Movatterモバイル変換


[0]ホーム

URL:


MPE Home

 23127
Description:Define a function on twotopologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p.102. Seeiscn 23135 for the predicate form. (Contributed by NM, 17-Oct-2006.)
Assertion
RefExpression
Cn =(𝑗 ∈ Top,𝑘 ∈ Top ↦ {𝑓 ∈ (𝑘m𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈𝑗})
Distinct variable group:  𝑗,𝑘,𝑓,𝑦

Detailed syntax breakdown of Definition
StepHypRefExpression
1 ccn 23124. 2classCn
2 vj. . 3setvar𝑗
3 vk. . 3setvar𝑘
4 ctop 22793. . 3classTop
5 vf. . . . . . . . 9setvar𝑓
65cv 1539. . . . . . . 8class𝑓
76ccnv 5645. . . . . . 7class𝑓
8 vy. . . . . . . 8setvar𝑦
98cv 1539. . . . . . 7class𝑦
107,9cima 5649. . . . . 6class(𝑓𝑦)
112cv 1539. . . . . 6class𝑗
1210,11wcel 2109. . . . 5wff(𝑓𝑦) ∈𝑗
133cv 1539. . . . 5class𝑘
1412,8,13wral 3046. . . 4wff𝑦𝑘 (𝑓𝑦) ∈𝑗
1513cuni 4879. . . . 5class𝑘
1611cuni 4879. . . . 5class𝑗
17 cmap 8810. . . . 5classm
1815,16,17co 7394. . . 4class(𝑘m𝑗)
1914,5,18crab 3411. . 3class{𝑓 ∈ (𝑘m𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈𝑗}
202,3,4,4,19cmpo 7396. 2class(𝑗 ∈ Top,𝑘 ∈ Top ↦ {𝑓 ∈ (𝑘 ↑m𝑗)∣ ∀𝑦𝑘 (𝑓𝑦) ∈𝑗})
211,20wceq 15401wff Cn =(𝑗 ∈ Top,𝑘 ∈ Top ↦ {𝑓 ∈ (𝑘m𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈𝑗})
 

[8]ページ先頭

©2009-2025 Movatter.jp