Movatterモバイル変換


[0]ホーム

URL:


Wayback Machine
112 captures
03 Oct 2021 - 13 Jan 2026
DecJANFeb
15
202220232024
success
fail
COLLECTED BY
Organization:Archive Team
Formed in 2009, the Archive Team (not to be confused with the archive.org Archive-It Team) is a rogue archivist collective dedicated to saving copies of rapidly dying or deleted websites for the sake of history and digital heritage. The group is 100% composed of volunteers and interested parties, and has expanded into a large amount of related projects for saving online and digital history.

History is littered with hundreds of conflicts over the future of a community, group, location or business that were "resolved" when one of the parties stepped ahead and destroyed what was there. With the original point of contention destroyed, the debates would fall to the wayside. Archive Team believes that by duplicated condemned data, the conversation and debate can continue, as well as the richness and insight gained by keeping the materials. Our projects have ranged in size from a single volunteer downloading the data to a small-but-critical site, to over 100 volunteers stepping forward to acquire terabytes of user-created data to save for future generations.

The main site for Archive Team is atarchiveteam.org and contains up to the date information on various projects, manifestos, plans and walkthroughs.

This collection contains the output of many Archive Team projects, both ongoing and completed. Thanks to the generous providing of disk space by the Internet Archive, multi-terabyte datasets can be made available, as well as in use by theWayback Machine, providing a path back to lost websites and work.

Our collection has grown to the point of having sub-collections for the type of data we acquire. If you are seeking to browse the contents of these collections, the Wayback Machine is the best first stop. Otherwise, you are free to dig into the stacks to see what you may find.

The Archive Team Panic Downloads are full pulldowns of currently extant websites, meant to serve as emergency backups for needed sites that are in danger of closing, or which will be missed dearly if suddenly lost due to hard drive crashes or server failures.

TIMESTAMPS
loading
The Wayback Machine - https://web.archive.org/web/20230115153014/https://www.science.org/doi/10.1126/science.aad2622
Advertisement
Quick Search anywhere
Quick Search in Journals
Quick Search in Journals
Quick Search in Journals
Quick Search in Journals
Quick Search in Journals
Quick Search in Journals
Quick Search anywhere
    No access
    Review
    Share on

    The Anthropocene is functionally and stratigraphically distinct from the Holocene

    Science
    8 Jan 2016
    Vol351,Issue6269

    Advertisement

    LATEST NEWS

    Advertisement

    Advertisement

    Evidence of an Anthropocene epoch

    Humans are undoubtedly altering many geological processes on Earth—and have been for some time. But what is the stratigraphic evidence for officially distinguishing this new human-dominated time period, termed the “Anthropocene,” from the preceding Holocene epoch? Waterset al. review climatic, biological, and geochemical signatures of human activity in sediments and ice cores. Combined with deposits of new materials and radionuclides, as well as human-caused modification of sedimentary processes, the Anthropocene stands alone stratigraphically as a new epoch beginning sometime in the mid–20th century.
    Science, this issue p.10.1126/science.aad2622

    Structured Abstract

    BACKGROUND

    Humans are altering the planet, including long-term global geologic processes, at an increasing rate. Any formal recognition of an Anthropocene epoch in the geological time scale hinges on whether humans have changed the Earth system sufficiently to produce a stratigraphic signature in sediments and ice that is distinct from that of the Holocene epoch. Proposals for marking the start of the Anthropocene include an “early Anthropocene” beginning with the spread of agriculture and deforestation; the Columbian Exchange of Old World and New World species; the Industrial Revolution at ~1800 CE; and the mid-20th century “Great Acceleration” of population growth and industrialization.

    ADVANCES

    Recent anthropogenic deposits contain new minerals and rock types, reflecting rapid global dissemination of novel materials including elemental aluminum, concrete, and plastics that form abundant, rapidly evolving “technofossils.” Fossil fuel combustion has disseminated black carbon, inorganic ash spheres, and spherical carbonaceous particles worldwide, with a near-synchronous global increase around 1950. Anthropogenic sedimentary fluxes have intensified, including enhanced erosion caused by deforestation and road construction. Widespread sediment retention behind dams has amplified delta subsidence.
    Geochemical signatures include elevated levels of polyaromatic hydrocarbons, polychlorinated biphenyls, and pesticide residues, as well as increased207/206Pb ratios from leaded gasoline, starting between ~1945 and 1950. Soil nitrogen and phosphorus inventories have doubled in the past century because of increased fertilizer use, generating widespread signatures in lake strata and nitrate levels in Greenland ice that are higher than at any time during the previous 100,000 years.
    Detonation of the Trinity atomic device at Alamogordo, New Mexico, on 16 July 1945 initiated local nuclear fallout from 1945 to 1951, whereas thermonuclear weapons tests generated a clear global signal from 1952 to 1980, the so-called “bomb spike” of excess14C,239Pu, and other artificial radionuclides that peaks in 1964.
    Atmospheric CO2 and CH4 concentrations depart from Holocene and even Quaternary patterns starting at ~1850, and more markedly at ~1950, with an associated steep fall in δ13C that is captured by tree rings and calcareous fossils. An average global temperature increase of 0.6o to 0.9oC from 1900 to the present, occurring predominantly in the past 50 years, is now rising beyond the Holocene variation of the past 1400 years, accompanied by a modest enrichment of δ18O in Greenland ice starting at ~1900. Global sea levels increased at 3.2 ± 0.4 mm/year from 1993 to 2010 and are now rising above Late Holocene rates. Depending on the trajectory of future anthropogenic forcing, these trends may reach or exceed the envelope of Quaternary interglacial conditions.
    Biologic changes also have been pronounced. Extinction rates have been far above background rates since 1500 and increased further in the 19th century and later; in addition, species assemblages have been altered worldwide by geologically unprecedented transglobal species invasions and changes associated with farming and fishing, permanently reconfiguring Earth’s biological trajectory.

    OUTLOOK

    These novel stratigraphic signatures support the formalization of the Anthropocene at the epoch level, with a lower boundary (still to be formally identified) suitably placed in the mid-20th century. Formalization is a complex question because, unlike with prior subdivisions of geological time, the potential utility of a formal Anthropocene reaches well beyond the geological community. It also expresses the extent to which humanity is driving rapid and widespread changes to the Earth system that will variously persist and potentially intensify into the future.
    Indicators of the Anthropocene in recent lake sediments differ markedly from Holocene signatures.
    These include unprecedented combinations of plastics, fly ash, radionuclides, metals, pesticides, reactive nitrogen, and consequences of increasing greenhouse gas concentrations. In this sediment core from west Greenland (69˚03'N, 49˚54'W), glacier retreat due to climate warming has resulted in an abrupt stratigraphic transition from proglacial sediments to nonglacial organic matter, effectively demarcating the onset of the Anthropocene. [Photo credit: J. P. Briner]

    Abstract

    Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments, including aluminum, plastics, and concrete, coincides with global spikes in fallout radionuclides and particulates from fossil fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the past century. Rates of sea-level rise and the extent of human perturbation of the climate system exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs.

    Get full access to this article

    View all available purchase options and get full access to this article.

    REFERENCES AND NOTES

    1
    Steffen W., Grinevald J., Crutzen P., McNeill J., The Anthropocene: Conceptual and historical perspectives.Philos. Trans. R. Soc. London Ser. A369, 842–867 (2011). 10.1098/rsta.2010.0327
    2
    Malm A., Hornborg A., The geology of mankind? A critique of the Anthropocene narrative.Anthropocene Rev.1, 62–69 (2014). 10.1177/2053019613516291
    3
    Ruddiman W. F., The anthropogenic greenhouse era began thousands of years ago.Clim. Change61, 261–293 (2003). 10.1023/B:CLIM.0000004577.17928.fa
    4
    Ruddiman W. F., The Anthropocene.Annu. Rev. Earth Planet. Sci.41, 45–68 (2013). 10.1146/annurev-earth-050212-123944
    5
    Lewis S. L., Maslin M. A., Defining the Anthropocene.Nature519, 171–180 (2015). 10.1038/nature14258
    6
    Crutzen P. J., Geology of mankind.Nature415, 23 (2002). 10.1038/415023a
    7
    Zalasiewicz J., Williams M., Smith A., Barry T. L., Coe A. L., Bown P. R., Brenchley P., Cantrill D., Gale A., Gibbard P., Gregory F. J., Hounslow M. W., Kerr A. C., Pearson P., Knox R., Powell J., Waters C., Marshall J., Oates M., Rawson P., Stone P., Are we now living in the Anthropocene?GSA Today18, 4–8 (2008). 10.1130/GSAT01802A.1
    8
    Steffen W., Crutzen J., McNeill J. R., The Anthropocene: Are humans now overwhelming the great forces of nature?Ambio36, 614–621 (2007). 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2
    9
    Steffen W., Broadgate W., Deutsch L., Gaffney O., Ludwig C., The trajectory of the Anthropocene: The Great Acceleration.Anthropocene Rev.2, 81–98 (2015). 10.1177/2053019614564785
    10
    Zalasiewicz J., Waters C. N., Williams M., Barnosky A. D., Cearreta A., Crutzen P., Ellis E., Ellis M. A., Fairchild I. J., Grinevald J., Haff P. K., Hajdas I., Leinfelder R., McNeill J., Odada E. O., Poirier C., Richter D., Steffen W., Summerhayes C., Syvitski J. P. M., Vidas D., Wagreich M., Wing S. L., Wolfe A. P., An Z., Oreskes N., When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal.Quat. Int.383, 196–203 (2015). 10.1016/j.quaint.2014.11.045
    11
    B. Pillans, P. Gibbard, “The Quaternary Period,” inThe Geologic Time Scale, F. M. Gradstein, J. Ogg, M. Schmitz, G. Ogg, Eds. (Elsevier B.V., 2012), pp. 979–1010.
    12
    Remane J., Bassett M. G., Cowie J. W., Gohrbandt K. H., Lane H. R., Michelsen O., Guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS).Episodes19, 77–81 (1996).
    13
    Walker M. J. C., Berkelhammer M., Björck S., Cwynar L. C., Fisher D. A., Long A. J., Lowe J. J., Newnham R. M., Rasmussen S. O., Weiss H., Formal subdivision of the Holocene Series/Epoch: A discussion paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy).J. Quat. Sci.27, 649–659 (2012).
    14
    McDougall I., Brown F. H., Fleagle J. G., Stratigraphic placement and age of modern humans from Kibish, Ethiopia.Nature433, 733–736 (2005). 10.1038/nature03258
    15
    “Population,”History Database of the Global Environment (Netherlands Environmental Assessment Agency, Bilthoven, Netherlands, 2013);http://themasites.pbl.nl/tridion/en/themasites/hyde/basicdrivingfactors/population/index-2.html.
    16
    Klein Goldewijk K., Beusen A., Janssen P., Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1.Holocene20, 565–573 (2010). 10.1177/0959683609356587
    17
    Barnosky A. D., Holmes M., Kirchholtes R., Lindsey E., Maguire K. C., Poust A. W., Stegner M. A., Sunseri J., Swartz B., Swift J., Villavicencio N. A., Wogan G. O., Prelude to the Anthropocene: Two new North American Land Mammal Ages (NALMAs).Anthropocene Rev.1, 225–242 (2014). 10.1177/2053019614547433
    18
    C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, “A stratigraphical basis for the Anthropocene?,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 1–21.
    19
    J. R. Ford, S. J. Price, A. H. Cooper, C. N. Waters, “An assessment of lithostratigraphy for anthropogenic deposits,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 55–89.
    20
    J. Zalasiewicz, R. Kryza, M. Williams, “The mineral signature of the Anthropocene,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 109–117.
    21
    Edgeworth M., deB Richter D., Waters C., Haff P., Neal C., Price S. J., Diachronous beginnings of the Anthropocene: The lower bounding surface of anthropogenic deposits.Anthropocene Rev.2, 33–58 (2015). 10.1177/2053019614565394
    22
    J. Zalasiewicz, M. Williams, C. N. Waters, A. D. Barnosky, P. Haff, “Anthropocene,” inOrigins, O. Seberg, D. A. Harper, Eds. (Cambridge Univ. Press, in press).
    23
    U.S. Geological Survey, inHistorical Statistics for Mineral and Material Commodities in the United States, T. D. Kelly, G. R. Matos, Eds. (U.S. Geological Survey Data Series 140, U.S. Geological Survey, 2010);http://minerals.usgs.gov/minerals/pubs/historical-statistics/cement-use.pdf.
    24
    Plastics – the Facts 2013. An Analysis of European Latest Plastics Production, Demand and Waste Data (PlasticsEurope, 2013);www.plasticseurope.org/documents/document/20131014095824-final_plastics_the_facts_2013_published_october2013.pdf (2013).
    25
    Corcoran P. L., Benthic plastic debris in marine and fresh water environments.Environ. Sci. Processes Impacts17, 1363–1369 (2015). 10.1039/C5EM00188A
    26
    Thompson R. C., Olsen Y., Mitchell R. P., Davis A., Rowland S. J., John A. W., McGonigle D., Russell A. E., Lost at sea: Where is all the plastic?Science304, 838 (2004). 10.1126/science.1094559
    27
    Jambeck J. R., Geyer R., Wilcox C., Siegler T. R., Perryman M., Andrady A., Narayan R., Law K. L., Plastic waste inputs from land into the ocean.Science347, 768–771 (2015). 10.1126/science.1260352
    28
    Zalasiewicz J., Williams M., Waters C. N., Barnosky A. D., Haff P., The technofossil record of humans.Anthropocene Rev.1, 34–43 (2014). 10.1177/2053019613514953
    29
    A. G. Smith, T. Barry, P. Bown, J. Cope, A. Gale, P. L. Gibbard, J. Gregory, M. Hounslow, D. Kemp, R. Knox, J. Marshall, M. Oates, P. Rawson, J. Powell, C. Waters, “GSSPs, global stratigraphy and correlation,” inStrata and Time: Probing the Gaps in Our Understanding, D. G. Smith, R. J. Bailey, P. M. Burgess, A. J. Fraser, Eds. (Special Publication 404, Geological Society, London, 2014), pp. 37–67.
    30
    Novakov T., Ramanathan V., Hansen J. E., Kirchstetter T. W., Sato M., Sinton J. E., Sathaye J. A., Large historical changes of fossil-fuel black carbon aerosols.Geophys. Res. Lett.30, 1324 (2003). 10.1029/2002GL016345
    31
    Oldfield F., Can the magnetic signatures from inorganic fly ash be used to mark the onset of the Anthropocene?Anthropocene Rev.2, 3–13 (2015). 10.1177/2053019614534402
    32
    Rose N. L., Spheroidal carbonaceous fly ash particles provide a globally synchronous stratigraphic marker for the Anthropocene.Environ. Sci. Technol.49, 4155–4162 (2015). 10.1021/acs.est.5b00543
    33
    Swindles G. T., Watson E., Turner T. E., Galloway J. M., Hadlari T., Wheeler J., Bacon K. L., Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene.Sci. Rep.5, 10264 (2015). 10.1038/srep10264
    34
    Harvey M. C., Brassell S. C., Belcher C. M., Montanari A., Combustion of fossil organic matter at the Cretaceous-Paleogene (K-P) boundary.Geology36, 355–358 (2008). 10.1130/G24646A.1
    35
    Hooke R. LeB., Martín-Duque J. F., Land transformation by humans: A review.GSA Today22, 4–10 (2012).
    36
    J. Zalasiewicz, M. Williams, C. N. Waters “Can an Anthropocene Series be defined and recognized?,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 39–53.
    37
    Zalasiewicz J., Waters C. N., Williams M., Human bioturbation, and the subterranean landscape of the Anthropocene.Anthropocene6, 3–9 (2014). 10.1016/j.ancene.2014.07.002
    38
    Douglas I., Lawson N., The human dimensions of geomorphological work in Britain.J. Ind. Ecol.4, 9–33 (2000). 10.1162/108819800569771
    39
    Ellis E. C., Anthropogenic transformation of the terrestrial biosphere.Philos. Trans. R. Soc. London Ser. A369, 1010–1035 (2011). 10.1098/rsta.2010.0331
    40
    Brown A., Toms P., Carey C., Rhodes E., Geomorphology of the Anthropocene: Time-transgressive discontinuities of human-induced alluviation.Anthropocene1, 3–13 (2013). 10.1016/j.ancene.2013.06.002
    41
    Meyfroidt P., Lambin E. F., Global forest transition: Prospects for an end to deforestation.Annu. Rev. Environ. Resour.36, 343–371 (2011). 10.1146/annurev-environ-090710-143732
    42
    Sidle R. C., Ziegler A. D., The dilemma of mountain roads.Nat. Geosci.5, 437–438 (2012). 10.1038/ngeo1512
    43
    Syvitski J. P. M., Kettner A., Sediment flux and the Anthropocene.Philos. Trans. R. Soc. London Ser. A369, 957–975 (2011). 10.1098/rsta.2010.0329
    44
    Paull C. K., Ussler W., Mitts P. J., Caress D. W., West G. J., Discordant14C-stratigraphies in upper Monterey Canyon: A signal of anthropogenic disturbance.Mar. Geol.233, 21–36 (2006). 10.1016/j.margeo.2006.07.008
    45
    Vane C. H., Chenery S. R., Harrison I., Kim A. W., Moss-Hayes V., Jones D. G., Chemical signatures of the Anthropocene in the Clyde estuary, UK: Sediment-hosted Pb,207/206Pb, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records.Philos. Trans. R. Soc. London Ser. A369, 1085–1111 (2011). 10.1098/rsta.2010.0298
    46
    D. C. G. Muir, N. L. Rose, “Persistent organic pollutants in the sediments of Lochnagar,” inLochnagar: The Natural History of a Mountain Lake, N. L. Rose, Ed. (Springer, Dordrecht, Germany, 2007), pp. 375–402.
    47
    Dean J. R., Leng M. J., Mackay A. W., Is there an isotopic signature of the Anthropocene?Anthropocene Rev.1, 276–287 (2014). 10.1177/2053019614541631
    48
    Canfield D. E., Glazer A. N., Falkowski P. G., The evolution and future of Earth’s nitrogen cycle.Science330, 192–196 (2010). 10.1126/science.1186120
    49
    Carpenter S. R., Bennett E. M., Reconsideration of the planetary boundary for phosphorus.Environ. Res. Lett.6, 014009 (2011). 10.1088/1748-9326/6/1/014009
    50
    Galloway J. N., Townsend A. R., Erisman J. W., Bekunda M., Cai Z., Freney J. R., Martinelli L. A., Seitzinger S. P., Sutton M. A., Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions.Science320, 889–892 (2008). 10.1126/science.1136674
    51
    E. A. Holland, J. Lee-Taylor, C. Nevison, J. Sulzman,Global N Cycle: Fluxes and N2O Mixing Ratios Originating from Human Activity. Data Set (Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, 2005);http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=797.
    52
    I. P. Wilkinson, C. Poirier, M. J. Head, C. D. Sayer, J. Tibby, “Microbiotic signatures of the Anthropocene in marginal marine and freshwater palaeoenvironments,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 185–219.
    53
    Holtgrieve G. W., Schindler D. E., Hobbs W. O., Leavitt P. R., Ward E. J., Bunting L., Chen G., Finney B. P., Gregory-Eaves I., Holmgren S., Lisac M. J., Lisi P. J., Nydick K., Rogers L. A., Saros J. E., Selbie D. T., Shapley M. D., Walsh P. B., Wolfe A. P., A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere.Science334, 1545–1548 (2011). 10.1126/science.1212267
    54
    Wolfe A. P., Hobbs W. O., Birks H. H., Briner J. P., Holmgren S. U., Ingólfsson Ó., Kaushal S. S., Miller G. H., Pagani M., Saros J. E., Vinebrooke R. D., Stratigraphic expressions of the Holocene–Anthropocene transition revealed in sediments from remote lakes.Earth Sci. Rev.116, 17–34 (2013). 10.1016/j.earscirev.2012.11.001
    55
    Hastings M. G., Sigman D. M., Steig E. J., Glacial/interglacial changes in the isotopes of nitrate from the Greenland Ice Sheet Project 2 (GISP2) ice core.Global Biogeochem. Cycles19, GB4024 (2005). 10.1029/2005GB002502
    56
    Hastings M. G., Jarvis J. C., Steig E. J., Anthropogenic impacts on nitrogen isotopes of ice-core nitrate.Science324, 1288 (2009). 10.1126/science.1170510
    57
    E. W. Wolff, “Ice sheets and the Anthropocene,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 255–263.
    58
    A. Gałuszka, Z. M. Migaszewski, J. Zalasiewicz, “Assessing the Anthropocene with geochemical methods,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 221–238.
    59
    Jarvis K. E., Parry S. J., Piper J. M., Temporal and spatial studies of autocatalyst-derived platinum, rhodium, and palladium and selected vehicle-derived trace elements in the environment.Environ. Sci. Technol.35, 1031–1036 (2001). 10.1021/es0001512
    60
    UNSCEAR-United Nations Scientific Committee on the Effects of Atomic Radiation,Sources and Effects of Ionizing Radiation (United Nations, New York, 2000).
    61
    Waters C. N., Syvitski J. P. M., Ga uszka A., Hancock G. J., Zalasiewicz J., Cearreta A., Grinevald J., Jeandel C., McNeill J. R., Summerhayes C., Barnosky A., Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch?Bull. Atom. Sci.71, 46–57 (2015). 10.1177/0096340215581357
    62
    Reimer P. J., Bard E., Bayliss A., Beck J. W., Blackwell P. G., Ramsey C. B., Buck C. E., Cheng H., Edwards R. L., Friedrich M., Grootes P. M., Guilderson T. P., Haflidason H., Hajdas I., Hatté C., Heaton T. J., Hoffmann D. L., Hogg A. G., Hughen K. A., Kaiser K. F., Kromer B., Manning S. W., Niu M., Reimer R. W., Richards D. A., Scott E. M., Southon J. R., Staff R. A., Turney C. S. M., van der Plicht J., IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP.Radiocarbon55, 1869–1887 (2013). 10.2458/azu_js_rc.55.16947
    63
    Hua Q., Barbetti M., Rakowski A. Z., Atmospheric radiocarbon for the period 1950−2010.Radiocarbon55, 2059–2072 (2013). 10.2458/azu_js_rc.v55i2.16177
    64
    G. J. Hancock, S. G. Tims, L. K. Fifield, I. T. Webster, “The release and persistence of radioactive anthropogenic nuclides,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 265–281.
    65
    Wolff E. W., Greenhouse gases in the Earth system: A palaeoclimate perspective.Philos. Trans. R. Soc. London Ser. A369, 2133–2147 (2011). 10.1098/rsta.2010.0225
    66
    Elsig J., Schmitt J., Leuenberger D., Schneider R., Eyer M., Leuenberger M., Joos F., Fischer H., Stocker T. F., Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core.Nature461, 507–510 (2009). 10.1038/nature08393
    67
    Schmitt J., Schneider R., Elsig J., Leuenberger D., Lourantou A., Chappellaz J., Köhler P., Joos F., Stocker T. F., Leuenberger M., Fischer H., Carbon isotope constraints on the deglacial CO₂ rise from ice cores.Science336, 711–714 (2012). 10.1126/science.1217161
    68
    Cui Y., Kump L. R., Ridgwell A. J., Charles A. J., Junium C. K., Diefendorf A. F., Freeman K. H., Urban N. M., Harding I. C., Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum.Nat. Geosci.4, 481–485 (2011). 10.1038/ngeo1179
    69
    Rubino M., Etheridge D. M., Trudinger C. M., Allison C. E., Battle M. O., Langenfelds R. L., Steele L. P., Curran M., Bender M., White J. W. C., Jenk T. M., Blunier T., Francey R. J., A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica.J. Geophys. Res.118, 8482–8499 (2013).
    70
    Zalasiewicz J., Waters C. N., Barnosky A. D., Cearreta A., Edgeworth M., Ellis E. C., Ga uszka A., Gibbard P. L., Grinevald J., Hajdas I., Ivar do Sul J., Jeandel C., Leinfelder R., McNeill J., Poirier C., Revkin A., deB Richter D., Steffen W., Summerhayes C., Syvitski J. P., Vidas D., Wagreich M., Williams M., Wolfe A. P., Colonization of the Americas, ‘Little Ice Age’ climate, and bomb-produced carbon: Their role in defining the Anthropocene.Anthropocene Rev.2, 117–127 (2015). 10.1177/2053019615587056
    71
    Blunier T., Chappellaz J., Schwander J., Stauffer B., Raynaud D., Variations in atmospheric methane concentration during the Holocene epoch.Nature374, 46–49 (1995). 10.1038/374046a0
    72
    Ferretti D. F., Miller J. B., White J. W., Etheridge D. M., Lassey K. R., Lowe D. C., Macfarling Meure C. M., Dreier M. F., Trudinger C. M., van Ommen T. D., Langenfelds R. L., Unexpected changes to the global methane budget over the past 2000 years.Science309, 1714–1717 (2005). 10.1126/science.1115193
    73
    MacFarling Meure C., Etheridge D., Trudinger C., Steele P., Langenfelds R., van Ommen T., Smith A., Elkins J., Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP.Geophys. Res. Lett.33, L14810 (2006). 10.1029/2006GL026152
    74
    Sapart C. J., Monteil G., Prokopiou M., van de Wal R. S., Kaplan J. O., Sperlich P., Krumhardt K. M., van der Veen C., Houweling S., Krol M. C., Blunier T., Sowers T., Martinerie P., Witrant E., Dahl-Jensen D., Röckmann T., Natural and anthropogenic variations in methane sources during the past two millennia.Nature490, 85–88 (2012). 10.1038/nature11461
    75
    Mitchell L., Brook E., Lee J. E., Buizert C., Sowers T., Constraints on the late Holocene anthropogenic contribution to the atmospheric methane budget.Science342, 964–966 (2013). 10.1126/science.1238920
    76
    L. Loulergueet al.,EPICA Dome C Ice Core, 800 KYyr Methane Data.IGBP PAGES, World Data Center for Paleoclimatology, Data Contribution Series #2008-054 (National Oceanic and Atmospheric Administration/National Climatic Data Center Paleoclimatology Program, Boulder, CO, 2008);http://cdiac.ornl.gov/trends/atm_meth/ice_core_methane.html.
    77
    Vinther B. M., Clausen H. B., Johnsen S. J., Rasmussen S. O., Andersen K. K., Buchardt S. L., Dahl-Jensen D., Seierstad I. K., Siggaard-Andersen M.-L., Steffensen J. P., Svensson A., Olsen J., Heinemeier J., A synchronized dating of three Greenland ice cores throughout the Holocene.J. Geophys. Res.111, D13102 (2006). 10.1029/2005JD006921
    78
    Felis T., Merkel U., Asami R., Deschamps P., Hathorne E. C., Kölling M., Bard E., Cabioch G., Durand N., Prange M., Schulz M., Cahyarini S. Y., Pfeiffer M., Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1.Nat. Commun.3, 965 (2012). 22828625
    79
    C. P. Summerhayes,Earth's Climate Evolution (Wiley-Blackwell, 2015).
    80
    Ahmed M., Anchukaitis K. J., Asrat A., Borgaonkar H. P., Braida M., Buckley B. M., Büntgen U., Chase B. M., Christie D. A., Cook E. R., Curran M. A. J., Diaz H. F., Esper J., Fan Z.-X., Gaire N. P., Ge Q., Gergis J., González-Rouco J. F., Goosse H., Grab S. W., Graham N., Graham R., Grosjean M., Hanhijärvi S. T., Kaufman D. S., Kiefer T., Kimura K., Korhola A. A., Krusic P. J., Lara A., Lézine A.-M., Ljungqvist F. C., Lorrey A. M., Luterbacher J., Masson-Delmotte V., McCarroll D., McConnell J. R., McKay N. P., Morales M. S., Moy A. D., Mulvaney R., Mundo I. A., Nakatsuka T., Nash D. J., Neukom R., Nicholson S. E., Oerter H., Palmer J. G., Phipps S. J., Prieto M. R., Rivera A., Sano M., Severi M., Shanahan T. M., Shao X., Shi F., Sigl M., Smerdon J. E., Solomina O. N., Steig E. J., Stenni B., Thamban M., Trouet V., Turney C. S. M., Umer M., van Ommen T., Verschuren D., Viau A. E., Villalba R., Vinther B. M., von Gunten L., Wagner S., Wahl E. R., Wanner H., Werner J. P., White J. W. C., Yasue K., Zorita E., Continental-scale temperature variability during the past two millennia.Nat. Geosci.6, 339–346 (2013). 10.1038/ngeo1797
    81
    Wanner H., Mercolli L., Grosjean M., Ritz S. P., Holocene climate variability and change; a data-based review.J. Geol. Soc. London172, 254–263 (2015). 10.1144/jgs2013-101
    82
    IPCC,Climate Change 2013: The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stockeret al., Eds. (Cambridge Univ. Press, 2013).
    83
    Hansen J. R., Ruedy R., Sato M., Lo K., Global surface temperature change.Rev. Geophys.48, RG4004 (2010). 10.1029/2010RG000345
    84
    J. A. Church, P. U. Clark, A. Cazenave, J. M. Gregory, S. Jevrejeva, A. Levermann, M. A. Merrifield, G. A. Milne, R. S. Nerem, P. D. Nunn, A. J. Payne, W. T. Pfeffer, D. Stammer, A. S. Unnikrishnan, “Sea level change,” inClimate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stockeret al., Eds. (Cambridge Univ. Press, 2013), pp. 1137–1216.
    85
    Deschamps P., Durand N., Bard E., Hamelin B., Camoin G., Thomas A. L., Henderson G. M., Okuno J., Yokoyama Y., Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago.Nature483, 559–564 (2012). 10.1038/nature10902
    86
    Gehrels R., Woodworth P. L., When did modern rates of sea-level rise start?Global Planet. Change100, 263–277 (2013). 10.1016/j.gloplacha.2012.10.020
    87
    Kemp A. C., Hawkes A. D., Donnelly J. P., Vane C. H., Horton B. P., Hill T. D., Anisfeld S. C., Parnell A. C., Cahill N., Relative sea-level change in Connecticut (USA) during the last 2200 yrs.Earth Planet. Sci. Lett.428, 217–229 (2015). 10.1016/j.epsl.2015.07.034
    88
    A. D. Barnosky, “Palaeontological evidence for defining the Anthropocene,” inA Stratigraphical Basis for the Anthropocene, C. N. Waters, J. A. Zalasiewicz, M. Williams, M. A. Ellis, A. M. Snelling, Eds. (Geological Society, London, 2014), pp. 149–165.
    89
    Ceballos G., Ehrlich P. R., Barnosky A. D., García A., Pringle R. M., Palmer T. M., Matzke N., Tomiya S., Wogan G. O. U., Swartz B., Quental T. B., Marshall C., McGuire J. L., Lindsey E. L., Maguire K. C., Mersey B., Ferrer E. A., Accelerated modern human-induced specieslosses: Entering the sixth mass extinction.Sci. Adv.1, e1400253 (2015). 10.1126/sciadv.1400253
    90
    Barnosky A. D., Matzke N., Tomiya S., Wogan G. O. U., Swartz B., Quental T. B., Marshall C., McGuire J. L., Lindsey E. L., Maguire K. C., Mersey B., Ferrer E. A., Has the Earth’s sixth mass extinction already arrived?Nature471, 51–57 (2011). 10.1038/nature09678
    91
    Williams M., Zalasiewicz J., Haff P., Schwägerl C., Barnosky A. D., Ellis E. C., The Anthropocene biosphere.Anthropocene Rev.2, 196–219 (2015). 10.1177/2053019615591020
    92
    Ellis E. C., Goldewijk K. K., Siebert S., Lightman D., Ramankutty N., Anthropogenic transformation of the biomes, 1700 to 2000.Glob. Ecol. Biogeogr.19, 589–606 (2010).
    93
    Kidwell S. M., Biology in the Anthropocene: Challenges and insights from young fossil records.Proc. Natl. Acad. Sci. U.S.A.112, 4922–4929 (2015). 10.1073/pnas.1403660112
    94
    J. R. McNeill, “Biological exchanges in world history,” inThe Oxford Handbook of World History, J. Bentley, Ed. (Oxford Univ. Press, 2011), pp. 325–342.
    95
    Ruddiman W. F., Ellis E. C., Kaplan J. O., Fuller D. Q., Defining the epoch we live in.Science348, 38–39 (2015). 10.1126/science.aaa7297

    (0)eLetters

    eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read ourTerms of Service before submitting your own eLetter.

    Log In to Submit a Response

    No eLetters have been published for this article yet.

    The Anthropocene may be more powerful as an informal term (for now)
    Graeme Thomas Swindles
    • Associate Professor of Earth System Dynamics
    • University of Leeds

    The Anthropocene concept has gone viral in recent years demonstrated by the multitude of papers published discussing various aspects of the proposed new geological epoch (1). Researchers have strong opinions over where the base of the Anthropocene should be set and the stratigraphic markers used to define it (1,2). However, the term 'Anthropocene' is already being used widely in science, social science and humanities literature. In that sense it is already proving to be a very useful term and is being used in a flexible way. It means slightly different things to different researchers from different disciplines and backgrounds which is fascinating in its own right. If the Anthropocene is formalised as an official geological epoch then its meaning becomes constrained, invalidating the innovative ways in which it is being used.

    In addition, rushing into the formalisation of the Anthropocene as an epoch may be pointless. The Earth system continues to change as anthropogenic impacts proliferate. In the future the extent of humanity's impact on the Earth system may be more likely to match past transitions between geological periods rather than epochs in the geological timescale (3). On reflection, a formal Anthropocene epoch serves little purpose for defining the recent geological record as we can use several approaches to date sediment successions such as radiometric dating and age-equivalent markers such as volcanic ash layers. To retain its power and usability, the Anthropocene should be maintained as an informal term and a philosophical concept. It will be fascinating to see how the concept develops.

    1. C. N. Waters et al., The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science. 351, 137–148 (2016).
    2. G. T. Swindles et al., Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene. Sci. Rep. 5, 10264 (2015).
    3. K. L. Bacon, G. T. Swindles, Could a potential Anthropocene mass extinction define a new geological period? Anthr. Rev. 3, 208–217 (2016).

    Loading...

    Information & Authors

    Information

    Published In

    Science
    Volume351 |Issue6269
    8 January 2016

    Copyright

    Copyright © 2016, American Association for the Advancement of Science.

    Submission history

    Published in print: 8 January 2016

    Permissions

    Request permissions for this article.

    Acknowledgments

    C.W. and M.E. publish with the permission of the Executive Director, British Geological Survey, Natural Environment Research Council; the former is funded by the British Geological Survey’s Engineering Geology program. We thank three referees, along with I. Fairchild, I. Hajdas, and S. Price, for their comments. This paper is a contribution of the Anthropocene Working Group (AWG), part of the Subcommission on Quaternary Stratigraphy of the International Commission on Stratigraphy. The AWG receives no direct funding to carry out its research, and the authors declare no competing financial interests.

    Authors

    Affiliations

    Colin N.Waters*
    British Geological Survey, Keyworth, Nottingham NG12 5GG, UK.
    JanZalasiewicz
    Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK.
    ColinSummerhayes
    Scott Polar Research Institute, Cambridge University, Lensfield Road, Cambridge CB2 1ER, UK.
    Anthony D.Barnosky
    Department of Integrative Biology, Museum of Paleontology, and Museum of Vertebrate Zoology, University of California–Berkeley, Berkeley, CA 94720, USA.
    ClémentPoirier
    Morphodynamique Continentale et Côtière, Université de Caen Normandie, Centre National de la Recherche Scientifique (CNRS), 24 Rue des Tilleuls, F-14000 Caen, France.
    AgnieszkaGałuszka
    Geochemistry and the Environment Division, Institute of Chemistry, Jan Kochanowski University, 15G Świętokrzyska Street, 25-406 Kielce, Poland.
    AlejandroCearreta
    Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Apartado 644, 48080 Bilbao, Spain.
    MattEdgeworth
    School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK.
    Erle C.Ellis
    Department of Geography and Environmental Systems, University of Maryland–Baltimore County, Baltimore, MD 21250, USA.
    MichaelEllis
    British Geological Survey, Keyworth, Nottingham NG12 5GG, UK.
    CatherineJeandel
    Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (CNRS, Centre National d'Études Spatiales, Institut de Recherche pour le Développement, Université Paul Sabatier), 14 Avenue Edouard Belin, 31400 Toulouse, France.
    ReinholdLeinfelder
    Department of Geological Sciences, Freie Universität Berlin, Malteserstraße 74-100/D, 12249 Berlin, Germany.
    J. R.McNeill
    Georgetown University, Washington, DC, USA.
    Daniel deB.Richter
    Nicholas School of the Environment, Duke University, Box 90233, Durham, NC 27516, USA.
    WillSteffen
    The Australian National University, Canberra, Australian Capital Territory 0200, Australia.
    JamesSyvitski
    Department of Geological Sciences, University of Colorado–Boulder, Box 545, Boulder, CO 80309-0545, USA.
    DavorVidas
    Marine Affairs and Law of the Sea Programme, The Fridtjof Nansen Institute, Lysaker, Norway.
    MichaelWagreich
    Department of Geodynamics and Sedimentology, University of Vienna, A-1090 Vienna, Austria.
    MarkWilliams
    Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK.
    AnZhisheng
    State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, Beijing Normal University, Beijing 100875, China.
    JacquesGrinevald
    Institut de Hautes Études Internationales et du Développement, Chemin Eugène Rigot 2, 1211 Genève 11, Switzerland.
    EricOdada
    Department of Geology, University of Nairobi, Nairobi, Kenya.
    NaomiOreskes
    Department of the History of Science, Harvard University, Cambridge, MA 02138, USA.
    Alexander P.Wolfe
    Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.

    Notes

    *
    Corresponding author. E-mail:[email protected]

    Metrics & Citations

    Metrics

    Article Usage

    Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to this delay, usage data will not appear immediately following publication.

    Citation information is sourced fromCrossref Cited-by service.

    Altmetrics

    Citations

    Export citation

    Select the format you want to export the citation of this publication.

    Cited by

      • Sadye Paez,
      • Robert H. S. Kraus,
      • Beth Shapiro,
      • M. Thomas P. Gilbert,
      • Erich D. Jarvis,
      • Farooq Omar Al-Ajli,
      • Gerardo Ceballos,
      • Andrew J. Crawford,
      • Olivier Fedrigo,
      • Rebecca N. Johnson,
      • Warren E. Johnson,
      • Tomas Marques-Bonet,
      • Phillip A. Morin,
      • Ralf C. Mueller,
      • Oliver A. Ryder,
      • Emma C. Teeling,
      • Byrappa Venkatesh,
      Reference genomes for conservation,Science,377,6604,(364-366),(2022)./doi/10.1126/science.abm8127
      • Zachary Amir,
      • Jonathan H. Moore,
      • Pablo Jose Negret,
      • Matthew Scott Luskin,
      Megafauna extinctions produce idiosyncratic Anthropocene assemblages,Science Advances,8,42,(2022)./doi/10.1126/sciadv.abq2307
      • Wanyuan Li,
      • Changjin Wu,
      • Ze Xiong,
      • Chaowei Liang,
      • Ziyi Li,
      • Baiyao Liu,
      • Qinyi Cao,
      • Jizhuang Wang,
      • Jinyao Tang,
      • Dan Li,
      Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters,Science Advances,8,45,(2022)./doi/10.1126/sciadv.ade1731
      • Colin N. Waters,
      • Simon D. Turner,
      Defining the onset of the Anthropocene,Science,378,6621,(706-708),(2022)./doi/10.1126/science.ade2310
      • Robson G. Santos,
      • Gabriel E. Machovsky-Capuska,
      • Ryan Andrades,
      Plastic ingestion as an evolutionary trap: Toward a holistic understanding,Science,373,6550,(56-60),(2021)./doi/10.1126/science.abh0945
      • Thomas Westerhold,
      • Norbert Marwan,
      • Anna Joy Drury,
      • Diederik Liebrand,
      • Claudia Agnini,
      • Eleni Anagnostou,
      • James S. K. Barnet,
      • Steven M. Bohaty,
      • David De Vleeschouwer,
      • Fabio Florindo,
      • Thomas Frederichs,
      • David A. Hodell,
      • Ann E. Holbourn,
      • Dick Kroon,
      • Vittoria Lauretano,
      • Kate Littler,
      • Lucas J. Lourens,
      • Mitchell Lyle,
      • Heiko Pälike,
      • Ursula Röhl,
      • Jun Tian,
      • Roy H. Wilkens,
      • Paul A. Wilson,
      • James C. Zachos,
      An astronomically dated record of Earth’s climate and its predictability over the last 66 million years,Science,369,6509,(1383-1387),(2021)./doi/10.1126/science.aba6853
      • Karin S. Pfennig,
      How to survive in a human-dominated world,Science,364,6439,(433-434),(2021)./doi/10.1126/science.aax3713
      • Timothy M. Lenton,
      • Bruno Latour,
      Gaia 2.0,Science,361,6407,(1066-1068),(2021)./doi/10.1126/science.aau0427
      • Andreia Miraldo,
      • Sen Li,
      • Michael K. Borregaard,
      • Alexander Flórez-Rodríguez,
      • Shyam Gopalakrishnan,
      • Mirnesa Rizvanovic,
      • Zhiheng Wang,
      • Carsten Rahbek,
      • Katharine A. Marske,
      • David Nogués-Bravo,
      An Anthropocene map of genetic diversity,Science,353,6307,(1532-1535),(2021)./doi/10.1126/science.aaf4381
      • N. J. Anderson,
      • A. J. Heathcote,
      • D. R. Engstrom,
      Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink,Science Advances,6,16,(2020)./doi/10.1126/sciadv.aaw2145
    Loading...

    Citation information is sourced fromCrossref Cited-by service.

    View Options

    Check Access

    Log in to view the full text

    AAAS ID LOGIN

    AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

    Log in via OpenAthens.
    Log in via Shibboleth.
    More options

    Register for free to read this article

    As a service to the community, this article is available for free. Login orregister for free to read this article.

    Purchase this issue in print

    Buy a single issue of Science for just$15 USD.

    Media

    Figures

    Multimedia

    Tables

    Share

    Share

    Share article link

    Copied!

    Copying failed.

    Share on social media


    [8]ページ先頭

    ©2009-2026 Movatter.jp