Movatterモバイル変換


[0]ホーム

URL:


\`x^2+y_1+z_12^34\`
AIMS
  • share this content in Facebook
  • share this content in Twitter
  • share this content in Linkedin
  • share this content in ResearchGate
 
Advanced Search

Advances in Mathematics of Communications

Advanced Search
This issuePrevious ArticleNext Article
Article Contents
Article Contents

A note on the Signal-to-noise ratio of $ (n, m) $-functions

  • 1.

    Science and Technology on Communication Security Laboratory, Chengdu 610041, China

  • 2.

    Center for Cyber Security, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

  • 3.

    Guilin University of Electronic Technology, Guilin 541004, China

  • 4.

    School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China

  • * Corresponding author: Yu Zhou

    * Corresponding author: Yu Zhou 
Received: June 2019
Revised: March 2020
Early access: November 2020
Published: May 2022

Yu Zhou and Xinfeng Dong are supported in part by the National Key R & D Program of China (No. 2017YFB0802000, No. 2017YFB0802004), and in part by Sichuan Science and Technology Program (No. 2020JDJQ0076, 2021ZYD0011). Yongzhuang Wei is supported in part by the National Natural Science Foundation of China (No. 61370203), and in part by the Guangxi Science and Technology Foundation (Guike AB18281019, 2019GXNSFGA245004). Fengrong Zhang is supported in part by the Natural Science Foundation of China (61972400) and in part by the Jiangsu Natural Science Foundation (BK20181352).

  • Abstract

    The concept of the signal-to-noise ratio (SNR) as a useful measure indicator of the robustness of $ (n, m) $-functions $ F = (f_1, \ldots, f_m) $ (cryptographic S-boxes) against differential power analysis (DPA), has received extensive attention during the previous decade. In this paper, we give an upper bound on the SNR of balanced $ (n, m) $-functions, and a clear upper bound regarding unbalanced $ (n, m) $-functions. Moreover, we derive some deep relationships between the SNR of $ (n, m) $-functions and three other cryptographic parameters (the maximum value of the absolute value of the Walsh transform, the sum-of-squares indicator, and the nonlinearity of its coordinates), respectively. In particular, we give a trade-off between the SNR and the refined transparency order of $ (n, m) $-functions. Finally, we prove that the SNR of $ (n, m) $-functions is not affine invariant, and data experiments verify this result.

     

    Addendum: The grant no. 2021ZYD0011 is added so it reads “Yu Zhou and Xinfeng Dong are supported in part by the National Key R & D Program of China (No. 2017YFB0802000, No. 2017YFB0802004), and in part by Sichuan Science and Technology Program (No. 2020JDJQ0076, 2021ZYD0011).” We apologize for any inconvenience this may cause.

    Mathematics Subject Classification:06E30, 94C10.

    Citation:
    shu

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1. Walsh transform of$ f_i $

    $ \alpha=(\gamma, \gamma_1, \gamma_2) $$ (\gamma, 0, 0) $$ (\gamma, 0, 1) $$ (\gamma, 1, 0) $$ (\gamma, 1, 1) $
    $ \mathcal{F}(f_1\oplus \varphi_{\alpha}) $$ 0 $$ 0 $$ 0 $$ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $
    $ \mathcal{F}(f_2\oplus \varphi_{\alpha}) $$ 0 $$ 0 $$ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $$ 0 $
    $ \mathcal{F}(f_3\oplus \varphi_{\alpha}) $$ 0 $$ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $$ 0 $$ 0 $
    $ \mathcal{F}(f_4\oplus \varphi_{\alpha}) $$ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $$ 0 $$ 0 $$ 0 $
     | Show Table
    DownLoad:CSV

    Table 2. The signal-to-noise ratio bounds on S-boxes$ F = (f_1, \ldots, f_m) $

    Ref.$ SNR $S-Box type
    [11]$ 1\leq SNR\leq 2^{n/2} $Balanced S-Boxes
    Theorem 15$ SNR< 2^{n/2} $Balanced S-Boxes
    [11]$ 1/m\leq SNR $Unbalanced S-Boxes
    Theorem 16$ SNR\leq \frac{m\cdot \sqrt{2^{3n}}}{m\cdot 2^n+2H_F} $Unbalanced S-Boxes
    [11]$ 2^{n/2}/q\lesssim SNR $Bent S-Boxes
    Corollary 1$ SNR\leq \frac{2^{n}}{2^{n/2}-m+1} $Bent S-Boxes
    Corollary 2$ SNR=m\sqrt{\frac{2^{3n}}{\sum_{i=1}^m\mathcal{V}(f_i)}} $$ f_i $ and $ f_j $ are perfectly
    uncorrelated $ (1\leq i<j\leq m) $
     | Show Table
    DownLoad:CSV

    Table 3. Distribution of the SNR of$ (4, 4) $ S-boxes

    $ Class $SNR(DPA)(F)$ _{(4, 4)} $$ Number $$ Per(\%) $
    01.61213710.33
    11.66360120.66
    21.69125392.98
    31.70560610.33
    41.78329010.33
    51.97696710.33
    62.00000010.33
    72.0238585718.87
    82.074252144.64
    92.128608103.31
    102.1874754314.24
    112.21880161.99
    122.25151241.32
    132.3985014213.91
    142.483682299.60
    152.529822113.64
    162.578633165.30
    172.6853803912.91
    182.80658661.99
    192.94583972.32
    203.02371610.33
    213.10811510.33
     | Show Table
    DownLoad:CSV

    Table 4. The SNR of well known S-boxes

    Name of algorithmS-boxSNR(DPA)(S-box)$ _{(4, 4)} $
    Lblock [22]E9F0D4AB128376C52.945839
    4BE9FD0A7C5628132.806586
    1E7CFD06B593248A2.806586
    768B0F3E9ACD52412.945839
    E5F072CD1849BA632.945839
    2DBCFE097A6318452.806586
    B94E0FAD6C5738122.945839
    DAF0E49B218375C62.945839
    87E5FD06BC9A24132.806586
    B5F0729D481CEA362.945839
    PRESENT [4]C56B90AD3EF847122.128608
    Piccolo [18]E4B238091A7F6C5D3.108115
    SKINNY [3]C6901A2B385D4E7F2.685380
    MANTIS [3]CAD3EBF7891502461.663601
    Marvin [19]021B83ED46F5C79A3.023716
    Midori [1]CAD3EBF7891502461.663601
    1053E2F7DA9BC8462.128608
    Gift [2]1A4C6F392DB7508E2.398501
     | Show Table
    DownLoad:CSV

    Table 5. Representatives for all 16 classes of optimal$ (4, 4) $ S-boxes [14]

    Class$ (4, 4) $ S-boxes
    $ G_0 $0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 12, 9, 3, 14, 10, 5
    $ G_1 $0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 5, 9, 10, 12
    $ G_2 $0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 10, 12, 5, 9
    $ G_3 $0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9
    $ G_4 $0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 9, 11, 10, 14, 5, 3
    $ G_5 $0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 3, 5
    $ G_6 $0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 5, 3
    $ G_7 $0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 14, 11, 10, 9, 3, 5
    $ G_8 $0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 9, 5, 10, 11, 3, 12
    $ G_9 $0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 3, 5, 9, 10, 12
    $ G_{10} $0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 5, 10, 9, 3, 12
    $ G_{11} $0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 5, 9, 12, 3
    $ G_{12} $0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 9, 3, 12, 5
    $ G_{13} $0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 9, 5, 11, 10, 3
    $ G_{14} $0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 3, 9, 5, 10
    $ G_{15} $0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5
     | Show Table
    DownLoad:CSV

    Table 6. The SNR of affine equivalent S-boxes of 16 optimal$ (4, 4) $ S-boxes

    ClassSNR(DPA)($ G_i $)$ RV $$ DN $MeanVariance
    $ G_0 $2.945839[1.600000, 3.108115]222.4573540.110006
    $ G_1 $2.685380[1.600000, 3.108115]222.4561260.108045
    $ G_2 $2.685380[1.600000, 3.108115]222.4569670.108855
    $ G_3 $2.685380[1.612137, 3.108115]152.4663270.102287
    $ G_4 $3.108115[1.612137, 3.108115]172.4666080.102820
    $ G_5 $3.108115[1.612137, 3.108115]172.4667290.104456
    $ G_6 $3.108115[1.612137, 3.108115]172.4652850.102089
    $ G_7 $2.806586[1.612137, 3.108115]162.4781250.092405
    $ G_8 $2.945839[1.612137, 3.108115]222.4566130.108452
    $ G_9 $2.685380[1.612137, 3.108115]222.4532300.110267
    $ G_{10} $2.685380[1.612137, 3.108115]222.4526480.109412
    $ G_{11} $2.685380[1.612137, 3.108115]172.4645960.101206
    $ G_{12} $2.685380[1.612137, 3.108115]172.4489950.106486
    $ G_{13} $2.945839[1.612137, 3.108115]172.4810460.096809
    $ G_{14} $2.945839[1.612137, 3.108115]212.4656870.099087
    $ G_{15} $2.945839[1.600000, 3.108115]212.4666580.101133
     | Show Table
    DownLoad:CSV

    Table 7. Distribution of the SNR of affine equivalent S-boxes of$ G_0 $

    ClassSNR(DPA)($ A\circ G_0 $)$ Number $$ Per(\%) $
    01.600000480.238095
    11.6121371200.595238
    21.6636011920.952381
    31.6912533121.547619
    41.7056063361.666667
    51.7203311440.714286
    61.783290720.357143
    72.0238587923.928571
    82.0742526963.452381
    92.1286086243.095238
    102.18747519689.761905
    112.2188014802.380962
    122.2515124322.142857
    132.398501232811.547619
    142.4836829124.523810
    152.529822292814.523810
    162.57863313686.785714
    172.685380376818.690476
    182.8065866723.333333
    192.9458397923.928571
    203.0237162401.190476
    213.1081159364.642857
     | Show Table
    DownLoad:CSV
  • References

    [1]S. Banik, A. Bogdanov and T. Isobe, et al., Midori: A block cipher for low energy, inAdvances in Cryptology - ASIACRYPT 2015. Part II, Lecture Notes in Comput. Sci., 9453, Springer, Heidelberg, 2015,411–436.doi: 10.1007/978-3-662-48800-3_17.
    [2]S. Banik, S. K. Pandey and T. Peyrin, et al., GIFT: A small present - Towards reaching the limit of lightweight encryption, inCryptographic Hardware and Embedded Systems, Lecture Notes in Computer Science, 10529, Springer, Cham, 2017,321–345.doi: 10.1007/978-3-319-66787-4_16.
    [3]C. Beierle, J. Jean and S. Kölbl, et al., The SKINNY family of block ciphers and its low-latency variant MANTIS, inAdvances in Cryptology - CRYPTO 2016. Part II, Lecture Notes in Comput. Sci., 9815, Springer, Berlin, 2016,123–153.doi: 10.1007/978-3-662-53008-5_5.
    [4]A. Bogdanov, L. R. Knudsen and G. Leander, et al., PRESENT: An ultra-lightweight block cipher, inCryptographic Hardware and Embedded Systems - CHES 2007, Lecture Notes in Comput. Sci., 4727, Springer, 2007,450–466.doi: 10.1007/978-3-540-74735-2_31.
    [5]C. D. Cannière,Analysis and Design of Symmetric Encryption Algorithms, Ph.D thesis, Katholieke Universiteit Leuven, 2007.
    [6]C. Carlet, Boolean functions for cryptography and error-correcting codes, inBoolean Modelsand Methods in Mathematics, Computer Science, and Engineering, Cambridge UniversityPress, 2010,257-397.doi: 10.1017/CBO9780511780448.011.
    [7]C. Carlet, Vectorial Boolean functions for cryptography, inBoolean Models and Methods inMathematics, Computer Science, and Engineering, Cambridge University Press, 2010,398-470.doi: 10.1017/CBO9780511780448.012.
    [8]K. ChakrabortyS. Sarkar and S. Maitra, et al., Redefining the transparency order,Des. Codes Cryptogr.,82 (2017), 95-115. doi: 10.1007/s10623-016-0250-3.
    [9]Y. Fei, Q. Luo and A. A. Ding, A statistical model for DPA with novel algorithmic confusion analysis, inCryptographic Hardware and Embedded Systems - CHES 2012, Lecture Notes in Computer Science, 7428, Springer, 2012,233–250.doi: 10.1007/978-3-642-33027-8_14.
    [10]W. Fischer, B. M. Gammel, O. Kniffler and J. Velten, Differential power analysis of stream ciphers, inTopics in Cryptology - CT-RSA 2007, Lecture Notes in Comput. Sci., 4377, Springer, Berlin, 2006,257–270.doi: 10.1007/11967668_17.
    [11]S. Guilley, P. Hoogvorst and R. Pacalet, Differential power analysis model and some results, inSmart Card Research and Advanced Applications VI, IFIP International Federation for Information Processing, 153, Springer, Boston, MA, 2004,127–142.doi: 10.1007/1-4020-8147-2_9.
    [12]A. Heuser, O. Rioul and S. Guilley, A theoretical study of Kolmogorov-Smirnov distinguishers - Side-channel analysis vs. differential cryptanalysis, inConstructive Side-Channel Analysis and Secure Design, Lecture Notes in Comput. Sci., 8622, Springer, 2014, 9–28.doi: 10.1007/978-3-319-10175-0_2.
    [13]P. Kocher, J. Jaffe and B. Jun, Differential power analysis, inAdvances in Cryptology - CRYPTO'99, Lecture Notes in Comput. Sci., 1666, Springer, 1999,388–397.doi: 10.1007/3-540-48405-1_25.
    [14]G. Leander and A. Poschmann, On the classification of 4 bit S-boxes, inArithmetic of Finite Fields, Lecture Notes in Comput. Sci., 4547, Springer, Berlin, 2007,159–176.doi: 10.1007/978-3-540-73074-3_13.
    [15]E. Pasalic, S. Maitra, T. Johansson and P. Sarkar, New constructions of resilient and correlation immune Boolean functions achieving upper bound on nonlinearity, inInternational Workshop on Coding and Cryptography, Electron. Notes Discrete Math., 6, Elsevier Sci. B. V., Amsterdam, 2001, 10pp.doi: 10.1016/S1571-0653(04)00167-2.
    [16]E. Prouff, DPA attacks and S-Boxes, inFast Software Encryption, Lecture Notes in Comput. Sci., 3557, Springer, 2005,424–441.doi: 10.1007/11502760_29.
    [17]P. Sarkar and S. Maitra, Cross-correlation analysis of cryptographically useful Boolean functions and S-boxes,Theory Comput. Syst.,35 (2002), 39–57.doi: 10.1007/s00224-001-1019-1.
    [18]K. Shibutani, T. Isobe and H. Hiwatari, et al., Piccolo: An ultra-lightweight blockcipher, inCryptographic Hardware and Embedded Systems - CHES 2011, Lecture Notes in Comput. Sci., 6917, Springer, 2011,342–357.doi: 10.1007/978-3-642-23951-9_23.
    [19]M. A. Simplicio Jr., P. D. F. F. S. Barbuda and P. S. L. M. Barreto, et al., The MARVIN message authentication code and the LETTERSOUP authenticated encryption scheme,Security Comm. Networks,2 (2009), 165–180.doi: 10.1002/sec.66.
    [20]J. J. Son, J. I. Lim, S. Chee and S. H. Sung, Global avalanche characteristics and nonlinearity of balanced Boolean function,Inform. Process. Lett.,65 (1998), 139–144.doi: 10.1016/S0020-0190(98)00009-X.
    [21]Q. Wang and P. Stănică, Transparency order for Boolean functions: Analysis and construction,Des. Codes Cryptogr.,87 (2019), 2043–2059.doi: 10.1007/s10623-019-00604-1.
    [22]W. Wu and L. Zhang, LBlock: A lightweight block cipher, inApplied Cryptography and Network Security, Lecture Notes in Comput. Sci., 6715, Springer, 2011,327–344.doi: 10.1007/978-3-642-21554-4_19.
    [23]X.-M. Zhang and Y. Zheng, GAC–The criterion for global avalanche characteristics of cryptographic functions,J.UCS,1 (1995), 320–337.doi: 10.1007/978-3-642-80350-5_30.
    [24]Y. Zheng and X.-M. Zhang, On plateaued functions,IEEE Trans. Inform. Theory,47 (2001), 1215–1223.doi: 10.1109/18.915690.
    [25]Y. Zhou, L. Wang, W. Wang, X. Dong and X. Du, One sufficient and necessary condition on balanced Boolean functions with $\sigma_f = 2^2n+2^{n+3}(m\geq 3)$,Internat. J. Found. Comput. Sci.,25 (2014), 343–353.doi: 10.1142/S0129054114500178.
    [26]Y. Zhou, M. Xie and G. Xiao, On the global avalanche characteristics between two Boolean functions and the higher order nonlinearity,Inform. Sci.,180 (2010), 256–265.doi: 10.1016/j.ins.2009.09.012.
    [27]Y. Zhou, W. Zhang, S. Zhu and G. Xiao, The global avalanche characteristics of two Boolean functions and algebraic immunity,Int. J. Comput. Math.,89 (2012), 2165–2179.doi: 10.1080/00207160.2012.712689.
  • Access History

    加载中

Tables(7)

Article Metrics

HTML views(3397)PDF downloads(518)Cited by(0)

Catalog

    Export File

    Citation

    shu

    Format

    Content

    /

    DownLoad: Full-Size Img PowerPoint
      Return
      Return
        Site map Copyright © 2025 American Institute of Mathematical Sciences

        [8]ページ先頭

        ©2009-2025 Movatter.jp