Bài viết này có một danh sách các nguồn tham khảo, nhưngvẫn chưa đáp ứng khả năng kiểm chứng được bởi thân bài vẫn còn thiếu cácchú thích trong hàng. Hãy giúp cải thiện bài viết này bằng cách bổ sung các chú thích nguồn cho các nội dung tương ứng.(tháng 9/2023) (Tìm hiểu cách thức và thời điểm xóa thông báo này)
Nguyên tố hóa học, thường được gọi đơn giản lànguyên tố, là một chất hóa học tinh khiết, bao gồm một kiểunguyên tử, được phân biệt bởisố hiệu nguyên tử, là số lượngproton có trong mỗihạt nhân.[1] Không giống nhưcác hợp chất hóa học, các nguyên tố hóa học không thể bị phân hủy thành các chất đơn giản hơn bằng các phương pháp hóa học. Số proton trong hạt nhân là đặc tính xác định của một nguyên tố và được gọi làsố nguyên tử của nó (được biểu thị bằng ký hiệuZ) – tất cả các nguyên tử có cùng số hiệu nguyên tử đều là nguyên tử của cùng một nguyên tố.[2] Tất cả cácbaryonvật chất của vũ trụ bao gồm các nguyên tố hóa học. Khi các nguyên tố khác nhau trải quacác phản ứng hóa học, các nguyên tử được sắp xếp lại thành cáchợp chất mới được kết nối với nhau bằngcác liên kết hóa học. Chỉ một số ít các nguyên tố, chẳng hạn nhưbạc vàvàng, được tìm thấy dưới dạng chưa kết hợp với tư cách làcác khoáng chất nguyên tố tự nhiên tương đối tinh khiết. Gần như tất cả các nguyên tố tự nhiên khác xuất hiện trong Trái đất dưới dạng hợp chất hoặchỗn hợp.Không khí chủ yếu là hỗn hợp của các nguyên tốnitơ,oxy vàargon, mặc dù nó có chứa các hợp chất bao gồmcarbon dioxide vànước.
Lịch sử phát hiện và sử dụng các nguyên tố bắt đầu từcác xã hội loài ngườinguyên thủy phát hiện ra các khoáng chất bản địa nhưcarbon,lưu huỳnh,đồng vàvàng (mặc dù khái niệm về nguyên tố hóa học vẫn chưa được hiểu rõ). Nỗ lực phân loại các vật liệu như vậy đã dẫn đến các khái niệm vềcác nguyên tố cổ điển,thuật giả kim và nhiều lý thuyết tương tự khác nhau trong suốt lịch sử loài người. Phần lớn sự hiểu biết hiện đại về các nguyên tố được phát triển từ công trình củaDmitri Mendeleev, một nhà hóa học người Nga. Ông đã công bốbảng tuần hoàn dễ nhận biết đầu tiên vào năm 1869. Bảng này sắp xếp các nguyên tố theo số nguyên tử tăng dần thành các hàng ("chu kỳ") trong đó các nguyên tố cùng cột ("nhóm") có chung các tính chấtvật lý vàhóa học một cách tuần hoàn. Bảng tuần hoàn tóm tắt các tính chất khác nhau của các nguyên tố, cho phép các nhà hóa học suy ra mối quan hệ giữa chúng và đưa ra dự đoán về các hợp chất và các nguyên tố mới tiềm năng.
Trong số 94 nguyên tố có trong tự nhiên, những nguyên tố có số nguyên tử từ 1 đến 82 đều có ít nhất mộtđồng vị bền (ngoại trừtechneti, nguyên tố 43 vàpromethi, nguyên tố 61, không có đồng vị bền). Các chất đồng vị được coi là ổn định là những chất chưa quan sát thấy sự phân rã phóng xạ. Các nguyên tố có số hiệu nguyên tử từ 83 đến 94không ổn định đến mức có thể phát hiện được sự phân rã phóng xạ của tất cả các đồng vị. Một số nguyên tố này, đặc biệt làbismuth (số nguyên tử 83),thori (số nguyên tử 90) vàurani (số nguyên tử 92), có một hoặc nhiều đồng vị có chu kỳ bán rã đủ dài để tồn tại dưới dạng tàn dư củaquá trình tổng hợp hạt nhân sao nổ tạo ra cáckim loại nặng trước khi hình thànhHệ Mặt trời của chúng ta. Với thời gian phân rã hơn 1,9 ×1019 năm, dài hơn một tỷ lần so với tuổi ước tính hiện tại của vũ trụ,bismuth-209 (số nguyên tử 83) có chu kỳ bán rã alpha lâu nhất được biết đến trong số các nguyên tố tự nhiên và hầu như luôn được coi là ngang bằng với 80 nguyên tố ổn định.[7][8] Các nguyên tố rất nặng nhất (những nguyên tố ngoài plutoni, nguyên tố 94) trải qua quá trình phân rã phóng xạ vớichu kỳ bán rã ngắn đến mức chúng không được tìm thấy trong tự nhiên và phải đượctổng hợp.
Hiện đã có 118 nguyên tố được biết đến. Trong bối cảnh này, "đã biết" có nghĩa là được quan sát đủ rõ, thậm chí chỉ từ một vài sản phẩm phân rã, để được phân biệt với các nguyên tố khác.[9][10] Gần đây nhất, sự tổng hợp của nguyên tố 118 (vì được đặt tên làoganesson) đã được báo cáo vào tháng 10 năm 2006, và sự tổng hợp của nguyên tố 117 (tennessine) được báo cáo vào tháng 4 năm 2010.[11][12] Trong số 118 nguyên tố này, 94 nguyên tố xuất hiện tự nhiên trên Trái đất. Sáu trong số này xảy ra với số lượng vết cực nhỏ:techneti, số nguyên tử 43;promethi, số 61;astatin, số 85;franci, số 87;neptuni, số 93; vàplutoni, số 94. 94 nguyên tố này đã được phát hiện trong vũ trụ nói chung, trong quang phổ của các ngôi sao và cả siêu tân tinh, nơi các nguyên tố phóng xạ tồn tại trong thời gian ngắn mới được tạo ra. 94 nguyên tố đầu tiên đã được phát hiện trực tiếp trên Trái đất dưới dạngcác nuclide nguyên thủy có từ khi hình thành hệ Mặt trời, hoặc dưới dạng các sản phẩm chuyển hóa hoặc phân hạch xảy ra tự nhiên của urani và thori.
24 nguyên tố nặng hơn còn lại, ngày nay không được tìm thấy trên Trái đất hay trong quang phổ thiên văn, chúng đã được sản xuất nhân tạo: tất cả đều là chất phóng xạ, với chu kỳ bán rã rất ngắn; nếu có bất kỳ nguyên tử nào của các nguyên tố này khi hình thành Trái đất, thì chúng rất có thể, đến mức chắc chắn, đã bị phân rã, và nếu có trong các tân tinh thì chúng có số lượng quá nhỏ để có thể được ghi nhận. Techneti là nguyên tố có chủ đích không phải tự nhiên đầu tiên được tổng hợp vào năm 1937, mặc dù một lượng nhỏ của techneti đã được tìm thấy trong tự nhiên (và nguyên tố này cũng có thể được phát hiện trong tự nhiên vào năm 1925).[13] Mô hình sản xuất nhân tạo và khám phá tự nhiên sau này đã được lặp lại với một số nguyên tố hiếm có nguồn gốc tự nhiên phóng xạ khác.[14]
Mỗi nguyên tố hóa học đều có một tên và ký hiệu riêng để dễ nhận biết. Tên gọi chính thức của các nguyên tố hóa học được quy định bởiLiên đoàn Quốc tế về Hoá học Thuần túy và Ứng dụng (tiếng Anh:International Union of Pure and Applied Chemistry) (viết tắt:IUPAC). Tổ chức này nói chung chấp nhận tên gọi mà người (hay tổ chức) phát hiện ra nguyên tố đã lựa chọn. Điều này có thể dẫn đến tranh luận là nhóm nghiên cứu nào thực sự tìm ra nguyên tố, là câu hỏi từng làm chậm trễ việc đặt tên cho các nguyên tố với số nguyên tử từ 104 trở lên trong một thời gian dài (Xem thêmTranh luận về đặt tên nguyên tố). Các nguyên tố hóa học cũng được cấp cho một ký hiệu hóa học thống nhất, dựa trên cơ sở tên gọi của nguyên tố, phần lớn là viết tắt theo tên gọiLatinh. (Ví dụ,carbon có ký hiệu hóa học 'C',natri có ký hiệu hóa học 'Na' từ tên gọi Latinhnatrium). Ký hiệu hóa học của nguyên tố được thống nhất và hiểu trên toàn thế giới trong khi tên gọi thông thường của nó khi chuyển sang một ngôn ngữ khác thì phần lớn không giống nhau.
Số nguyên tử của một nguyên tố (ký hiệu Z) bằng số proton trong mỗi nguyên tử và xác định nguyên tố này.[15] Ví dụ, tất cả các nguyên tử carbon đều chứa 6 proton tronghạt nhân nguyên tử của chúng; vậy số nguyên tử của carbon là 6.[16] Nguyên tử carbon có thể có số neutron khác nhau; các nguyên tử của cùng một nguyên tố có số neutron khác nhau được gọi là cácđồng vị của nguyên tố đó.[17]
Số proton trong hạt nhân nguyên tử cũng quyết địnhđiện tích của nó, do đó nó quyết định sốelectron của nguyên tử ở trạng tháikhông bị ion hóa. Các electron được đặt vàocác obitan nguyên tửquyết định các tính chất hóa học khác nhau của nguyên tử. Số lượng neutron trong hạt nhân thường ảnh hưởng rất ít đến tính chất hóa học của nguyên tố (ngoại trừ trường hợp củahydro vàđơteri). Do đó, tất cả các đồng vị carbon đều có các tính chất hóa học gần giống nhau vì chúng đều có 6 proton và 6 electron, mặc dù các nguyên tử carbon chẳng hạn có thể có 6 hoặc 8 neutron. Đó là lý do tại sao số nguyên tử, chứ không phảisố khối haytrọng lượng nguyên tử, được coi là đặc điểm nhận dạng của một nguyên tố hóa học.
Đồng vị là những nguyên tử của cùng một nguyên tố (nghĩa là có cùng sốprotontrong hạt nhân nguyên tử của chúng), nhưng có sốneutronkhác nhau. Vì vậy, chẳng hạn, có ba đồng vị chính của carbon. Tất cả các nguyên tử carbon đều có 6 proton trong hạt nhân, nhưng chúng có thể có 6, 7 hoặc 8 neutron. Vì số khối của chúng lần lượt là 12, 13 và 14, nên ba đồng vị của carbon được gọi làcarbon-12,carbon-13 vàcarbon-14, thường được viết tắt là12C,13C và14C.Carbon trong cuộc sống hàng ngày và trong hóa học làhỗn hợp của12C (khoảng 98,9%),13C (khoảng 1,1%) và khoảng 1 nguyên tử14C trên một nghìn tỷ nguyên tử tổng cộng.
Hầu hết (66 trong số 94) nguyên tố xuất hiện tự nhiên có nhiều hơn một đồng vị ổn định. Ngoại trừ cácđồng vị của hydro (khác nhau rất nhiều về khối lượng tương đối - đủ để gây ra các hiệu ứng hóa học), các đồng vị của một nguyên tố nhất định gần như không thể phân biệt được về mặt hóa học.
Tất cả các nguyên tố đều có một số đồng vị là chất phóng xạ (đồng vị phóng xạ), mặc dù không phải tất cả các đồng vị phóng xạ này đều tồn tại ngoài tự nhiên. Các đồng vị phóng xạ thường phân rã thành các nguyên tố khác khi phóng ra mộthạt alpha hoặcbeta. Nếu một nguyên tố có các đồng vị không phóng xạ, chúng được gọi là cá đồng vị "ổn định". Tất cả các đồng vị ổn định đã biết đều tồn tại ngoài tự nhiên (xemđồng vị nguyên thủy). Nhiều đồng vị phóng xạ không có trong tự nhiên đã được nghiên cứu sau khi được tạo ra một cách nhân tạo. Một số nguyên tố không có đồng vị bền vàchỉ bao gồm các đồng vị phóng xạ: cụ thể là các nguyên tố không có đồng vị bền nào là techneti (số nguyên tử 43), promethi (số nguyên tử 61) và tất cả các nguyên tố quan sát được có số nguyên tử lớn hơn 82.
Trong số 80 nguyên tố có ít nhất một đồng vị bền, 26 nguyên tố chỉ có một đồng vị bền duy nhất. Số đồng vị ổn định trung bình của 80 nguyên tố ổn định là 3,1 đồng vị ổn định trên mỗi nguyên tố. Số lượng đồng vị bền lớn nhất xảy ra đối với một nguyên tố là 10 (thiếc, nguyên tố 50).
Số khối của một nguyên tốA, là sốnucleon (proton và neutron) trong hạt nhân nguyên tử. Các đồng vị khác nhau của một nguyên tố nhất định được phân biệt bằng số khối của chúng, được viết theo quy ước dưới dạng ký tự trên bên trái của ký hiệu nguyên tử (ví dụ:238U). Số khối luôn là một số nguyên và có đơn vị là "nucleon". Ví dụ,magnesi-24 (24 là số khối) là một nguyên tử có 24 nucleon (12 proton và 12 neutron).
Trong khi số khối chỉ đơn giản đếm tổng số neutron và proton và do đó là một số tự nhiên,khối lượng nguyên tử của một nguyên tử là mộtsố thực cho khối lượng của một đồng vị cụ thể (hoặc "nuclide") của nguyên tố, tính bằngđơn vị khối lượng nguyên tử (kí hiệu: u). Nói chung, số khối của một nuclide nhất định khác một chút về giá trị so với khối lượng nguyên tử của nó, vì khối lượng của mỗi proton và neutron không chính xác đúng 1 u; vì các điện tử đóng góp một phần nhỏ hơn vào khối lượng nguyên tử vì số neutron vượt quá số proton; và (cuối cùng) vìnăng lượng liên kết hạt nhân. Ví dụ, khối lượng nguyên tử của chlor-35 có năm chữ số có nghĩa là 34,969 u và của chlor-37 là 36,966 u. Tuy nhiên, khối lượng nguyên tử tính bằng u của mỗi đồng vị khá gần với số khối lượng đơn giản của nó (luôn nằm trong khoảng 1%). Đồng vị duy nhất có khối lượng nguyên tử chính xác là mộtsố tự nhiên là12C, theo định nghĩa có khối lượng chính xác bằng 12 vì u được định nghĩa là 1/12 khối lượng của nguyên tử carbon-12 trung hòa tự do ở trạng thái cơ bản.
Trọng lượng nguyên tử tiêu chuẩn (thường được gọi là "trọng lượng nguyên tử") của một nguyên tố làtrung bình cộng của các khối lượng nguyên tử của tất cả các đồng vị của nguyên tố hóa học được tìm thấy trong một môi trường cụ thể, có trọng lượng bằng lượng đồng vị, so với đơn vị khối lượng nguyên tử. Số này có thể là một phân sốkhông gần với một số nguyên. Ví dụ, khối lượng nguyên tử tương đối của chlor là 35,453 u, khác rất nhiều so với một số nguyên vì nó là trung bình của khoảng 76% chlor-35 và 24% chlor-37. Bất cứ khi nào giá trị khối lượng nguyên tử tương đối khác hơn 1% so với một số nguyên, đó là do hiệu ứng trung bình này, vì một lượng đáng kể của nhiều hơn một đồng vị có trong một mẫu nguyên tố đó một cách tự nhiên.
Tinh khiết về mặt hóa học và tinh khiết về mặt đồng vị
Các nhà hóa học và các nhà khoa học hạt nhân có các định nghĩa khác nhau về mộtnguyên tố tinh khiết. Trong hóa học, nguyên tố nguyên chất có nghĩa là chất mà tất cả các nguyên tử (hoặc trong thực tế là hầu hết) đều có cùngsố nguyên tử hoặc sốproton. Tuy nhiên, các nhà khoa học hạt nhân định nghĩa một nguyên tố tinh khiết là một nguyên tố chỉ bao gồm mộtđồng vị ổn định.[18]
Ví dụ, một sợi dây đồng là 99,99% tinh khiết về mặt hóa học nếu 99,99% nguyên tử của nó là đồng, với 29 proton mỗi nguyên tử. Tuy nhiên, nó không phải là đồng vị tinh khiết vì đồng thông thường bao gồm hai đồng vị bền, 69%63Cu và 31%65Cu, với số neutron khác nhau. Tuy nhiên, một thỏi vàng nguyên chất sẽ tinh khiết cả về mặt hóa học và đồng vị, vì vàng thông thường chỉ bao gồm một đồng vị,197Au.
Nguyên tử của các nguyên tố tinh khiết về mặt hóa học có thể liên kết với nhau về mặt hóa học theo nhiều cách, cho phép nguyên tố tinh khiết tồn tại trong nhiềucấu trúc hóa học (cáchsắp xếp không gian của các nguyên tử), được gọi là các dạngthù hình, khác nhau về tính chất của chúng. Ví dụ, carbon có thể được tìm thấy dưới các dạng:kim cương, có cấu trúc tứ diện xung quanh mỗi nguyên tử carbon;than chì, có các lớp nguyên tử carbon có cấu trúc lục giác xếp chồng lên nhau;graphene, là một lớp graphit đơn lẻ rất bền;fullerene, có hình dạng gần như hình cầu; vàống nano carbon, là những ống có cấu trúc hình lục giác (thậm chí chúng có thể khác nhau về tính chất điện). Khả năng tồn tại của một nguyên tố ở một trong nhiều dạng cấu trúc được gọi là 'khả năng thù hình'.
Trạng thái chuẩn của một nguyên tố được định nghĩa là trạng thái ổn định nhất về mặtnhiệt động lực học của nó ở áp suất 1bar và nhiệt độ nhất định (thường ở 298,15 K). Trongnhiệt hóa học, một nguyên tố được định nghĩa là cóentanpi tạo thành bằng 0 ở trạng thái chuẩn của nó. Ví dụ, trạng thái tham chiếu của carbon là graphit, vì cấu trúc của graphit ổn định hơn so với các dạng thù hình khác.
Một số loại phân loại mô tả có thể được áp dụng rộng rãi cho các nguyên tố, bao gồm việc xem xét các đặc tính vật lý và hóa học chung của chúng, trạng thái vật chất của chúng trong các điều kiện quen thuộc, điểm nóng chảy và sôi của chúng, mật độ của chúng, cấu trúc tinh thể của chúng khi là chất rắn và nguồn gốc của chúng.
Một số thuật ngữ thường được sử dụng để mô tả các tính chất vật lý và hóa học chung của các nguyên tố hóa học. Điểm phân biệt đầu tiên làkim loại dễ dẫnđiện,phi kim không dẫn điện và một nhóm nhỏ (cácá kim), có các đặc tính trung gian và thường hoạt động nhưchất bán dẫn.
Sự phân loại tinh tế hơn thường được thể hiện trong các bản trình bày màu của bảng tuần hoàn. Hệ thống này hạn chế các thuật ngữ "kim loại" và "phi kim" chỉ đối với một số kim loại và phi kim được xác định rộng hơn, bổ sung các thuật ngữ bổ sung cho một số nhóm kim loại và phi kim được xem rộng rãi hơn. Phiên bản của phân loại này được sử dụng trong bảng tuần hoàn được trình bày ở đây bao gồm:họ actini,kim loại kiềm ,kim loại kiềm thổ,halogen,họ lanthan,kim loại chuyển tiếp,kim loại sau chuyển tiếp,á kim,phi kim phản ứng vàkhí trơ. Trong hệ thống này, các kim loại kiềm, kim loại kiềm thổ và kim loại chuyển tiếp, cũng như các lantan và actini, là các nhóm kim loại đặc biệt được nhìn nhận theo nghĩa rộng hơn. Tương tự, các phi kim phản ứng và các khí quý là các phi kim được nhìn theo nghĩa rộng hơn. Trong một số bài thuyết trình, các halogen không được phân biệt, vớiastatin được xác định là một kim loại và các chất khác được xác định là phi kim.
Một sự phân biệt cơ bản khác thường được sử dụng giữa các nguyên tố làtrạng thái vật chất (pha) của chúng, cho dù làrắn,lỏng haykhí, ởnhiệt độ và áp suất tiêu chuẩn đã chọn (STP). Hầu hết các nguyên tố là chất rắn ở nhiệt độ thông thường và áp suất khí quyển, trong khi một số nguyên tố là chất khí. Chỉ cóbrom vàthủy ngân là chất lỏng ở 0 độ C (32 độ F) và áp suất khí quyển bình thường;caesi vàgali là chất rắn ở nhiệt độ đó, nhưng nóng chảy ở 28,4 °C (83,2 °F) và 29,8 °C (85,6 °F), tương ứng.
Điểm chảy vàđiểm sôi, thường được biểu thịbằng độ C ở áp suất của một bầu khí quyển, thường được sử dụng để mô tả đặc tính của các nguyên tố khác nhau. Mặc dù được biết đến với hầu hết các nguyên tố, nhưng một trong hai hoặc cả hai phép đo này vẫn chưa được xác định đối với một số nguyên tố phóng xạ chỉ có sẵn với số lượng rất nhỏ. Vìheli vẫn là chất lỏng ngay cả ởđộ không tuyệt đối ở áp suất khí quyển, nên nó chỉ có nhiệt độ sôi chứ không phải nhiệt độ nóng chảy, trong các bài thuyết trình thông thường.
Khối riêng hay mật độ của ở nhiệt độ và áp suất tiêu chuẩn đã chọn (STP) thường được sử dụng để xác định đặc tính của các phần tử. Mật độ thường được biểu thị bằnggam trên centimet khối (g / cm³). Vì một số nguyên tố là chất khí ở nhiệt độ thường gặp, khối lượng riêng của chúng thường được nêu ở dạng khí; khi hóa lỏng hoặc đông đặc, các nguyên tố khí cũng có khối lượng riêng tương tự như khối lượng riêng của các nguyên tố khác.
Khi một phần tử có các dạngthù hình với các mật độ khác nhau, một dạng thù hình đại diện thường được chọn trong các bản trình bày tóm tắt, trong khi mật độ cho mỗi dạng allotro có thể được nêu khi cung cấp thêm thông tin chi tiết. Ví dụ, ba dạngthù hình quen thuộc của carbon (carbon vô định hình,than chì vàkim cương) có khối lượng riêng tương ứng là 1,8–2,1, 2,267 và 3,515 g / cm3.
Các nguyên tố hóa học cũng có thể được phân loại theo nguồn gốc của chúng trên Trái đất, với 94 nguyên tố đầu tiên được coi là xuất hiện ngoài tự nhiên, trong khi những nguyên tố có số nguyên tử ngoài 94 chỉ được sản xuất nhân tạo như là sản phẩm tổng hợp của các phản ứng hạt nhân nhân tạo.
Trong số 94 nguyên tố xuất hiện tự nhiên, 83 nguyên tố được coi lànguyên sinh và có tính phóng xạ yếu hoặcổn định. 11 nguyên tố tự nhiên còn lại cóchu kỳ bán rã quá ngắn để chúng có mặt ở thời kỳ đầu củaHệ Mặt trời, và do đó được coi là các nguyên tố nhất thời. Trong số 11 nguyên tố thoáng qua này, 5 nguyên tố (poloni,radon,radi,actini vàprotactini) là các sản phẩm phân rã tương đối phổ biến củathori vàurani. 6 nguyên tố thoáng qua còn lại (techneti,promethi,astatin,franci,neptuni vàplutoni) hiếm khi xảy ra, vì là sản phẩm của các chế độ phân rã hiếm hoặc quá trình phản ứng hạt nhân liên quan đến urani hoặc các nguyên tố nặng khác.
Không có sự phân rã phóng xạ nào được quan sát thấy đối với các nguyên tố có số nguyên tử từ 1 đến 82, ngoại trừ 43 (techneti) và 61 (promethi). Tuy nhiên, đồng vị bền quan sát của một số nguyên tố (nhưwolfram vàchì) được dự đoán là hơi phóng xạ với chu kỳ bán rã rất dài: [18] ví dụ, chu kỳ bán rã được dự đoán cho đồng vị chì ổn định quan sát nằm trong khoảng từ 1035 đến 10189 năm. Các nguyên tố có số nguyên tử 43, 61 và 83 đến 94 không ổn định đủ để có thể dễ dàng phát hiện ra sự phân rã phóng xạ của chúng. Ba trong số các nguyên tố này, bitmut (nguyên tố 83), thori (nguyên tố 90) và urani (nguyên tố 92) có một hoặc nhiều đồng vị có chu kỳ bán rã đủ dài để tồn tại như tàn tích củaquá trình tổng hợp hạt nhân sao nổ tạo ra các nguyên tố nặng trước sự hình thành củaHệ Mặt Trời. Ví dụ, với chu kỳ bán rã hơn 1,9×1019 năm, dài hơn một tỷ lần so với tuổi ước tính hiện tại của vũ trụ,bismuth-209có chu kỳ bán rã alpha lâu nhất được biết đến trong số các nguyên tố tự nhiên.[7][8] 24 nguyên tố nặng nhất (những nguyên tố ngoài plutoni, nguyên tố 94) trải qua quá trình phân rã phóng xạ với chu kỳ bán rã quá ngắn và không thể được tạo ra như sản phẩm phụ của các nguyên tố có tuổi thọ cao hơn, và do đó hoàn toàn không được biết là có tồn tại ngoài tự nhiên.
Tính chất của các nguyên tố hóa học thường được tóm tắt bằng cách sử dụngbảng tuần hoàn, bảng tuần hoàn sắp xếp các nguyên tố một cách mạnh mẽ và trang nhã bằng cách tăng số nguyên tử thành các hàng ("chu kỳ" ) trong đó các cột ("nhóm" ) chia sẻ sự lặp lại ("tuần hoàn") của các tính chất vật lý và tính chất hóa học. Bảng tuần hoàn tiêu chuẩn hiện tại chứa 118 nguyên tố đã được xác nhận tính đến năm 2019.
Mặc dù những tiền thân trước đó của bảng này đã tồn tại, nhưng việc phát minh ra nó thường được ghi công cho nhà hóa học người NgaDmitri Mendeleev vào năm 1869, người đã dự định dùng bảng để minh họa các xu hướng lặp lại trong các tính chất của các nguyên tố. Bố cục của bảng đã được tinh chỉnh và mở rộng theo thời gian khi các nguyên tố mới được phát hiện và các mô hình lý thuyết mới đã được phát triển để giải thích hành vi hóa học của chúng.
Sự phân bố ước tính của vật chất tối và năng lượng tối trong vũ trụ. Chỉ phần khối lượng và năng lượng trong vũ trụ được dán nhãn "nguyên tử" là được cấu tạo bởi các nguyên tố hóa học.
Chỉ khoảng 4% tổng khối lượng của vũ trụ được tạo ra từ các nguyên tử hoặcion, và do đó được biểu thị bằng các nguyên tố hóa học. Phần này chiếm khoảng 15% tổng số vật chất, với phần còn lại của vật chất (85%) làvật chất tối. Bản chất của vật chất tối vẫn chưa được biết, nhưng nó không được cấu tạo bởi các nguyên tử của các nguyên tố hóa học vì nó không chứa proton, neutron hoặc electron. (Phần phi vật chất còn lại của khối lượng vũ trụ được cấu tạo từnăng lượng tối thậm chí còn ít được hiểu rõ hơn).
Trong giai đoạn đầu của Vụ Nổ Lớn, sựtổng hợp hạt nhân của hạt nhân hydro dẫn đến việc sản xuất ra hydro-1 (proti,1H) và heli-4 (4He), cũng như một lượng nhỏ hơndeuteri (2H) và lượng rất nhỏ (theo lũy thừa 10−10) của lithi và beryli. Thậm chí một lượng nguyên tố bor nhỏ hơn có thể đã được tạo ra trong Vụ Nổ Lớn, vì nó đã được quan sát thấy ở một số ngôi sao rất cũ, trong khi carbon thì không.[19] Không có nguyên tố nào nặng hơn bor được tạo ra trong Vụ Nổ Lớn. Kết quả là, sự phong phú ban đầu của các nguyên tử (hoặc ion) bao gồm khoảng 75%1H, 25%4He, và 0,01% đơteri, chỉ với những lượng rất nhỏ lithi, beryli và có lẽ là bo.[20] Sự làm giàu sau đó củacác quầng thiên hà xảy ra do quá trình tổng hợp hạt nhân sao vàquá trình tổng hợp hạt nhân siêu tân tinh.[21] Tuy nhiên, sự phong phú của nguyên tố trongkhông gian giữa các thiên hà vẫn có thể gần giống với các điều kiện nguyên thủy, trừ khi nó đã được làm giàu bằng một số phương pháp.
Bảng tuần hoàn hiển thị nguồn gốc vũ trụ của từng nguyên tố trong Vụ nổ lớn, hoặc trong các ngôi sao lớn hoặc nhỏ. Các ngôi sao nhỏ có thể tạo ra một số nguyên tố lên đến lưu huỳnh, bằngquá trình alpha. Các siêu tân tinh là cần thiết để tạo ra các nguyên tố "nặng" (những nguyên tố ngoài sắt và nickel) nhanh chóng bằng cách tích tụ neutron, trongquá trình r. Một số ngôi sao lớn từ từ tạo ra các nguyên tố khác nặng hơn sắt, trongquá trình s ; những thứ này sau đó có thể bị thổi bay vào không gian trong sự thổi khí củatinh vân hành tinh
Trên Trái đất (và các nơi khác), lượng nhỏ của các nguyên tố khác nhau tiếp tục được tạo ra từ các nguyên tố khác như là sản phẩm của quá trìnhbiến đổi hạt nhân. Chúng bao gồm một số được tạo ra bởicác tia vũ trụ hoặc các phản ứng hạt nhân khác (xem cácnuclid vũ trụ vànucleogenic ), và một số khác được tạo ra dưới dạngsản phẩm phân rãcủa các nuclide nguyên thủy tồn tại lâu dài.[22] Ví dụ, một lượng vết (nhưng có thể phát hiện được) củacarbon-14 (14C) liên tục được tạo ra trong khí quyển do các tia vũ trụ tác động vàocác nguyên tử nitơ và argon-40 (40Ar) liên tục được tạo ra do sự phân hủy của kali-40 (40K) nguyên thủy nhưng không ổn định. Ngoài ra, ba nguyên tố nguyên thủy xuất hiện trừ các nguyên tố có tính phóng xạ thuộchọ actini, đó làthori, urani và plutoni, phân rã qua một loạt các định kỳ sản xuất nhưng không ổn định các yếu tố phóng xạ như radi vàradon, vốn chỉ xuất hiện thoáng qua trong bất kỳ mẫu của các kim loại này hoặc quặng hoặc các hợp chất của chúng. Ba nguyên tố phóng xạ khác,techneti,promethi vàneptuni, chỉ xuất hiện ngẫu nhiên trong các vật liệu tự nhiên, được tạo ra dưới dạng các nguyên tử riêng lẻ bằng cáchphân hạch hạt nhân của cáchạt nhân của các nguyên tố nặng khác nhau hoặc trong các quá trình hạt nhân hiếm gặp khác.
Biểu đồ sau (thang log) cho thấy sự phong phú của các nguyên tố trongHệ Mặt Trời của chúng ta. Bảng cho thấy mười hai nguyên tố phổ biến nhất trong thiên hà của chúng ta (ước tính theo phương pháp quang phổ), được đo bằngphần triệu,khối lượng.[23] Các thiên hà gần đó đã phát triển dọc theo các đường tương tự có sự làm giàu tương ứng của các nguyên tố nặng hơn hydro và heli. Các thiên hà xa hơn đang được xem như chúng đã xuất hiện trong quá khứ, vì vậy lượng nguyên tố dồi dào của chúng dường như gần với hỗn hợp nguyên thủy hơn. Tuy nhiên, khi các quy luật và quy trình vật lý xuất hiện phổ biến trongvũ trụ hữu hình, các nhà khoa học kỳ vọng rằng các thiên hà này đã tiến hóa các nguyên tố với mức độ phong phú tương tự.
Sự phong phú của các nguyên tố hóa học trong Hệ Mặt trời. Hydro và heli là phổ biến nhất, từ vụ nổ Big Bang. Ba nguyên tố tiếp theo (Li, Be, B) rất hiếm vì chúng được tổng hợp kém trong vụ nổ Big Bang và cả trong các ngôi sao. Hai xu hướng chung trong các nguyên tố được tạo ra từ sao còn lại là: (1) sự thay thế của sự phong phú trong các nguyên tố khi chúng có số nguyên tử chẵn hoặc lẻ (quy tắc Oddo-Harkins ) và (2) sự giảm đi chung khi các nguyên tố trở nên nặng hơn. Sắt đặc biệt phổ biến vì nó đại diện cho năng lượng tối thiểu nuclide có thể được tạo ra bằng phản ứng tổng hợp heli trong siêu tân tinh.
Sự phong phú của các nguyên tố trong Hệ Mặt trời phù hợp với nguồn gốc của chúng từ quá trình tổng hợp hạt nhân trongVụ Nổ Lớn và một số sao siêu tân tinh tiền thân. Hydro và heli rất dồi dào là sản phẩm của Vụ nổ lớn, nhưng ba nguyên tố tiếp theo rất hiếm vì chúng có rất ít thời gian hình thành trong Vụ nổ lớn và không được tạo ra trong các ngôi sao (tuy nhiên, chúng được tạo ra với số lượng nhỏ do sự tan rã của các nguyên tố nặng hơn trong bụi giữa các vì sao, do tác động củatia vũ trụ ). Bắt đầu với carbon, các nguyên tố được tạo ra trong các ngôi sao bằng cách tích tụ từ các hạt alpha (hạt nhân heli), dẫn đến sự phong phú xen kẽ của các nguyên tố có số nguyên tử chẵn (những nguyên tố này cũng ổn định hơn). Nói chung, các nguyên tố như sắt được tạo ra trong các ngôi sao lớn trong quá trình trở thànhsiêu tân tinh. Sắt-56 đặc biệt phổ biến, vì nó là nguyên tố ổn định nhất có thể dễ dàng được tạo ra từ các hạt alpha (là sản phẩm của sự phân rã phóng xạ nickel-56, cuối cùng được tạo ra từ 14 hạt nhân heli). Các nguyên tố nặng hơn sắt được tạo ra trong quá trình hấp thụ năng lượng ở các ngôi sao lớn, và sự phong phú của chúng trong vũ trụ (và trên Trái đất) thường giảm theo số nguyên tử của chúng.
Sự phong phú của các nguyên tố hóa học trên Trái Đất thay đổi từ không khí đến lớp vỏ đến đại dương, và trong các dạng sống khác nhau. Sự phong phú của các nguyên tố trong lớp vỏ Trái đất khác với sự phong phú của các nguyên tố trong Hệ Mặt trời (như được thấy ở Mặt trời và các hành tinh nặng nhưSao Mộc) chủ yếu ở việc mất đi có chọn lọc các nguyên tố rất nhẹ nhất (hydro và heli) và cả neon, carbon dễ bay hơi (nhưhydrocarbon), nitơ và lưu huỳnh, là kết quả của quá trình sưởi ấm bằng năng lượng mặt trời trong giai đoạn đầu hình thành hệ mặt trời. Oxy, nguyên tố Trái đất dồi dào nhất tính theo khối lượng, được giữ lại trên Trái đất bằng cách kết hợp với silic. Nhôm có 8% khối lượng phổ biến hơn trong vỏ Trái đất so với vũ trụ và Hệ Mặt trời, nhưng thành phần của lớp phủ cồng kềnh hơn nhiều, cómagnesi vàsắt thay cho nhôm (chỉ xuất hiện ở 2% khối lượng) phản ánh chặt chẽ hơn thành phần nguyên tố của Hệ Mặt Trời, chưa kể sự mất mát được ghi nhận của các nguyên tố dễ bay hơi vào không gian và mất lượng nguyên tố sắt đã di chuyển đến lõi của Trái Đất.
Bảng tuần hoàn củaMendeleev năm 1869:Một thí nghiệm trên một hệ thống các nguyên tố.Dựa vào khối lượng nguyên tử và sự giống nhau về mặt hóa học của chúng.
Khái niệm "nguyên tố" như một chất không thể phân chia đã phát triển qua ba giai đoạn lịch sử chính: Định nghĩa cổ điển (chẳng hạn như định nghĩa của người Hy Lạp cổ đại), định nghĩa hóa học và định nghĩa hạt nhân.
Triết học cổ đại đặt ra một tập hợp cácnguyên tố cổ điển để giải thích các mô hình quan sát được trongtự nhiên. Nhữngnguyên tố này ban đầu được gọi làđất,nước,khí vàlửa thay vì các nguyên tố hóa học của khoa học hiện đại.
Thuật ngữ 'nguyên tố'(stoicheia) lần đầu tiên được nhà triết học Hy LạpPlato sử dụng vào khoảng năm 360 TCN trong cuộc đối thoại của ông vớiTimaeus, trong đó bao gồm một cuộc thảo luận của các thành phần của các cơ quan vô cơ và hữu cơ và là một chuyên luận phỏng đoán về hóa học. Plato tin rằng các nguyên tố đượcEmpedocles đưa vào một thế kỷ trước đó bao gồm cácdạngđa diện nhỏ:tứ diện (lửa),bát diện (khí),nhị thập diện (nước) vàkhối lập phương (đất).[24][25]
Aristotle, khoảng năm 350 TCN, cũng sử dụng từstoicheia và bổ sung thêm một nguyên tố thứ năm gọi làaether, mà hình thành các tầng trời. Aristotle đã định nghĩa một nguyên tố là:
Element – one of those bodies into which other bodies can decompose, and that itself is not capable of being divided into other.[26]
Năm 1661,Robert Boyle đề xuất lý thuyết về vật thể của mình, trong đó ủng hộ việc phân tích vật chất được cấu thành bởi các đơn vị vật chất không thể thu nhỏ hơn được (nguyên tử) và, không chọn quan điểm của Aristotle về bốn nguyên tố cũng nhưquan điểm của Paracelsus về ba nguyên tố cơ bản, và còn bỏ ngỏ. câu hỏi về số lượng nguyên tố.[27] Danh sách các nguyên tố hóa học hiện đại đầu tiên được đưa ra trongCác nguyên tố hóa học năm 1789 củaAntoine Lavoisier, chứa ba mươi ba nguyên tố, bao gồm cảánh sáng vànhiệt lượng.[28] Đến năm 1818,Jöns Jakob Berzelius đã xác định được trọng lượng nguyên tử cho 45 trong số 49nguyên tố được chấp nhận sau đó.Dmitri Mendeleev đưa ra 66 nguyên tố trongbảng tuần hoàn của ông vào năm 1869.
Từ thời Boyle cho đến đầu thế kỷ 20, một nguyên tố được định nghĩa là một chất tinh khiết không thể bị phân hủy thành bất kỳ chất nào đơn giản hơn.[27] Nói cách khác, một nguyên tố hóa học không thể chuyển hóa thành các nguyên tố hóa học khác bằng các quá trình hóa học. Các nguyên tố trong thời gian này thường được phân biệt bằng khối lượng nguyên tử của chúng, một đặc tính có thể đo được với độ chính xác khá cao bằng các kỹ thuật phân tích có sẵn.
Phát hiện năm 1913 của nhà vật lý người AnhHenry Moseley rằng điện tích hạt nhân là cơ sở vật lý cho số nguyên tử của một nguyên tử, được hoàn thiện thêm khi bản chất của proton vàneutron được nhìn nhận, cuối cùng dẫn đến định nghĩa hiện tại về một nguyên tố dựa trên số nguyên tử (số proton trên mỗi hạt nhân nguyên tử). Việc sử dụng các số nguyên tử, chứ không phải là khối lượng nguyên tử, để phân biệt các nguyên tố có giá trị tiên đoán lớn hơn (do những con số là các số nguyên), và cũng có thể giải quyết một số những mập mờ trong giao diện hóa học dựa trên do tính chất của biến đổiđồng vị vàthù hình trong cùng một nguyên tố. Hiện tại,IUPAC xác định một nguyên tố tồn tại nếu nó có các đồng vị có thời gian sống lâu hơn 10−14 giây, thời gian mà hạt nhân cần đến để tạo thành một đám mây điện tử.[29]
Đến năm 1914, 72 nguyên tố đã được biết đến, tất cả đều xuất hiện trong tự nhiên.[30] Các nguyên tố trong tự nhiên còn lại đã được phát hiện hoặc chiết tách trong những thập kỷ tiếp theo, và nhiều nguyên tố bổ sung khác cũng đã được sản xuất tổng hợp, với phần lớn công trình đó doGlenn T. Seaborg đi tiên phong. Năm 1955, nguyên tố 101 được phát hiện và đặt tên làmendelevi để vinh danh D. I. Mendeleev, người đầu tiên sắp xếp các nguyên tố theo cách tuần hoàn.
Mười chất liệu quen thuộc với các nền văn hóa tiền sử khác nhau hiện được biết đến là các nguyên tố hóa học:carbon,đồng,vàng,sắt,chì,thủy ngân,bạc,lưu huỳnh,thiếc vàkẽm. Ba vật liệu bổ sung hiện được chấp nhận là nguyên tố,arsenic,antimon vàbismuth, đã được công nhận là các chất riêng biệt trước năm 1500.Phosphor,cobalt vàplatin đã được phân lập trước năm 1750.
Hầu hết các nguyên tố hóa học trong tự nhiên còn lại đã được xác định và ghi nhận tính chất vào năm 1900, bao gồm:
Các nguyên tố được phân lập hoặc sản xuất kể từ năm 1900 bao gồm:
Ba nguyên tố tự nhiên ổn định thường xuyên chưa được phát hiện còn lại:hafni,luteti, vàrheni
Plutoni, đượcGlenn T. Seaborg sản xuất tổng hợp lần đầu tiên vào năm 1940, nhưng bây giờ cũng được biết đến từ một vài sự kiện xảy ra trong tự nhiên với thời gian dài
Ba nguyên tố tự nhiên xuất hiện ngẫu nhiên (neptuni,promethi vàtechneti), lần đầu tiên được sản xuất tổng hợp nhưng sau đó được phát hiện với lượng nhỏ trong một số mẫu địa chất nhất định
Nguyên tố siêu urani đầu tiên (nguyên tố có số nguyên tử lớn hơn 92) được phát hiện làneptuni vào năm 1940. Kể từ năm 1999, các tuyên bố về việc phát hiện ra các nguyên tố mới đã đượcBan công tác chung IUPAC/IUPAP xem xét. Tính đến tháng 1 năm 2016, tất cả 118 nguyên tố đã đượcIUPAC xác nhận là đã phát hiện ra. Việc phát hiện ra nguyên tố 112 đã được công nhận vào năm 2009, và cái têncopernici và ký hiệu nguyên tửCn đã được gợi ý cho nguyên tố này.[31] Tên và biểu tượng của nguyên tố này đã được IUPAC chính thức xác nhận vào ngày 19 tháng 2 năm 2010.[32] Nguyên tố nặng nhất được cho là đã được tổng hợp cho đến nay là nguyên tố 118,oganesson, vào ngày 9 tháng 10 năm 2006, doPhòng thí nghiệm phản ứng hạt nhânFlerov ở Dubna, Nga tìm ra.[10][33]Tennessine, nguyên tố 117 là nguyên tố mới nhất được tuyên bố là đã được phát hiện, vào năm 2009.[34] Vào ngày 28 tháng 11 năm 2016, các nhà khoa học tại IUPAC đã chính thức công nhận tên của bốn nguyên tố hóa học mới nhất, với các số hiệu nguyên tử 113, 115, 117 và 118.[35][36]