In this paper, the projective synchronization of quaternion-valued memristor-based neural networks with time-varing delays was studied. First, by utilizing set-valued map and differential inclusion theories, we reformulated the networks as an uncertain system with interval parameters. Then, through designing a novel controller and utilizing Lyapunov function and Young's inequality, several new synchronization conditions for projection synchronization of quaternion-valued memristor-based neural networks were obtained. Finally, the effectiveness of this method was demonstrated through a numerical example, underscoring its practical applicability.
Citation: Jun Guo, Yanchao Shi, Yanzhao Cheng, Weihua Luo. Projective synchronization for quaternion-valued memristor-based neural networks under time-varying delays[J]. Networks and Heterogeneous Media, 2024, 19(3): 1156-1181. doi: 10.3934/nhm.2024051
In this paper, the projective synchronization of quaternion-valued memristor-based neural networks with time-varing delays was studied. First, by utilizing set-valued map and differential inclusion theories, we reformulated the networks as an uncertain system with interval parameters. Then, through designing a novel controller and utilizing Lyapunov function and Young's inequality, several new synchronization conditions for projection synchronization of quaternion-valued memristor-based neural networks were obtained. Finally, the effectiveness of this method was demonstrated through a numerical example, underscoring its practical applicability.
[1] | L. O. Chua, Memristor-the missing circuit element,IEEE Trans. Circuit Theory,18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi:10.1109/TCT.1971.1083337![]() |
[2] | H. Bao, Y. Zhang, W. Liu, B. Bao, Memristor synapse-coupled memristive neuron network: Synchronization transition and occurrence of chimera,Nonlinear Dyn.,100 (2020), 937–950. https://doi.org/10.1007/s11071-020-05529-2 doi:10.1007/s11071-020-05529-2![]() |
[3] | F. Wei, G. Chen, W. Wang, Finite-time synchronization of memristor neural networks via interval matrix method,Neural Networks,127 (2020), 7–18. https://doi.org/10.1016/j.neunet.2020.04.003 doi:10.1016/j.neunet.2020.04.003![]() |
[4] | D. Ding, Z. You, Y. Hu, Z. Yang, L. Ding, Finite-time synchronization for fractional-order memristor-based neural networks with discontinuous activations and multiple delays,Mod. Phys. Lett. B,34 (2020), 2050162. https://doi.org/10.1142/S0217984920501626 doi:10.1142/S0217984920501626![]() |
[5] | U. Bhatti, Z. Yu, L. Yuan, Z. Zeeshan, M. Bhatti, M. Anum, et al., Geometric algebra applications in geospatial artificial intelligence and remote sensing image processing,IEEE Access,8 (2020), 155783–155796. https://doi.org/10.1109/ACCESS.2020.3018544 doi:10.1109/ACCESS.2020.3018544![]() |
[6] | L. Hua, Y. Qiang, J. Gu, L. Chen, X. Zhang, H. Zhu, Mechanical fault diagnosis using color image recognition of vibration spectrogram based on quaternion invariable moment,Math. Probl. Eng.,2015 (2015), 1–11. https://doi.org/10.1155/2015/702760 doi:10.1155/2015/702760![]() |
[7] | M. Hasan, B. P. Mandal, New scattering features of quaternionic point interaction in non-Hermitian quantum mechanics,J. Math. Phys.,61 (2020), 032104. https://doi.org/10.1063/1.5117873 doi:10.1063/1.5117873![]() |
[8] | R. J. Goodman, Digital simulation of aerospace vehicle flight path dynamics using quaternions, inPrague International Astronautical Federation Congress, 1977. |
[9] | H. Wang, G. Wei, S. Wen, T. Huang, Impulsive disturbance on stability analysis of delayed quaternion-valued neural networks,Neurocomputing,390 (2021), 125680. https://doi.org/10.1016/j.amc.2020.125680 doi:10.1016/j.amc.2020.125680![]() |
[10] | J. Shu, B. Wu, L. Xiong, T. Wu, H. Zhang, Stochastic stabilization of Markov jump quaternion-valued neural network using sampled-data control,Appl. Math. Comput.,400 (2021), 1260414. https://doi.org/10.1016/j.amc.2021.126041 doi:10.1016/j.amc.2021.126041![]() |
[11] | Y. Zhang, L. Zhou, Novel global polynomial stability criteria of impulsive complex-valued neural networks with multi-proportional delays,Neural Comput. Appl.,34 (2022), 2913–2924. https://doi.org/10.1007/s00521-021-06555-w doi:10.1007/s00521-021-06555-w![]() |
[12] | S. Wang, Y. Shi, J. Guo, Exponential stability of a class of quaternion-valued memristor-based neural network with time-varying delay via M-matrix,Math. Methods Appl. Sci., 2024.https://doi.org/10.1002/mma.10486 |
[13] | Q. Song, Y. Chen, Z. Zhao, Y. Liu, F. Alsaadi, Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties,Neurocomputing,420 (2021), 70–81. https://doi.org/10.1016/j.neucom.2020.08.059 doi:10.1016/j.neucom.2020.08.059![]() |
[14] | R. Li, J. Cao, N. Li, Stop and go strategy for Lagrange stability of quaternion-valued memristive neural networks,Math. Methods Appl. Sci.,46 (2023), 6578–6589. https://doi.org/10.1002/mma.8926 doi:10.1002/mma.8926![]() |
[15] | W. Liu, J. Huang, Q. Yao, Stability analysis for quaternion-valued inertial memristor-based neural networks with time delays,Neurocomputing,448 (2021), 67–81. https://doi.org/10.1016/j.neucom.2021.03.106 doi:10.1016/j.neucom.2021.03.106![]() |
[16] | Y. Shi, X. Chen, P. Zhu, Dissipativity for a class of quaternion-valued memristor-based neutral-type neural networks with time-varying delays,Math. Methods Appl. Sci.,46 (2023), 18166–18184. https://doi.org/10.1002/mma.9551 doi:10.1002/mma.9551![]() |
[17] | T. Peng, J. Lu, Z. Tu, J. Lou, Finite-time stabilization of quaternion-valued neural networks with time delays: An implicit function method,Inf. Sci.,613 (2022), 747–762. https://doi.org/10.1016/j.ins.2022.09.014 doi:10.1016/j.ins.2022.09.014![]() |
[18] | G. Tan, Z. Wang, Z. Shi, Proportional-integral state estimator for quaternion-valued neural networks with time-varying delays,IEEE Trans. Neural Networks Learn. Syst.,34 (2023), 1074–1079. https://doi.org/10.1109/TNNLS.2021.3103979 doi:10.1109/TNNLS.2021.3103979![]() |
[19] | J. Hu, G. Tan, L. Liu, A new result on H$\infty$ state estimation for delayed neural networks based on an extended reciprocally convex inequality,IEEE Trans. Circuits Syst. II Express Briefs,71 (2024), 1181–1185. https://doi.org/10.1109/TCSII.2023.3323834 doi:10.1109/TCSII.2023.3323834![]() |
[20] | J. Cai, J. Feng, J. Wang, Y. Zhao, Quasi-synchronization of neural networks with diffusion effects via intermittent control of regional division,Neurocomputing,409 (2020), 146–156. https://doi.org/10.1016/j.neucom.2020.05.037 doi:10.1016/j.neucom.2020.05.037![]() |
[21] | R. Li, X. Gao, J. Cao, Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach,Appl. Math. Comput.,362 (2019), 124572. https://doi.org/10.1016/j.amc.2019.124572 doi:10.1016/j.amc.2019.124572![]() |
[22] | X. Song, X. Li, S. Song, Y. Zhang, Z. Ning, Quasi-synchronization of coupled neural networks with reaction-diffusion terms driven by fractional brownian motion,J. Franklin Inst.,358 (2021), 2482–2499. https://doi.org/10.1016/j.jfranklin.2021.01.023 doi:10.1016/j.jfranklin.2021.01.023![]() |
[23] | Z. Zhang, T. Zheng, S. Yu, Finite-time anti-synchronization of neural networks with time-varying delays via inequality skills,Neurocomputing,356 (2019), 60–68. https://doi.org/10.1016/j.neucom.2019.05.012 doi:10.1016/j.neucom.2019.05.012![]() |
[24] | X. Liu, Z. Li, Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays,Neurocomputing,387 (2020), 129–138. https://doi.org/10.1016/j.neucom.2020.01.035 doi:10.1016/j.neucom.2020.01.035![]() |
[25] | Y. Qiao, H. Yan, L. Duan, J. Miao, Finite-time synchronization of fractional-order gene regulatory networks with time delay,Neural Networks,126 (2020), 1–10. https://doi.org/10.1016/j.neunet.2020.02.004 doi:10.1016/j.neunet.2020.02.004![]() |
[26] | T. Peng, J. Zhong, Z. Tu, J. Lu, J. Lou, Finite-time synchronization of quaternion-valued neural networks with delays: A switching control method without decomposition,Neural Networks,148 (2022), 37–47. https://doi.org/10.1016/j.neunet.2021.12.012 doi:10.1016/j.neunet.2021.12.012![]() |
[27] | T. Peng, J. Qiu, J. Lu, Z. Tu, J. Cao, Finite-time and fixed-time synchronization of quaternion-valued neural networks with/without mixed delays: An improved one-norm method,IEEE Trans. Neural Networks Learn. Syst.,12 (2022), 7475–7487. https://doi.org/10.1109/TNNLS.2021.3085253 doi:10.1109/TNNLS.2021.3085253![]() |
[28] | D. Ding, X. Yao, H. Zhang, Complex projection synchronization of fractional-order complex-valued memristive neural networks with multiple delays,Neural Process. Lett.,51 (2020), 325–345. https://doi.org/10.1007/s11063-019-10093-x doi:10.1007/s11063-019-10093-x![]() |
[29] | Y. Zhang, S. Deng, Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay,Chaos, Solitons Fractals,128 (2019), 176-190. https://doi.org/10.1016/j.chaos.2019.07.043 doi:10.1016/j.chaos.2019.07.043![]() |
[30] | Y. Cheng, Y. Shi, The exponential synchronization and asymptotic synchronization of quaternion-valued memristor-based Cohen-Grossberg neural networks with time-varying delays,Neural Process. Lett.,55 (2023), 6637–6656. https://doi.org/10.1007/s11063-023-11152-0 doi:10.1007/s11063-023-11152-0![]() |
[31] | Y. Cheng, Y. Shi, J. Guo, Exponential synchronization of quaternion-valued memristor-based Cohen-Grossberg neural networks with time-varying delays: Norm method,Cognit. Neurodyn.,18 (2024), 1943–1953. https://doi.org/10.1007/s11571-023-10057-x doi:10.1007/s11571-023-10057-x![]() |
[32] | H. L. Li, L. Zhang, C. Hu, H. Jiang, J. Cao, Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach,Appl. Math. Comput.,373 (2020), 125020. https://doi.org/10.1016/j.amc.2019.125020 doi:10.1016/j.amc.2019.125020![]() |
[33] | Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control,IEEE Trans. Neural Networks Learn. Syst.,32 (2020), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi:10.1109/TNNLS.2020.2995718![]() |
[34] | J. Cheng, L. Xie, D. Zhang, H. Yan, Novel event-triggered protocol to sliding mode control for singular semi-Markov jump systems,Automatica,151 (2023), 110906. https://doi.org/10.1016/j.automatica.2023.110906 doi:10.1016/j.automatica.2023.110906![]() |
[35] | J. Cheng, J. H. Park, Z. Wu, Observer-based asynchronous control of nonlinear systems with dynamic event-based try-once-discard protocol,IEEE Trans. Cybern.,52 (2022), 12638–12648. https://doi.org/10.1109/TCYB.2021.3104806 doi:10.1109/TCYB.2021.3104806![]() |
[36] | Y. Gu, Y. Yu, H. Wang, Projective synchronization for fractional-order memristor-based neural networks with time delays,Neural Comput. Appl.,31 (2019), 6039–6054. https://doi.org/10.1007/s00521-018-3391-7 doi:10.1007/s00521-018-3391-7![]() |
[37] | G. Velmurugan, R. Rakkiyappan, Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays,Nonlinear Dyn.,83 (2016), 419–432. https://doi.org/10.1007/s11071-015-2337-1 doi:10.1007/s11071-015-2337-1![]() |
[38] | H. Bao, J. Cao, Projective synchronization of fractional-order memristor-based neural networks,Neural Networks,63 (2015), 1–9. https://doi.org/10.1016/j.neunet.2014.10.007 doi:10.1016/j.neunet.2014.10.007![]() |
[39] | R. Li, X. Gao, J. Cao, K. Zhang, Exponential stabilization control of delayed quaternion-valued memristive neural networks: Vector ordering approach,Circuits Syst. Signal Process.,39 (2020), 1353–1371. https://doi.org10.1007/s00034-019-01225-8 doi:10.1007/s00034-019-01225-8![]() |
Article views(692)PDF downloads(40)Cited by(0)