.487:25–36.Bibcode:2017PPP...487...25B.doi:10.1016/j.palaeo.2017.08.016.
  11. ^Michael Buckley; Richard Cosgrove; Jillian Garvey; Gavin J. Prideaux (2017)."Identifying remains of extinct kangaroos in Late Pleistocene deposits using collagen fingerprinting".Journal of Quaternary Science.32 (5):653–660.Bibcode:2017JQS....32..653B.doi:10.1002/jqs.2964.
  12. ^Troy J. Myers; Karen H. Black; Michael Archer; Suzanne J. Hand (2017)."The identification of Oligo-Miocene mammalian palaeocommunities from the Riversleigh World Heritage Area, Australia and an appraisal of palaeoecological techniques".PeerJ.5: e3511.doi:10.7717/peerj.3511.PMC 5494167.PMID 28674663.
  13. ^A. Murat Maga; Robin M. D. Beck (2017)."Skeleton of an unusual, cat-sized marsupial relative (Metatheria: Marsupialiformes) from the middle Eocene (Lutetian: 44-43 million years ago) of Turkey".PLOS ONE.12 (8): e0181712.Bibcode:2017PLoSO..1281712M.doi:10.1371/journal.pone.0181712.PMC 5559079.PMID 28813431.
  14. ^Pippa Binfield; Michael Archer; Suzanne J. Hand; Karen H. Black; Troy J. Myers; Anna K. Gillespie & Derrick A. Arena (2017). "A new Miocene carnivorous marsupial,Barinya kutjamarpensis (Dasyuromorphia), from central Australia".Alcheringa: An Australasian Journal of Palaeontology.41 (1):46–53.Bibcode:2017Alch...41...46B.doi:10.1080/03115518.2016.1180029.S2CID 133283494.
  15. ^abKenny J. Travouillon; Julien Louys; Gilbert J. Price; Michael Archer; Suzanne J. Hand; Jeanette Muirhead (2017)."A review of the Pliocene bandicoots of Australia, and descriptions of new genus and species".Journal of Vertebrate Paleontology.37 (5): e1360894.Bibcode:2017JVPal..37E0894T.doi:10.1080/02724634.2017.1360894.S2CID 90107606.
  16. ^Anna K. Gillespie; Michael Archer; Suzanne J. Hand (2017)."A new Oligo–Miocene marsupial lion from Australia and revision of the family Thylacoleonidae".Journal of Systematic Palaeontology.17 (1):59–89.doi:10.1080/14772019.2017.1391885.S2CID 90758394.
  17. ^Liang Liu; Jin Zhang; Frank E. Rheindt; Fumin Lei; Yanhua Qu; Yu Wang; Yu Zhang; Corwin Sullivan; Wenhui Nie; Jinhuan Wang; Fengtang Yang; Jinping Chen; Scott V. Edwards; Jin Meng; Shaoyuan Wu (2017)."Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary".Proceedings of the National Academy of Sciences of the United States of America.114 (35):E7282 –E7290.Bibcode:2017PNAS..114E7282L.doi:10.1073/pnas.1616744114.PMC 5584403.PMID 28808022.
  18. ^John Gatesy; Mark S. Springer (2017)."Phylogenomic red flags: Homology errors and zombie lineages in the evolutionary diversification of placental mammals".Proceedings of the National Academy of Sciences of the United States of America.114 (45):E9431 –E9432.Bibcode:2017PNAS..114E9431G.doi:10.1073/pnas.1715318114.PMC 5692601.PMID 29078405.
  19. ^Liang Liu; Jin Zhang; Frank E. Rheindt; Fumin Lei; Yanhua Qu; Yu Wang; Yu Zhang; Corwin Sullivan; Wenhui Nie; Jinhuan Wang; Fengtang Yang; Jinping Chen; Scott V. Edwards; Jin Meng; Shaoyuan Wu (2017)."Reply to Gatesy and Springer: Claims of homology errors and zombie lineages do not compromise the dating of placental diversification".Proceedings of the National Academy of Sciences of the United States of America.114 (45):E9433 –E9434.Bibcode:2017PNAS..114E9433L.doi:10.1073/pnas.1715371114.PMC 5692603.PMID 29078408.
  20. ^Thomas W. Davies; Mark A. Bell; Anjali Goswami; Thomas J. D. Halliday (2017)."Completeness of the eutherian mammal fossil record and implications for reconstructing mammal evolution through the Cretaceous/Paleogene mass extinction".Paleobiology.43 (4):521–536.Bibcode:2017Pbio...43..521D.doi:10.1017/pab.2017.20.S2CID 89732700.
  21. ^A. V. Lopatin; A. O. Averianov (2017). "The stem placental mammalProkennalestes from the Early Cretaceous of Mongolia".Paleontological Journal.51 (12):1293–1374.Bibcode:2017PalJ...51.1293L.doi:10.1134/S0031030117120048.S2CID 90148237.
  22. ^Indrė Žliobaitė; Mikael Fortelius; Nils C. Stenseth (2017). "Reconciling taxon senescence with the Red Queen's hypothesis".Nature.552 (7683):92–95.Bibcode:2017Natur.552...92Z.doi:10.1038/nature24656.hdl:10852/65201.PMID 29186124.S2CID 4458011.
  23. ^Xinru Wan; Zhibin Zhang (2017)."Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia".Proceedings of the Royal Society B: Biological Sciences.284 (1851): 20162438.doi:10.1098/rspb.2016.2438.PMC 5378077.PMID 28330916.
  24. ^Thomas J. D. Halliday; Paul Upchurch; Anjali Goswami (2017)."Resolving the relationships of Paleocene placental mammals".Biological Reviews.92 (1):521–550.doi:10.1111/brv.12242.PMC 6849585.PMID 28075073.
  25. ^Abigail R. D'Ambrosia; William C. Clyde; Henry C. Fricke; Philip D. Gingerich; Hemmo A. Abels (2017)."Repetitive mammalian dwarfing during ancient greenhouse warming events".Science Advances.3 (3): e1601430.Bibcode:2017SciA....3E1430D.doi:10.1126/sciadv.1601430.PMC 5351980.PMID 28345031.
  26. ^Meaghan M. Emery-Wetherell; Brianna K. McHorse; Edward Byrd Davis (2017)."Spatially explicit analysis sheds new light on the Pleistocene megafaunal extinction in North America".Paleobiology.43 (4):642–655.Bibcode:2017Pbio...43..642E.doi:10.1017/pab.2017.15.S2CID 90330072.
  27. ^Iris Menéndez; Ana R. Gómez Cano; Blanca A. García Yelo; Laura Domingo; M. Soledad Domingo; Juan L. Cantalapiedra; Fernando Blanco; Manuel Hernández Fernández (2017)."Body-size structure of Central Iberian mammal fauna reveals semidesertic conditions during the middle Miocene Global Cooling Event".PLOS ONE.12 (10): e0186762.Bibcode:2017PLoSO..1286762M.doi:10.1371/journal.pone.0186762.PMC 5658084.PMID 29073193.
  28. ^Karina Vanesa Chichkoyan; Borja Figueirido; Margarita Belinchón; José Luis Lanata; Anne-Marie Moigne; Bienvenido Martínez-Navarro (2017)."Direct evidence of megamammal-carnivore interaction decoded from bone marks in historical fossil collections from the Pampean region".PeerJ.5: e3117.doi:10.7717/peerj.3117.PMC 5426367.PMID 28503369.
  29. ^Timothy J. Gaudin; Lauren M. Lyon (2017)."Cranial osteology of the pampathereHolmesina floridanus (Xenarthra: Cingulata; Blancan NALMA), including a description of an isolated petrosal bone".PeerJ.5: e4022.doi:10.7717/peerj.4022.PMC 5729832.PMID 29250462.
  30. ^Hervé Bocherens; Martin Cotte; Ricardo A. Bonini; Pablo Straccia; Daniel Scian; Leopoldo Soibelzon; Francisco J. Prevosti (2017). "Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina".Gondwana Research.48:7–14.Bibcode:2017GondR..48....7B.doi:10.1016/j.gr.2017.04.003.hdl:11336/56592.
  31. ^Richard A. Fariña; Luciano Varela (2018). "Comment on "Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina" by H. Bocherens, M. Cotte, R. A. Bonini, P. Straccia, D. Scian, L. Soibelzon and F. J. Prevosti, Gondwana Research, Volume 48, Issue 1, Pages 7–14".Gondwana Research.58:241–242.Bibcode:2018GondR..58..241F.doi:10.1016/j.gr.2018.03.004.S2CID 243901331.
  32. ^Hervé Bocherens; Martin Cotte; Ricardo A. Bonini; Pablo Straccia; Daniel Scian; Leopoldo Soibelzon; Francisco J. Prevosti (2018). "Reply to "Comment on "Isotopic insight on paleodiet of ..." by Bocherens et al. (Gondwana Research, 48(1), 7–14)"".Gondwana Research.58:243–245.Bibcode:2018GondR..58..243B.doi:10.1016/j.gr.2018.03.003.hdl:11336/90839.S2CID 133659651.
  33. ^Eli Amson; Christian de Muizon; Timothy J. Gaudin (2017)."A reappraisal of the phylogeny of the Megatheria (Mammalia: Tardigrada), with an emphasis on the relationships of the Thalassocninae, the marine sloths".Zoological Journal of the Linnean Society.179 (1):217–236.doi:10.1111/zoj.12450.
  34. ^Gerardo De Iuliis; Cástor Cartelle; H. Gregory McDonald; François Pujos (2017). "The mylodontine ground slothGlossotherium tropicorum from the late Pleistocene of Ecuador and Peru".Papers in Palaeontology.3 (4):613–636.Bibcode:2017PPal....3..613D.doi:10.1002/spp2.1088.hdl:11336/64132.S2CID 135080382.
  35. ^Joseph J. El Adli; Daniel C. Fisher; Michael D. Cherney; Rafael Labarca; Frédéric Lacombat (2017). "First analysis of life history and season of death of a South American gomphothere".Quaternary International. 443, Part A:180–188.Bibcode:2017QuInt.443..180E.doi:10.1016/j.quaint.2017.03.016.
  36. ^Xiang-Wen Yang; Yu Li; Shi-Qi Wang (2017)."Cranial and dental material ofGomphotherium wimani (Gomphotheriidae, Proboscidea) from the Middle Miocene of the Linxia Basin, northwestern China".Vertebrata PalAsiatica.55 (4):331–346.doi:10.19615/j.cnki.1000-3118.170511.
  37. ^Hanwen Zhang; Yuan Wang; Christine M. Janis; Robert H. Goodall; Mark A. Purnell (2017)."An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon,Stegodon,Elephas), by means of dental microwear texture analysis".Quaternary International.445:60–70.Bibcode:2017QuInt.445...60Z.doi:10.1016/j.quaint.2016.07.011.hdl:1983/4f6a743a-7b6d-47c8-a56a-fee7e2c515df.
  38. ^Yuan Wang; Lingxia Zhao; Baopu Du; Lizhao Zhang; Xinjin Wang; Huiyang Cai (2017)."New proboscidean remains associated withHomo sapiens from the Mawokou Cave in Bijie, Guizhou Province of south-western China"(PDF).Acta Anthropologica Sinica.36 (3):414–425.doi:10.16359/j.cnki.cn11-1963/q.2017.0045.
  39. ^Chris Widga; Stacey N. Lengyel; Jeffrey Saunders; Gregory Hodgins; J. Douglas Walker; Alan D. Wanamaker (2017)."Late Pleistocene proboscidean population dynamics in the North American Midcontinent".Boreas.46 (4):772–782.Bibcode:2017Borea..46..772W.doi:10.1111/bor.12235.
  40. ^Jeremy L. Green; Larisa R.G. DeSantis; Gregory James Smith (2017)."Regional variation in the browsing diet of PleistoceneMammut americanum (Mammalia, Proboscidea) as recorded by dental microwear textures".Palaeogeography, Palaeoclimatology, Palaeoecology.487:59–70.Bibcode:2017PPP...487...59G.doi:10.1016/j.palaeo.2017.08.019.
  41. ^Matthias Meyer; Eleftheria Palkopoulou; Sina Baleka; Mathias Stiller;Kirsty E. H. Penkman; Kurt W. Alt; Yasuko Ishida; Dietrich Mania; Swapan Mallick; Tom Meijer; Harald Meller; Sarah Nagel; Birgit Nickel; Sven Ostritz; Nadin Rohland; Karol Schauer; Tim Schüler; Alfred L. Roca; David Reich; Beth Shapiro; Michael Hofreiter (2017)."Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution".eLife.6: e25413.doi:10.7554/eLife.25413.PMC 5461109.PMID 28585920.
  42. ^Rebekah L. Rogers; Montgomery Slatkin (2017)."Excess of genomic defects in a woolly mammoth on Wrangel island".PLOS Genetics.13 (3): e1006601.doi:10.1371/journal.pgen.1006601.PMC 5333797.PMID 28253255.
  43. ^Dan Chang; Michael Knapp; Jacob Enk; Sebastian Lippold; Martin Kircher; Adrian Lister; Ross D. E. MacPhee; Christopher Widga; Paul Czechowski; Robert Sommer; Emily Hodges; Nikolaus Stümpel; Ian Barnes; Love Dalén; Anatoly Derevianko; Mietje Germonpré; Alexandra Hillebrand-Voiculescu; Silviu Constantin; Tatyana Kuznetsova; Dick Mol; Thomas Rathgeber; Wilfried Rosendahl; Alexey N. Tikhonov; Eske Willerslev; Greg Hannon; Carles Lalueza-Fox; Ulrich Joger; Hendrik Poinar; Michael Hofreiter; Beth Shapiro (2017)."The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis".Scientific Reports.7: Article number 44585.Bibcode:2017NatSR...744585C.doi:10.1038/srep44585.PMC 5361112.PMID 28327635.
  44. ^Patrícia Pečnerová; David Díez-del-Molino; Nicolas Dussex; Tatiana Feuerborn; Johanna von Seth; Johannes van der Plicht; Pavel Nikolskiy; Alexei Tikhonov; Sergey Vartanyan; Love Dalén (2017)."Genome-based sexing provides clues about behavior and social structure in the woolly mammoth".Current Biology.27 (22): 3505–3510.e3.Bibcode:2017CBio...27E3505P.doi:10.1016/j.cub.2017.09.064.PMID 29103934.S2CID 6913386.
  45. ^James A. Fellows Yates; Dorothée G. Drucker; Ella Reiter; Simon Heumos; Frido Welker; Susanne C. Münzel; Piotr Wojtal; Martina Lázničková-Galetová; Nicholas J. Conard; Alexander Herbig; Hervé Bocherens; Johannes Krause (2017)."Central European woolly mammoth population dynamics: insights from Late Pleistocene mitochondrial genomes".Scientific Reports.7 (1): Article number 17714.Bibcode:2017NatSR...717714F.doi:10.1038/s41598-017-17723-1.PMC 5735091.PMID 29255197.
  46. ^Kumiko Matsui; Katsuo Sashida; Sachiko Agematsu; Naoki Kohno (2017). "Habitat preferences of the enigmatic Miocene tethythereDesmostylus andPaleoparadoxia (Desmostylia; Mammalia) inferred from the depositional depth of fossil occurrences in the Northwestern Pacific realm".Palaeogeography, Palaeoclimatology, Palaeoecology.471:254–265.Bibcode:2017PPP...471..254M.doi:10.1016/j.palaeo.2017.02.005.
  47. ^Kumiko Matsui (2017)."How can we reliably identify a taxon based on humeral morphology? Comparative morphology of desmostylian humeri".PeerJ.5: e4011.doi:10.7717/peerj.4011.PMC 5683048.PMID 29134151.
  48. ^Esperanza Cerdeño; Bárbara Vera (2017). "New anatomical data onPyrotherium (Pyrotheriidae) from the late Oligocene of Mendoza, Argentina".Ameghiniana.54 (3):290–306.doi:10.5710/AMGH.14.11.2016.3052.hdl:11336/63606.S2CID 130439323.
  49. ^J. Angel Soto-Centeno; Nancy B. Simmons; David W. Steadman (2017)."The bat community of Haiti and evidence for its long-term persistence at high elevations".PLOS ONE.12 (6): e0178066.Bibcode:2017PLoSO..1278066S.doi:10.1371/journal.pone.0178066.PMC 5456054.PMID 28574990.
  50. ^Shan Huang; Jussi T. Eronen; Christine M. Janis; Juha J. Saarinen; Daniele Silvestro; Susanne A. Fritz (2017)."Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes".Proceedings of the Royal Society B: Biological Sciences.284 (1849): 20162361.doi:10.1098/rspb.2016.2361.PMC 5326526.PMID 28202809.
  51. ^Alejandro G. Kramarz; Mariano Bond; Guillermo W. Rougier (2017). "Re-Description of the Auditory Region of the Putative Basal Astrapothere (Mammalia)Eoastrapostylops riolorense Soria and Powell, 1981. Systematic and Phylogenetic Considerations".Annals of Carnegie Museum.84 (2):95–164.doi:10.2992/007.084.0204.hdl:11336/47823.S2CID 90493504.
  52. ^Lílian Paglarelli Bergqvist; Wighart von Koenigswald (2017)."The dentition ofCarodnia vieirai (Mammalia: Xenungulata): enamel microstructure and mastication pattern".Palaeontologia Electronica.20 (2): Article number 20.2.30A.doi:10.26879/703.
  53. ^Pablo Javier Gaudioso; Germán M. Gasparini; Rafael Herbst; Rubén Mario Barquez (2017)."First record of theNeolicaphrium recens Frenguelli, 1921 (Mammalia, Litopterna) in the Pleistocene of Santiago del Estero Province, Argentina".Papéis Avulsos de Zoologia.57 (3):23–29.doi:10.11606/0031-1049.2017.57.03.hdl:11336/56638.
  54. ^Michael Westbury; Sina Baleka; Axel Barlow; Stefanie Hartmann; Johanna L.A. Paijmans; Alejandro Kramarz; Analía M Forasiepi; Mariano Bond; Javier N. Gelfo; Marcelo A. Reguero; Patricio López-Mendoza; Matias Taglioretti; Fernando Scaglia; Andrés Rinderknecht; Washington Jones; Francisco Mena; Guillaume Billet; Christian de Muizon; José Luis Aguilar; Ross D.E. MacPhee; Michael Hofreiter (2017)."A mitogenomic timetree for Darwin's enigmatic South American mammalMacrauchenia patachonica".Nature Communications.8: Article number 15951.Bibcode:2017NatCo...815951W.doi:10.1038/ncomms15951.PMC 5490259.PMID 28654082.
  55. ^Helder Gomes Rodrigues; Anthony Herrel; Guillaume Billet (2017)."Ontogenetic and life history trait changes associated with convergent ecological specializations in extinct ungulate mammals".Proceedings of the National Academy of Sciences of the United States of America.114 (5):1069–1074.Bibcode:2017PNAS..114.1069G.doi:10.1073/pnas.1614029114.PMC 5293108.PMID 28096389.
  56. ^Bárbara Vera (2017)."Patagonian Eocene Archaeopithecidae Ameghino, 1897 (Notoungulata): systematic revision, phylogeny and biostratigraphy".Journal of Paleontology.91 (6):1272–1295.Bibcode:2017JPal...91.1272V.doi:10.1017/jpa.2017.53.hdl:11336/57318.S2CID 90422549.
  57. ^Federico D. Seoane; Sergio Roig Juñent; Esperanza Cerdeño (2017)."Phylogeny and paleobiogeography of Hegetotheriidae (Mammalia, Notoungulata)".Journal of Vertebrate Paleontology.37 (1): e1278547.Bibcode:2017JVPal..37E8547S.doi:10.1080/02724634.2017.1278547.hdl:11336/45231.S2CID 90855244.
  58. ^Alejandro Gustavo Kramarz; Mariano Bond (2017). "Systematics and stratigraphical range of the hegetotheriidsHegetotheriopsis sulcatus andProhegetotherium sculptum (Mammalia: Notoungulata)".Journal of Systematic Palaeontology.15 (12):1027–1036.Bibcode:2017JSPal..15.1027K.doi:10.1080/14772019.2016.1266047.hdl:11336/46835.S2CID 90853697.
  59. ^Juan D. Carrillo; Robert J. Asher (2017)."An exceptionally well-preserved skeleton ofThomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina".Palaeontologia Electronica.20 (2): Article number 20.2.34A.doi:10.26879/759.
  60. ^Helder Gomes Rodrigues; Rémi Lefebvre; Marcos Fernández-Monescillo; Bernardino Mamani Quispe; Guillaume Billet (2017)."Ontogenetic variations and structural adjustments in mammals evolving prolonged to continuous dental growth".Royal Society Open Science.4 (7): 170494.Bibcode:2017RSOS....470494G.doi:10.1098/rsos.170494.PMC 5541567.PMID 28791172.
  61. ^Davis Brent Jones; Larisa R.G. DeSantis (2017)."Dietary ecology of ungulates from the La Brea tar pits in southern California: A multi-proxy approach".Palaeogeography, Palaeoclimatology, Palaeoecology.466:110–127.Bibcode:2017PPP...466..110J.doi:10.1016/j.palaeo.2016.11.019.
  62. ^Bin Bai; Jin Meng; Yuan-Qing Wang; Hai-Bing Wang; Luke Holbrook (2017)."Osteology of the Middle Eocene ceratomorphHyrachyus modestus (Mammalia, Perissodactyla)".Bulletin of the American Museum of Natural History.413:1–70.doi:10.1206/0003-0090-413.1.1.hdl:2246/6718.S2CID 89946672.
  63. ^Bin Bai; Yuan-Qing Wang; Fang-Yuan Mao; Jin Meng (2017)."New material of Eocene Helaletidae (Perissodactyla, Tapiroidea) from the Irdin Manha Formation of the Erlian Basin, Inner Mongolia, China and comments on related localities of the Huheboerhe area".American Museum Novitates (3878):1–44.doi:10.1206/3878.1.hdl:2246/6709.S2CID 55194553.
  64. ^Frido Welker; Geoff M. Smith; Jarod M. Hutson; Lutz Kindler; Alejandro Garcia-Moreno; Aritza Villaluenga; Elaine Turner; Sabine Gaudzinski-Windheuser (2017)."Middle Pleistocene protein sequences from the rhinoceros genusStephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae".PeerJ.5: e3033.doi:10.7717/peerj.3033.PMC 5354071.PMID 28316883.
  65. ^Irina V. Kirillova; Olga F. Chernova; Jan van der Made; Vladimir V. Kukarskih; Beth Shapiro; Johannes van der Plicht; Fedor K. Shidlovskiy; Peter D. Heintzman; Thijs van Kolfschoten; Oksana G. Zanina (2017)."Discovery of the skull ofStephanorhinus kirchbergensis (Jäger, 1839) above the Arctic Circle"(PDF).Quaternary Research.88 (3):537–550.Bibcode:2017QuRes..88..537K.doi:10.1017/qua.2017.53.S2CID 45478220.
  66. ^Alexandra A.E. van der Geer; Frietson Galis (2017)."High incidence of cervical ribs indicates vulnerable condition in Late Pleistocene woolly rhinoceroses".PeerJ.5: e3684.doi:10.7717/peerj.3684.PMC 5580387.PMID 28875067.
  67. ^Jens Lorenz Franzen; Jörg Habersetzer (2017). "Complete skeleton ofEurohippus messelensis (Mammalia, Perissodactyla, Equoidea) from the early middle Eocene of Grube Messel (Germany)".Palaeobiodiversity and Palaeoenvironments.97 (4):807–832.Bibcode:2017PdPe...97..807F.doi:10.1007/s12549-017-0280-5.S2CID 135363952.
  68. ^J. L. Cantalapiedra; J. L. Prado; M. Hernández Fernández; M. T. Alberdi (2017)."Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses".Science.355 (6325):627–630.Bibcode:2017Sci...355..627C.doi:10.1126/science.aag1772.PMID 28183978.S2CID 206651032.
  69. ^Brianna K. McHorse; Andrew A. Biewener; Stephanie E. Pierce (2017)."Mechanics of evolutionary digit reduction in fossil horses (Equidae)".Proceedings of the Royal Society B: Biological Sciences.284 (1861): 20171174.doi:10.1098/rspb.2017.1174.PMC 5577487.PMID 28835559.
  70. ^Yangfan Li; Tao Deng; Hong Hua; Yongxiang Li; Yunxiang Zhang (2017)."Assessment of dental ontogeny in late Miocene hipparionines from the Lamagou fauna of Fugu, Shaanxi Province, China".PLOS ONE.12 (4): e0175460.Bibcode:2017PLoSO..1275460L.doi:10.1371/journal.pone.0175460.PMC 5405952.PMID 28445536.
  71. ^Víctor Adrián Pérez-Crespo; Oscar Carranza-Castañeda; Joaquín Arroyo-Cabrales; Pedro Morales-Puente; Edith Cienfuegos-Alvarado; Francisco J. Otero (2017)."Diet and habitat of unique individuals ofDinohippus mexicanus andNeohipparion eurystyle (Equidae) from the late Hemphillian (Hh3) of Guanajuato and Jalisco, central Mexico: stable isotope studies"(PDF).Revista Mexicana de Ciencias Geológicas.34 (1):38–44.doi:10.22201/cgeo.20072902e.2017.1.470. Archived fromthe original(PDF) on 2017-04-07. Retrieved2017-05-03.
  72. ^Christina I. Barrón-Ortiz; Antonia T. Rodrigues; Jessica M. Theodor; Brian P. Kooyman; Dongya Y. Yang; Camilla F. Speller (2017)."Cheek tooth morphology and ancient mitochondrial DNA of late Pleistocene horses from the western interior of North America: Implications for the taxonomy of North American Late PleistoceneEquus".PLOS ONE.12 (8): e0183045.Bibcode:2017PLoSO..1283045B.doi:10.1371/journal.pone.0183045.PMC 5560644.PMID 28817644.
  73. ^Carmen Nacarino-Meneses; Xavier Jordana; Guillem Orlandi-Oliveras; Meike Köhler (2017)."Reconstructing molar growth from enamel histology in extant and extinctEquus".Scientific Reports.7 (1): Article number 15965.Bibcode:2017NatSR...715965N.doi:10.1038/s41598-017-16227-2.PMC 5698294.PMID 29162890.
  74. ^Maeva J. Orliac; Ricardo Araújo; Fabrice Lihoreau (2017). "The petrosal and bony labyrinth ofDiplobune minor, an enigmatic Artiodactyla from the Oligocene of Western Europe".Journal of Morphology.278 (9):1168–1184.doi:10.1002/jmor.20702.PMID 28516487.S2CID 36810178.
  75. ^Germán Mariano Gasparini; Martín De los Reyes; Analía Francia; Carolina Saldanha Scherer; Daniel Gustavo Poiré (2017)."The oldest record ofHemiauchenia Gervais and Ameghino (Mammalia, Cetartiodactyla) in South America: comments about its paleobiogeographic and stratigraphic implications".Geobios.50 (2):141–153.Bibcode:2017Geobi..50..141G.doi:10.1016/j.geobios.2016.12.003.hdl:11336/48701.S2CID 132286129.
  76. ^Tahlia Perry; Ayla L. van Loenen; Holly Heiniger; Carol Lee; Jaime Gongora; Alan Cooper; Kieren J. Mitchell (2017)."Ancient DNA analysis of the extinct North American flat-headed peccary (Platygonus compressus)".Molecular Phylogenetics and Evolution.112:258–267.Bibcode:2017MolPE.112..258P.doi:10.1016/j.ympev.2017.03.024.PMID 28363818.
  77. ^Bastien Mennecart; Daniel DeMiguel; Faysal Bibi; Gertrud E. Rössner; Grégoire Métais; James M. Neenan; Shiqi Wang; Georg Schulz; Bert Müller; Loïc Costeur (2017)."Bony labyrinth morphology clarifies the origin and evolution of deer".Scientific Reports.7 (1): Article number 13176.Bibcode:2017NatSR...713176M.doi:10.1038/s41598-017-12848-9.PMC 5640792.PMID 29030580.
  78. ^Alexis Gabriel Rozenbaum; Dotan Shaked Gelband; Mordechai Stein; Henk K. Mienis; Rivka Rabinovich (2017)."First evidence of "ancient deer" (cervid) in the late Miocene Bira Formation, Northern Israel".PLOS ONE.12 (11): e0185268.Bibcode:2017PLoSO..1285268R.doi:10.1371/journal.pone.0185268.PMC 5665429.PMID 29091714.
  79. ^Melinda Danowitz; John C. Barry; Nikos Solounias (2017)."The earliest ossicone and post-cranial record ofGiraffa".PLOS ONE.12 (9): e0185139.Bibcode:2017PLoSO..1285139D.doi:10.1371/journal.pone.0185139.PMC 5605118.PMID 28926638.
  80. ^Lisa Yeomans; Louise Martin; Tobias Richter (2017)."Expansion of the known distribution of Asiatic mouflon (Ovis orientalis) in the Late Pleistocene of the Southern Levant".Royal Society Open Science.4 (8): 170409.Bibcode:2017RSOS....470409Y.doi:10.1098/rsos.170409.PMC 5579105.PMID 28878989.
  81. ^Gina M. Semprebon; Nikos Solounias; Deng Tao (2017). "Dietary reconstruction ofHezhengia bohlini (Artiodactyla, Bovidae) from the late Miocene Basin of China using enamel microwear".Palaeogeography, Palaeoclimatology, Palaeoecology.481:57–63.doi:10.1016/j.palaeo.2017.05.023.
  82. ^Duane Froese; Mathias Stiller; Peter D. Heintzman; Alberto V. Reyes; Grant D. Zazula; André E. R. Soares; Matthias Meyer; Elizabeth Hall; Britta J. L. Jensen; Lee J. Arnold; Ross D. E. MacPhee; Beth Shapiro (2017)."Fossil and genomic evidence constrains the timing of bison arrival in North America".Proceedings of the National Academy of Sciences of the United States of America.114 (13):3457–3462.Bibcode:2017PNAS..114.3457F.doi:10.1073/pnas.1620754114.PMC 5380047.PMID 28289222.
  83. ^"When did bison arrive in North America?".Science Journal for Kids. 2017-07-26. Retrieved2017-10-28.
  84. ^Pauline Palacio; Véronique Berthonaud; Claude Guérin; Josie Lambourdière; Frédéric Maksud; Michel Philippe; Delphine Plaire; Thomas Stafford; Marie-Claude Marsolier-Kergoat; Jean-Marc Elalouf (2017)."Genome data on the extinctBison schoetensacki establish it as a sister species of the extant European bison (Bison bonasus)".BMC Evolutionary Biology.17 (1): 48.Bibcode:2017BMCEE..17...48P.doi:10.1186/s12862-017-0894-2.PMC 5303235.PMID 28187706.
  85. ^Grant Zazula; Elizabeth Hall; P. Greg Hare; Christian Thomas; Rolf W. Mathewes; Catherine La Farge; André L Martel; Peter Heintzman; Beth Shapiro (2017). "A middle Holocene steppe bison and paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada".Canadian Journal of Earth Sciences.54 (11):1138–1152.Bibcode:2017CaJES..54.1138Z.doi:10.1139/cjes-2017-0100.hdl:1807/78639.S2CID 54951935.
  86. ^Fabrice Lihoreau; Léanie Alloing-Séguier; Pierre-Olivier Antoine; Jean-Renaud Boisserie; Laurent Marivaux; Grégoire Métais; Jean-Loup Welcomme (2017). "Enamel microstructure defines a major Paleogene hippopotamoid clade: the Merycopotamini (Cetartiodactyla, Hippopotamoidea)".Historical Biology: An International Journal of Paleobiology.29 (7):947–957.Bibcode:2017HBio...29..947L.doi:10.1080/08912963.2016.1274748.S2CID 90177082.
  87. ^Mickaël J. Mourlam; Maeva J. Orliac (2017)."Infrasonic and Ultrasonic Hearing Evolved after the Emergence of Modern Whales".Current Biology.27 (12): 1776–1781.e9.Bibcode:2017CBio...27E1776M.doi:10.1016/j.cub.2017.04.061.PMID 28602653.S2CID 23076925.
  88. ^Manuel Martínez-Cáceres; Olivier Lambert; Christian de Muizon (2017)."The anatomy and phylogenetic affinities ofCynthiacetus peruvianus, a largeDorudon-like basilosaurid (Cetacea, Mammalia) from the late Eocene of Peru".Geodiversitas.39 (1):7–163.doi:10.5252/g2017n1a1.S2CID 90142285.
  89. ^Travis Park; Alistair R. Evans; Stephen J. Gallagher; Erich M. G. Fitzgerald (2017)."Low-frequency hearing preceded the evolution of giant body size and filter feeding in baleen whales".Proceedings of the Royal Society B: Biological Sciences.284 (1848): 20162528.doi:10.1098/rspb.2016.2528.PMC 5310610.PMID 28179519.
  90. ^R. W. Boessenecker; R. E. Fordyce (2017). "Cosmopolitanism and Miocene survival of Eomysticetidae (Cetacea: Mysticeti) revealed by new fossils from New Zealand".New Zealand Journal of Geology and Geophysics.60 (2):145–157.Bibcode:2017NZJGG..60..145B.doi:10.1080/00288306.2017.1300176.S2CID 133204707.
  91. ^Robert W. Boessenecker; Erum Ahmed; Jonathan H. Geisler (2017)."New records of the dolphinAlbertocetus meffordorum (Odontoceti: Xenorophidae) from the lower Oligocene of South Carolina: Encephalization, sensory anatomy, postcranial morphology, and ontogeny of early odontocetes".PLOS ONE.12 (11): e0186476.Bibcode:2017PLoSO..1286476B.doi:10.1371/journal.pone.0186476.PMC 5695589.PMID 29117197.
  92. ^Jelle W.F. Reumer; Titus H. Mens; Klaas Post (2017)."New finds of giant raptorial sperm whale teeth (Cetacea, Physeteroidea) from the Westerschelde Estuary (province of Zeeland, the Netherlands)"(PDF).Deinsea.17:32–38.
  93. ^Stephen J. Godfrey; Lawrence G. Barnes; Olivier Lambert (2017). "The Early Miocene odontoceteAraeodelphis Natator Kellogg, 1957 (Cetacea; Platanistidae), from the Calvert Formation of Maryland, U.S.A.".Journal of Vertebrate Paleontology.37 (2): e1278607.Bibcode:2017JVPal..37E8607G.doi:10.1080/02724634.2017.1278607.S2CID 90362603.
  94. ^Graham J. Slater; Jeremy A. Goldbogen;Nicholas D. Pyenson (2017)."Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics".Proceedings of the Royal Society B: Biological Sciences.284 (1855): 20170546.doi:10.1098/rspb.2017.0546.PMC 5454272.PMID 28539520.
  95. ^David P. Hocking; Felix G. Marx; Erich M. G. Fitzgerald; Alistair R. Evans (2017)."Ancient whales did not filter feed with their teeth".Biology Letters.13 (8): 20170348.doi:10.1098/rsbl.2017.0348.PMC 5582114.PMID 28855416.
  96. ^Felix G. Marx; Alberto Collareta; Anna Gioncada; Klaas Post; Olivier Lambert; Elena Bonaccorsi; Mario Urbina; Giovanni Bianucci (2017)."How whales used to filter: exceptionally preserved baleen in a Miocene cetotheriid".Journal of Anatomy.231 (2):212–220.doi:10.1111/joa.12622.PMC 5522891.PMID 28542839.
  97. ^Cheng-Hsiu Tsai; Alberto Collareta; Erich M.G. Fitzgerald; Felix G. Marx; Naoki Kohno; Mark Bosselaers; Gianni Insacco; Agatino Reitano; Rita Catanzariti; Masayuki Oishi; Giovanni Bianucci (2017)."Northern pygmy right whales highlight Quaternary marine mammal interchange".Current Biology.27 (19):R1058 –R1059.Bibcode:2017CBio...27R1058T.doi:10.1016/j.cub.2017.08.056.PMID 29017038.S2CID 23877418.
  98. ^Mónica R. Buono; Marta S. Fernández; Mario A. Cozzuol; José I. Cuitiño; Erich M.G. Fitzgerald (2017)."The early Miocene balaenidMorenocetus parvus from Patagonia (Argentina) and the evolution of right whales".PeerJ.5: e4148.doi:10.7717/peerj.4148.PMC 5742523.PMID 29302389.
  99. ^Daniel J. Field; Robert Boessenecker; Rachel A. Racicot; Lovísa Ásbjörnsdóttir; Kristján Jónasson; Allison Y. Hsiang; Adam D. Behlke; Jakob Vinther (2017)."The oldest marine vertebrate fossil from the volcanic island of Iceland: a partial right whale skull from the high latitude Pliocene Tjörnes Formation".Palaeontology.60 (2):141–148.Bibcode:2017Palgy..60..141F.doi:10.1111/pala.12275.hdl:1983/953db179-65ed-45e2-9c9e-e8d708ae7e75.
  100. ^Cheng-Hsiu Tsai (2017)."A Miocene breeding ground of an extinct baleen whale (Cetacea: Mysticeti)".PeerJ.5: e3711.doi:10.7717/peerj.3711.PMC 5571789.PMID 28848691.
  101. ^Cheng-Hsiu Tsai; Robert W. Boessenecker (2017). "The earliest-known fin whale,Balaenoptera physalus, from the Early Pleistocene of Northern California, U.S.A.".Journal of Vertebrate Paleontology.37 (2): e1306536.Bibcode:2017JVPal..37E6536T.doi:10.1080/02724634.2017.1306536.S2CID 133846370.
  102. ^Elsa Panciroli; Christine Janis; Maximilion Stockdale; Alberto Martín-Serra (2017)."Correlates between calcaneal morphology and locomotion in extant and extinct carnivorous mammals".Journal of Morphology.278 (10):1333–1353.doi:10.1002/jmor.20716.hdl:1983/07385c86-7514-47c4-97a3-625ce7fcfb18.PMID 28603865.S2CID 7632998.
  103. ^Matthew R. Borths; Nancy J. Stevens (2017)."Deciduous dentition and dental eruption of Hyainailouroidea (Hyaenodonta, "Creodonta," Placentalia, Mammalia)".Palaeontologia Electronica.20 (3): Article number 20.3.55A.doi:10.26879/776.
  104. ^Cathrin Pfaff; Doris Nagel; Gregg Gunnell; Gerhard W. Weber; Jürgen Kriwet; Michael Morlo; Katharina Bastl (2017)."Palaeobiology ofHyaenodon exiguus (Hyaenodonta, Mammalia) based on morphometric analysis of the bony labyrinth".Journal of Anatomy.230 (2):282–289.doi:10.1111/joa.12545.PMC 5244453.PMID 27666133.
  105. ^Katharina Bastl; Doris Nagel; Floréal Solé (2017)."Incus facet morphology in carnivorous mammals from different ecosystems: Taxonomy vs. habitat".Comptes Rendus Palevol.16 (3):284–302.Bibcode:2017CRPal..16..284B.doi:10.1016/j.crpv.2016.11.008.
  106. ^Caitlin Brown; Mairin Balisi; Christopher A. Shaw; Blaire Van Valkenburgh (2017). "Skeletal trauma reflects hunting behaviour in extinct sabre-tooth cats and dire wolves".Nature Ecology & Evolution.1 (5): Article number 0131.Bibcode:2017NatEE...1..131B.doi:10.1038/s41559-017-0131.PMID 28812696.S2CID 8008808.
  107. ^Lorenzo Rook; Saverio Bartolini Lucenti; Maia Bukhsianidze; David Lordkipanidze (2017)."The Kvabebi Canidae record revisited (late Pliocene, Sighnaghi, eastern Georgia)".Journal of Paleontology.91 (6):1258–1271.Bibcode:2017JPal...91.1258R.doi:10.1017/jpa.2017.73.S2CID 134781923.
  108. ^J. Tarquini; N. Toledo; C. C. Morgan; L. H. Soibelzon (2017)."The forelimb of †Cyonasua sp. (Procyonidae, Carnivora): ecomorphological interpretation in the context of carnivorans".Earth and Environmental Science Transactions of the Royal Society of Edinburgh.106 (4):325–335.doi:10.1017/S1755691016000207.hdl:11336/49712.
  109. ^Alberto Valenciano; Juan Abella; Ursula B. Göhlich; M. Ángeles Álvarez-Sierra; Jorge Morales (2017)."Re-evaluation of the very largeEomellivora fricki (Pia, 1939) (Carnivora, Mustelidae, Mellivorinae) from the Late Miocene of Austria".Palaeontologia Electronica.20 (1): Article number 20.1.17A.doi:10.26879/691.hdl:10261/153612.
  110. ^Mauro I. Schiaffini; Francisco J. Prevosti; Brenda S. Ferrero; Jorge I. Noriega (2017). "A Late Pleistocene Guloninae (Carnivora, Mustelidae) from South America (Argentina, Entre Ríos province), biogeographic implications".Journal of South American Earth Sciences.78:141–149.Bibcode:2017JSAES..78..141S.doi:10.1016/j.jsames.2017.06.006.hdl:11336/56337.
  111. ^Z. Jack Tseng; Adolfo Pacheco-Castro; Oscar Carranza-Castañeda; José Jorge Aranda-Gómez; Xiaoming Wang; Hilda Troncoso (2017)."Discovery of the fossil otterEnhydritherium terraenovae (Carnivora, Mammalia) in Mexico reconciles a palaeozoogeographic mystery".Biology Letters.13 (6): 20170259.doi:10.1098/rsbl.2017.0259.PMC 5493742.PMID 28615353.
  112. ^Z. Jack Tseng; Denise F. Su; Xiaoming Wang; Stuart C. White; Xueping Ji (2017)."Feeding capability in the extinct giantSiamogale melilutra and comparative mandibular biomechanics of living Lutrinae".Scientific Reports.7 (1): Article number 15225.Bibcode:2017NatSR...715225T.doi:10.1038/s41598-017-15391-9.PMC 5680181.PMID 29123190.
  113. ^Marco Cherin (2017). "New material ofLutra simplicidens (Carnivora, Mustelidae, Lutrinae), a key taxon for understanding the evolution of European otters".Rivista Italiana di Paleontologia e Stratigrafia.123 (3):433–441.doi:10.13130/2039-4942/9024.
  114. ^Gema Siliceo; Manuel J. Salesa; Mauricio Antón; Stéphane Peigné; Jorge Morales (2017)."Functional anatomy of the cervical region in the late Miocene amphicyonidMagericyon anceps (Carnivora, Amphicyonidae): implications for its feeding behaviour".Palaeontology.60 (3):329–347.Bibcode:2017Palgy..60..329S.doi:10.1111/pala.12286.S2CID 90381609.
  115. ^Xiaoming Wang; Natalia Rybczynski; C. Richard Harington; Stuart C. White; Richard H. Tedford (2017)."A basal ursine bear (Protarctos abstrusus) from the Pliocene High Arctic reveals Eurasian affinities and a diet rich in fermentable sugars".Scientific Reports.7 (1): Article number 17722.Bibcode:2017NatSR...717722W.doi:10.1038/s41598-017-17657-8.PMC 5735171.PMID 29255278.
  116. ^Kristof Veitschegger (2017)."The effect of body size evolution and ecology on encephalization in cave bears and extant relatives".BMC Evolutionary Biology.17 (1): 124.Bibcode:2017BMCEE..17..124V.doi:10.1186/s12862-017-0976-1.PMC 5460516.PMID 28583080.
  117. ^Paweł Mackiewicz; Mateusz Baca; Danijela Popović; Paweł Socha; Krzysztof Stefaniak; Adrian Marciszak; Adam Nadachowski (2017)."Estimating the extinction time of two cave bears,Ursus spelaeus andU. ingressus"(PDF).Acta Zoologica Cracoviensia.60 (2):1–14.doi:10.3409/azc.60_2.01.
  118. ^Leonard Dewaele; Olivier Lambert; Stephen Louwye (2017)."OnProphoca andLeptophoca (Pinnipedia, Phocidae) from the Miocene of the North Atlantic realm: redescription, phylogenetic affinities and paleobiogeographic implications".PeerJ.5: e3024.doi:10.7717/peerj.3024.PMC 5322758.PMID 28243538.
  119. ^Víctor Vinuesa; Joan Madurell-Malapeira; Lars Werdelin; Josep M. Robles; Pau Obradó; David M. Alba (2017)."A New Skull ofHyaenictis Gaudry, 1861 (Carnivora, Hyaenidae) Shows Incipient Adaptations to Durophagy".Journal of Mammalian Evolution.24 (2):207–219.doi:10.1007/s10914-016-9334-0.S2CID 23453043.
  120. ^Larisa R. G. DeSantis; Zhijie Jack Tseng; Jinyi Liu; Aaron Hurst; Blaine W. Schubert; Qigao Jiangzuo (2017). "Assessing niche conservatism using a multiproxy approach: dietary ecology of extinct and extant spotted hyenas".Paleobiology.43 (2):286–303.Bibcode:2017Pbio...43..286D.doi:10.1017/pab.2016.45.S2CID 90839982.
  121. ^Alberto Martín-Serra; Borja Figueirido; Paul Palmqvist (2017)."Non-decoupled morphological evolution of the fore- and hindlimb of sabretooth predators".Journal of Anatomy.231 (4):532–542.doi:10.1111/joa.12654.PMC 5603785.PMID 28703361.
  122. ^Katherine Long; Donald Prothero; Meena Madan; Valerie J. P. Syverson (2017)."Did saber-tooth kittens grow up musclebound? A study of postnatal limb bone allometry in felids from the Pleistocene of Rancho La Brea".PLOS ONE.12 (9): e0183175.Bibcode:2017PLoSO..1283175L.doi:10.1371/journal.pone.0183175.PMC 5617143.PMID 28953899.
  123. ^Johanna L.A. Paijmans; Ross Barnett; M. Thomas P. Gilbert; M. Lisandra Zepeda-Mendoza; Jelle W.F. Reumer; John de Vos; Grant Zazula; Doris Nagel; Gennady F. Baryshnikov; Jennifer A. Leonard; Nadin Rohland; Michael V. Westbury; Axel Barlow; Michael Hofreiter (2017)."Evolutionary history of saber-toothed cats based on ancient mitogenomics".Current Biology.27 (21): 3330–3336.e5.Bibcode:2017CBio...27E3330P.doi:10.1016/j.cub.2017.09.033.PMID 29056454.S2CID 38005290.
  124. ^Denis Geraads; Stéphane Peigné (2017)."Re-Appraisal of"Felis" pamiri Ozansoy, 1959 (Carnivora, Felidae) from the Upper Miocene of Turkey: the Earliest Pantherin Cat?"(PDF).Journal of Mammalian Evolution.24 (4):415–425.doi:10.1007/s10914-016-9349-6.S2CID 207195894.
  125. ^Andrew R. Cuff; Christopher Stockey; Anjali Goswami (2017)."Endocranial Morphology of the Extinct North American Lion (Panthera atrox)"(PDF).Brain, Behavior and Evolution.88 (3–4):213–221.doi:10.1159/000454705.PMID 28092905.S2CID 8191542.
  126. ^Andrew R. Cuff; Anjali Goswami; John R. Hutchinson (2017)."Reconstruction of the musculoskeletal system in an extinct lion".Palaeontologia Electronica.20 (2): Article number 20.2.23A.doi:10.26879/688.
  127. ^Nicolás R. Chimento; Federico L. Agnolin (2017)."The fossil American lion (Panthera atrox) in South America: Palaeobiogeographical implications".Comptes Rendus Palevol.16 (8):850–864.Bibcode:2017CRPal..16..850C.doi:10.1016/j.crpv.2017.06.009.hdl:11336/65990.
  128. ^Ana R. Gomez Cano; Yuri Kimura; Fernando Blanco; Iris Menéndez; María A. Álvarez-Sierra; Manuel Hernández Fernández (2017)."Ecomorphological characterization of murines and non-arvicoline cricetids (Rodentia) from south-western Europe since the latest Middle Miocene to the Mio-Pliocene boundary (MN 7/8–MN13)".PeerJ.5: e3646.doi:10.7717/peerj.3646.PMC 5619236.PMID 28966888.
  129. ^Marian C. Reyes; Thomas Ingicco; Philip J. Piper; Noel Amano; Alfred F. Pawlik (2017). "First fossil evidence of the extinct Philippine cloud ratCrateromys paulus (Muridae: Murinae: Phloeomyini) from Ilin Island, Mindoro, and insights into its Holocene abundance".Proceedings of the Biological Society of Washington.130 (1):84–97.doi:10.2988/17-00012.S2CID 135196784.
  130. ^Lüzhou Li; Qiang Li; Xiaoyu Lu; Xijun Ni (2017)."Morphology of an Early Oligocene beaverPropalaeocastor irtyshensis and the status of the genusPropalaeocastor".PeerJ.5: e3311.doi:10.7717/peerj.3311.PMC 5436589.PMID 28533963.
  131. ^Ornella C. Bertrand; Farrah Amador-Mughal; Mary T. Silcox (2017)."Virtual endocast of the early OligoceneCedromus wilsoni (Cedromurinae) and brain evolution in squirrels".Journal of Anatomy.230 (1):128–151.doi:10.1111/joa.12537.PMC 5192888.PMID 27580644.
  132. ^Stephen G. B. Chester; Thomas E. Williamson; Jonathan I. Bloch; Mary T. Silcox; Eric J. Sargis (2017)."Oldest skeleton of a plesiadapiform provides additional evidence for an exclusively arboreal radiation of stem primates in the Palaeocene".Royal Society Open Science.4 (5): 170329.Bibcode:2017RSOS....470329C.doi:10.1098/rsos.170329.PMC 5451839.PMID 28573038.
  133. ^Doug M. Boyer; Séverine Toussaint; Marc Godinot (2017)."Postcrania of the most primitive euprimate and implications for primate origins".Journal of Human Evolution.111:202–215.Bibcode:2017JHumE.111..202B.doi:10.1016/j.jhevol.2017.07.005.PMID 28874272.
  134. ^Margot Bernardi; Sébastien Couette (2017)."Eocene paleoecology ofAdapis parisiensis (Primate, Adapidae): From inner ear to lifestyle".The Anatomical Record.300 (9):1576–1588.doi:10.1002/ar.23609.PMID 28452186.S2CID 19045637.
  135. ^Joan Femenias-Gual; Judit Marigó; Raef Minwer-Barakat; Salvador Moyà-Solà (2017). "New dental and postcranial material ofAgerinia smithorum (Primates, Adapiformes) from the type locality Casa Retjo-1 (early Eocene, Iberian Peninsula)".Journal of Human Evolution.113:127–136.Bibcode:2017JHumE.113..127F.doi:10.1016/j.jhevol.2017.08.015.PMID 29054163.
  136. ^Jonathan M. G. Perry; Gregg F. Gunnell; Robert J. Emry (2017)."New cranial material ofNotharctus (Mammalia, Primates, Notharctidae) from the Sheep Pass Formation, Elderberry Canyon, Nevada, with implications for incisor morphology and paleogeography of notharctine primates".Journal of Vertebrate Paleontology.37 (4): e1331914.Bibcode:2017JVPal..37E1914P.doi:10.1080/02724634.2017.1331914.S2CID 133982802.
  137. ^Stephen R. Frost; Charles Saanane; Britt M. Starkovich; Hilde Schwartz; Friedemann Schrenk; Katerina Harvati (2017). "New cranium of the large cercopithecid primateTheropithecus oswaldi leakeyi (Hopwood, 1934) from the paleoanthropological site of Makuyuni, Tanzania".Journal of Human Evolution.109:46–56.Bibcode:2017JHumE.109...46F.doi:10.1016/j.jhevol.2017.05.007.PMID 28688459.
  138. ^Ghislain Thiery; Geoffrey Gillet; Vincent Lazzari; Gildas Merceron; Franck Guy (2017)."WasMesopithecus a seed eating colobine? Assessment of cracking, grinding and shearing ability using dental topography".Journal of Human Evolution.112:79–92.Bibcode:2017JHumE.112...79T.doi:10.1016/j.jhevol.2017.09.002.PMID 29037418.
  139. ^Anek R. Sankhyan; Jay Kelley; Terry Harrison (2017). "A highly derived pliopithecoid from the Late Miocene of Haritalyangar, India".Journal of Human Evolution.105:1–12.Bibcode:2017JHumE.105....1S.doi:10.1016/j.jhevol.2017.01.010.PMID 28366196.
  140. ^Andrew S. Deane (2017). "Re-evaluating the diets ofMorotopithecus bishopi andAfropithecus turkanensis: An anterior dentognathic perspective".Journal of Human Evolution.112:1–14.Bibcode:2017JHumE.112....1D.doi:10.1016/j.jhevol.2017.08.012.PMID 29037412.
  141. ^Jochen Fuss; Nikolai Spassov; David R. Begun; Madelaine Böhme (2017)."Potential hominin affinities ofGraecopithecus from the Late Miocene of Europe".PLOS ONE.12 (5): e0177127.Bibcode:2017PLoSO..1277127F.doi:10.1371/journal.pone.0177127.PMC 5439669.PMID 28531170.
  142. ^Julien Benoit; Francis J. Thackeray (2017)."A cladistic analysis ofGraecopithecus".South African Journal of Science.113 (11/12): #a0238.doi:10.17159/sajs.2017/a0238.
  143. ^Jochen Fuss; Nikolai Spassov; Madelaine Böhme; David R. Begun (2018)."Response to Benoit and Thackeray (2017): "A cladistic analysis ofGraecopithecus"".South African Journal of Science.114 (5/6):11–12.doi:10.17159/sajs.2018/a0267.
  144. ^Madelaine Böhme; Nikolai Spassov; Martin Ebner; Denis Geraads; Latinka Hristova; Uwe Kirscher; Sabine Kötter; Ulf Linnemann; Jérôme Prieto; Socrates Roussiakis; George Theodorou; Gregor Uhlig; Michael Winklhofer (2017)."Messinian age and savannah environment of the possible homininGraecopithecus from Europe".PLOS ONE.12 (5): e0177347.Bibcode:2017PLoSO..1277347B.doi:10.1371/journal.pone.0177347.PMC 5439672.PMID 28531204.
  145. ^Gerard D. Gierliński; Grzegorz Niedźwiedzki; Martin G. Lockley; Athanassios Athanassiou; Charalampos Fassoulas; Zofia Dubicka; Andrzej Boczarowski; Matthew R. Bennett; Per Erik Ahlberg (2017)."Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete?".Proceedings of the Geologists' Association.128 (5–6):697–710.Bibcode:2017PrGA..128..697G.doi:10.1016/j.pgeola.2017.07.006.hdl:20.500.12128/3647.
  146. ^Jeff Meldrum; Esteban Sarmiento (2018). "Comments on possible Miocene hominin footprints".Proceedings of the Geologists' Association.129 (4):577–580.Bibcode:2018PrGA..129..577M.doi:10.1016/j.pgeola.2018.05.006.S2CID 134963777.
  147. ^Willem Jan Zachariasse; Lucas J. Lourens (2022)."About the age and depositional depth of the sediments with reported bipedal footprints at Trachilos (NW Crete, Greece)".Scientific Reports.12 (1). 18471.Bibcode:2022NatSR..1218471Z.doi:10.1038/s41598-022-23296-5.PMC 9630425.PMID 36323766.
  148. ^Manuel Will; Adrián Pablos; Jay T. Stock (2017)."Long-term patterns of body mass and stature evolution within the hominin lineage".Royal Society Open Science.4 (11): 171339.doi:10.1098/rsos.171339.PMC 5717693.PMID 29291118.
  149. ^Carol V. Ward; Thierra K. Nalley; Fred Spoor; Paul Tafforeau; Zeresenay Alemseged (2017)."Thoracic vertebral count and thoracolumbar transition inAustralopithecus afarensis".Proceedings of the National Academy of Sciences of the United States of America.114 (23):6000–6004.Bibcode:2017PNAS..114.6000W.doi:10.1073/pnas.1702229114.PMC 5468642.PMID 28533391.
  150. ^C.V. Ward; J.M. Plavcan; F.K. Manthi (2017). "New fossils ofAustralopithecus anamensis from Kanapoi, West Turkana, Kenya (2012–2015)".Journal of Human Evolution.140: Article 102368.doi:10.1016/j.jhevol.2017.07.008.PMID 28844328.S2CID 33809601.
  151. ^Noel Cameron; Barry Bogin; Debra Bolter; Lee R. Berger (2017)."The postcranial skeletal maturation ofAustralopithecus sediba".American Journal of Physical Anthropology.163 (3):633–640.doi:10.1002/ajpa.23234.PMID 28464269.S2CID 3287309.
  152. ^William H. Kimbel; Yoel Rak (2017). "Australopithecus sediba and the emergence ofHomo: Questionable evidence from the cranium of the juvenile holotype MH 1".Journal of Human Evolution.107:94–106.Bibcode:2017JHumE.107...94K.doi:10.1016/j.jhevol.2017.03.011.PMID 28526292.
  153. ^Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; John M. Harris; Glynis E. Jehle; Thure E. Cerling (2017)."Aridity and hominin environments".Proceedings of the National Academy of Sciences of the United States of America.114 (28):7331–7336.Bibcode:2017PNAS..114.7331B.doi:10.1073/pnas.1700597114.PMC 5514716.PMID 28652366.
  154. ^Robinson, Joshua R.; Rowan, John; Campisano, Christopher J.; Wynn, Jonathan G.;Reed, Kaye E. (2017). "Late Pliocene environmental change during the transition fromAustralopithecus toHomo".Nature Ecology & Evolution.1 (6): Article number 0159.Bibcode:2017NatEE...1..159R.doi:10.1038/s41559-017-0159.PMID 28812639.S2CID 7434894.
  155. ^Yonatan Sahle; Sireen El Zaatari; Tim D. White (2017)."Hominid butchers and biting crocodiles in the African Plio–Pleistocene".Proceedings of the National Academy of Sciences of the United States of America.114 (50):13164–13169.Bibcode:2017PNAS..11413164S.doi:10.1073/pnas.1716317114.PMC 5740633.PMID 29109249.
  156. ^Shi-Xia Yang; Michael D. Petraglia; Ya-Mei Hou; Jian-Ping Yue; Cheng-Long Deng; Ri-Xiang Zhu (2017)."The lithic assemblages of Donggutuo, Nihewan basin: Knapping skills of early Pleistocene hominins in North China".PLOS ONE.12 (9): e0185101.Bibcode:2017PLoSO..1285101Y.doi:10.1371/journal.pone.0185101.PMC 5608319.PMID 28934295.
  157. ^Debbie Argue; Colin P. Groves; Michael S.Y. Lee; William L. Jungers (2017). "The affinities ofHomo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters".Journal of Human Evolution.107:107–133.Bibcode:2017JHumE.107..107A.doi:10.1016/j.jhevol.2017.02.006.PMID 28438318.
  158. ^Paul H.G.M. Dirks; Eric M. Roberts; Hannah Hilbert-Wolf; Jan D. Kramers; John Hawks; Anthony Dosseto; Mathieu Duval; Marina Elliott; Mary Evans; Rainer Grün; John Hellstrom; Andy I.R. Herries; Renaud Joannes-Boyau; Tebogo V. Makhubela; Christa J. Placzek; Jessie Robbins; Carl Spandler; Jelle Wiersma; Jon Woodhead; Lee R. Berger (2017)."The age ofHomo naledi and associated sediments in the Rising Star Cave, South Africa".eLife.6: e24231.doi:10.7554/eLife.24231.PMC 5423772.PMID 28483040.
  159. ^John Hawks; Marina Elliott; Peter Schmid; Steven E. Churchill; Darryl J. de Ruiter; Eric M. Roberts; Hannah Hilbert-Wolf; Heather M. Garvin; Scott A. Williams; Lucas K. Delezene; Elen M. Feuerriegel; Patrick Randolph-Quinney; Tracy L. Kivell; Myra F. Laird; Gaokgatlhe Tawane; Jeremy M. DeSilva; Shara E. Bailey; Juliet K. Brophy; Marc R. Meyer; Matthew M. Skinner; Matthew W. Tocheri; Caroline VanSickle; Christopher S. Walker; Timothy L. Campbell; Brian Kuhn; Ashley Kruger; Steven Tucker; Alia Gurtov; Nompumelelo Hlophe; Rick Hunter; Hannah Morris; Becca Peixotto; Maropeng Ramalepa; Dirk van Rooyen; Mathabela Tsikoane; Pedro Boshoff; Paul H.G.M. Dirks; Lee R. Berger (2017)."New fossil remains ofHomo naledi from the Lesedi Chamber, South Africa".eLife.6: e24232.doi:10.7554/eLife.24232.PMC 5423776.PMID 28483039.
  160. ^Lauren Schroeder; Jill E. Scott; Heather M. Garvin; Myra F. Laird; Mana Dembo; Davorka Radovčić; Lee R. Berger; Darryl J. de Ruiter; Rebecca R. Ackermann (2017). "Skull diversity in theHomo lineage and the relative position ofHomo naledi".Journal of Human Evolution.104:124–135.Bibcode:2017JHumE.104..124S.doi:10.1016/j.jhevol.2016.09.014.PMID 27836166.
  161. ^Myra F. Laird; Lauren Schroeder; Heather M. Garvin; Jill E. Scott; Mana Dembo; Davorka Radovčić; Charles M. Musiba; Rebecca R. Ackermann; Peter Schmid; John Hawks; Lee R. Berger; Darryl J. de Ruiter (2017). "The skull ofHomo naledi".Journal of Human Evolution.104:100–123.Bibcode:2017JHumE.104..100L.doi:10.1016/j.jhevol.2016.09.009.PMID 27855982.
  162. ^Scott A. Williams; Daniel García-Martínez; Markus Bastir; Marc R. Meyer; Shahed Nalla; John Hawks; Peter Schmid; Steven E. Churchill; Lee R. Berger (2017). "The vertebrae and ribs ofHomo naledi".Journal of Human Evolution.104:136–154.Bibcode:2017JHumE.104..136W.doi:10.1016/j.jhevol.2016.11.003.PMID 28094004.
  163. ^Elen M. Feuerriegel; David J. Green; Christopher S. Walker; Peter Schmid; John Hawks; Lee R. Berger; Steven E. Churchill (2017)."The upper limb ofHomo naledi".Journal of Human Evolution.104:155–173.Bibcode:2017JHumE.104..155F.doi:10.1016/j.jhevol.2016.09.013.PMID 27839696.
  164. ^Damiano Marchi; Christopher S. Walker; Pianpian Wei; Trenton W. Holliday; Steven E. Churchill; Lee R. Berger; Jeremy M. DeSilva (2017). "The thigh and leg ofHomo naledi".Journal of Human Evolution.104:174–204.Bibcode:2017JHumE.104..174M.doi:10.1016/j.jhevol.2016.09.005.hdl:11568/826512.PMID 27855981.
  165. ^Ian Towle; Joel D. Irish; Isabelle De Groote (2017)."Behavioral inferences from the high levels of dental chipping inHomo naledi"(PDF).American Journal of Physical Anthropology.164 (1):184–192.doi:10.1002/ajpa.23250.PMID 28542710.S2CID 24296825.
  166. ^Heather M. Garvin; Marina C. Elliott; Lucas K. Delezene; John Hawks; Steven E. Churchill; Lee R. Berger; Trenton W. Holliday (2017). "Body size, brain size, and sexual dimorphism inHomo naledi from the Dinaledi Chamber".Journal of Human Evolution.111:119–138.Bibcode:2017JHumE.111..119G.doi:10.1016/j.jhevol.2017.06.010.PMID 28874266.
  167. ^Zachary Cofran; Christopher S. Walker (2017)."Dental development inHomo naledi".Biology Letters.13 (8): 20170339.doi:10.1098/rsbl.2017.0339.PMC 5582112.PMID 28855415.
  168. ^Walter A. Neves; Danilo V. Bernardo; Ivan Pantaleoni (2017)."Morphological affinities ofHomo naledi with other Plio-Pleistocene hominins: a phenetic approach".Anais da Academia Brasileira de Ciências.89 (3 Suppl):2199–2207.doi:10.1590/0001-3765201720160841.PMID 28746621.
  169. ^Véronique Michel; Chuan-Chou Shen; Jon Woodhead; Hsun-Ming Hu; Chung-Che Wu; Pierre-Élie Moullé; Samir Khatib; Dominique Cauche; Marie-Hélène Moncel; Patricia Valensi; Yu-Min Chou; Sylvain Gallet; Anna Echassoux; François Orange; Henry de Lumley (2017)."New dating evidence of the early presence of hominins in Southern Europe".Scientific Reports.7 (1): Article number 10074.Bibcode:2017NatSR...710074M.doi:10.1038/s41598-017-10178-4.PMC 5577296.PMID 28855634.
  170. ^Zhan-Yang Li; Xiu-Jie Wu; Li-Ping Zhou; Wu Liu; Xing Gao; Xiao-Mei Nian; Erik Trinkaus (2017). "Late Pleistocene archaic human crania from Xuchang, China".Science.355 (6328):969–972.Bibcode:2017Sci...355..969L.doi:10.1126/science.aal2482.PMID 28254945.S2CID 206654741.
  171. ^Sheela Athreya; Xinzhi Wu (2017). "A multivariate assessment of the Dali hominin cranium from China: Morphological affinities and implications for Pleistocene evolution in East Asia".American Journal of Physical Anthropology.164 (4):679–701.doi:10.1002/ajpa.23305.PMID 29068047.
  172. ^Joan Daura; Montserrat Sanz; Juan Luis Arsuaga; Dirk L. Hoffmann; Rolf M. Quam; María Cruz Ortega; Elena Santos; Sandra Gómez; Angel Rubio; Lucía Villaescusa; Pedro Souto; João Mauricio; Filipa Rodrigues; Artur Ferreira; Paulo Godinho; Erik Trinkaus; João Zilhão (2017)."New Middle Pleistocene hominin cranium from Gruta da Aroeira (Portugal)".Proceedings of the National Academy of Sciences of the United States of America.114 (13):3397–3402.Bibcode:2017PNAS..114.3397D.doi:10.1073/pnas.1619040114.PMC 5380066.PMID 28289213.
  173. ^Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2017). "A 130,000-year-old archaeological site in southern California, USA".Nature.544 (7651):479–483.Bibcode:2017Natur.544..479H.doi:10.1038/nature22065.PMID 28447646.S2CID 205255425.
  174. ^Eric Boëda; Christophe Griggo; Christelle Lahaye (2017). "The Cerutti Mastodon Site: Archaeological or Paleontological?".PaleoAmerica. A Journal of Early Human Migration and Dispersal.3 (3):193–195.doi:10.1080/20555563.2017.1338006.S2CID 90699499.
  175. ^Gary Haynes (2017). "The Cerutti Mastodon".PaleoAmerica. A Journal of Early Human Migration and Dispersal.3 (3):196–199.doi:10.1080/20555563.2017.1330103.S2CID 134814811.
  176. ^Todd J. Braje; Tom D. Dillehay; Jon M. Erlandson; Scott M. Fitzpatrick; Donald K. Grayson; Donald K. Grayson; Robert L. Kelly; Richard G. Klein; Richard G. Klein; Torben C. Rick (2017). "Were hominins in California ~130,000 years ago?".PaleoAmerica. A Journal of Early Human Migration and Dispersal.3 (3):200–202.doi:10.1080/20555563.2017.1348091.S2CID 133673949.
  177. ^Joseph V. Ferraro; Katie M. Binetti; Logan A. Wiest; Donald Esker; Lori E. Baker; Steven L. Forman (2018). "Contesting early archaeology in California".Nature.554 (7691):E1 –E2.Bibcode:2018Natur.554E...1F.doi:10.1038/nature25165.PMID 29420468.S2CID 205263114.
  178. ^Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2018). "Holenet al. reply".Nature.554 (7691): E3.Bibcode:2018Natur.554E...3H.doi:10.1038/nature25166.PMID 29420475.S2CID 4466451.
  179. ^Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Adam N. Rountrey; Kathleen A. Holen (2018). "Broken Bones and Hammerstones at the Cerutti Mastodon Site: A Reply to Haynes".PaleoAmerica. A Journal of Early Human Migration and Dispersal.4 (1):8–11.doi:10.1080/20555563.2017.1396835.S2CID 166014283.
  180. ^Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Adam N. Rountrey; Kathleen A. Holen (2018). "Disparate Perspectives on Evidence from the Cerutti Mastodon Site: A Reply to Brajeet al.".PaleoAmerica. A Journal of Early Human Migration and Dispersal.4 (1):12–15.doi:10.1080/20555563.2017.1396836.S2CID 165357286.
  181. ^Patrick M. Ferrell (2019). "The Cerutti Mastodon Site reinterpreted with reference to freeway construction plans and methods".PaleoAmerica. A Journal of Early Human Migration and Dispersal.5 (1):1–7.doi:10.1080/20555563.2019.1589663.S2CID 167172979.
  182. ^Mark Q. Sutton; Jennifer Parkinson; Martin D. Rosen (2019). "Observations regarding the Cerutti mastodon".PaleoAmerica. A Journal of Early Human Migration and Dispersal.5 (1):8–15.doi:10.1080/20555563.2019.1589409.S2CID 155596679.
  183. ^Viviane Slon; Charlotte Hopfe; Clemens L. Weiß; Fabrizio Mafessoni; Marco de la Rasilla; Carles Lalueza-Fox; Antonio Rosas; Marie Soressi; Monika V. Knul; Rebecca Miller; John R. Stewart; Anatoly P. Derevianko; Zenobia Jacobs; Bo Li; Richard G. Roberts; Michael V. Shunkov; Henry de Lumley; Christian Perrenoud; Ivan Gušić; Željko Kućan; Pavao Rudan; Ayinuer Aximu-Petri; Elena Essel; Sarah Nagel; Birgit Nickel; Anna Schmidt; Kay Prüfer; Janet Kelso; Hernán A. Burbano; Svante Pääbo; Matthias Meyer (2017)."Neandertal and Denisovan DNA from Pleistocene sediments".Science.356 (6338):605–608.Bibcode:2017Sci...356..605S.doi:10.1126/science.aam9695.hdl:1887/74733.PMID 28450384.S2CID 206658200.
  184. ^Alan R. Rogers; Ryan J. Bohlender; Chad D. Huff (2017)."Early history of Neanderthals and Denisovans".Proceedings of the National Academy of Sciences of the United States of America.114 (37):9859–9863.Bibcode:2017PNAS..114.9859R.doi:10.1073/pnas.1706426114.PMC 5604018.PMID 28784789.
  185. ^Fabrizio Mafessoni; Kay Prüfer (2017)."Better support for a small effective population size of Neandertals and a long shared history of Neandertals and Denisovans".Proceedings of the National Academy of Sciences of the United States of America.114 (48):E10256 –E10257.Bibcode:2017PNAS..11410256M.doi:10.1073/pnas.1716918114.PMC 5715791.PMID 29138326.
  186. ^Alan R. Rogers; Ryan J. Bohlender; Chad D. Huff (2017)."Reply to Mafessoni and Prüfer: Inferences with and without singleton site patterns".Proceedings of the National Academy of Sciences of the United States of America.114 (48):E10258 –E10260.Bibcode:2017PNAS..11410258R.doi:10.1073/pnas.1717085114.PMC 5715792.PMID 29138325.
  187. ^Viviane Slon; Bence Viola; Gabriel Renaud; Marie-Theres Gansauge; Stefano Benazzi; Susanna Sawyer; Jean-Jacques Hublin; Michael V. Shunkov; Anatoly P. Derevianko; Janet Kelso; Kay Prüfer; Matthias Meyer; Svante Pääbo (2017)."A fourth Denisovan individual".Science Advances.3 (7): e1700186.Bibcode:2017SciA....3E0186S.doi:10.1126/sciadv.1700186.PMC 5501502.PMID 28695206.
  188. ^Thibaut Devièse; Ivor Karavanić; Daniel Comeskey; Cara Kubiak; Petra Korlević; Mateja Hajdinjak; Siniša Radović; Noemi Procopio; Michael Buckley; Svante Pääbo; Tom Higham (2017)."Direct dating of Neanderthal remains from the site of Vindija Cave and implications for the Middle to Upper Paleolithic transition".Proceedings of the National Academy of Sciences of the United States of America.114 (40):10606–10611.Bibcode:2017PNAS..11410606D.doi:10.1073/pnas.1709235114.PMC 5635904.PMID 28874524.
  189. ^Kay Prüfer; Cesare de Filippo; Steffi Grote; Fabrizio Mafessoni; Petra Korlević; Mateja Hajdinjak; Benjamin Vernot; Laurits Skov; Pinghsun Hsieh; Stéphane Peyrégne; David Reher; Charlotte Hopfe; Sarah Nagel; Tomislav Maricic; Qiaomei Fu; Christoph Theunert; Rebekah Rogers; Pontus Skoglund; Manjusha Chintalapati; Michael Dannemann; Bradley J. Nelson; Felix M. Key; Pavao Rudan; Željko Kućan; Ivan Gušić; Liubov V. Golovanova; Vladimir B. Doronichev; Nick Patterson; David Reich; Evan E. Eichler; Montgomery Slatkin; Mikkel H. Schierup; Aida Andrés; Janet Kelso; Matthias Meyer; Svante Pääbo (2017)."A high-coverage Neandertal genome from Vindija Cave in Croatia".Science.358 (6363):655–658.Bibcode:2017Sci...358..655P.doi:10.1126/science.aao1887.PMC 6185897.PMID 28982794.
  190. ^Cosimo Posth; Christoph Wißing; Keiko Kitagawa; Luca Pagani; Laura van Holstein; Fernando Racimo; Kurt Wehrberger; Nicholas J. Conard; Claus Joachim Kind; Hervé Bocherens; Johannes Krause (2017)."Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals".Nature Communications.8: Article number 16046.Bibcode:2017NatCo...816046P.doi:10.1038/ncomms16046.PMC 5500885.PMID 28675384.
  191. ^Antonio Rosas; Luis Ríos; Almudena Estalrrich; Helen Liversidge; Antonio García-Tabernero; Rosa Huguet; Hugo Cardoso; Markus Bastir; Carles Lalueza-Fox; Marco de la Rasilla; Christopher Dean (2017)."The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain)".Science.357 (6357):1282–1287.Bibcode:2017Sci...357.1282R.doi:10.1126/science.aan6463.PMID 28935804.S2CID 206661070.
  192. ^Jeremy M. DeSilva (2018)."Comment on "The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain)"".Science.359 (6380): eaar3611.doi:10.1126/science.aar3611.PMID 29590012.S2CID 4590083.
  193. ^Antonio Rosas; Luis Ríos; Almudena Estalrrich; Helen Liversidge; Antonio García-Tabernero; Rosa Huguet; Hugo Cardoso; Markus Bastir; Carles Lalueza-Fox; Marco de la Rasilla; Christopher Dean (2018)."Response to Comment on "The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain)"".Science.359 (6380): eaar3820.doi:10.1126/science.aar3820.PMID 29590013.S2CID 54507895.
  194. ^Michael Dannemann; Janet Kelso (2017)."The contribution of Neanderthals to phenotypic variation in modern humans".The American Journal of Human Genetics.101 (4):578–589.doi:10.1016/j.ajhg.2017.09.010.PMC 5630192.PMID 28985494.
  195. ^S. de Azevedo; M. F. González; C. Cintas; V. Ramallo; M. Quinto-Sánchez; F. Márquez; T. Hünemeier; C. Paschetta; A. Ruderman; P. Navarro; B. A. Pazos; C. C. Silva de Cerqueira; O. Velan; F. Ramírez-Rozzi; N. Calvo; H. G. Castro; R. R. Paz; R. González-José (2017)."Nasal airflow simulations suggest convergent adaptation in Neanderthals and modern humans".Proceedings of the National Academy of Sciences of the United States of America.114 (47):12442–12447.Bibcode:2017PNAS..11412442D.doi:10.1073/pnas.1703790114.PMC 5703271.PMID 29087302.
  196. ^Andrej A. Evteev; Yann Heuzé (2018)."Impact of sampling strategies and reconstruction protocols in nasal airflow simulations in fossil hominins".Proceedings of the National Academy of Sciences of the United States of America.115 (21):E4737 –E4738.Bibcode:2018PNAS..115E4737E.doi:10.1073/pnas.1804197115.PMC 6003452.PMID 29728461.
  197. ^S. de Azevedo; M. F. González; C. Cintas; V. Ramallo; M. Quinto-Sánchez; F. Márquez; T. Hünemeier; C. Paschetta; A. Ruderman; P. Navarro; B. A. Pazos; C. C. Silva de Cerqueira; O. Velan; F. Ramírez-Rozzi; N. Calvo; H. G. Castro; R. R. Paz; R. González-José (2018)."Reply to Evteev and Heuzé: How to overcome the problem of modeling respiration departing from bony structures".Proceedings of the National Academy of Sciences of the United States of America.115 (21):E4739 –E4740.Bibcode:2018PNAS..115E4739D.doi:10.1073/pnas.1804796115.PMC 6003456.PMID 29728465.
  198. ^Juan Marín; Palmira Saladié; Antonio Rodríguez-Hidalgo; Eudald Carbonell (2017)."Neanderthal hunting strategies inferred from mortality profiles within the Abric Romaní sequence".PLOS ONE.12 (11): e0186970.Bibcode:2017PLoSO..1286970M.doi:10.1371/journal.pone.0186970.PMC 5699840.PMID 29166384.
  199. ^Laura S. Weyrich; Sebastian Duchene; Julien Soubrier; Luis Arriola; Bastien Llamas; James Breen; Alan G. Morris; Kurt W. Alt; David Caramelli; Veit Dresely; Milly Farrell; Andrew G. Farrer; Michael Francken; Neville Gully; Wolfgang Haak; Karen Hardy; Katerina Harvati; Petra Held; Edward C. Holmes; John Kaidonis; Carles Lalueza-Fox; Marco de la Rasilla; Antonio Rosas; Patrick Semal; Arkadiusz Soltysiak; Grant Townsend; Donatella Usai; Joachim Wahl; Daniel H. Huson; Keith Dobney; Alan Cooper (2017)."Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus".Nature.544 (7650):357–361.Bibcode:2017Natur.544..357W.doi:10.1038/nature21674.PMID 28273061.S2CID 4457717.
  200. ^Philippe Charlier; Frédérick Gaultier; Geneviève Héry-Arnaud (2019). "Interbreeding between Neanderthals and modern humans: Remarks and methodological dangers of a dental calculus microbiome analysis".Journal of Human Evolution.126:124–126.Bibcode:2019JHumE.126..124C.doi:10.1016/j.jhevol.2018.06.007.PMID 30029803.S2CID 51704850.
  201. ^Jean-Jacques Hublin; Abdelouahed Ben-Ncer; Shara E. Bailey; Sarah E. Freidline; Simon Neubauer; Matthew M. Skinner; Inga Bergmann; Adeline Le Cabec; Stefano Benazzi; Katerina Harvati; Philipp Gunz (2017)."New fossils from Jebel Irhoud, Morocco and the pan-African origin ofHomo sapiens"(PDF).Nature.546 (7657):289–292.Bibcode:2017Natur.546..289H.doi:10.1038/nature22336.PMID 28593953.S2CID 256771372.
  202. ^Daniel Richter; Rainer Grün; Renaud Joannes-Boyau; Teresa E. Steele; Fethi Amani; Mathieu Rué; Paul Fernandes; Jean-Paul Raynal; Denis Geraads; Abdelouahed Ben-Ncer; Jean-Jacques Hublin; Shannon P. McPherron (2017). "The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age".Nature.546 (7657):293–296.Bibcode:2017Natur.546..293R.doi:10.1038/nature22335.PMID 28593967.S2CID 205255853.
  203. ^K. E. Westaway; J. Louys; R. Due Awe; M. J. Morwood; G. J. Price; J.-x. Zhao; M. Aubert; R. Joannes-Boyau; T. M. Smith; M. M. Skinner; T. Compton; R. M. Bailey; G. D. van den Bergh; J. de Vos; A. W. G. Pike; C. Stringer; E. W. Saptomo; Y. Rizal; J. Zaim; W. D. Santoso; A. Trihascaryo; L. Kinsley; B. Sulistyanto (2017)."An early modern human presence in Sumatra 73,000–63,000 years ago"(PDF).Nature.548 (7667):322–325.Bibcode:2017Natur.548..322W.doi:10.1038/nature23452.PMID 28792933.S2CID 4398895.
  204. ^Chris Clarkson; Zenobia Jacobs; Ben Marwick; Richard Fullagar;Lynley Wallis; Mike Smith; Richard G. Roberts; Elspeth Hayes; Kelsey Lowe; Xavier Carah; S. Anna Florin; Jessica McNeil; Delyth Cox; Lee J. Arnold; Quan Hua; Jillian Huntley; Helen E. A. Brand;Tiina Manne; Andrew Fairbairn; James Shulmeister; Lindsey Lyle; Makiah Salinas; Mara Page; Kate Connell; Gayoung Park; Kasih Norman; Tessa Murphy; Colin Pardoe (2017). "Human occupation of northern Australia by 65,000 years ago".Nature.547 (7663):306–310.Bibcode:2017Natur.547..306C.doi:10.1038/nature22968.hdl:2440/107043.PMID 28726833.S2CID 205257212.
  205. ^Jim Allen (2017). "Yes, Virginia, there is a Santa Claus; He just doesn't bring presents to children who don't believe in him".Australian Archaeology.83 (3):163–165.doi:10.1080/03122417.2017.1408535.S2CID 148730099.
  206. ^Chris Clarkson; Richard G. Roberts; Zenobia Jacobs; Ben Marwick; Richard Fullagar; Lee J. Arnold; Quan Hua (2018)."Reply to comments on Clarksonet al. (2017) 'Human occupation of northern Australia by 65,000 years ago'".Australian Archaeology.84 (1):84–89.doi:10.1080/03122417.2018.1462884.S2CID 150073484.
  207. ^James F. O'Connell; Jim Allen; Martin A. J. Williams; Alan N. Williams; Chris S. M. Turney; Nigel A. Spooner; Johan Kamminga; Graham Brown; Alan Cooper (2018)."When didHomo sapiens first reach Southeast Asia and Sahul?".Proceedings of the National Academy of Sciences of the United States of America.115 (34):8482–8490.Bibcode:2018PNAS..115.8482O.doi:10.1073/pnas.1808385115.PMC 6112744.PMID 30082377.
  208. ^Dorothée G. Drucker; Yuichi I. Naito; Stéphane Péan; Sandrine Prat; Laurent Crépin; Yoshito Chikaraishi; Naohiko Ohkouchi; Simon Puaud; Martina Lázničková-Galetová;Marylène Patou-Mathis; Aleksandr Yanevich; Hervé Bocherens (2017)."Isotopic analyses suggest mammoth and plant in the diet of the oldest anatomically modern humans from far southeast Europe".Scientific Reports.7 (1): Article number 6833.Bibcode:2017NatSR...7.6833D.doi:10.1038/s41598-017-07065-3.PMC 5533724.PMID 28754955.
  209. ^Ascanio D. Rincón; Andrés Solórzano; H. Gregory McDonald & Mónica Núñez Flores (2017). "Baraguatherium takumara, gen. et sp. nov., the earliest mylodontoid sloth (early Miocene) from northern South America".Journal of Mammalian Evolution.24 (2):179–191.doi:10.1007/s10914-016-9328-y.S2CID 23667414.
  210. ^Germán Montoya-Sanhueza; Karen Moreno; René Bobe; Matthew T. Carrano; Marcelo García; Alexandre Corgne (2017)."Peltephilidae and Mesotheriidae (Mammalia) from late Miocene strata of Northern Chilean Andes, Caragua".Journal of South American Earth Sciences.75:51–65.Bibcode:2017JSAES..75...51M.doi:10.1016/j.jsames.2017.01.009.
  211. ^Luciano Brambilla; Damián Alberto Ibarra (2017)."A new species ofEutatus Gervais (Xenarthra, Dasypodidae) from the Late Pleistocene of the Northern Pampean Region, Argentina".Palaeontologia Electronica.20 (1): Article number 20.1.13A.doi:10.26879/676.
  212. ^Claudia M. R. Herrera; Jaime E. Powell; Graciela I. Esteban; Cecilia del Papa (2017). "A New Eocene Dasypodid with Caniniforms (Mammalia, Xenarthra, Cingulata) from Northwest Argentina".Journal of Mammalian Evolution.24 (3):275–288.doi:10.1007/s10914-016-9345-x.hdl:11336/61883.S2CID 2802243.
  213. ^H. Gregory McDonald; James C. Chatters; Timothy J. Gaudin (2017). "A new genus of megalonychid ground sloth (Mammalia, Xenarthra) from the late Pleistocene of Quintana Roo, Mexico".Journal of Vertebrate Paleontology.37 (3): e1307206.Bibcode:2017JVPal..37E7206M.doi:10.1080/02724634.2017.1307206.S2CID 90414512.
  214. ^Alfredo Eduardo Zurita; Martín Zamorano; Gustavo Juan Scillato-Yané; Sergio Fidel; Martín Iriondo; David D. Gillette (2017)."A new species ofPanochthus Burmeister (Xenarthra, Cingulata, Glyptodontidae) from the Pleistocene of the Eastern Cordillera, Bolivia".Historical Biology: An International Journal of Paleobiology.29 (8):1076–1088.Bibcode:2017HBio...29.1076Z.doi:10.1080/08912963.2016.1278443.hdl:11336/56640.S2CID 91031708.
  215. ^Fernando A. Sedor; Édison V. Oliveira; David D. Silva; Luiz A. Fernandes; Renata F. Cunha; Ana M. Ribeiro & Eliseu V. Dia (2017)."A New South American Paleogene Land Mammal Fauna, Guabirotuba Formation (Southern Brazil)".Journal of Mammalian Evolution.24 (1):39–55.doi:10.1007/s10914-016-9364-7.S2CID 14010727.
  216. ^Bruce J. Shockey (2017)."New early diverging cingulate (Xenarthra: Peltephilidae) from the Late Oligocene of Bolivia and considerations regarding the origin of crown Xenarthra".Bulletin of the Peabody Museum of Natural History.58 (2):371–396.doi:10.3374/014.058.0201.S2CID 214641639.
  217. ^Sarah R. Stinnesbeck; Eberhard Frey; Jerónimo Avíles Olguín; Wolfgang Stinnesbeck; Patrick Zell; Heinrich Mallison; Arturo González González; Eugenio Aceves Núñez; Adriana Velázquez Morlet; Alejandro Terrazas Mata; Martha Benavente Sanvicente; Fabio Hering; Carmen Rojas Sandoval (2017). "Xibalbaonyx oviceps, a new megalonychid ground sloth (Folivora, Xenarthra) from the Late Pleistocene of the Yucatán Peninsula, Mexico, and its paleobiogeographic significance".PalZ.91 (2):245–271.Bibcode:2017PalZ...91..245S.doi:10.1007/s12542-017-0349-5.S2CID 134188352.
  218. ^H. Gregory McDonald; Oscar Carranza-Castañeda (2017)."Increased xenarthran diversity of the Great American Biotic Interchange: a new genus and species of ground sloth (Mammalia, Xenarthra, Megalonychidae) from the Hemphillian (late Miocene) of Jalisco, Mexico".Journal of Paleontology.91 (5):1069–1082.Bibcode:2017JPal...91.1069M.doi:10.1017/jpa.2017.45.S2CID 133770632.
  219. ^Shi-Qi Wang; Yu Li; Jaroon Duangkrayom; Xiang-Wen Yang; Wen He; Shan-Qin Chen (2017). "A new species ofGomphotherium (Proboscidea, Mammalia) from China and the evolution ofGomphotherium in Eurasia".Journal of Vertebrate Paleontology.37 (3): e1318284.Bibcode:2017JVPal..37E8284W.doi:10.1080/02724634.2017.1318284.S2CID 90593535.
  220. ^Manja Voss; Silvia Sorbi; Daryl P. Domning (2017)."Morphological and systematic re-assessment of the late Oligocene"Halitherium" bellunense reveals a new crown group genus of Sirenia".Acta Palaeontologica Polonica.62 (1):163–172.doi:10.4202/app.00287.2016.
  221. ^Manja Voss & Oliver Hampe (2017)."Evidence for two sympatric sirenian species (Mammalia, Tethytheria) in the early Oligocene of Central Europe".Journal of Paleontology.91 (2):337–367.Bibcode:2017JPal...91..337V.doi:10.1017/jpa.2016.147.S2CID 89899052.
  222. ^Daryl P. Domning; Geoffrey J. Heal; Silvia Sorbi (2017). "Libysiren sickenbergi, gen. et sp. nov.: a new sirenian (Mammalia, Protosirenidae) from the middle Eocene of Libya".Journal of Vertebrate Paleontology.37 (2): e1299158.Bibcode:2017JVPal..37E9158D.doi:10.1080/02724634.2017.1299158.S2CID 89768597.
  223. ^Shi-Qi Wang; Haruo Saegusa; Jaroon Duangkrayom; Wen He; Shan-Qin Chen (2017). "A new species ofTetralophodon from the Linxia Basin and the biostratigraphic significance of tetralophodont gomphotheres from the Upper Miocene of northern China".Palaeoworld.26 (4):703–717.doi:10.1016/j.palwor.2017.03.005.
  224. ^Nicholas J. Czaplewski; Kenneth E. Campbell, Jr. (2017)."Late Miocene bats from the Jurua River, state of Acre, Brazil, with a description of a new genus of Thyropteridae (Chiroptera, Mammalia)".Contributions in Science.525:55–60.doi:10.5962/p.318347.S2CID 51071393.
  225. ^Gregg F. Gunnell; Richard Smith; Thierry Smith (2017)."33 million year oldMyotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats".PLOS ONE.12 (3): e0172621.Bibcode:2017PLoSO..1272621G.doi:10.1371/journal.pone.0172621.PMC 5342209.PMID 28273112.
  226. ^abVicente D. Crespo; Paloma Sevilla; Samuel Mansino; Plinio Montoya; Francisco Javier Ruiz-Sánchez (2017). "Bats from the classical site of Venta del Moro (Late Miocene, Eastern Spain)".Historical Biology: An International Journal of Paleobiology.30 (3):317–326.doi:10.1080/08912963.2016.1277995.S2CID 90270154.
  227. ^Suzanne J. Hand; Bernard Sigé (2017). "A new archaic bat (Chiroptera: Archaeonycteridae) from an Early Eocene forest in the Paris Basin".Historical Biology: An International Journal of Paleobiology.30 (1–2):227–236.doi:10.1080/08912963.2017.1297435.S2CID 91146624.
  228. ^Peter D. Heintzman; Grant D. Zazula; Ross D.E. MacPhee; Eric Scott; James A. Cahill; Brianna K. McHorse; Joshua D. Kapp; Mathias Stiller; Matthew J. Wooller; Ludovic Orlando; John Southon; Duane G. Froese; Beth Shapiro (2017)."A new genus of horse from Pleistocene North America".eLife.6: e29944.doi:10.7554/eLife.29944.PMC 5705217.PMID 29182148.
  229. ^Bin Bai (2017)."Eocene Pachynolophinae (Perissodactyla, Palaeotheriidae) from China, and their palaeobiogeographical implications".Palaeontology.60 (6):837–852.Bibcode:2017Palgy..60..837B.doi:10.1111/pala.12319.S2CID 134013391.
  230. ^Bin Bai (2022). "Reappraisal of some perissodacyl fossils from the Middle Eocene of the Lijiang Basin, Yunnan, China with a revision of tapiroidDiplolophodon".Vertebrata PalAsiatica.61 (1):26–42.doi:10.19615/j.cnki.2096-9899.220721.
  231. ^Jean-Albert Remy (2017). "Critical comments on the genusPropachynolophus Lemoine, 1891 (Mammalia, Perissodactyla, Equoidea)".Palæovertebrata.41 (1): e3.doi:10.18563/pv.41.1.e3.
  232. ^Yong-Xiang Li; Yun-Xiang Zhang; Ji Li; Zhi-Chao Li; Kun Xie (2017)."New fossils of paraceratheres (Perissodactyla, Mammalia) from the Early Oligocene of the Lanzhou Basin, Gansu Province, China".Vertebrata PalAsiatica.55 (4):367–381.doi:10.19615/j.cnki.1000-3118.170922.
  233. ^Constance Bronnert; Emmanuel Gheerbrant; Marc Godinot; Grégoire Métais (2017). "A primitive perissodactyl (Mammalia) from the early Eocene of Le Quesnoy (MP7, France)".Historical Biology: An International Journal of Paleobiology.30 (1–2):237–250.doi:10.1080/08912963.2017.1341502.S2CID 90407317.
  234. ^Naoto Handa; Masato Nakatsukasa; Yutaka Kunimatsu; Hideo Nakaya (2017). "A new Elasmotheriini (Perissodactyla, Rhinocerotidae) from the upper Miocene of Samburu Hills and Nakali, northern Kenya".Geobios.50 (3):197–209.Bibcode:2017Geobi..50..197H.doi:10.1016/j.geobios.2017.04.002.
  235. ^abDenis Geraads (2019)."A reassessment of the Bovidae (Mammalia) from the Nawata Formation of Lothagam, Kenya, and the late Miocene diversification of the family in Africa".Journal of Systematic Palaeontology.17 (2):169–182.Bibcode:2019JSPal..17..169G.doi:10.1080/14772019.2017.1403493.S2CID 90461071.
  236. ^Jean-Renaud Boisserie; Mathieu Schuster; Mark J. Beech; Andrew Hill; Faysal Bibi (2017)."A new species of hippopotamine (Cetartiodactyla, Hippopotamidae) from the late Miocene Baynunah Formation, Abu Dhabi, United Arab Emirates".Palæovertebrata.41 (1): e2.doi:10.18563/pv.41.1.e2.
  237. ^Bibi, Faysal; Rowan, John;Reed, Kaye (2017). "Late Pliocene Bovidae from Ledi-Geraru (Lower Awash Valley, Ethiopia) and their implications for Afar paleoecology".Journal of Vertebrate Paleontology.37 (4): e1337639.Bibcode:2017JVPal..37E7639B.doi:10.1080/02724634.2017.1337639.S2CID 134314018.
  238. ^Roberto Rozzi (2017)."A new extinct dwarfed buffalo from Sulawesi and the evolution of the subgenusAnoa: An interdisciplinary perspective".Quaternary Science Reviews.157:188–205.Bibcode:2017QSRv..157..188R.doi:10.1016/j.quascirev.2016.12.011.
  239. ^abcMartin Pickford (2017).Revision of "peccary-like" Suoidea (Artiodactyla: Mammalia) from the Neogene of the Old World. Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und Paläontologie. Vol. 46. pp. 1–144.ISBN 978-3-89937-223-6.
  240. ^Jean-Renaud Boisserie; Gen Suwa; Berhane Asfaw; Fabrice Lihoreau; Raymond L. Bernor; Shigehiro Katoh; Yonas Beyene (2017). "Basal hippopotamines from the upper Miocene of Chorora, Ethiopia".Journal of Vertebrate Paleontology.37 (3): e1297718.Bibcode:2017JVPal..37E7718B.doi:10.1080/02724634.2017.1297718.S2CID 133844851.
  241. ^María Ríos; Israel M. Sánchez; Jorge Morales (2017)."A new giraffid (Mammalia, Ruminantia, Pecora) from the late Miocene of Spain, and the evolution of the sivathere-samothere lineage".PLOS ONE.12 (11): e0185378.Bibcode:2017PLoSO..1285378R.doi:10.1371/journal.pone.0185378.PMC 5665556.PMID 29091914.
  242. ^Evelyne Crégut-Bonnoure; Evangelia Tsoukala (2017). "The Late Pliocene Bovidae and Cervidae (Mammalia) of Milia (Grevena, Macedonia, Greece)".Quaternary International.445:215–249.Bibcode:2017QuInt.445..215C.doi:10.1016/j.quaint.2016.10.043.
  243. ^abcPaul C. Murphey; Thomas S. Kelly (2017)."Mammals from the earliest Uintan (middle Eocene) Turtle Bluff Member, Bridger Formation, southwestern Wyoming, USA, Part 2: Apatotheria, Lipotyphla, Carnivoramorpha, Condylartha, Dinocerata, Perissodactyla and Artiodactyla".Palaeontologia Electronica.20 (2): Article number 20.2.29A.doi:10.26879/720.
  244. ^Manuela Aiglstorfer; Loïc Costeur; Bastien Mennecart; Elmar P. J. Heizmann (2017)."Micromeryx? eiselei—A new moschid species from Steinheim am Albuch, Germany, and the first comprehensive description of moschid cranial material from the Miocene of Central Europe".PLOS ONE.12 (10): e0185679.Bibcode:2017PLoSO..1285679A.doi:10.1371/journal.pone.0185679.PMC 5642927.PMID 29036194.
  245. ^Sarah R. Stinnesbeck; Eberhard Frey; Wolfgang Stinnesbeck; Jeronimo Avíles Olguínc; Patrick Zell; Alejandro Terrazas Mata; Martha Benavente Sanvicente; Arturo González González; Eugenio Acevez Nuñez (2017). "A new fossil peccary from the Pleistocene-Holocene boundary of the eastern Yucatán Peninsula, Mexico".Journal of South American Earth Sciences.77:341–349.Bibcode:2017JSAES..77..341S.doi:10.1016/j.jsames.2016.11.003.S2CID 133386346.
  246. ^Blaine W. Schubert; Joshua X. Samuels; James C. Chatters; Joaquin Arroyo-Cabrales (2020)."Muknalia minima from the Yucatán of Mexico is synonymous with the collared peccary,Pecari tajacu (Artiodactyla: Tayassuidae)".Open Quaternary.6 (1): Article 8.doi:10.5334/oq.84.
  247. ^Sarah R. Stinnesbeck; Wolfgang Stinnesbeck; Eberhard Frey; Jerónimo Avilés Olguín; Arturo H. González González (2021)."Comment on Schubert et al. 2020.Muknalia minima from the Yucatán of Mexico is synonymous with the collared peccary,Pecari tajacu (Artiodactyla: Tayassuidae). Open Quaternary, 6: 8, pp. 1–9. DOI: doi.org/10.5334/oq.84".Open Quaternary.7 (1): Article 2.doi:10.5334/oq.89.
  248. ^Blaine W. Schubert; Joshua X. Samuels; James C. Chatters; Joaquin Arroyo-Cabrales (2021)."Muknalia is a Collared Peccary (Pecari tajacu): A Reply to Stinnesbeck et al".Open Quaternary.7 (1): Article 3.doi:10.5334/oq.98.
  249. ^Grégoire Métais; Bastien Mennecart; Ghazala Roohi (2017). "A new assemblage of stem pecoran ruminants from the Oligocene Chitarwata Formation, Bugti Hills, Baluchistan, Pakistan: paleoenvironmental and paleobiogeographic implications".Journal of Asian Earth Sciences.136:40–49.Bibcode:2017JAESc.136...40M.doi:10.1016/j.jseaes.2016.09.009.
  250. ^Evelyne Crégut-Bonnoure; Evangelia Tsoukala (2017)."The Pliocene Artiodactyla and Proboscidea (Mammalia) from Gephyra (lower Axios valley, Macedonia, Greece). Discovery of a new boselaphine".Quaternary International.445:200–214.Bibcode:2017QuInt.445..200C.doi:10.1016/j.quaint.2016.10.022.
  251. ^Roman Croitor (2017)."Description of a new deer species (Cervidae, Mammalia) from the Early Pliocene of Eastern Europe, with a review of early dispersals and palaeobiogeography of the subfamily Cervinae"(PDF).Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.283 (1):85–108.doi:10.1127/njgpa/2017/0630.S2CID 49228618. Archived fromthe original(PDF) on 2017-09-16. Retrieved2017-09-16.
  252. ^Rodrigo Parisi Dutra; Daniel de Melo Casali; Rafaela Velloso Missagia; Germán Mariano Gasparini; Fernando Araujo Perini; Mario Alberto Cozzuol (2017). "Phylogenetic Systematics of Peccaries (Tayassuidae: Artiodactyla) and a Classification of South American Tayassuids".Journal of Mammalian Evolution.24 (3):345–358.doi:10.1007/s10914-016-9347-8.hdl:11336/54840.S2CID 27963274.
  253. ^Georgios Lazaridis; Dimitris S. Kostopoulos; George Lyras; Socrates Roussiakis (2017). "A new Late Miocene ovibovine-like bovid (Bovidae, Mammalia) from the Kassandra Peninsula (Chalkidiki, Northern Greece) and implications to the phylogeography of the group".PalZ.91 (3):427–437.Bibcode:2017PalZ...91..427L.doi:10.1007/s12542-017-0360-x.S2CID 90916164.
  254. ^Hiroto Ichishima; Adolpho H. Augustin; Takashi Toyofuku; Hiroshi Kitazato (2017). "A new species ofAfricanacetus (Odontoceti: Ziphiidae) found on the deep ocean floor off the coast of Brazil".Deep Sea Research Part II: Topical Studies in Oceanography.146:68–81.Bibcode:2017DSRII.146...68I.doi:10.1016/j.dsr2.2016.12.002.
  255. ^Ismael Miján; Stephen Louwye; Olivier Lambert (2017)."A newBeneziphius beaked whale from the ocean floor off Galicia, Spain and biostratigraphic reassessment of the type species".Acta Palaeontologica Polonica.62 (1):211–220.doi:10.4202/app.00309.2016.hdl:1854/LU-8538184.
  256. ^Olivier Lambert; Giovanni Bianucci; Mario Urbina; Jonathan H. Geisler (2017)."A new inioid (Cetacea, Odontoceti, Delphinida) from the Miocene of Peru and the origin of modern dolphin and porpoise families".Zoological Journal of the Linnean Society.179 (4):919–946.doi:10.1111/zoj.12479 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  257. ^Jonathan H. Geisler; Robert W. Boessenecker; Mace Brown; Brian L. Beatty (2017)."The Origin of Filter Feeding in Whales".Current Biology.27 (13): 2036–2042.e2.Bibcode:2017CBio...27E2036G.doi:10.1016/j.cub.2017.06.003.PMID 28669761.S2CID 36765725.
  258. ^Alexandra T. Boersma; Matthew R. McCurry;Nicholas D. Pyenson (2017)."A new fossil dolphinDilophodelphis fordycei provides insight into the evolution of supraorbital crests in Platanistoidea (Mammalia, Cetacea)".Royal Society Open Science.4 (5): 170022.Bibcode:2017RSOS....470022B.doi:10.1098/rsos.170022.PMC 5451807.PMID 28573006.
  259. ^Michelangelo Bisconti; Olivier Lambert; Mark Bosselaers (2017)."Revision of"Balaena" belgica reveals a new right whale species, the possible ancestry of the northern right whale,Eubalaena glacialis, and the ages of divergence for the living right whale species".PeerJ.5: e3464.doi:10.7717/peerj.3464.PMC 5490463.PMID 28663936.
  260. ^Robert W. Boessenecker; Danielle Fraser; Morgan Churchill; Jonathan H. Geisler (2017)."A toothless dwarf dolphin (Odontoceti: Xenorophidae) points to explosive feeding diversification of modern whales (Neoceti)".Proceedings of the Royal Society B: Biological Sciences.284 (1861): 20170531.doi:10.1098/rspb.2017.0531.PMC 5577471.PMID 28835549.
  261. ^Olivier Lambert; Christian de Muizon; Elisa Malinverno; Claudio Di Celma; Mario Urbina; Giovanni Bianucci (2017). "A new odontocete (toothed cetacean) from the Early Miocene of Peru expands the morphological disparity of extinct heterodont dolphins".Journal of Systematic Palaeontology.16 (12):981–1016.doi:10.1080/14772019.2017.1359689.hdl:11568/891482.S2CID 90193360.
  262. ^Alberto Collareta; Olivier Lambert; Christian de Muizon; Mario Urbina; Giovanni Bianucci (2017)."Koristocetus pescei gen. et sp. nov., a diminutive sperm whale (Cetacea: Odontoceti: Kogiidae) from the late Miocene of Peru".Fossil Record.20 (2):259–278.Bibcode:2017FossR..20..259C.doi:10.5194/fr-20-259-2017.hdl:11568/891486.
  263. ^Olivier Lambert; Manuel Martínez-Cáceres; Giovanni Bianucci; Claudio Di Celma; Rodolfo Salas-Gismondi; Etienne Steurbaut; Mario Urbina; Christian de Muizon (2017)."Earliest Mysticete from the Late Eocene of Peru Sheds New Light on the Origin of Baleen Whales".Current Biology.27 (10): 1535–1541.e2.Bibcode:2017CBio...27E1535L.doi:10.1016/j.cub.2017.04.026.hdl:11581/396095.PMID 28502655.S2CID 23858246.
  264. ^Jorge Vélez-Juarbe (2017). "A new stem odontocete from the late Oligocene Pysht Formation in Washington State, U.S.A.".Journal of Vertebrate Paleontology.37 (5): e1366916.Bibcode:2017JVPal..37E6916V.doi:10.1080/02724634.2017.1366916.S2CID 90151706.
  265. ^Klaas Post; Stephen Louwye; Olivier Lambert (2017)."Scaldiporia vandokkumi, a new pontoporiid (Mammalia, Cetacea, Odontoceti) from the Late Miocene to earliest Pliocene of the Westerschelde estuary (The Netherlands)".PeerJ.5: e3991.doi:10.7717/peerj.3991.PMC 5671118.PMID 29109917.
  266. ^Felix G. Marx; Olivier Lambert; Christian de Muizon (2017)."A new Miocene baleen whale from Peru deciphers the dawn of cetotheriids".Royal Society Open Science.4 (9): 170560.Bibcode:2017RSOS....470560M.doi:10.1098/rsos.170560.PMC 5627101.PMID 28989761.
  267. ^Yoshihiro Tanaka; Juan Abella; Gabriel Aguirre-Fernández; Maria Gregori; R. Ewan Fordyce (2017)."A new tropical Oligocene dolphin from Montañita/Olón, Santa Elena, Ecuador".PLOS ONE.12 (12): e0188380.Bibcode:2017PLoSO..1288380T.doi:10.1371/journal.pone.0188380.PMC 5737981.PMID 29261688.
  268. ^abcJon A. Baskin (2017). "Additional carnivorans from the early Hemingfordian Miller Local Fauna, Florida".Journal of Vertebrate Paleontology.37 (2): e1293069.Bibcode:2017JVPal..37E3069B.doi:10.1080/02724634.2017.1293069.S2CID 90182619.
  269. ^Lamjed Amri; Saverio Bartolini Lucenti; Moncef Saïd Mtimet; Narjess Karoui-Yaakoub; Sergio Ros-Montoya; Maria-Patrocinio Espigares; Mabrouk Boughdiri; Nebiha Bel Haj Ali; Bienvenido Martínez-Navarro (2017)."Canis othmanii sp. nov. (Carnivora, Canidae) from the early Middle Pleistocene site of Wadi Sarrat (Tunisia)".Comptes Rendus Palevol.16 (7):774–782.Bibcode:2017CRPal..16..774A.doi:10.1016/j.crpv.2017.05.004.
  270. ^Jorge Velez-Juarbe (2017)."Eotaria citrica, sp. nov., a new stem otariid from the "Topanga" formation of Southern California".PeerJ.5: e3022.doi:10.7717/peerj.3022.PMC 5326546.PMID 28243536.
  271. ^Manuel J. Salesa; Gema Siliceo; Mauricio Antón; Stéphane Peigné; Jorge Morales (2019). "Functional and systematic implications of the postcranial anatomy of a late Miocene feline (Carnivora, Felidae) from Batallones-1 (Madrid, Spain)".Journal of Mammalian Evolution.26 (1):101–131.doi:10.1007/s10914-017-9414-9.hdl:10261/225344.S2CID 19719645.
  272. ^Min Zhu; Yaling Yan; Yihong Liu; Zhilu Tang; Dagong Qin; Changzhu Jin (2017). "The new Carnivore remains from the Early Pleistocene YanliangGigantopithecus fauna, Guangxi, South China".Quaternary International. 434, Part A:17–24.Bibcode:2017QuInt.434...17Z.doi:10.1016/j.quaint.2015.01.009.
  273. ^L. de Bonis; J. Abella; G. Merceron; D.R. Begun (2017). "A new late Miocene ailuropodine (Giant Panda) from Rudabánya (North-central Hungary)".Geobios.50 (5–6):413–421.Bibcode:2017Geobi..50..413D.doi:10.1016/j.geobios.2017.09.003.
  274. ^Leonard Dewaele; Eli Amson; Olivier Lambert; Stephen Louwye (2017)."Reappraisal of the extinct seal"Phoca" vitulinoides from the Neogene of the North Sea Basin, with bearing on its geological age, phylogenetic affinities, and locomotion".PeerJ.5: e3316.doi:10.7717/peerj.3316.PMC 5436577.PMID 28533965.
  275. ^Alain Argant; Jean-Philip Brugal (2017)."The cave lionPanthera (Leo) spelaea and its evolution:Panthera spelaea intermedia nov. subspecies"(PDF).Acta Zoologica Cracoviensia.60 (2):59–104.doi:10.3409/azc.60_2.59.
  276. ^Yu Li; Nikolai Spassov (2017). "A new species ofParamachaerodus (Mammalia, Carnivora, Felidae) from the late Miocene of China and Bulgaria, and revision ofPromegantereon Kretzoi, 1938 andParamachaerodus Pilgrim, 1913".PalZ.91 (3):409–426.Bibcode:2017PalZ...91..409L.doi:10.1007/s12542-017-0371-7.S2CID 134847521.
  277. ^Xiaoming Wang; Camille Grohé; Denise F. Su; Stuart C. White; Xueping Ji; Jay Kelley; Nina G. Jablonski; Tao Deng; Youshan You; Xin Yang (2017)."A new otter of giant size,Siamogale melilutra sp. nov. (Lutrinae: Mustelidae: Carnivora), from the latest Miocene Shuitangba site in north-eastern Yunnan, south-western China, and a total-evidence phylogeny of lutrines".Journal of Systematic Palaeontology.16 (1):39–65.doi:10.1080/14772019.2016.1267666.S2CID 58892181.
  278. ^S.J. Rahmat; I.A. Koretsky; J.E. Osborne; A.A. Alford (2017). "New Miocene Monachinae from the western shore of the Chesapeake Bay (Maryland, USA)".Vestnik Zoologii.51 (3):221–242.doi:10.1515/vzoo-2017-0029 (inactive 1 November 2024).S2CID 90197324.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  279. ^abcdWen-Yu Wu; Lawrence J. Flynn (2017). "The Lagomorphs (Ochotonidae, Leporidae) of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.).Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 31–57.doi:10.1007/978-94-024-1050-1_4.ISBN 978-94-024-1049-5.
  280. ^Chiara Angelone; Stanislav Čermák; Lorenzo Rook (2017). "New insights onPaludotona, an insular endemic lagomorph (Mammalia) from the Tusco-Sardinian Palaeobioprovince (Italy, Turolian, late Miocene)".Rivista Italiana di Paleontologia e Stratigrafia.123 (3):455–473.doi:10.13130/2039-4942/9082.
  281. ^Margarita Erbajeva; Bayarmaa Baatarjav; Gudrun Daxner-Höck; Lawrence J. Flynn (2017)."Occurrences ofSinolagomys (Lagomorpha) from the Valley of Lakes (Mongolia)".Palaeobiodiversity and Palaeoenvironments.97 (1):11–24.Bibcode:2017PdPe...97...11E.doi:10.1007/s12549-016-0262-z.PMC 5367695.PMID 28450962.
  282. ^abDiego H. Verzi; A. Itatí Olivares; Cecilia C. Morgan (2017)."Systematics and evolutionary significance of the small Abrocomidae from the early Miocene of southern South America".Historical Biology: An International Journal of Paleobiology.29 (3):411–422.Bibcode:2017HBio...29..411V.doi:10.1080/08912963.2016.1168410.hdl:11336/56470.S2CID 87180597.
  283. ^Qian Li; Fang-Yuan Mao; Yuan-Qing Wang (2017). "First record of Eocene fossil rodent assemblages from the lower part of the Erden Obo Section, Erlian Basin (Nei Mongol, China) and its biochronological implications".Palaeobiodiversity and Palaeoenvironments.98 (2):259–276.doi:10.1007/s12549-017-0303-2.S2CID 134310923.
  284. ^Valentin Nesin; Oleksandr Kovalchuk (2017)."A new species of jerboa (Mammalia, Rodentia,Allactaga) from the late Miocene of Ukraine".Palaeontologia Electronica.20 (2): Article number 20.2.25A.doi:10.26879/751.
  285. ^abWen-Yu Wu; Lawrence J. Flynn (2017). "The Hamsters of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.).Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 123–137.doi:10.1007/978-94-024-1050-1_10.ISBN 978-94-024-1049-5.
  286. ^abcdeWilliam W. Korth; Alan R. Tabrum (2017). "A unique rodent fauna from the Whitneyan (middle Oligocene) of southwestern Montana".Annals of Carnegie Museum.84 (4):319–340.doi:10.2992/007.084.0401.S2CID 89650435.
  287. ^abcZhu-Ding Qiu (2017)."Several rarely recorded rodents from the Neogene of China".Vertebrata PalAsiatica.55 (2):92–109.doi:10.19615/j.cnki.1000-3118.2017.02.002.
  288. ^Thomas Mörs; Therese Flink (2017). "Large apeomyine rodents (Mammalia, Eomyidae) from the early Miocene of Echzell, Germany".Historical Biology: An International Journal of Paleobiology.30 (8):1102–1111.doi:10.1080/08912963.2017.1338695.S2CID 90003340.
  289. ^Enric Torres-Roig; Jordi Agustí; Pere Bover; Josep Antoni Alcover (2017). "A new giant cricetine from the basal Pliocene of Mallorca (Balearic Islands, western Mediterranean): biostratigraphic nexus with continental mammal zones".Historical Biology: An International Journal of Paleobiology.31 (5):559–573.doi:10.1080/08912963.2017.1377194.S2CID 135302585.
  290. ^Paloma López-Guerrero; Olivier Maridet; Zhaoqun Zhang; Gudrun Daxner-Höck (2017)."A new species ofArgyromys (Rodentia, Mammalia) from the Oligocene of the Valley of Lakes (Mongolia): Its importance for palaeobiogeographical homogeneity across Mongolia, China and Kazakhstan".PLOS ONE.12 (3): e0172733.Bibcode:2017PLoSO..1272733L.doi:10.1371/journal.pone.0172733.PMC 5362143.PMID 28328975.
  291. ^abMaría E. Pérez; Cecilia M. Deschamps; María G. Vucetich (2018)."Diversity, phylogeny and biogeography of the South American 'cardiomyine' rodents (Hystricognathi, Cavioidea) with a description of two new species".Papers in Palaeontology.4 (1):1–19.Bibcode:2018PPal....4....1P.doi:10.1002/spp2.1095.hdl:11336/42361.S2CID 90241240.
  292. ^Adriana M. Candela; Ricardo A. Bonini (2017)."A new guinea pig (Rodentia, Caviomorpha) from northwestern Argentina: Implications for the origin of the genusCavia".Journal of Vertebrate Paleontology.37 (4): e1352591.Bibcode:2017JVPal..37E2591C.doi:10.1080/02724634.2017.1352591.hdl:11336/58708.S2CID 89872825.
  293. ^Alexey S. Tesakov; Vadim V. Titov; Alexandra N. Simakova; Pavel D. Frolov; Elena V. Syromyatnikova; Sergey V. Kurshakov; Natalia V. Volkova; Yaroslav I. Trikhunkov; Marina V. Sotnikova; Sergey V. Kruskop; Nikita V. Zelenkov; Ekaterina M. Tesakova; Dmitry M. Palatov (2017)."Late Miocene (Early Turolian) vertebrate faunas and associated biotic record of the Northern Caucasus: Geology, palaeoenvironment, biochronology".Fossil Imprint.73 (3–4):383–444.doi:10.2478/if-2017-0021.S2CID 27201013.
  294. ^abcdePeter Joniak; Pablo Peláez-Campomanes; Lars W. van den Hoek Ostende; Bora Rojay (2017). "Early Miocene rodents of Gökler (Kazan Basin, Central Anatolia, Turkey)".Historical Biology: An International Journal of Paleobiology.31 (8):982–1007.doi:10.1080/08912963.2017.1414211.S2CID 89700699.
  295. ^Lüzhou Li; Xijun Ni; Xiaoyu Lu; Qiang Li (2017). "First record ofCricetops rodent in the Oligocene of southwestern China".Historical Biology: An International Journal of Paleobiology.29 (4):488–494.Bibcode:2017HBio...29..488L.doi:10.1080/08912963.2016.1196686.S2CID 132774387.
  296. ^Hans de Bruijn (2017)."A new stage in the evolution of the mole rats (Rodentia, Spalacinae) from the Early Miocene of northern Greece".Historical Biology: An International Journal of Paleobiology.29 (5):571–575.Bibcode:2017HBio...29..571D.doi:10.1080/08912963.2016.1208193.hdl:1874/347767.
  297. ^Everett Lindsay (2017)."Democricetodon fejfari sp. nov. and replacement of Cricetidae by Muridae in Siwalik deposits of Pakistan".Fossil Imprint.73 (3–4):445–453.doi:10.2478/if-2017-0022.S2CID 91838328.
  298. ^abAnsuya Bhandari; Sunil Bajpai; Lawrence J. Flynn; B N Tiwari; Nivedita Mandal (2021). "First Miocene rodents from Kutch, western India".Historical Biology: An International Journal of Paleobiology.33 (12):3471–3479.Bibcode:2021HBio...33.3471B.doi:10.1080/08912963.2020.1870970.S2CID 234253921.
  299. ^Christiane Denys; Thalassa Matthews (2017). "A newDesmodillus (Gerbillinae, Rodentia) species from the early Pliocene site of Langebaanweg (South-western Cape, South Africa)".Palæovertebrata.41 (1): e1.doi:10.18563/pv.41.1.e1.
  300. ^abMyriam Boivin; Laurent Marivaux; Maëva J. Orliac; Francois Pujos; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Pierre-Olivier Antoine (2017)."Late middle Eocene caviomorph rodents from Contamana, Peruvian Amazonia".Palaeontologia Electronica.20 (1): Article number 20.1.19A.doi:10.26879/742.hdl:11336/66430.
  301. ^abBurkart Engesser; Daniel Kälin (2017)."Eomys helveticus n. sp. andEomys schluneggeri n. sp., two new small eomyids of the Chattian (MP 25/MP 26) subalpine Lower Freshwater Molasse of Switzerland"(PDF).Fossil Imprint.73 (1–2):213–224.doi:10.1515/if-2017-0012.S2CID 172101167.
  302. ^Hüseyin Erten (2017)."A new genus and species of Muridae (Rodentia) from the Quaternary deposits of the Denizli Basin, South-western Turkey".Palaeontologia Electronica.20 (1): Article number 20.1.12A.doi:10.26879/659.
  303. ^Leonardo Kerber; Marcos César Bissaro Júnior; Francisco R. Negri; Jonas Pereira de Souza-Filho; Edson Guilherme; Annie Schmaltz Hsiou (2017). "A new rodent (Caviomorpha: Dinomyidae) from the upper Miocene of southwestern Brazilian Amazonia".Historical Biology: An International Journal of Paleobiology.30 (7):985–993.doi:10.1080/08912963.2017.1327529.S2CID 90876830.
  304. ^abWen-Yu Wu; Lawrence J. Flynn (2017). "Yushe Basin Prometheomyini (Arvicolinae, Rodentia)". In Lawrence J. Flynn; Wen-Yu Wu (eds.).Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 139–151.doi:10.1007/978-94-024-1050-1_11.ISBN 978-94-024-1049-5.
  305. ^Qian Li; Yan-Xin Gong; Yuan-Qing Wang (2017). "New dipodid rodents from the Late Eocene of Erden Obo (Nei Mongol, China)".Historical Biology: An International Journal of Paleobiology.29 (5):692–703.Bibcode:2017HBio...29..692L.doi:10.1080/08912963.2016.1232406.S2CID 132602246.
  306. ^Pedro Piñero; Jordi Agustí (2017). "The rodent succession in the Sifón de Librilla section (Fortuna Basin, SE Spain): implications for the Mio-Pliocene boundary in the Mediterranean terrestrial record".Historical Biology: An International Journal of Paleobiology.31 (3):279–321.doi:10.1080/08912963.2017.1360876.S2CID 134225343.
  307. ^María E. Pérez; María C. Vallejo-Pareja; Juan D. Carrillo; Carlos Jaramillo (2017)."A New Pliocene Capybara (Rodentia, Caviidae) from Northern South America (Guajira, Colombia), and its Implications for the Great American Biotic Interchange"(PDF).Journal of Mammalian Evolution.24 (1):111–125.doi:10.1007/s10914-016-9356-7.S2CID 30855398.
  308. ^Zhu-Ding Qiu (2017). "Yushe Squirrels (Sciuridae, Rodentia)". In Lawrence J. Flynn; Wen-Yu Wu (eds.).Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 59–69.doi:10.1007/978-94-024-1050-1_5.ISBN 978-94-024-1049-5.
  309. ^Zoran Marković; Wilma Wessels; Andrew A. van de Weerd; Hans de Bruijn (2017)."On a new diatomyid (Rodentia, Mammalia) from the Paleogene of south-east Serbia, the first record of the family in Europe".Palaeobiodiversity and Palaeoenvironments.98 (3):459–469.doi:10.1007/s12549-017-0301-4.PMC 6417379.PMID 30956714.
  310. ^abcYuri Kimura; Lawrence J. Flynn; Louis L. Jacobs (2017)."Early late Miocene murine rodents from the upper part of the Nagri Formation, Siwalik Group, Pakistan, with a new fossil calibration point for the tribe Apodemurini (Apodemus/Tokudaia)"(PDF).Fossil Imprint.73 (1–2):197–212.doi:10.1515/if-2017-0011.S2CID 171644924.
  311. ^abWilliam W. Korth; Alan R. Tabrum (2017). "Rodents (Mammalia) from Diamond O Ranch local fauna, southwestern Montana".Annals of Carnegie Museum.84 (4):301–318.doi:10.2992/007.084.0404.S2CID 90065244.
  312. ^abSamuel T. Turvey; Jennifer J. Crees; James Hansford; Timothy E. Jeffree; Nick Crumpton; Iwan Kurniawan; Erick Setiyabudi; Thomas Guillerme; Umbu Paranggarimu; Anthony Dosseto; Gerrit D. van den Bergh (2017)."Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution".Proceedings of the Royal Society B: Biological Sciences.284 (1861): 20171278.doi:10.1098/rspb.2017.1278.PMC 5577490.PMID 28855367.
  313. ^abcLaurent Marivaux; Sylvain Adnet; Mohamed Benammi; Rodolphe Tabuce; Johan Yans; Mouloud Benammi (2017). "Earliest Oligocene hystricognathous rodents from the Atlantic margin of northwestern Saharan Africa (Dakhla, Morocco): systematic, paleobiogeographical, and paleoenvironmental implications".Journal of Vertebrate Paleontology.37 (5): e1357567.Bibcode:2017JVPal..37E7567M.doi:10.1080/02724634.2017.1357567.S2CID 133921627.
  314. ^abZhu-Ding Qiu; Chang-Zhu Jin (2017)."Platacanthomyid remains from the late Cenozoic deposits of East China".Vertebrata PalAsiatica.55 (4):315–330.doi:10.19615/j.cnki.1000-3118.170721.
  315. ^María Carolina Madozzo-Jaén; María Encarnación Pérez (2017). "The most ancient caviine rodent (Hystricognathi, Cavioidea) comes from the late Miocene of Northwest Argentina (South America)".Historical Biology: An International Journal of Paleobiology.29 (3):376–383.Bibcode:2017HBio...29..376M.doi:10.1080/08912963.2016.1166360.hdl:11336/61885.S2CID 87935789.
  316. ^abMatthijs Freudenthal; Elvira Martín-Suárez (2017)."A revision of EuropeanPlesiosminthus (Rodentia, Dipodidae), and new material from the upper Oligocene of Teruel (Spain)".Palaeontologia Electronica.20 (2): Article number 20.2.41A.doi:10.26879/678.
  317. ^Shao-Hua Zheng (2017). "The Zokors of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.).Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 89–121.doi:10.1007/978-94-024-1050-1_9.ISBN 978-94-024-1049-5.
  318. ^William W. Korth (2017)."A new tribe of castoroidine beavers from the late Arikareean to Hemphillian (Oligocene–Miocene) of western North America".Acta Palaeontologica Polonica.62 (2):249–258.doi:10.4202/app.00339.2017.
  319. ^Joshua X. Samuels; William W. Korth (2017)."The first Eocene rodents from the Pacific Northwest, USA".Palaeontologia Electronica.20 (2): Article number 20.2.24A.doi:10.26879/717.
  320. ^abcDeborah K. Anderson (2017). "Three New Sciuravids (Rodentia) From the Latest-Early to Middle Eocene of Wyoming: Mosaic Evolution and the Alpha Taxonomy ofSciuravus nitidus".Contributions from the Museum of Paleontology, University of Michigan.32 (12):245–258.hdl:2027.42/136782.
  321. ^Hüseyin Erten (2018)."Spalax denizliensis sp. nov. (Spalacidae, Rodentia) from an Early Pleistocene-aged locality in the Denizli Basin (southwestern Turkey)".Turkish Journal of Zoology.42 (1):62–67.doi:10.3906/zoo-1707-35.
  322. ^Wen-Yu Wu; Lawrence J. Flynn; Zhu-Ding Qiu (2017). "The Murine Rodents of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.).Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 179–198.doi:10.1007/978-94-024-1050-1_14.ISBN 978-94-024-1049-5.
  323. ^Ban-Yue Wang (2017)."Discovery ofYuomys from Altun Shan, Xinjiang, China".Vertebrata PalAsiatica.55 (3):227–232.doi:10.19615/j.cnki.1000-3118.2017.03.005.
  324. ^Qian Li (2019). "Eocene ctenodactyloid rodent assemblages and diversification from Erden Obo, Nei Mongol, China".Historical Biology: An International Journal of Paleobiology.31 (7):813–823.Bibcode:2019HBio...31..813L.doi:10.1080/08912963.2017.1395422.S2CID 91103157.
  325. ^Joan Femenias-Gual; Raef Minwer-Barakat; Judit Marigó; Miquel Poyatos-Moré; Salvador Moyà-Solà (2017)."Agerinia marandati sp. nov., a new early Eocene primate from the Iberian Peninsula, sheds new light on the evolution of the genusAgerinia".PeerJ.5: e3239.doi:10.7717/peerj.3239.PMC 5410143.PMID 28462042.
  326. ^Martin Pickford; Brigitte Senut; Dominique Gommery; Sarah Musalizi; Ezra Musiime (2017). "Revision of the Miocene Hominoidea from Moroto I and II, Uganda".Geo-Pal Uganda.11:1–30.
  327. ^Erik R. Seiffert; Doug M. Boyer; John G. Fleagle; Gregg F. Gunnell; Christopher P. Heesy; Jonathan M. G. Perry; Hesham M. Sallam (2017)."New adapiform primate fossils from the late Eocene of Egypt".Historical Biology: An International Journal of Paleobiology.30 (1–2):204–226.doi:10.1080/08912963.2017.1306522.S2CID 89631627.
  328. ^Raef Minwer-Barakat; Judit Marigó; Joan Femenias-Gual; Loïc Costeur; Soledad De Esteban-Trivigno; Salvador Moyà-Solà (2017)."Microchoerus hookeri nov. sp., a new late Eocene European microchoerine (Omomyidae, Primates): New insights on the evolution of the genusMicrochoerus".Journal of Human Evolution.102:42–66.Bibcode:2017JHumE.102...42M.doi:10.1016/j.jhevol.2016.10.004.PMID 28012463.
  329. ^Yutaka Kunimatsu; Hiroshi Tsujikawa; Masato Nakatsukasa; Daisuke Shimizu; Naomichi Ogihara; Yasuhiro Kikuchi; Yoshihiko Nakano; Tomo Takano; Naoki Morimoto; Hidemi Ishida (2017)."A new species ofMioeuoticus (Lorisiformes, Primates) from the early Middle Miocene of Kenya".Anthropological Science.125 (2):59–65.doi:10.1537/ase.170322.
  330. ^Isaiah Nengo; Paul Tafforeau; Christopher C. Gilbert; John G. Fleagle; Ellen R. Miller; Craig Feibel; David L. Fox; Josh Feinberg; Kelsey D. Pugh; Camille Berruyer; Sara Mana; Zachary Engle; Fred Spoor (2017)."New infant cranium from the African Miocene sheds light on ape evolution".Nature.548 (7666):169–174.Bibcode:2017Natur.548..169N.doi:10.1038/nature23456.PMID 28796200.S2CID 4397839.
  331. ^Christopher C. Gilbert; Biren A. Patel; N. Premjit Singh; Christopher J. Campisano; John G. Fleagle; Kathleen L. Rust; Rajeev Patnaik (2017). "New sivaladapid primate from Lower Siwalik deposits surrounding Ramnagar (Jammu and Kashmir State), India".Journal of Human Evolution.102:21–41.Bibcode:2017JHumE.102...21G.doi:10.1016/j.jhevol.2016.10.001.PMID 28012462.
  332. ^Vivesh V. Kapur; Debasis P. Das; Sunil Bajpai; Guntupalli V.R. Prasad (2017)."First mammal of Gondwanan lineage in the early Eocene of India".Comptes Rendus Palevol.16 (7):721–737.Bibcode:2017CRPal..16..721K.doi:10.1016/j.crpv.2017.01.002.
  333. ^Vivesh V. Kapur; Debasis P. Das; Sunil Bajpai; Guntupalli V.R. Prasad (2017)."Corrigendum to "First Mammal of Gondwanan lineage in the early Eocene of India" [C. R. Palevol, Kapur et al. 16 (2017)]".Comptes Rendus Palevol.16 (7): 820.Bibcode:2017CRPal..16..820K.doi:10.1016/j.crpv.2017.07.001.
  334. ^Spencer G. Mattingly; Oscar Sanisidro; K. Christopher Beard (2017)."A new species ofCarpolestes (Mammalia, Plesiadapoidea) from the late Paleocene of southern Wyoming: assessing changes in size and shape during the evolution of a key anatomical feature".Historical Biology: An International Journal of Paleobiology.30 (8):1031–1042.doi:10.1080/08912963.2017.1328509.S2CID 90479229.
  335. ^William A. Clemens (2018). "A pantodont (Mammalia) from the latest Puercan North American Land Mammal Age (earliest Paleocene) of the Western Interior, USA".Historical Biology: An International Journal of Paleobiology.30 (1–2):183–188.Bibcode:2018HBio...30..183C.doi:10.1080/08912963.2016.1276178.S2CID 132830375.
  336. ^Andrea Savorelli; Federico Masini; Paul P. A. Mazza; Maria Adelaide Rossi; Silvano Agostini (2017)."New species ofDeinogalerix (Mammalia, Eulipotyphla) from the late Miocene of Scontrone (Abruzzo, central Italy)".Palaeontologia Electronica.20 (1): Article number 20.1.16A.doi:10.26879/672.
  337. ^abSteven C. Sweetman; Grant Smith; David M. Martill (2017)."Highly derived eutherian mammals from the earliest Cretaceous of southern Britain".Acta Palaeontologica Polonica.62 (4):657–665.doi:10.4202/app.00408.2017.
  338. ^abcJorge Morales; Martin Pickford (2017)."New hyaenodonts (Ferae, Mammalia) from the Early Miocene of Napak (Uganda), Koru (Kenya) and Grillental (Namibia)"(PDF).Fossil Imprint.73 (3–4):332–359.doi:10.2478/if-2017-0019.S2CID 197550278.
  339. ^Floréal Solé; Eric De Bast; Jian Yang; Cheng-Sen Li; Thierry Smith (2017)."The first species ofHapalodectes (Mesonychia, Mammalia) from the middle Paleocene of China (Qianshan Basin, Anhui Province) sheds light on the initial radiation of hapalodectids".Palaeontology.60 (3):433–449.Bibcode:2017Palgy..60..433S.doi:10.1111/pala.12293.S2CID 133538533.
  340. ^Matthew R. Borths; Erik R. Seiffert (2017)."Craniodental and humeral morphology of a new species ofMasrasector (Teratodontinae, Hyaenodonta, Placentalia) from the late Eocene of Egypt and locomotor diversity in hyaenodonts".PLOS ONE.12 (4): e0173527.Bibcode:2017PLoSO..1273527B.doi:10.1371/journal.pone.0173527.PMC 5396875.PMID 28422967.
  341. ^Javier N. Gelfo; Guillermo M. López; Sergio N. Santillana (2017)."Eocene ungulate mammals from West Antarctica: implications from their fossil record and a new species".Antarctic Science.29 (5):445–455.Bibcode:2017AntSc..29..445G.doi:10.1017/S0954102017000244.hdl:11336/56552.S2CID 86868504.
  342. ^Matthew R. Borths; Nancy J. Stevens (2017)."The first hyaenodont from the late Oligocene Nsungwe Formation of Tanzania: Paleoecological insights into the Paleogene-Neogene carnivore transition".PLOS ONE.12 (10): e0185301.Bibcode:2017PLoSO..1285301B.doi:10.1371/journal.pone.0185301.PMC 5636082.PMID 29020030.
  343. ^Daniel A. García-López; Virginia Deraco; Cecilia del Papa (2017). "Fossil mammals of the Quebrada de los Colorados Formation (late middle Eocene) at the locality of La Poma, Salta Province, Argentina".Historical Biology: An International Journal of Paleobiology.30 (4):507–517.doi:10.1080/08912963.2017.1299150.hdl:11336/63085.S2CID 89628887.
  344. ^Marguerite Hugueney; Olivier Maridet (2017)."Evolution of Oligo-Miocene talpids (Mammalia, Talpidae) in Europe: focus on the genera Myxomygale andPercymygale n. gen"(PDF).Historical Biology: An International Journal of Paleobiology.30 (1–2):267–275.doi:10.1080/08912963.2017.1282477.S2CID 56440927.
  345. ^Vicente D. Crespo; Marc Furió; Francisco Javier Ruiz-Sánchez; Plini Montoya (2017). "A new species ofPlesiodimylus (Dimylidae, Eulipotyphla, Mammalia) from the Early Miocene of Spain".Historical Biology: An International Journal of Paleobiology.30 (3):360–371.doi:10.1080/08912963.2017.1289519.S2CID 89721449.
  346. ^Mitsuharu Oshima; Yukimitsu Tomida; Takamichi Orihara (2017)."A new species ofPlesiosorex (Mammalia, Eulipotyphla) from the Early Miocene of Japan: first record of the genus from East Asia"(PDF).Fossil Imprint.73 (3–4):292–299.doi:10.1515/if-2017-0016.S2CID 171784271.
  347. ^Bárbara Vera Nardoni; Marcelo Reguero; Laureano González-Ruiz (2017)."The Interatheriinae notoungulates from the middle Miocene Collón Curá Formation in Argentina".Acta Palaeontologica Polonica.62 (4):845–863.doi:10.4202/app.00373.2017.hdl:11336/56874.
  348. ^Fang-Yuan Mao; Qian Li; Yuan-Qing Wang; Chuan-Kui Li (2017). "Taizimylus tongi, a new eurymylid (Mammalia, Glires) from the upper Paleocene of Xinjiang, China".Palaeoworld.26 (3):519–530.doi:10.1016/j.palwor.2016.12.002.
  349. ^G. Sansalone; T. Kotsakis; A. H. Schwermann; L. W. Van den Hoek Ostende; P. Piras (2017)."When moles became diggers:Tegulariscaptor gen. nov., from the early Oligocene of south Germany, and the evolution of talpid fossoriality".Journal of Systematic Palaeontology.16 (8):645–657.doi:10.1080/14772019.2017.1329235.hdl:11380/1318329.S2CID 90554706.
  350. ^Ricardo A. Bonini; Gabriela I. Schmidt; Marcelo A. Reguero; Esperanza Cerdeño; Adriana M. Candela; Natalia Solís (2017)."First record of Toxodontidae (Mammalia, Notoungulata) from the late Miocene–early Pliocene of the southern central Andes, NW Argentina".Journal of Paleontology.91 (3):566–576.Bibcode:2017JPal...91..566B.doi:10.1017/jpa.2016.160.hdl:11336/49805.S2CID 132542112.
  351. ^Lawrence J. Flynn; Wen-Yu Wu (2017). "The Lipotyphla of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.).Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 11–26.doi:10.1007/978-94-024-1050-1_2.ISBN 978-94-024-1049-5.
  352. ^Roi Maor; Tamar Dayan; Henry Ferguson-Gow; Kate E. Jones (2017)."Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction"(PDF).Nature Ecology & Evolution.1 (12):1889–1895.Bibcode:2017NatEE...1.1889M.doi:10.1038/s41559-017-0366-5.PMID 29109469.S2CID 20732677.
  353. ^Stephan Lautenschlager; Pamela Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2017)."Morphological evolution of the mammalian jaw adductor complex"(PDF).Biological Reviews.92 (4):1910–1940.doi:10.1111/brv.12314.PMC 6849872.PMID 27878942.
  354. ^David M. Grossnickle (2017)."The evolutionary origin of jaw yaw in mammals".Scientific Reports.7: Article number 45094.Bibcode:2017NatSR...745094G.doi:10.1038/srep45094.PMC 5359619.PMID 28322334.
  355. ^Kyung Soo Kim; Jong Deock Lim; Martin G. Lockley; Lida Xing; Yeongi Choi (2017). "Korean trackway of a hopping, mammaliform trackmaker is global first from the Cretaceous".Cretaceous Research.74:188–191.doi:10.1016/j.cretres.2017.02.005.
  356. ^Octávio Mateus; Marco Marzola; Anne S. Schulp; Louis L. Jacobs; Michael J. Polcyn; Vladimir Pervov; António Olímpio Gonçalves; Maria Luisa Morais (2017). "Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Africa".Palaeogeography, Palaeoclimatology, Palaeoecology.471:220–232.Bibcode:2017PPP...471..220M.doi:10.1016/j.palaeo.2016.12.049.
  357. ^Elsa Panciroli; Roger B. J. Benson; Stig Walsh (2017)."The dentary ofWareolestes rex (Megazostrodontidae): a new specimen from Scotland and implications for morganucodontan tooth replacement".Papers in Palaeontology.3 (3):373–386.Bibcode:2017PPal....3..373P.doi:10.1002/spp2.1079.S2CID 90894840.
  358. ^Meng Chen; Zhe-Xi Luo; Gregory P. Wilson (2017). "The postcranial skeleton ofYanoconodon allini from the Early Cretaceous of Hebei, China, and its implications for locomotor adaptation in eutriconodontan mammals".Journal of Vertebrate Paleontology.37 (3): e1315425.Bibcode:2017JVPal..37E5425C.doi:10.1080/02724634.2017.1315425.S2CID 90035415.
  359. ^A. V. Lopatin (2017). "Early Cretaceous mammals from the Khamryn-Us and Shalan-Ikher localities in Mongolia".Doklady Biological Sciences.477 (1):210–213.doi:10.1134/S0012496617060011.PMID 29299807.S2CID 8643849.
  360. ^David W. Krause; Simone Hoffmann; Sarah Werning (2017)."First postcranial remains of Multituberculata (Allotheria, Mammalia) from Gondwana".Cretaceous Research.80:91–100.Bibcode:2017CrRes..80...91K.doi:10.1016/j.cretres.2017.08.009.
  361. ^John R. Wible; Guillermo W. Rougier (2017). "Craniomandibular Anatomy of the Subterranean MeridiolestidanNecrolestes patagonensis Ameghino, 1891 (Mammalia, Cladotheria) from the Early Miocene of Patagonia".Annals of Carnegie Museum.84 (3):183–252.doi:10.2992/007.084.0302.S2CID 89869749.
  362. ^A.O. Averianov; J.D. Archibald (2017)."Therian postcranial bones from the Upper Cretaceous Bissekty Formation of Uzbekistan"(PDF).Proceedings of the Zoological Institute of the Russian Academy of Sciences.321 (4):433–484.
  363. ^Gang Han; Fangyuan Mao; Shundong Bi; Yuanqing Wang; Jin Meng (2017). "A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones".Nature.551 (7681):451–456.Bibcode:2017Natur.551..451H.doi:10.1038/nature24483.PMID 29132143.S2CID 4466953.
  364. ^Alexander Averianov; Alexey Lopatin; Pavel Skutschas; Stepan Ivantsov; Elizaveta Boitsova; Ivan Kuzmin (2017). "An enigmatic multituberculate mammal from the Early Cretaceous of Siberia, Russia".Journal of Vertebrate Paleontology.37 (2): e1293070.Bibcode:2017JVPal..37E3070A.doi:10.1080/02724634.2017.1293070.S2CID 90137175.
  365. ^abMaxime Debuysschere (2017). "The Kuehneotheriidae (Mammaliaformes) from Saint-Nicolas-de-Port (Upper Triassic, France): a Systematic Review".Journal of Mammalian Evolution.24 (2):127–146.doi:10.1007/s10914-016-9335-z.S2CID 20444744.
  366. ^Qing-Jin Meng; David M. Grossnickle; Di Liu; Yu-Guang Zhang; April I. Neander; Qiang Ji; Zhe-Xi Luo (2017). "New gliding mammaliaforms from the Jurassic".Nature.548 (7667):291–296.Bibcode:2017Natur.548..291M.doi:10.1038/nature23476.PMID 28792929.S2CID 205259206.
  367. ^Zhe-Xi Luo; Qing-Jin Meng; David M. Grossnickle; Di Liu; April I. Neander; Yu-Guang Zhang; Qiang Ji (2017). "New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem".Nature.548 (7667):326–329.Bibcode:2017Natur.548..326L.doi:10.1038/nature23483.PMID 28792934.S2CID 4463476.
Retrieved from "https://en.wikipedia.org/w/index.php?title=2017_in_paleomammalogy&oldid=1279277928"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp