Authors:Matthieu Fradet;Caroline Baillard;Vincent Alleaume;Pierrick Jouet;Anthony Laurent andTao Luo
Affiliation:InterDigital, Rennes, France
Keyword(s):Augmented Reality, Robot Navigation, Relocalization, 3D Registration, 3D Modeling.
Abstract:We describe a system enabling to assign navigation tasks to a self-moving robot in a domestic environment, using an Augmented Reality application running on a consumer-grade mobile phone. The system is composed of a robot, one or several mobile phones, a robot controller and a central server. The server embeds automatic processing modules for 3D scene modeling and for device relocalization. The user points at a target location in the phone camera view and the robot automatically moves to the designated point. The user is assisted with AR-based visual feedback all along the experience. The novelty of the system lies in the automatic relocalization of both the robot and the phone: they are independently located in the 3D space thanks to registration methods running on the server, hence they do not need to be explicitly spatially registered to each other nor in direct line of sight. In the paper we provide details on the general architecture and the different modules that are needed toget a fully functional prototype. The proposed solution was designed to be easily extended and may be seen as a general architecture supporting intuitive AR interfaces for in home devices interactions.(More)
We describe a system enabling to assign navigation tasks to a self-moving robot in a domestic environment, using an Augmented Reality application running on a consumer-grade mobile phone. The system is composed of a robot, one or several mobile phones, a robot controller and a central server. The server embeds automatic processing modules for 3D scene modeling and for device relocalization. The user points at a target location in the phone camera view and the robot automatically moves to the designated point. The user is assisted with AR-based visual feedback all along the experience. The novelty of the system lies in the automatic relocalization of both the robot and the phone: they are independently located in the 3D space thanks to registration methods running on the server, hence they do not need to be explicitly spatially registered to each other nor in direct line of sight. In the paper we provide details on the general architecture and the different modules that are needed to get a fully functional prototype. The proposed solution was designed to be easily extended and may be seen as a general architecture supporting intuitive AR interfaces for in home devices interactions.