Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2-Pyridone

From Wikipedia, the free encyclopedia
(Redirected from2-hydroxypyridine)

2-Pyridone
2-Pyridone
2-Pyridone
2-Pyridone molecule (lactam form)
2-Pyridone molecule (lactim form)
Names
Preferred IUPAC name
Pyridin-2(1H)-one
Other names
2(1H)-Pyridinone
2(1H)-Pyridone
1H-Pyridine-2-one
2-Pyridone
1,2-Dihydro-2-oxopyridine
1H-2-Pyridone
2-Oxopyridone
2-Pyridinol
2-Hydroxypyridine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard100.005.019Edit this at Wikidata
EC Number
  • 205-520-3
KEGG
RTECS number
  • UV1144050
UNII
  • InChI=1S/C5H5NO/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7) checkY
    Key: UBQKCCHYAOITMY-UHFFFAOYSA-N checkY
  • InChI=1/C5H5NO/c7-5-2-1-3-6-4-5/h1-4,7H
    Key: GRFNBEZIAWKNCO-UHFFFAOYAT
  • InChI=1/C5H5NO/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7)
    Key: UBQKCCHYAOITMY-UHFFFAOYAK
  • lactim: Oc1ccccn1
  • lactam: C1=CC=CNC(=O)1
Properties
C5H5NO
Molar mass95.101 g·mol−1
AppearanceColourless crystalline solid
Density1.39 g/cm3
Melting point107.8 °C (226.0 °F; 380.9 K)
Boiling point280 °C (536 °F; 553 K) decomp.
Solubility in other solventsSoluble inwater,
methanol,acetone
Acidity (pKa)11.65
UV-vismax)293 nm (ε 5900, H2O soln)
Structure
Orthorhombic
planar
4.26D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
irritating
GHS labelling:
GHS06: ToxicGHS07: Exclamation mark
Danger
H301,H315,H319,H335
P261,P264,P270,P271,P280,P301+P310,P302+P352,P304+P340,P305+P351+P338,P312,P321,P330,P332+P313,P337+P313,P362,P403+P233,P405,P501
NFPA 704 (fire diamond)
Flash point210 °C (410 °F; 483 K)
Related compounds
Otheranions
2-Pyridinolate
Othercations
2-Hydroxypyridinium-ion
alcohol,lactam,lactim,
pyridine,ketone
Related compounds
pyridine,thymine,cytosine,
uracil,benzene
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

2-Pyridone is anorganic compound with the formulaC
5
H
4
NH(O)
. It is a colourless solid. It is well known to formhydrogen bonded dimers and it is also a classic case of a compound that exists astautomers.

Tautomerism

[edit]
tautomerism
tautomerism

The secondtautomer is 2-hydroxypyridine. Thislactamlactimtautomerism can also be exhibited in many related compounds.[1]

Tautomerism in the solid state

[edit]

Theamide group can be involved inhydrogen bonding to othernitrogen- andoxygen-containing species.

The predominantsolid state form is 2-pyridone. This has been confirmed byX-ray crystallography which shows that the hydrogen in solid state is closer to the nitrogen than to the oxygen (because of the low electron density at the hydrogen the exact positioning is difficult), andIR-spectroscopy, which shows that the C=O longitudinal frequency is present whilst the O-H frequencies are absent.[2][3][4][5]

Tautomerism in solution

[edit]

The tautomerization has been exhaustively studied. The energy difference appears to be very small.Non-polar solvents favour 2-hydroxypyridine whereaspolar solvents such asalcohols andwater favour the 2-pyridone.[1][6][7]

The energy difference for the two tautomers in the gas phase was measured byIR-spectroscopy to be 2.43 to 3.3kJ/mol for the solid state and 8.95 kJ/mol and 8.83 kJ/mol for the liquid state.[8][9][10]

Tautomerisation mechanism A

[edit]

The single molecular tautomerisation has a forbidden1-3 suprafacialtransition state and therefore has a highenergy barrier for thistautomerisation, which was calculated withtheoretical methods to be 125 or 210 kJ/mol. The direct tautomerisation is energetically not favoured. There are other possible mechanisms for this tautomerisation.[10]

Dimerisation

[edit]

dimer

2-Pyridone and 2-hydroxypyridine can form dimers with two hydrogen bonds.[11]

Aggregation in the solid state

[edit]

In the solid state the dimeric form is not present; the 2-pyridones form a helical structure over hydrogen bonds. Some substituted 2-pyridones form the dimer in solid state, for example the 5-methyl-3-carbonitrile-2-pyridone. The determination of all these structures was done byX-ray crystallography.In the solid state the hydrogen is located closer to the nitrogen so it could be considered to be right to call the colourless crystals in the flask 2-pyridone.[1][2][3][4][5]

Aggregation in solution

[edit]

In solution the dimeric form is present; the ratio of dimerisation is strongly dependent on the polarity of the solvent. Polar and protic solvents interact with thehydrogen bonds and moremonomer is formed.Hydrophobic effects innon-polar solvents lead to a predominance of the dimer. The ratio of the tautomeric forms is also dependent on the solvent. All possible tautomers and dimers can be present and form an equilibrium, and the exact measurement of all theequilibrium constants in the system is extremely difficult.[11][12][13][14][15][16][17][18][19][20]

(NMR-spectroscopy is a slow method, high resolutionIR-spectroscopy in solvent is difficult, the broad absorption inUV-spectroscopy makes it hard to discriminate 3 and more very similarmolecules).

Some publications only focus one of the two possible patterns, and neglect the influence of the other. For example, to calculation of the energy difference of the two tautomers in a non-polar solution will lead to a wrong result if a large quantity of the substance is on the side of the dimer in an equilibrium.

Tautomerisation mechanism B

[edit]

The direct tautomerisation is not energetically favoured, but adimerisation followed by a double proton transfer anddissociation of the dimer is a self catalytic path from one tautomer to the other. Protic solvents also mediate the proton transfer during the tautomerisation.

Synthesis

[edit]

2-Pyrone can be obtained by a cyclisation reaction, and converted to 2-pyridone via an exchange reaction withammonia:

2-Pyridone synthesis from 2-pyran

Pyridine forms anN-oxide with some oxidation agents such ashydrogen peroxide. This pyridine-N-oxide undergoes a rearrangement reaction to 2-pyridone inacetic anhydride:[21][22][23]

2-Pyridone synthesis from pyridine-N-oxide

In theGuareschi-Thorpe condensationcyanoacetamide reacts with a1,3-diketone to a2-pyridone.[12][13] The reaction is named afterIcilio Guareschi andJocelyn Field Thorpe.[14][15]

Chemical properties

[edit]

Catalytic activity

[edit]

2-Pyridone catalyses a variety of proton-dependent reactions, for example the aminolysis of esters. In some cases, molten 2-pyridone is used as a solvent. 2-Pyridone has a large effect on the reaction from activated esters withamines innonpolarsolvent, which is attributed to its tautomerisation and utility as a ditopic receptor. Proton transfer from 2-pyridone and its tautomer have been investigated byisotope labeling,kinetics andquantum chemical methods.[16][17][24]

Coordination chemistry

[edit]

2-Pyridone and somederivatives serve asligands in coordination chemistry, usually as a 1,3-bridging ligand akin tocarboxylate.[18]

In nature

[edit]

2-Pyridone is not naturally occurring, but a derivative has been isolated as a cofactor in certainhydrogenases.[19]

Environmental behavior

[edit]

2-Pyridone is rapidly degraded by microorganisms in the soil environment, with a half life less than one week.[20] Organisms capable of growth on 2-pyridone as a sole source of carbon, nitrogen, and energy have been isolated by a number of researchers. The most extensively studied 2-pyridone degrader is the gram positive bacteriumArthrobacter crystallopoietes,[25] a member of the phylumActinomycetota which includes numerous related organisms that have been shown to degrade pyridine or one or more alkyl-, carboxyl-, or hydroxyl-substituted pyridines. 2-Pyridone degradation is commonly initiated by mono-oxygenase attack, resulting in a diol, such as 2,5-dihydroxypyridine, which is metabolized via the maleamate pathway. Fission of the ring proceeds via action of 2,5-dihydroxypyridine monooxygenase, which is also involved in metabolism of nicotinic acid via the maleamate pathway. In the case ofArthrobacter crystallopoietes, at least part of the degradative pathway is plasmid-borne.[26] Pyridine diols undergo chemical transformation in solution to form intensely colored pigments. Similar pigments have been observed inquinoline degradation,[27] also owing to transformation of metabolites, however the yellow pigments often reported in degradation of many pyridine solvents, such as unsubstitutedpyridine orpicoline, generally result from overproduction ofriboflavin in the presence of these solvents.[28] Generally speaking, degradation of pyridones, dihydroxypyridines, and pyridinecarboxylic acids is commonly mediated by oxygenases, whereas degradation of pyridine solvents often is not, and may in some cases involve an initial reductive step.[26]

Analytical data

[edit]

NMR spectroscopy

[edit]

NMR data of 2-Pyridone

1H-NMR

[edit]

1H-NMR (400 MHz, CD3OD): /ρ = 8.07 (dd,3J = 2.5 Hz,4J = 1.1 Hz, 1H, C-6), 7.98 (dd,3J = 4.0 Hz,3J = 2.0 Hz, 1H, C-3), 7.23 (dd,3J = 2.5 Hz,3J = 2.0 Hz, 1H, C-5), 7.21 (dd,3J = 4.0 Hz,4J = 1.0 Hz, 1H, C-4).

13C-NMR

[edit]

(100.57 MHz, CD3OD): ρ = 155.9 (C-2), 140.8 (C-4), 138.3 (C-6), 125.8 (C-3), 124.4 (C-5)

UV/Vis spectroscopy

[edit]

(MeOH):νmax (lg ε) = 226.2 (0.44), 297.6 (0.30).

IR spectroscopy

[edit]

(KBr): ν = 3440 cm−1–1 (br, m), 3119 (m), 3072 (m), 2986 (m), 1682 (s), 1649 (vs), 1609 (vs), 1578 (vs), 1540 (s), 1456 (m), 1433 (m), 1364 (w), 1243 (m), 1156 (m), 1098 (m), 983 (m), 926 (w), 781 (s), 730 (w), 612 (w), 560 (w), 554 (w), 526 (m), 476 (m), 451 (w).

Mass spectrometry

[edit]

EI-MS (70 eV): m/z (%) = 95 (100) [M+], 67 (35) [M+ - CO], 51 (4)[C4H3+].

  This box:  

References

[edit]

See also

[edit]

References

[edit]
  1. ^abcForlani L., Cristoni G., Boga C., Todesco P. E., Del Vecchio E., Selva S., Monari M. (2002)."Reinvestigation of tautomerism of some substituted 2-hydroxypyridines".Arkivoc.XI (11):198–215.doi:10.3998/ark.5550190.0003.b18.hdl:2027/spo.5550190.0003.b18.
  2. ^abYang H. W., Craven B. M. (1998). "Charge Density of 2-Pyridone".Acta Crystallogr. B.54 (6):912–920.doi:10.1107/S0108768198006545.PMID 9880899.S2CID 9505447.
  3. ^abPenfold B. R. (1953)."The Electron Distribution in Crystalline Alpha Pyridone".Acta Crystallogr.6 (7):591–600.Bibcode:1953AcCry...6..591P.doi:10.1107/S0365110X5300168X.
  4. ^abOhms U., Guth H., Heller E., Dannöhl H., Schweig A. (1984). "Comparison of Observed and Calculated Electron-Density 2-Pyridone, C5H5NO, Crystal-Structure Refinements at 295K and 120K, Experimental and Theoretical Deformation Density Studies".Z. Kristallogr.169:185–200.doi:10.1524/zkri.1984.169.14.185.S2CID 97575334.
  5. ^abAlmlöf J., Kvick A., Olovsson I. (1971). "Hydrogen Bond Studies Crystal Structure of Intermolecular Complex 2-Pyridone-6-Chloro-2-Hdroxypyridine".Acta Crystallogr. B.27 (6):1201–1208.doi:10.1107/S0567740871003753.
  6. ^Aue DH, Betowski LD, Davidson WR, Bower MT, Beak P (1979). "Gas-Phase Basicities of Amides and Imidates - Estimation of Protomeric Equilibrium-Constantes by the Basicity methode in the Gas-Phase".Journal of the American Chemical Society.101 (6):1361–1368.Bibcode:1979JAChS.101.1361A.doi:10.1021/ja00500a001.
  7. ^Frank J.,Alan R. Katritzky (1976). "Tautomeric pyridines. XV. Pyridone-hydroxypyridine equilibria in solvents of different polarity".J Chem Soc Perkin Trans 2 (12):1428–1431.doi:10.1039/p29760001428.
  8. ^Brown R. S., Tse A., Vederas J. C. (1980). "Photoelectro-Determined Core Binding Energies and Predicted Gas-Phase Basicities for the 2-Hydroxypyridine 2-Pyridone System".Journal of the American Chemical Society.102 (3):1174–1176.doi:10.1021/ja00523a050.
  9. ^Beak P. (1977). "Energies and Alkylation of Tautomeric Heterocyclic-Compounds - Old Problems New Answers".Acc. Chem. Res.10 (5):186–192.doi:10.1021/ar50113a006.
  10. ^abAbdulla H. I., El-Bermani M. F. (2001). "Infrared studies of tautomerism in 2-hydroxypyridine 2-thiopyridine and 2-aminopyridine".Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.57 (13):2659–2671.Bibcode:2001AcSpA..57.2659A.doi:10.1016/S1386-1425(01)00455-3.PMID 11765793.
  11. ^abHammes GG, Lillford PJ (1970). "A Kinetic and Equilibrium Study of Hydrogen Bond Dimerization of 2-Pyridone in Hydrogen Bonding Solvent".J. Am. Chem. Soc.92 (26):7578–7585.doi:10.1021/ja00729a012.
  12. ^abGilchrist, T.L. (1997). Heterocyclic ChemistryISBN 0-470-20481-8
  13. ^abRybakov V. R., Bush A. A., Babaev E. B., Aslanov L. A. (2004). "3-Cyano-4,6-dimethyl-2-pyridone (Guareschi Pyridone)".Acta Crystallogr E.6 (2):o160 –o161.Bibcode:2004AcCrE..60O.160R.doi:10.1107/S1600536803029295.
  14. ^abI. Guareschi (1896). "Mem. Reale Accad. Sci. Torino II".{{cite journal}}:Cite journal requires|journal= (help)
  15. ^abBaron, H., Remfry, F. G. P., Thorpe, J. F. (1904)."CLXXV.-The formation and reactions of imino-compounds. Part I. Condensation of ethyl cyanoacetate with its sodium derivative".J. Chem. Soc., Trans.85:1726–1761.doi:10.1039/ct9048501726.Archived from the original on 2020-09-14. Retrieved2020-06-05.
  16. ^abFischer C. B., Steininger H., Stephenson D. S., Zipse H. (2005). "Catalysis of Aminolysis of 4-Nitrophenyl Acetate by 2-Pyridone".Journal of Physical Organic Chemistry.18 (9):901–907.doi:10.1002/poc.914.
  17. ^abL.-H. Wang, H. Zipse (1996)."Bifunctional Catalysis of Ester Aminolysis - A Computational and Experimental Study".Liebigs Ann.1996 (10):1501–1509.doi:10.1002/jlac.199619961003.Archived from the original on 2021-09-01. Retrieved2021-09-01.
  18. ^abRawson J. M., Winpenny R. E. P. (1995). "The coordination chemistry of 2-pyridones and its derivatives".Coordination Chemistry Reviews.139 (139):313–374.doi:10.1016/0010-8545(94)01117-T.
  19. ^abShima, S.; Lyon, E. J.; Sordel-Klippert, M.; Kauss, M.; Kahnt, J.; Thauer, R. K.; Steinbach, K.; Xie, X.; Verdier, L. and Griesinger, C., "Structure elucidation: The cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product", Angew. Chem. Int. Ed., 2004, 43, 2547-2551.
  20. ^abSims, Gerald K., S (1985)."Degradation of Pyridine Derivatives in Soil".Journal of Environmental Quality.14 (4):580–584.Bibcode:1985JEnvQ..14..580S.doi:10.2134/jeq1985.00472425001400040022x. Archived fromthe original on 2008-08-30.
  21. ^"Pyridin-N-oxydと酸無水物との反應" [Reaction between Pyridin-N-oxyd and acid anhydride].Yakugaku Zasshi (in Japanese).67 (3–4):51–52. 1947.doi:10.1248/yakushi1947.67.3-4_51.
  22. ^Ochiai E (1953). "Recent Japanese Work on the Chemistry of Pyridine 1-Oxide and Related Compounds".The Journal of Organic Chemistry.18 (5):534–551.doi:10.1021/jo01133a010.
  23. ^Boekelheide V, Lehn WL (1961). "The Rearrangement of Substituted Pyridine N-Oxides with Acetic Anhydride1.2".The Journal of Organic Chemistry.26 (2):428–430.doi:10.1021/jo01061a037.
  24. ^Fischer C. B., Polborn K., Steininger H., Zipse H. (2004)."Synthesis and Solid-State Structures of Alkyl-Substituted 3-Cyano-2-pyridones"(PDF).Zeitschrift für Naturforschung.59 (59b):1121–1131.doi:10.1515/znb-2004-1008.S2CID 98273691. Archived fromthe original(subscription required) on 2008-10-30. Retrieved2006-11-07.
  25. ^Ensign JC, Rittenberg SC (1963). "A crystalline pigment produced from 2-hydroxypyridine by arthrobacter crystallopoietes n.sp".Archiv für Mikrobiologie.47 (2):137–153.Bibcode:1963ArMic..47..137E.doi:10.1007/BF00422519.PMID 14106078.S2CID 6389661.
  26. ^abSims GK, O'Loughlin E, Crawford R (1989)."Degradation of pyridines in the environment"(PDF).CRC Critical Reviews in Environmental Control.19 (4):309–340.Bibcode:1989CRvEC..19..309S.doi:10.1080/10643388909388372. Archived fromthe original(PDF) on 2010-05-27.
  27. ^Oloughlin E, Kehrmeyer S, Sims G (1996). "Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium".International Biodeterioration & Biodegradation.38 (2):107–118.Bibcode:1996IBiBi..38..107O.doi:10.1016/S0964-8305(96)00032-7.
  28. ^Sims, Gerald K., O (1992)."Riboflavin Production during Growth of Micrococcus luteus on Pyridine".Applied and Environmental Microbiology.58 (10):3423–3425.Bibcode:1992ApEnM..58.3423S.doi:10.1128/AEM.58.10.3423-3425.1992.PMC 183117.PMID 16348793.

Further reading

[edit]

General

[edit]
  1. Engdahl K., Ahlberg P. (1977).Journal of Chemical Research:340–341.{{cite journal}}:Missing or empty|title= (help)
  2. Bensaude O, Chevrier M, Dubois J (1978). "Lactim-Lactam Tautomeric Equilibrium of 2-Hydroxypyridines. 1.Cation Binding, Dimerization and Interconversion Mechanism in Aprotic Solvents. A Spectroscopic and Temperature-Jump Kinetic Study".J. Am. Chem. Soc.100 (22):7055–7066.Bibcode:1978JAChS.100.7055B.doi:10.1021/ja00490a046.
  3. Bensaude O, Dreyfus G, Dodin G, Dubois J (1977). "Intramolecular Nondissociative Proton Transfer in Aqueous Solutions of Tautomeric Heterocycles: a Temperature-Jump Kinetic Study".J. Am. Chem. Soc.99 (13):4438–4446.Bibcode:1977JAChS..99.4438B.doi:10.1021/ja00455a037.
  4. Bensaude O, Chevrier M, Dubois J (1978). "Influence of Hydration upon Tautomeric Equilibrium".Tetrahedron Lett.19 (25):2221–2224.doi:10.1016/S0040-4039(01)86850-7.
  5. Hammes GG, Park AC (1969). "Kinetic and Thermodynamic Studies of Hydrogen Bonding".J. Am. Chem. Soc.91 (4):956–961.Bibcode:1969JAChS..91..956H.doi:10.1021/ja01032a028.
  6. Hammes GG, Spivey HO (1966). "A Kinetic Study of the Hydrogen-Bond Dimerization of 2-Pyridone".J. Am. Chem. Soc.88 (8):1621–1625.Bibcode:1966JAChS..88.1621H.doi:10.1021/ja00960a006.PMID 5942979.
  7. Beak P, Covington JB, Smith SG (1976). "Structural Studies of Tautomeric Systems: the Importance of Association for 2-Hydroxypyridine-2-Pyridone and 2-Mercaptopyridine-2-Thiopyridone".J. Am. Chem. Soc.98 (25):8284–8286.Bibcode:1976JAChS..98.8284B.doi:10.1021/ja00441a079.
  8. Beak P, Covington JB, White JM (1980). "Quantitave Model of Solvent Effects on Hydroxypyridine-Pyridone and Mercaptopyridine-Thiopyridone Equilibria: Correlation with Reaction-Field and Hydrogen-Bond Effects".J. Org. Chem.45 (8):1347–1353.doi:10.1021/jo01296a001.
  9. Beak P, Covington JB, Smith SG, White JM, Zeigler JM (1980). "Displacement of Protomeric Equilibria by Self-Association: Hydroxypyridine-Pyridone and Mercaptopyridine-Thiopyridone Isomer Pairs".J. Org. Chem.45 (8):1354–1362.doi:10.1021/jo01296a002.

Tautomerism

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=2-Pyridone&oldid=1275648115"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp