Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Comet Holmes

From Wikipedia, the free encyclopedia
(Redirected from17P/Holmes)
Periodic comet with 6-year orbit
17P/Holmes
Comet 17P/Holmes and its blueion tail
(taken on November 4, 2007)
Discovery
Discovery dateNovember 6, 1892
Designations
1892 V1; 1892 III;
1892f; 1899 L1;
1899 II; 1899d;
1906 III; 1906f;
1964 O1; 1964 X;
1964i; 1972 I;
1971b; 1979 IV;
1979f; 1986 V;
1986f; 1993 VII;
1993i
Orbital characteristics
EpochOctober 27, 2007 (JD 2454400.5)
Aphelion5.183610 AU
Perihelion2.053218 AU
Semi-major axis3.618414AU
Eccentricity0.432564
Orbital period6.882994a
Inclination19.1126°
Last perihelionFebruary 19, 2021[1][2]
March 27, 2014
May 4, 2007
Next perihelionJanuary 31, 2028[3][4]

Comet Holmes/ˈhmz/ (official designation:17P/Holmes) is aperiodic comet in theSolar System, discovered by the British amateur astronomerEdwin Holmes on November 6, 1892. Although normally a very faint object, Holmes became notable during its October 2007 return when it temporarily brightened by a factor of a million, in what was the largest known outburst by a comet, and became visible to the naked eye.[5] It also briefly became thelargest object in the Solar System, as itscoma (the thin dissipating dust ball around the comet) expanded to a diameter greater than that of theSun (although itsmass remained minuscule).[6] Between 1857–2106 perihelion remains between 2.05–2.36 AU.[7]

Discovery

[edit]
10 November 1892, near theAndromeda Galaxy

Comet Holmes was discovered byEdwin Holmes on November 6, 1892, while he was conducting regular observations of theAndromeda Galaxy (M31).[8][9]Its discovery in 1892 was possible because of an increase in itsmagnitude similar to the 2007 outburst; it brightened to an approximate magnitude of 4 or 5 before fading from visibility over a period of several weeks.[10]

The comet's discovery was confirmed byEdward Walter Maunder (Royal Observatory,Greenwich,England),William Henry Maw (Kensington,London,England), and B. Kidd (Bramley, Surrey,England).[8][9]Independent discoveries were made byThomas David Anderson (Edinburgh, Scotland) on November 8 and by Mike Brown (Wilkes, USA) and byJohn Ewen Davidson (Mackay,Queensland, Australia) on November 9.[11]

The first calculations of the elliptical orbit of 17P/Holmes were done independently byHeinrich Kreutz andGeorge Mary Searle. Additional orbits eventually established theperihelion date as June 13 and theorbital period as 6.9 years. These calculations proved that the comet was not a return ofBiela's Comet.

The 1899 and 1906 appearances were observed, but the comet was lost (seeLost comet) after 1906 until it was recovered on July 16, 1964, byElizabeth Roemer (US Naval Observatory Flagstaff Station,Arizona, United States). Aided by the computer predictions ofBrian G. Marsden, the comet has been observed on every subsequent return.

2007 outburst

[edit]
Comet 17P/Holmes on 2 November 2007

During its 2007 return, Holmes unexpectedly brightened from amagnitude of about 17 to about 2.8 in a period of only 42 hours, making it visible to the naked eye. This represents a change of brightness by a factor of a million and is the largest known outburst by a comet thus far.[5] The outburst took place from October 23 to 24, 2007.[5][12][13] The first person reportedly to notice a change was J. A. Henríquez Santana onTenerife in theCanary Islands; minutes later, Ramón Naves inBarcelona noticed the comet at magnitude 7.3.[13] It became easily visible to thenaked eye as a bright yellow "star" inPerseus,[14][15] and by October 25 17P/Holmes appeared as the third-brightest "star" in that constellation.[13]

Although large telescopes had already shown fine-scale cometary details, naked-eye observers saw Holmes as merely star-like until October 26.[14] After that date, 17P/Holmes began to appear more comet-like to naked-eye observers.[14] This is because during the comet's outburst, its orbit took it to nearopposition with respect to Earth, and because comet tails point away from the Sun, Earth observers were looking nearly straight down along the tail of 17P/Holmes, making the comet appear as a bright sphere.

Holmes'snucleus is estimated at 3.4 km.[16]

Comet Holmes not only became brighter, but its coma (nebulous envelope around the nucleus) expanded. In late October 2007 thecoma'sapparent diameter increased from 3.3 arcminutes to over 13 arcminutes,[17] about half the diameter of the Moon in the sky. At a distance of around 2AU, this means that the true diameter of the coma had swelled to over 1 million km,[18] or about 70% of the diameter of theSun. By comparison, theMoon is 380,000 km fromEarth. Therefore, during the 2007 outburst of Comet Holmes the coma was a sphere wider than the diameter of the Moon's orbit aroundEarth. In November 2007, the coma had dispersed to a volume larger than the Sun, briefly giving it the largest extended atmosphere in the Solar System.[6][19]

The cause of the outburst is not definitely known. The huge cloud of gas and dust may have resulted from a collision with ameteoroid, or, more probably, from a build-up of gas inside the comet'snucleus that eventually broke through the surface.[20] However, researchers at theMax Planck Institute suggest in a paper published inAstronomy and Astrophysics that the brightening can be explained by a thick, air-tight dust cover and the effects of H2Osublimation, with the comet's porous structure providing more surface area for sublimation, up to one order of magnitude greater. Energy from the Sun – insolation – was stored in the dust cover and the nucleus within the months before the outburst.[21]

The comet remained visible in February 2008 though it had become a challenging target at about magnitude +5 in the constellationPerseus. It had expanded to greater than 2 degrees of arc as seen from Earth, and thus had very little surface brightness. Notably the comet 17P/Holmes dust trail from the 2007 outburst repeatedly converges at the original site.[5]

An outburst of 3–4 magnitudes occurred in January 2015, but still required a large telescope to be seen.[22]

  • On October 25 the comet looked liked a bright new star in the constellation of Perseus.
    On October 25 the comet looked liked a bright new star in the constellation ofPerseus.
  • This photo composite shows the comet's size and motion in the constellation Perseus from October 25, 2007 through March 9, 2008.
    This photo composite shows the comet's size and motion in the constellation Perseus from October 25, 2007 through March 9, 2008.
  • Motion with expanding dust cloud A simulation showing the angular diameter of the expanding dust cloud for 120 days past the initial event on October 24. The surface brightness decreased over time.
    Motion with expanding dust cloud
    A simulation showing theangular diameter of the expanding dust cloud for 120 days past the initial event on October 24. Thesurface brightness decreased over time.
  • 17P/Holmes is a periodic comet in an inclined and elliptical orbit between Mars and Jupiter.[23] The comet was closest to the Sun on May 4, 2007.
    17P/Holmes is a periodic comet in an inclined andelliptical orbit betweenMars andJupiter.[23] The comet was closest to the Sun on May 4, 2007.
  • Animation of Comet Holmes's orbit from 1 January 2011 to 31 December 2017   Comet Holmes  ·   Earth ·   Mars ·   Jupiter
    Animation ofComet Holmes's orbit from 1 January 2011 to 31 December 2017
      Comet Holmes ·   Earth ·   Mars ·   Jupiter

References

[edit]
  1. ^Seiichi Yoshida."17P/Holmes". Seiichi Yoshida's Comet Catalog. Retrieved2010-02-24.
  2. ^Syuichi Nakano (2011-05-19)."17P/Holmes (NK 2100)". OAA Computing and Minor Planet Sections. Archived fromthe original on 2015-09-11. Retrieved2012-02-18.
  3. ^"17P/Holmes Orbit".Minor Planet Center. Retrieved2021-06-12.
  4. ^"Horizons Batch for 17P/Holmes (90000285) on 2028-Jan-31" (Perihelion occurs when rdot flips from negative to positive).JPL Horizons. Retrieved2023-02-11. (JPL#K212/32 Soln.date: 2023-Jan-30)
  5. ^abcdGritsevich, M.; Nissinen, M.; Oksanen, A.; Suomela, J.; Silber, E. A. (June 2022)."Evolution of the dust trail of comet 17P/Holmes".Monthly Notices of the Royal Astronomical Society.513 (2):2201–2214.doi:10.1093/mnras/stac822.hdl:10995/117894.
  6. ^abJewitt, David (2007-11-09)."Comet Holmes Bigger Than The Sun". Institute for Astronomy at the University of Hawaii. Retrieved2007-11-17.
  7. ^Kinoshita, Kazuo (2019-05-22)."17P/Holmes past, present and future orbital elements".Comet Orbit.Archived from the original on 2011-07-10. Retrieved2023-07-19.
  8. ^abHolmes, Edwin (1892). "Discovery of a New Comet in Andromeda".The Observatory.15:441–443.Bibcode:1892Obs....15..441H.
  9. ^ab"Meeting of the Royal Astronomical Society, Friday, November 11, 1892".The Observatory.15:417–424. 1892.Bibcode:1892Obs....15..417.
  10. ^Editors. "Comet Holmes Stays Bright, Enlarges in the Evening SkyArchived 2007-10-27 atarchive.today",Sky and Telescope, 27 October 2007. Retrieved 29 October 2007.
  11. ^Davidson, J. E. "Comet e, 1889,"The Observatory, July 1890, Vol. 13, pp. 247. Retrieved 27 October 2007.
  12. ^Gunn, Angela. "Flash News Flash!Archived 2007-06-25 at theWayback Machine,"USA Today Tech Space, 24 October 2007. Retrieved 25 October 2007.
  13. ^abcRoger W. Sinnott (October 24, 2007)."Comet Holmes Undergoes Huge Outburst".Sky & Telescope. Archived fromthe original on 2007-10-27. Retrieved2007-10-25.
  14. ^abcFischer, Daniel. "Incredible comet eruption: from under 17th to 3rd magnitude in hours!,"The Cosmic Mirror, #306, 24 October 2007. Retrieved 25 October 2007.
  15. ^Skymap: late October 2007, Northeast, after sunset,Spaceweather.com. Retrieved 28 October 2007
  16. ^Primary measurements, Chris L. PetersonCloudbait Observatory, ColoradoArchived 2011-05-25 at theWayback Machine, The coma size values plotted at the bottom of this page are primary measurements. They were obtained using conventional methods: individual short CCDs images were made in order to avoid saturation, and these were then calibrated with bias, flat, and dark frames and summed to increase the image dynamic range. Each stacked image (for the 5 nights of data) was astrometrically calibrated (using Pinpoint) for scale, and the intensity profile of the coma measured with a standard tool (in this case, the line profile tool in MaximDL). The resulting profiles were exported to Excel, normalized to the same gain, and the width measured against the noise floor. The best reference is the plotted data itself.
  17. ^Primary measurements, (see luminosity graph; bottom of page)Cloudbait Observatory, ColoradoArchived 2011-05-25 at theWayback Machine
  18. ^2 AU×(~150 Gm/AU)×sin(13 arcmin) ≈ 1.1 million km
  19. ^Britt, Robert (2007-11-15)."Incredible Comet Bigger than the Sun".Space.com. Retrieved2008-04-30.
  20. ^"Comet Holmes brightens in retreat", BBC NEWS, 30 October 2007
  21. ^Altenhoff, W. J.; Kreysa, E.; Menten, K. M.; Sievers, A.; Thum, C.; Weiss, A. (2009). "Why did Comet 17P/Holmes burst out? Nucleus splitting or delayed sublimation?".Astronomy and Astrophysics.495 (3):975–978.arXiv:0901.2739.Bibcode:2009A&A...495..975A.doi:10.1051/0004-6361:200810458.
  22. ^Comet 17P/Holmes: report on brightest outburst since 2007
  23. ^Nasa 3D simulation of orbit for 17P/Holmes (Java Applet)

External links

[edit]
Wikimedia Commons has media related to17P/Holmes.


Numbered comets
Previous
16P/Brooks
Comet HolmesNext
18D/Perrine–Mrkos
Features
Comet C/1996 B2 (Hyakutake)
Types
Related
Exploration
Latest
Culture and
speculation
Periodic
comets
Until 1985
(all)
After 1985
(notable)
Comet-like
asteroids
Lost
Recovered
Destroyed
Not found
Visited by
spacecraft
Near-Parabolic
comets
(notable)
Until 1990
After 1990
After 1910
(by name)
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Comet_Holmes&oldid=1283437467"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp