Movatterモバイル変換


[0]ホーム

URL:


loading
PapersPapers/2022PapersPapers/2022

Scitepress Logo

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you already have a Primoris Account you can use the same username/password here.
Research.Publish.Connect.

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you're looking for an exact phrase use quotation marks on text fields.

Paper

Paper Unlock

Authors:Jishu Miao;Tsubasa Hirakawa;Takayoshi Yamashita andHironobu Fujiyoshi

Affiliation:Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, Japan

Keyword(s):Object Detection, Deep Learning, Point Cloud Processing, Autonomous Vehicles.

Abstract:In this paper, we propose a novel point clouds based 3D object detection method for achieving higher-accuracy of autonomous driving. Different types of objects on the road has a different shape. A LiDAR sensor can provide a point cloud including more than ten thousand points reflected from object surfaces in one frame. Recent studies show that hand-crafted features directly extracted from point clouds can achieve nice detection accuracy. The proposed method employs YOLOv4 as feature extractor and gives Normal-map as additional input. Our Normal-map is a three channels bird’s eye view image, retaining detailed object surface normals. It makes the input information have more enhanced spatial shape information and can be associated with other hand-crafted features easily. In an experiment on the KITTI 3D object detection dataset, it performs better than conventional methods. Our method can achieve higher-precision 3D object detection and is less affected by distance. It has excellent yaw angle predictability for the object, especially for cylindrical objects like pedestrians, even if it omits the intensity information.(More)

In this paper, we propose a novel point clouds based 3D object detection method for achieving higher-accuracy of autonomous driving. Different types of objects on the road has a different shape. A LiDAR sensor can provide a point cloud including more than ten thousand points reflected from object surfaces in one frame. Recent studies show that hand-crafted features directly extracted from point clouds can achieve nice detection accuracy. The proposed method employs YOLOv4 as feature extractor and gives Normal-map as additional input. Our Normal-map is a three channels bird’s eye view image, retaining detailed object surface normals. It makes the input information have more enhanced spatial shape information and can be associated with other hand-crafted features easily. In an experiment on the KITTI 3D object detection dataset, it performs better than conventional methods. Our method can achieve higher-precision 3D object detection and is less affected by distance. It has excellent yaw angle predictability for the object, especially for cylindrical objects like pedestrians, even if it omits the intensity information.

Full Text

Download
Please type the code

CC BY-NC-ND 4.0

Sign In

Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guest:Register as new SciTePress user now for free.

Sign In

Download limit per month - 500 recent papers or 4000 papers more than 2 years old.
SciTePress user: please login.

PDF ImageMy Papers

PopUp Banner

Unable to see papers previously downloaded, because you haven't logged in as SciTePress Member.

If you are already a member please login.
You are not signed in, therefore limits apply to your IP address 153.126.140.213

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total
Popup Banner

PDF ButtonFull Text

Download
Please type the code

Paper citation in several formats:
Miao, J., Hirakawa, T., Yamashita, T. and Fujiyoshi, H. (2021).3D Object Detection with Normal-map on Point Clouds. InProceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 5: VISAPP; ISBN 978-989-758-488-6; ISSN 2184-4321, SciTePress, pages 569-576. DOI: 10.5220/0010304305690576

@conference{visapp21,
author={Jishu Miao and Tsubasa Hirakawa and Takayoshi Yamashita and Hironobu Fujiyoshi},
title={3D Object Detection with Normal-map on Point Clouds},
booktitle={Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 5: VISAPP},
year={2021},
pages={569-576},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010304305690576},
isbn={978-989-758-488-6},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 5: VISAPP
TI - 3D Object Detection with Normal-map on Point Clouds
SN - 978-989-758-488-6
IS - 2184-4321
AU - Miao, J.
AU - Hirakawa, T.
AU - Yamashita, T.
AU - Fujiyoshi, H.
PY - 2021
SP - 569
EP - 576
DO - 10.5220/0010304305690576
PB - SciTePress

    - Science and Technology Publications, Lda.
    RESOURCES

    Proceedings

    Papers

    Authors

    Ontology

    CONTACTS

    Science and Technology Publications, Lda
    Avenida de S. Francisco Xavier, Lote 7 Cv. C,
    2900-616 Setúbal, Portugal.

    Phone: +351 265 520 185(National fixed network call)
    Fax: +351 265 520 186
    Email:info@scitepress.org

    EXTERNAL LINKS

    PRIMORIS

    INSTICC

    SCITEVENTS

    CROSSREF

    PROCEEDINGS SUBMITTED FOR INDEXATION BY:

    dblp

    Ei Compendex

    SCOPUS

    Semantic Scholar

    Google Scholar

    Microsoft Academic


    [8]
    ページ先頭

    ©2009-2025 Movatter.jp