Movatterモバイル変換


[0]ホーム

URL:


Networks and Heterogeneous Media

Theroy articleSpecial Issues

Projective synchronization for quaternion-valued memristor-based neural networks under time-varying delays

  • 1.
    College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China
  • 2.
    Key Laboratory of Numerical Simulation of Sichuan Provincial Universities, School of Mathematics and Information Sciences, Neijiang Normal University, Neijiang 641000, China
  • 3.
    School of Science, Southwest Petroleum University, Chengdu 610500, China
  • 4.
    School of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China
  • Received: 20 August 2024Revised: 08 October 2024Accepted: 12 October 2024Published: 17 October 2024
  • In this paper, the projective synchronization of quaternion-valued memristor-based neural networks with time-varing delays was studied. First, by utilizing set-valued map and differential inclusion theories, we reformulated the networks as an uncertain system with interval parameters. Then, through designing a novel controller and utilizing Lyapunov function and Young's inequality, several new synchronization conditions for projection synchronization of quaternion-valued memristor-based neural networks were obtained. Finally, the effectiveness of this method was demonstrated through a numerical example, underscoring its practical applicability.

    Citation: Jun Guo, Yanchao Shi, Yanzhao Cheng, Weihua Luo. Projective synchronization for quaternion-valued memristor-based neural networks under time-varying delays[J]. Networks and Heterogeneous Media, 2024, 19(3): 1156-1181. doi: 10.3934/nhm.2024051

    Related Papers:

  • Abstract

    In this paper, the projective synchronization of quaternion-valued memristor-based neural networks with time-varing delays was studied. First, by utilizing set-valued map and differential inclusion theories, we reformulated the networks as an uncertain system with interval parameters. Then, through designing a novel controller and utilizing Lyapunov function and Young's inequality, several new synchronization conditions for projection synchronization of quaternion-valued memristor-based neural networks were obtained. Finally, the effectiveness of this method was demonstrated through a numerical example, underscoring its practical applicability.



    加载中


    References

    [1] L. O. Chua, Memristor-the missing circuit element,IEEE Trans. Circuit Theory,18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi:10.1109/TCT.1971.1083337
    [2] H. Bao, Y. Zhang, W. Liu, B. Bao, Memristor synapse-coupled memristive neuron network: Synchronization transition and occurrence of chimera,Nonlinear Dyn.,100 (2020), 937–950. https://doi.org/10.1007/s11071-020-05529-2 doi:10.1007/s11071-020-05529-2
    [3] F. Wei, G. Chen, W. Wang, Finite-time synchronization of memristor neural networks via interval matrix method,Neural Networks,127 (2020), 7–18. https://doi.org/10.1016/j.neunet.2020.04.003 doi:10.1016/j.neunet.2020.04.003
    [4] D. Ding, Z. You, Y. Hu, Z. Yang, L. Ding, Finite-time synchronization for fractional-order memristor-based neural networks with discontinuous activations and multiple delays,Mod. Phys. Lett. B,34 (2020), 2050162. https://doi.org/10.1142/S0217984920501626 doi:10.1142/S0217984920501626
    [5] U. Bhatti, Z. Yu, L. Yuan, Z. Zeeshan, M. Bhatti, M. Anum, et al., Geometric algebra applications in geospatial artificial intelligence and remote sensing image processing,IEEE Access,8 (2020), 155783–155796. https://doi.org/10.1109/ACCESS.2020.3018544 doi:10.1109/ACCESS.2020.3018544
    [6] L. Hua, Y. Qiang, J. Gu, L. Chen, X. Zhang, H. Zhu, Mechanical fault diagnosis using color image recognition of vibration spectrogram based on quaternion invariable moment,Math. Probl. Eng.,2015 (2015), 1–11. https://doi.org/10.1155/2015/702760 doi:10.1155/2015/702760
    [7] M. Hasan, B. P. Mandal, New scattering features of quaternionic point interaction in non-Hermitian quantum mechanics,J. Math. Phys.,61 (2020), 032104. https://doi.org/10.1063/1.5117873 doi:10.1063/1.5117873
    [8] R. J. Goodman, Digital simulation of aerospace vehicle flight path dynamics using quaternions, inPrague International Astronautical Federation Congress, 1977.
    [9] H. Wang, G. Wei, S. Wen, T. Huang, Impulsive disturbance on stability analysis of delayed quaternion-valued neural networks,Neurocomputing,390 (2021), 125680. https://doi.org/10.1016/j.amc.2020.125680 doi:10.1016/j.amc.2020.125680
    [10] J. Shu, B. Wu, L. Xiong, T. Wu, H. Zhang, Stochastic stabilization of Markov jump quaternion-valued neural network using sampled-data control,Appl. Math. Comput.,400 (2021), 1260414. https://doi.org/10.1016/j.amc.2021.126041 doi:10.1016/j.amc.2021.126041
    [11] Y. Zhang, L. Zhou, Novel global polynomial stability criteria of impulsive complex-valued neural networks with multi-proportional delays,Neural Comput. Appl.,34 (2022), 2913–2924. https://doi.org/10.1007/s00521-021-06555-w doi:10.1007/s00521-021-06555-w
    [12] S. Wang, Y. Shi, J. Guo, Exponential stability of a class of quaternion-valued memristor-based neural network with time-varying delay via M-matrix,Math. Methods Appl. Sci., 2024.https://doi.org/10.1002/mma.10486
    [13] Q. Song, Y. Chen, Z. Zhao, Y. Liu, F. Alsaadi, Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties,Neurocomputing,420 (2021), 70–81. https://doi.org/10.1016/j.neucom.2020.08.059 doi:10.1016/j.neucom.2020.08.059
    [14] R. Li, J. Cao, N. Li, Stop and go strategy for Lagrange stability of quaternion-valued memristive neural networks,Math. Methods Appl. Sci.,46 (2023), 6578–6589. https://doi.org/10.1002/mma.8926 doi:10.1002/mma.8926
    [15] W. Liu, J. Huang, Q. Yao, Stability analysis for quaternion-valued inertial memristor-based neural networks with time delays,Neurocomputing,448 (2021), 67–81. https://doi.org/10.1016/j.neucom.2021.03.106 doi:10.1016/j.neucom.2021.03.106
    [16] Y. Shi, X. Chen, P. Zhu, Dissipativity for a class of quaternion-valued memristor-based neutral-type neural networks with time-varying delays,Math. Methods Appl. Sci.,46 (2023), 18166–18184. https://doi.org/10.1002/mma.9551 doi:10.1002/mma.9551
    [17] T. Peng, J. Lu, Z. Tu, J. Lou, Finite-time stabilization of quaternion-valued neural networks with time delays: An implicit function method,Inf. Sci.,613 (2022), 747–762. https://doi.org/10.1016/j.ins.2022.09.014 doi:10.1016/j.ins.2022.09.014
    [18] G. Tan, Z. Wang, Z. Shi, Proportional-integral state estimator for quaternion-valued neural networks with time-varying delays,IEEE Trans. Neural Networks Learn. Syst.,34 (2023), 1074–1079. https://doi.org/10.1109/TNNLS.2021.3103979 doi:10.1109/TNNLS.2021.3103979
    [19] J. Hu, G. Tan, L. Liu, A new result on H$\infty$ state estimation for delayed neural networks based on an extended reciprocally convex inequality,IEEE Trans. Circuits Syst. II Express Briefs,71 (2024), 1181–1185. https://doi.org/10.1109/TCSII.2023.3323834 doi:10.1109/TCSII.2023.3323834
    [20] J. Cai, J. Feng, J. Wang, Y. Zhao, Quasi-synchronization of neural networks with diffusion effects via intermittent control of regional division,Neurocomputing,409 (2020), 146–156. https://doi.org/10.1016/j.neucom.2020.05.037 doi:10.1016/j.neucom.2020.05.037
    [21] R. Li, X. Gao, J. Cao, Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach,Appl. Math. Comput.,362 (2019), 124572. https://doi.org/10.1016/j.amc.2019.124572 doi:10.1016/j.amc.2019.124572
    [22] X. Song, X. Li, S. Song, Y. Zhang, Z. Ning, Quasi-synchronization of coupled neural networks with reaction-diffusion terms driven by fractional brownian motion,J. Franklin Inst.,358 (2021), 2482–2499. https://doi.org/10.1016/j.jfranklin.2021.01.023 doi:10.1016/j.jfranklin.2021.01.023
    [23] Z. Zhang, T. Zheng, S. Yu, Finite-time anti-synchronization of neural networks with time-varying delays via inequality skills,Neurocomputing,356 (2019), 60–68. https://doi.org/10.1016/j.neucom.2019.05.012 doi:10.1016/j.neucom.2019.05.012
    [24] X. Liu, Z. Li, Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays,Neurocomputing,387 (2020), 129–138. https://doi.org/10.1016/j.neucom.2020.01.035 doi:10.1016/j.neucom.2020.01.035
    [25] Y. Qiao, H. Yan, L. Duan, J. Miao, Finite-time synchronization of fractional-order gene regulatory networks with time delay,Neural Networks,126 (2020), 1–10. https://doi.org/10.1016/j.neunet.2020.02.004 doi:10.1016/j.neunet.2020.02.004
    [26] T. Peng, J. Zhong, Z. Tu, J. Lu, J. Lou, Finite-time synchronization of quaternion-valued neural networks with delays: A switching control method without decomposition,Neural Networks,148 (2022), 37–47. https://doi.org/10.1016/j.neunet.2021.12.012 doi:10.1016/j.neunet.2021.12.012
    [27] T. Peng, J. Qiu, J. Lu, Z. Tu, J. Cao, Finite-time and fixed-time synchronization of quaternion-valued neural networks with/without mixed delays: An improved one-norm method,IEEE Trans. Neural Networks Learn. Syst.,12 (2022), 7475–7487. https://doi.org/10.1109/TNNLS.2021.3085253 doi:10.1109/TNNLS.2021.3085253
    [28] D. Ding, X. Yao, H. Zhang, Complex projection synchronization of fractional-order complex-valued memristive neural networks with multiple delays,Neural Process. Lett.,51 (2020), 325–345. https://doi.org/10.1007/s11063-019-10093-x doi:10.1007/s11063-019-10093-x
    [29] Y. Zhang, S. Deng, Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay,Chaos, Solitons Fractals,128 (2019), 176-190. https://doi.org/10.1016/j.chaos.2019.07.043 doi:10.1016/j.chaos.2019.07.043
    [30] Y. Cheng, Y. Shi, The exponential synchronization and asymptotic synchronization of quaternion-valued memristor-based Cohen-Grossberg neural networks with time-varying delays,Neural Process. Lett.,55 (2023), 6637–6656. https://doi.org/10.1007/s11063-023-11152-0 doi:10.1007/s11063-023-11152-0
    [31] Y. Cheng, Y. Shi, J. Guo, Exponential synchronization of quaternion-valued memristor-based Cohen-Grossberg neural networks with time-varying delays: Norm method,Cognit. Neurodyn.,18 (2024), 1943–1953. https://doi.org/10.1007/s11571-023-10057-x doi:10.1007/s11571-023-10057-x
    [32] H. L. Li, L. Zhang, C. Hu, H. Jiang, J. Cao, Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach,Appl. Math. Comput.,373 (2020), 125020. https://doi.org/10.1016/j.amc.2019.125020 doi:10.1016/j.amc.2019.125020
    [33] Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control,IEEE Trans. Neural Networks Learn. Syst.,32 (2020), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi:10.1109/TNNLS.2020.2995718
    [34] J. Cheng, L. Xie, D. Zhang, H. Yan, Novel event-triggered protocol to sliding mode control for singular semi-Markov jump systems,Automatica,151 (2023), 110906. https://doi.org/10.1016/j.automatica.2023.110906 doi:10.1016/j.automatica.2023.110906
    [35] J. Cheng, J. H. Park, Z. Wu, Observer-based asynchronous control of nonlinear systems with dynamic event-based try-once-discard protocol,IEEE Trans. Cybern.,52 (2022), 12638–12648. https://doi.org/10.1109/TCYB.2021.3104806 doi:10.1109/TCYB.2021.3104806
    [36] Y. Gu, Y. Yu, H. Wang, Projective synchronization for fractional-order memristor-based neural networks with time delays,Neural Comput. Appl.,31 (2019), 6039–6054. https://doi.org/10.1007/s00521-018-3391-7 doi:10.1007/s00521-018-3391-7
    [37] G. Velmurugan, R. Rakkiyappan, Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays,Nonlinear Dyn.,83 (2016), 419–432. https://doi.org/10.1007/s11071-015-2337-1 doi:10.1007/s11071-015-2337-1
    [38] H. Bao, J. Cao, Projective synchronization of fractional-order memristor-based neural networks,Neural Networks,63 (2015), 1–9. https://doi.org/10.1016/j.neunet.2014.10.007 doi:10.1016/j.neunet.2014.10.007
    [39] R. Li, X. Gao, J. Cao, K. Zhang, Exponential stabilization control of delayed quaternion-valued memristive neural networks: Vector ordering approach,Circuits Syst. Signal Process.,39 (2020), 1353–1371. https://doi.org10.1007/s00034-019-01225-8 doi:10.1007/s00034-019-01225-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者:陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(692)PDF downloads(40)Cited by(0)

Article outline

Figures and Tables

Figures(8)

Export File

Citation

Jun Guo, Yanchao Shi, Yanzhao Cheng, Weihua Luo. Projective synchronization for quaternion-valued memristor-based neural networks under time-varying delays[J]. Networks and Heterogeneous Media, 2024, 19(3): 1156-1181. doi: 10.3934/nhm.2024051
Jun Guo, Yanchao Shi, Yanzhao Cheng, Weihua Luo. Projective synchronization for quaternion-valued memristor-based neural networks under time-varying delays[J].Networks and Heterogeneous Media, 2024, 19(3): 1156-1181.doi:10.3934/nhm.2024051
shu

Format

Content

/

DownLoad: Full-Size Img PowerPoint
Return
Return

    Catalog


    [8]ページ先頭

    ©2009-2025 Movatter.jp