Trongtoán học,số siêu phức là khái niệm mở rộng củasố phức từ dạngtổ hợp tuyến tính 2 chiềuz =a + b.i với cáchệ số thực a, b của haiđơn vị cơ sở 1 và i sangkhông gian vectơ n chiều với n hệ số thực x0, x1, x2,..., xn-1, của n đơn vị cơ sở 1, e1, e2, e3,..., en-1:
Trong thế kỷ XIX cáchệ thống sốquaternion,tessarine, coquaternion,biquaternion, vàoctonion trở thành các khái niệm toán học, bổ sung cho số thực vàsố phức. Khái niệm về một số siêu phức bao trùm tất cả, và cần có một ngành nghiên cứu để giải thích và phân loại chúng.
Dự án phân loại bắt đầu vào năm 1872 khiBenjamin Peirce lần đầu tiên xuất bản tác phẩmĐại số liên kết tuyến tính của mình, và được con traiCharles Sanders Peirce nối tiếp.[1] Đáng kể nhất, họ đã xác định các phần tửlũy linh vàlũy đẳng là các số siêu phức hữu ích cho việc phân loại. Cácxây dựng Cayley-Dickson sử dụngcác hàm tự nghịch để tạo ra số phức, quaternion và octonion từ hệ thống số thực. Hurwitz và Frobenius chứng minh định lý mà đưa giới hạn về hypercomplexity:Định lý Hurwitz nói cácđại số thành phần hữu hạn chiều trên các số thực chỉ bao gồm các số thực ℝ, các số phức ℂ, các quaternion ℍ, và các octonion 𝕆, vàđịnh lý Frobenius cho biết cácđại số chia kết hợp trên các số thực chỉ bao gồm ℝ, ℂ, và ℍ. Năm 1958J. Frank Adams đã xuất bản một khái quát hơn nữa về các bất biến Hopf trên các không gianH với giới hạn kích thước là 1, 2, 4 hoặc 8.[2]
Đại số ma trận đã khai thác các hệ thống siêu phức. Đầu tiên, ma trận coi số siêu phức mới nhưma trận thực 2 × 2. Chẳng mấy chốc, mô hình ma trận bắt đầu giải thích các hệ thống siêu phức khác khi các số siêu phức được đại diện bằng các ma trận và các phép toán của chúng. Năm 1907Joseph Wedderburn đã chỉ ra rằng các hệ thống siêu phức có tính kết hợp có thể được biểu diễn bằng ma trận, hoặc bằng tổng trực tiếp của hệ thống ma trận.[3][4] Kể từ ngày đó, thuật ngữ ưa thích cho một hệ thống siêu phức đã trở thànhđại số kết hợp như được thấy trong tiêu đề của luận án của Wedderburn tạiĐại học Edinburgh. Tuy nhiên, lưu ý rằng các hệ thống không kết hợp như octonion và hyperbolic quarternion đại diện cho một loại số siêu phức khác.
Như Hawkins[5] giải thích, các số siêu phức là bước đệm để tìm hiểu vềcác nhóm Lie và lý thuyếtbiểu diễn nhóm. Ví dụ, vào năm 1929,Emmy Noether đã viết về "số lượng số siêu phức vàlý thuyết biểu diễn".[6] Năm 1973 Kantor và Solodovnikov đã xuất bản một cuốn sách giáo khoa về các số siêu phức, được dịch vào năm 1989.[7][8]
Karen Parshall đã viết một bài trình bày chi tiết về thời hoàng kim của các số siêu phức,[9] bao gồm cả vai trò của tác giả nổi bật nhưTheodor Molien[10] vàEduard Study.[11] Để thực hiện bước chuyển sangđại số hiện đại,Bartel van der Waerden dành ba mươi trang cho các số siêu phức trong cuốnLịch sử Đại số của ông.[12]
Số là số siêu phức bộ bốn liên hợp với
Phép nhân số siêu phức bộ bốn có tínhkết hợp nhưng không giao hoán và không có ước của không.Định lý Frobenius (Frobenius theorem (real division algebras)) khẳng định rằng chỉ có trường số thực, trường số phức vành số siêu phức bộ bốn mới có tính kết hợp trong phép nhân vô hướng với một số thực mà thôi.
Số siêu phức bộ bốn đượcWilliam Rowan Hamilton nghiên cứu và đề xuất trong khi tìm tòi mở rộng trường số phức.
1 | i | j | k | l | il | jl | kl |
---|---|---|---|---|---|---|---|
i | −1 | k | −j | il | −l | −kl | jl |
j | −k | −1 | i | jl | kl | −l | −il |
k | j | −i | −1 | kl | −jl | il | −l |
l | −il | −jl | −kl | −1 | i | j | k |
il | l | −kl | jl | −i | −1 | −k | j |
jl | kl | l | −il | −j | k | −1 | −i |
kl | −jl | il | l | −k | −j | i | −1 |
× | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
e1 | e1 | -1 | e3 | -e2 | e5 | -e4 | -e7 | e6 | e9 | -e8 | -e11 | e10 | -e13 | e12 | e15 | -e14 |
e2 | e2 | -e3 | -1 | e1 | e6 | e7 | -e4 | -e5 | e10 | e11 | -e8 | -e9 | -e14 | -e15 | e12 | e13 |
e3 | e3 | e2 | -e1 | -1 | e7 | -e6 | e5 | -e4 | e11 | -e10 | e9 | -e8 | -e15 | e14 | -e13 | e12 |
e4 | e4 | -e5 | -e6 | -e7 | -1 | e1 | e2 | e3 | e12 | e13 | e14 | e15 | -e8 | -e9 | -e10 | -e11 |
e5 | e5 | e4 | -e7 | e6 | -e1 | -1 | -e3 | e2 | e13 | -e12 | e15 | -e14 | e9 | -e8 | e11 | -e10 |
e6 | e6 | e7 | e4 | -e5 | -e2 | e3 | -1 | -e1 | e14 | -e15 | -e12 | e13 | e10 | -e11 | -e8 | e9 |
e7 | e7 | -e6 | e5 | e4 | -e3 | -e2 | e1 | -1 | e15 | e14 | -e13 | -e12 | e11 | e10 | -e9 | -e8 |
e8 | e8 | -e9 | -e10 | -e11 | -e12 | -e13 | -e14 | -e15 | -1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
e9 | e9 | e8 | -e11 | e10 | -e13 | e12 | e15 | -e14 | -e1 | -1 | -e3 | e2 | -e5 | e4 | e7 | -e6 |
e10 | e10 | e11 | e8 | -e9 | -e14 | -e15 | e12 | e13 | -e2 | e3 | -1 | -e1 | -e6 | -e7 | e4 | e5 |
e11 | e11 | -e10 | e9 | e8 | -e15 | e14 | -e13 | e12 | -e3 | -e2 | e1 | -1 | -e7 | e6 | -e5 | e4 |
e12 | e12 | e13 | e14 | e15 | e8 | -e9 | -e10 | -e11 | -e4 | e5 | e6 | e7 | -1 | -e1 | -e2 | -e3 |
e13 | e13 | -e12 | e15 | -e14 | e9 | e8 | e11 | -e10 | -e5 | -e4 | e7 | -e6 | e1 | -1 | e3 | -e2 |
e14 | e14 | -e15 | -e12 | e13 | e10 | -e11 | e8 | e9 | -e6 | -e7 | -e4 | e5 | e2 | -e3 | -1 | e1 |
e15 | e15 | e14 | -e13 | -e12 | e11 | e10 | -e9 | e8 | -e7 | e6 | -e5 | -e4 | e3 | e2 | -e1 | -1 |
Các chủ đề chính trongtoán học |
---|
Nền tảng toán học |Đại số |Giải tích |Hình học |Lý thuyết số |Toán học rời rạc |Toán học ứng dụng | Toán học giải trí |Toán học tô pô |Xác suất thống kê |