| Description:Define a function on twotopologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p.102. Seeiscn 23135 for the predicate form. (Contributed by NM, 17-Oct-2006.) |
| Ref | Expression |
|---|---|
| ⊢ Cn =(𝑗 ∈ Top, |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccn | . 2classCn | |
| 2 | vj | . . 3setvar | |
| 3 | vk | . . 3setvar | |
| 4 | ctop 22793 | . . 3classTop | |
| 5 | vf | . . . . . . . . 9setvar | |
| 6 | 5 | cv | . . . . . . . 8class |
| 7 | 6 | ccnv | . . . . . . 7class𝑓 |
| 8 | vy | . . . . . . . 8setvar | |
| 9 | 8 | cv | . . . . . . 7class |
| 10 | 7,9 | cima | . . . . . 6class(𝑓 “𝑦) |
| 11 | 2 | cv | . . . . . 6class |
| 12 | 10,11 | wcel | . . . . 5wff(𝑓 “𝑦) ∈𝑗 |
| 13 | 3 | cv | . . . . 5class |
| 14 | 12,8,13 | wral | . . . 4wff∀𝑦 ∈𝑘 (𝑓 “𝑦) ∈𝑗 |
| 15 | 13 | cuni | . . . . 5class𝑘 |
| 16 | 11 | cuni | . . . . 5class𝑗 |
| 17 | cmap | . . . . 5class↑m | |
| 18 | 15,16,17 | co | . . . 4class(𝑘↑m𝑗) |
| 19 | 14,5,18 | crab | . . 3class{ |
| 20 | 2,3,4,4,19 | cmpo | . 2class( |
| 21 | 1,20 | wceq | 1wff Cn =(𝑗 ∈ Top, |