Movatterモバイル変換


[0]ホーム

URL:


Wayback Machine
19 captures
24 Feb 2015 - 17 Jan 2025
JanFEBMay
Previous capture24Next capture
201420152016
success
fail
COLLECTED BY
Organization:Alexa Crawls
Starting in 1996,Alexa Internet has been donating their crawl data to the Internet Archive. Flowing in every day, these data are added to theWayback Machine after an embargo period.
Collection:Alexa Crawls
Starting in 1996,Alexa Internet has been donating their crawl data to the Internet Archive. Flowing in every day, these data are added to theWayback Machine after an embargo period.
TIMESTAMPS
loading
The Wayback Machine - https://web.archive.org/web/20150224130932/http://proofs.wiki:80/Binomial_theorem
 Actions

Binomial theorem

The binomial theorem states that $\forall x,y \in \mathbb{R}$ and $\forall n, k \in \mathbb{N}$, such as $k \leq n$, we have:

[math] \left ( x+y \right )^n = \sum_{k=0}^{n}\binom{n}{k}x^{n-k}y^k [/math]

Inductive Proof[edit]

Prerequisite information[edit]

The proof[edit]

In order to show that the binomial theorem is true for $n \in \mathbb{N}$. We will first prove it is true for $n=0$, then for $n \in \mathbb{N}^*$ by induction.

Proof for $n = 0$[edit]

We have:

[math](x+y)^0 = 1[/math]

and

[math] \sum_{k=0}^{0}\binom{n}{k}x^{n-k}y^{k}=\binom{0}{0}x^0y^0=1[/math]

We then deduce that the binomial theorem is true for $n=0$.

Inductive step[edit]

We know that for[math]n =0[/math], we have:

[math] \left ( x+y \right )^n = \sum_{k=0}^{n}\binom{n}{k}x^{n-k}y^k [/math]

For $n+1$, we have:

[math]\begin{align*} \left(x+y\right)^{n+1} & = \left(x+y\right)\left(x+y\right)^{n}\\ &= x\left(x+y\right)^{n}+y\left(x+y\right)^{n}\\ &= x\left ( \sum_{k=0}^{n}\binom{n}{k}x^{n-k}y^k \right ) + y\left ( \sum_{k=0}^{n}\binom{n}{k}x^{n-k}y^k \right ) \\ &= \sum_{k=0}^{n}\binom{n}{k}x^{n-k+1}y^k + \sum_{k=0}^{n}\binom{n}{k}x^{n-k}y^{k+1} \\ &= \sum_{k=0}^{n}\binom{n}{k}x^{n-k+1}y^k + \sum_{k=1}^{n+1}\binom{n}{k-1}x^{n-k+1}y^{k} \\ &= \binom{n}{0}x^{n+1}y^0 + \left[ \sum_{k=1}^{n}\binom{n}{k}x^{n-k+1}y^k + \sum_{k=1}^{n}\binom{n}{k-1}x^{n-k+1}y^{k} \right ]+ \binom{n}{n}x^{0}y^{n+1} \\ &= x^{n+1} + \left[\sum_{k=1}^{n}\binom{n}{k}x^{n-k+1}y^k + \sum_{k=1}^{n}\binom{n}{k-1}x^{n-k+1}y^{k} \right]+ y^{n+1} \\ &= x^{n+1} + \left[ \sum_{k=1}^{n} \left (\binom{n}{k} + \binom{n}{k-1} \right)x^{n-k+1}y^{k} \right] + y^{n+1} \\ &= x^{n+1} + \left[ \sum_{k=1}^{n} \binom{n+1}{k} x^{n-k+1}y^{k} \right ]+ y^{n+1} \\\end{align*}[/math]

This is why we have:

[math]\begin{align*} \left(x+y\right)^{n+1} &= \sum_{k=0}^{n+1} \binom{n+1}{k} x^{n-k+1}y^{k}\end{align*}[/math]

Because we know that the binomial theorem is true for $n=0$ and for $n=n+1$, we deduce by induction that it is true for $n\in\mathbb{N}$.

Retrieved from "http://proofs.wiki/index.php?title=Binomial_theorem&oldid=783"

[8]ページ先頭

©2009-2025 Movatter.jp