What is carbon sequestration?

Carbon dioxide is the most commonly produced greenhouse gas. Carbon sequestration is the process of capturing and storing atmospheric carbon dioxide. It is one method of reducing the amount of carbon dioxide in the atmosphere with the goal of reducing global climate change. The USGS is conducting assessments on two major types of carbon sequestration: geologic and biologic.

Related Content

What’s the difference between geologic and biologic carbon sequestration?

Geologic carbon sequestration is the process of storing carbon dioxide (CO2) in underground geologic formations. The CO2 is usually pressurized until it becomes a liquid, and then it is injected into porous rock formations in geologic basins. This method of carbon storage is also sometimes a part of enhanced oil recovery, otherwise known as tertiary recovery, because it is typically used later in...

link

What’s the difference between geologic and biologic carbon sequestration?

Geologic carbon sequestration is the process of storing carbon dioxide (CO2) in underground geologic formations. The CO2 is usually pressurized until it becomes a liquid, and then it is injected into porous rock formations in geologic basins. This method of carbon storage is also sometimes a part of enhanced oil recovery, otherwise known as tertiary recovery, because it is typically used later in...

Learn More

How does carbon get into the atmosphere?

Atmospheric carbon dioxide comes from two primary sources—natural and human activities. Natural sources of carbon dioxide include most animals, which exhale carbon dioxide as a waste product. Human activities that lead to carbon dioxide emissions come primarily from energy production, including burning coal, oil, or natural gas.Learn more: Sources of Greenhouse Gas Emissions (EPA)

link

How does carbon get into the atmosphere?

Atmospheric carbon dioxide comes from two primary sources—natural and human activities. Natural sources of carbon dioxide include most animals, which exhale carbon dioxide as a waste product. Human activities that lead to carbon dioxide emissions come primarily from energy production, including burning coal, oil, or natural gas.Learn more: Sources of Greenhouse Gas Emissions (EPA)

Learn More

How much carbon dioxide can the United States store via geologic sequestration?

In 2013, the USGS released the first-ever comprehensive, nation-wide assessment of geologic carbon sequestration, which estimates a mean storage potential of 3,000 metric gigatons of carbon dioxide. The assessment is the first geologically-based, probabilistic assessment, with a range of 2,400 to 3,700 metric gigatons of potential carbon dioxide storage. In addition, the assessment is for the...

link

How much carbon dioxide can the United States store via geologic sequestration?

In 2013, the USGS released the first-ever comprehensive, nation-wide assessment of geologic carbon sequestration, which estimates a mean storage potential of 3,000 metric gigatons of carbon dioxide. The assessment is the first geologically-based, probabilistic assessment, with a range of 2,400 to 3,700 metric gigatons of potential carbon dioxide storage. In addition, the assessment is for the...

Learn More

Which area is the best for geologic carbon sequestration?

It is difficult to characterize one area as “the best” for carbon sequestration because the answer depends on the question: best for what? However, the area of the assessment with the most storage potential for carbon dioxide is the Coastal Plains region, which includes coastal basins from Texas to Georgia. That region accounts for 2,000 metric gigatons, or 65 percent, of the storage potential...

link

Which area is the best for geologic carbon sequestration?

It is difficult to characterize one area as “the best” for carbon sequestration because the answer depends on the question: best for what? However, the area of the assessment with the most storage potential for carbon dioxide is the Coastal Plains region, which includes coastal basins from Texas to Georgia. That region accounts for 2,000 metric gigatons, or 65 percent, of the storage potential...

Learn More

How much carbon dioxide does the United States and the World emit each year from energy sources?

The U.S. Energy Information Administration estimates that in 2019, the United States emitted 5,130 million metric tons of energy-related carbon dioxide, while the global emissions of energy-related carbon dioxide totaled 33,621.5 million metric tons.

link

How much carbon dioxide does the United States and the World emit each year from energy sources?

The U.S. Energy Information Administration estimates that in 2019, the United States emitted 5,130 million metric tons of energy-related carbon dioxide, while the global emissions of energy-related carbon dioxide totaled 33,621.5 million metric tons.

Learn More

Has the USGS made any Biologic Carbon Sequestration assessments?

The USGS is congressionally mandated (2007 Energy Independence and Security Act) to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases (including carbon dioxide) in ecosystems. At this writing, reports have been completed for Alaska, the Eastern U.S., the Great Plains, and the Western U.S. Learn more: Land Change Science...

link

Has the USGS made any Biologic Carbon Sequestration assessments?

The USGS is congressionally mandated (2007 Energy Independence and Security Act) to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases (including carbon dioxide) in ecosystems. At this writing, reports have been completed for Alaska, the Eastern U.S., the Great Plains, and the Western U.S. Learn more: Land Change Science...

Learn More
Filter Total Items: 13

National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary

IntroductionIn 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources that might be produced by using current carbon dioxide enhanced oil recovery (CO2-EOR) technologies in amenable conventional oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes est

National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results

In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied to amenable oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes estimates of the mass of CO2 that

Carbon dioxide mineralization feasibility in the United States

Geologic carbon dioxide (CO2) storage is one of many methods for stabilizing the increasing concentration of CO2 in the Earth’s atmosphere. The injection of CO2 in deep subsurface sedimentary reservoirs is the most commonly discussed method; however, the potential for CO2 leakage can create long-term stability concerns. This report discusses the feasibility of an alternative form of geologic CO2 s

A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the lower Waccamaw River, South Carolina

Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density

Aggregation of carbon dioxide sequestration storage assessment units

The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessment

Carbon sequestration and its role in the global carbon cycle

For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle pr

Biochar for soil fertility and natural carbon sequestration

Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both

A feasibility study of geological CO2 sequestration in the Ordos Basin, China

The Shaanxi Province/Wyoming CCS Partnership (supported by DOE NETL) aims to store commercial quantities of CO2 safely and permanently in the Ordovician Majiagou Formation in the northern Ordos Basin, Shaanxi Province, China. This objective is imperative because at present, six coal-to-liquid facilities in Shaanxi Province are capturing and venting significant quantities of CO2. The Wyoming State

A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

he Energy Independence and Security Act of 2007 (EISA), Section 712, mandates the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation’s ecosystems, focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems

A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on

Assessing spatial uncertainty in reservoir characterization for carbon sequestration planning using public well-log data: A case study

Mapping and characterization of potential geologic reservoirs are key components in planning carbon dioxide (CO2) injection projects. The geometry of target and confining layers is vital to ensure that the injected CO2 remains in a supercritical state and is confined to the target layer. Also, maps of injection volume (porosity) are necessary to estimate sequestration capacity at undrilled locatio

A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry c
link

Making Minerals-How Growing Rocks Can Help Reduce Carbon Emissions

Following an assessment of geologic carbon storage potential in sedimentary rocks, the USGS has published a comprehensive review of potential carbon...

Read Article
link

Groundwater Sampling Method Key to Monitoring Success of Carbon Sequestration

TECHNICAL ANNOUNCEMENT: Monitoring, verification and accounting are key parts to demonstrating the feasibility or success of integrated carbon capture...

Read Article
link

Methane from Some Wetlands May Lower Benefits of Carbon Sequestration

Methane emissions from restored wetlands may offset the benefits of carbon sequestration a new study from the U.S. Geological Survey suggests. 

Read Article

Related Content

  • FAQ

    What’s the difference between geologic and biologic carbon sequestration?

    Geologic carbon sequestration is the process of storing carbon dioxide (CO2) in underground geologic formations. The CO2 is usually pressurized until it becomes a liquid, and then it is injected into porous rock formations in geologic basins. This method of carbon storage is also sometimes a part of enhanced oil recovery, otherwise known as tertiary recovery, because it is typically used later in...

    link

    What’s the difference between geologic and biologic carbon sequestration?

    Geologic carbon sequestration is the process of storing carbon dioxide (CO2) in underground geologic formations. The CO2 is usually pressurized until it becomes a liquid, and then it is injected into porous rock formations in geologic basins. This method of carbon storage is also sometimes a part of enhanced oil recovery, otherwise known as tertiary recovery, because it is typically used later in...

    Learn More

    How does carbon get into the atmosphere?

    Atmospheric carbon dioxide comes from two primary sources—natural and human activities. Natural sources of carbon dioxide include most animals, which exhale carbon dioxide as a waste product. Human activities that lead to carbon dioxide emissions come primarily from energy production, including burning coal, oil, or natural gas.Learn more: Sources of Greenhouse Gas Emissions (EPA)

    link

    How does carbon get into the atmosphere?

    Atmospheric carbon dioxide comes from two primary sources—natural and human activities. Natural sources of carbon dioxide include most animals, which exhale carbon dioxide as a waste product. Human activities that lead to carbon dioxide emissions come primarily from energy production, including burning coal, oil, or natural gas.Learn more: Sources of Greenhouse Gas Emissions (EPA)

    Learn More

    How much carbon dioxide can the United States store via geologic sequestration?

    In 2013, the USGS released the first-ever comprehensive, nation-wide assessment of geologic carbon sequestration, which estimates a mean storage potential of 3,000 metric gigatons of carbon dioxide. The assessment is the first geologically-based, probabilistic assessment, with a range of 2,400 to 3,700 metric gigatons of potential carbon dioxide storage. In addition, the assessment is for the...

    link

    How much carbon dioxide can the United States store via geologic sequestration?

    In 2013, the USGS released the first-ever comprehensive, nation-wide assessment of geologic carbon sequestration, which estimates a mean storage potential of 3,000 metric gigatons of carbon dioxide. The assessment is the first geologically-based, probabilistic assessment, with a range of 2,400 to 3,700 metric gigatons of potential carbon dioxide storage. In addition, the assessment is for the...

    Learn More

    Which area is the best for geologic carbon sequestration?

    It is difficult to characterize one area as “the best” for carbon sequestration because the answer depends on the question: best for what? However, the area of the assessment with the most storage potential for carbon dioxide is the Coastal Plains region, which includes coastal basins from Texas to Georgia. That region accounts for 2,000 metric gigatons, or 65 percent, of the storage potential...

    link

    Which area is the best for geologic carbon sequestration?

    It is difficult to characterize one area as “the best” for carbon sequestration because the answer depends on the question: best for what? However, the area of the assessment with the most storage potential for carbon dioxide is the Coastal Plains region, which includes coastal basins from Texas to Georgia. That region accounts for 2,000 metric gigatons, or 65 percent, of the storage potential...

    Learn More

    How much carbon dioxide does the United States and the World emit each year from energy sources?

    The U.S. Energy Information Administration estimates that in 2019, the United States emitted 5,130 million metric tons of energy-related carbon dioxide, while the global emissions of energy-related carbon dioxide totaled 33,621.5 million metric tons.

    link

    How much carbon dioxide does the United States and the World emit each year from energy sources?

    The U.S. Energy Information Administration estimates that in 2019, the United States emitted 5,130 million metric tons of energy-related carbon dioxide, while the global emissions of energy-related carbon dioxide totaled 33,621.5 million metric tons.

    Learn More

    Has the USGS made any Biologic Carbon Sequestration assessments?

    The USGS is congressionally mandated (2007 Energy Independence and Security Act) to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases (including carbon dioxide) in ecosystems. At this writing, reports have been completed for Alaska, the Eastern U.S., the Great Plains, and the Western U.S. Learn more: Land Change Science...

    link

    Has the USGS made any Biologic Carbon Sequestration assessments?

    The USGS is congressionally mandated (2007 Energy Independence and Security Act) to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases (including carbon dioxide) in ecosystems. At this writing, reports have been completed for Alaska, the Eastern U.S., the Great Plains, and the Western U.S. Learn more: Land Change Science...

    Learn More
  • Multimedia
  • Publications
    Filter Total Items: 13

    National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary

    IntroductionIn 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources that might be produced by using current carbon dioxide enhanced oil recovery (CO2-EOR) technologies in amenable conventional oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes est

    National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results

    In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied to amenable oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes estimates of the mass of CO2 that

    Carbon dioxide mineralization feasibility in the United States

    Geologic carbon dioxide (CO2) storage is one of many methods for stabilizing the increasing concentration of CO2 in the Earth’s atmosphere. The injection of CO2 in deep subsurface sedimentary reservoirs is the most commonly discussed method; however, the potential for CO2 leakage can create long-term stability concerns. This report discusses the feasibility of an alternative form of geologic CO2 s

    A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the lower Waccamaw River, South Carolina

    Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density

    Aggregation of carbon dioxide sequestration storage assessment units

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessment

    Carbon sequestration and its role in the global carbon cycle

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle pr

    Biochar for soil fertility and natural carbon sequestration

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both

    A feasibility study of geological CO2 sequestration in the Ordos Basin, China

    The Shaanxi Province/Wyoming CCS Partnership (supported by DOE NETL) aims to store commercial quantities of CO2 safely and permanently in the Ordovician Majiagou Formation in the northern Ordos Basin, Shaanxi Province, China. This objective is imperative because at present, six coal-to-liquid facilities in Shaanxi Province are capturing and venting significant quantities of CO2. The Wyoming State

    A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    he Energy Independence and Security Act of 2007 (EISA), Section 712, mandates the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation’s ecosystems, focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems

    A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on

    Assessing spatial uncertainty in reservoir characterization for carbon sequestration planning using public well-log data: A case study

    Mapping and characterization of potential geologic reservoirs are key components in planning carbon dioxide (CO2) injection projects. The geometry of target and confining layers is vital to ensure that the injected CO2 remains in a supercritical state and is confined to the target layer. Also, maps of injection volume (porosity) are necessary to estimate sequestration capacity at undrilled locatio

    A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

    Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry c
  • News
    link

    Making Minerals-How Growing Rocks Can Help Reduce Carbon Emissions

    Following an assessment of geologic carbon storage potential in sedimentary rocks, the USGS has published a comprehensive review of potential carbon...

    Read Article
    link

    Groundwater Sampling Method Key to Monitoring Success of Carbon Sequestration

    TECHNICAL ANNOUNCEMENT: Monitoring, verification and accounting are key parts to demonstrating the feasibility or success of integrated carbon capture...

    Read Article
    link

    Methane from Some Wetlands May Lower Benefits of Carbon Sequestration

    Methane emissions from restored wetlands may offset the benefits of carbon sequestration a new study from the U.S. Geological Survey suggests. 

    Read Article