Bài này viết về đại lượng vật lý
Spin. Đối với phương pháp luận nhằm thúc đẩy sản xuất và tiêu dùng, xem
SPIN (phương pháp luận).
Spin là một đại lượngvật lý, có bản chất củamô men động lượng và là một khái niệm thuần túylượng tử, không có sự tương ứng trongcơ học cổ điển.[1] Trong cơ học cổ điển,mô men xung lượng được biểu diễn bằng công thứcL =r ×p, còn mô men spin trong cơ học lượng tử vẫn tồn tại ở một hạt có khối lượng bằng 0, bởi vì spin là bản chất nội tại của hạt đó. Cáchạt cơ bản nhưelectron,quark đều có spin bằng
(sau đây sẽ gọi tắt là 1/2), ngay cả khi nó được coi là chất điểm và không có cấu trúc nội tại. Khái niệm spin đượcRalph Kronig đồng thời và độc lập với ông, làGeorge Unlenbeck,Samuel Goudsmit đưa ra lần đầu vào năm1925.
Một hạt cơ bản như electron có thể quay trên một quỹ đạo xung quanhhạt nhân nhưTrái Đất quay quanhMặt Trời. Chỉ có điều khác, cách miêu tả sự tự quay của electron khác với cách miêu tả sự tự quay của Trái Đất. Khi một đối tượng quay quanh mình nó, tất cả các điểm trên trục quay, giống như tâm điểm của một đĩa quay, đều không chuyển động. Tuy nhiên, nếu một vật nào đó có dạng điểm, thì nó sẽ không có những điểm khác nằm ngoài bất kỳ trục quay nào. Và như vậy, sẽ không có chuyển động tự quay của một hạt điểm. Tuy nhiên, suy luận trên đã bị nghi ngờ bởi nhữngnhà vật lýlượng tử.
Năm1925, hai nhà vật lýngười Hà Lan làGeorge Uhlenbeck vàSamuel Goudsmit đã nhận thấy rằng một khối lượng lớn các số liệu thực nghiệm khó hiểu liên quan đến tính chất củaánh sángphát xạ vàhấp thụ bởi cácnguyên tử có thể giải thích được nếu như giả thiết rằng electron có mộtmô men từ riêng đặc biệt. Trước đó, nhà vật lýngười Pháp,Andre Marie Ampere đã chứng tỏ rằng các điện tích chuyển động sinh ratừ trường, George Uhlenbeck và Samuel Goudsmit cũng đi theo hướng đó và cho rằng electron có một loại chuyển động đặc biệt tạo ra tính chất từ phù hợp với các số liệu đo được: đó là chuyển động tự quay, hay còn gọi là spin. Hai ông đã viết một bài báo ngắn, với kết luận "các electron vừa quay vừa tự quay". Theo bài báo ngắn trên, mỗi electron trong vũ trụ luôn luôn và mãi mãi tự quay với một tốc độ cố định và không bao giờ thay đổi và vì thế chúng luôn có mô men động lượng riêng (sau gọi tắt là spin). Spin của electron không phải diễn tả trạng thái chuyển động nhất thời như đối với những vật quen thuộc mà diễn tả trạng thái tự quay cố hữu, không rõ nguyên nhân, xung quanh một trục riêng của nó. Quan niệm này sau đó được chứng tỏ rằng có mâu thuẫn với lý thuyết tương đối. Tuy nhiên, cho dù nguồn gốc sinh ra spin như thế nào chưa rõ, spin của tất cả các hạt cơ bản tạo nên thế giới vật chất, như electron, quark đều khác không và bằng 1/2, các hạt truyền tương tác, nhưphoton cho tương tác điện từ, đều có spin bằng 1. Các hạt tạo bởi quark có thể có spin 1/2 như proton, neutron và cũng có thể có spin bằng 0, như pi - meson. Như vậy, spin là một đặc trưng nội tại của hạt, nó cố hữu giống nhưkhối lượng vàđiện tích và được dùng để cá thể hóa hạt đó. Nếu một electron không có spin thì nó không còn là một electron nữa.
Ý tưởng về spin ban đầu chỉ hình thành cho electron, nhưng sau đó các nhàvật lý đã mở rộng cho tất cả các hạt vật chất được liệt kê trong bảng cácthế hệ hạt cơ bản. Hạtgraviton, nếu có, là hạt truyềntương tác hấp dẫn và sẽ có spin bằng 2.
Spin thỏa mãn điều kiện giao hoán tương tự như momen động lượng orbital:
![{\displaystyle {\displaystyle [S_{j},S_{k}]=i\hbar \varepsilon _{jkl}S_{l}}}](/image.pl?url=https%3a%2f%2fwikimedia.org%2fapi%2frest_v1%2fmedia%2fmath%2frender%2fsvg%2fd3831067e435ad2cb49be7ece9feed7784ca2591&f=jpg&w=240)
Trong đóεjkl là kí hiệu Levi-Civita.

Toán tử lên và xuống tác động lên các eigenvectors cho ta

trong đóS± =Sx ±i Sy.
Không giống như momen động lượng orbital, cac eigenvector không phải là hàm điều hòa cầu. Chúng không phải là hàm củaθ vàφ. Không có lý do nào để giải thích cho giá trị bán nguyên của s vàms.
Một tính chất khác của nó, tất cả các hạt lượng tử đều có spin nội tại. Spin được lượng tử hóa theo đơn vị củahằng số Planck, do đó hàm trạng thái của hạt làψ =ψ(r,σ) thay vìψ =ψ(r) vớiσ nhận các giá trị rời rạc

Ma trận Pauli
Toán tử của Spin A biểu diễn cho hạt có spin -1/2 là

là toán tử vector spin còn ̀σ-s làma trận Pauli. Trong tọa độ Cartesian, cac thành phần của nó là

với trường hợp đặc biệt cho hạt spin -1/2 các ma trận Pauli cho bởi

Phép xoay
Như đã mô tả bên trên, cơ học lượng tử chỉ ra rằng thành phần momen động lượng đo được theo các chiều có thể nhận các giá trị rời rạc.Mô tả lượng tử đơn giản nhất của spin hạt là hệ cácsố phức tương ứng với biên độ xác suất của một giá trị hình chiếu cho trước của momen động lượng của một trục cho trước. Ví dụ, Một hạt có spin -1/2, ta cần hai số hạng
a±1/2, -biên độ để được hình chiếu ứng với momen động lượngħ/2 và −ħ/2, thỏa mãn:

Với một hạt tổng quát với spin s, ta cần 2s+1 phép đo như vậy. Do các số trên phụ thuộc vào trục toạ độ, chúng biến đổi lẫn nhau một cách không bình thường khi trục tọa độ bị xoay. Rõ ràng định luật biến đổi phải là tuyến tính, do đó ta có thể biểu diễn chúng bằng một cách liên kết một ma trận với mỗi phép xoay, và tích của hai ma trận xoay A và B phải tương đương với biểu diễn của phép xoay AB. Hơn nữa, phép xoay phải bảo toàn tích vô hướng của cơ học lượng tử, do đó ma trận biến đổi thỏa mãn:

Nói một cách toán học, những ma trận này cho biết phép biểu diễn hình chiếu unitary của nhóm biến đổi SO(3). Mỗi phép biểu diễn như vật tương ứng với phép biểu diễn của nhóm bao trùm lên SO(3), đó chính là nhóm SU(2). Có một phép biểu diễn không thể tối giản của SU(2) cho mỗi chiều, tuy nhiên phép biểu diễn này là n-chiều thực cho n lẻ và n chiều phức cho n chẵn. Với phép xoayθ theo trục với vector chuẩn hóa
, U có thể viết là:

trong đó
, và S là vectoer của toán tử spin
Có một ngành khoa học mới ra đời mang tênSpintronics (Điện tử học spin). Tên gọi này bắt nguồn từ việc sử dụng spin hay moment từ củaelectron thay vì sử dụng điện tích của nó trong các ngành như microelectronics. Tính chất từ của electron hay spin của nó được giải thích bởiPaul Dirac khinhà vật lý thiên tài này trong nỗ lực kết hợpcơ học lượng tử vàthuyết tương đối. Các dụng cụ sử dụng tính chất spin của điện tử có thể được dùng trong cácmáy tính lượng tử vàthông tin lượng tử trong tương lai.
Thực tế là sự định hướng của spin điện tử được sử dụng trong cáccảm biến từ, đặc biệt là trong cácđầu đọc vàổ cứng từ. Trong tất cả các môi trường ghi từ thì bề mặt ghi có chứa các lớp từ, các lớp từ này được chia thành các vùng từ nhỏ (magnetic domains). Moment từ của các vùng từ này được biểu diễn bởi hai trạng thái thông tin ‘0’ và ‘1’. Trong trường hợp của ổ đĩa cứng, các trạng thái này được đọc bởi một dụng cụ mỏng và nhạy có chứa các lớp vật liệu từ và không từ xen kẽ nhau.
Ưu điểm thứ hai của các dụng cụ sử dụng tính chất của spin là khả năng tích trữ. Trong những năm gần đây, nhờ sự phát hiện của hiệu ứngtừ điện trở khổng lồ (GMR), mà khả năng tích trữ của các vật liệu từ tăng lên một cách nhanh chóng. Hiệu ứngtừ điện trở khổng lồ được khám phá bởiAlbert Fert (thuộc trường đại học Paris 11 và Peter Grunberg, nó bắt nguồn từ spin-up và spin-down của điện tử gặp các trở kháng khác nhau khi chúng đi qua các lớp từ. Các điện tử với spin định hướng cùng chiều (sắt từ) sẽ gặp một sự trở kháng bé hơn so với các điện tử có spin định hướng ngược chiều nhau. Sau sự ra đời củaGMR, thìTMR (tunnelling magnetoresistance) cũng ra đời, nó sinh ra một sự thay đổi điện trở lớn hơn nhiều so với GMR trong một trường bé.
- ^“spin”.wikipedia. Truy cập ngày 14 tháng 11 năm 2019.