\`x^2+y_1+z_12^34\` |
Science and Technology on Communication Security Laboratory, Chengdu 610041, China
Center for Cyber Security, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Guilin University of Electronic Technology, Guilin 541004, China
School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
* Corresponding author: Yu Zhou
* Corresponding author: Yu ZhouYu Zhou and Xinfeng Dong are supported in part by the National Key R & D Program of China (No. 2017YFB0802000, No. 2017YFB0802004), and in part by Sichuan Science and Technology Program (No. 2020JDJQ0076, 2021ZYD0011). Yongzhuang Wei is supported in part by the National Natural Science Foundation of China (No. 61370203), and in part by the Guangxi Science and Technology Foundation (Guike AB18281019, 2019GXNSFGA245004). Fengrong Zhang is supported in part by the Natural Science Foundation of China (61972400) and in part by the Jiangsu Natural Science Foundation (BK20181352).
The concept of the signal-to-noise ratio (SNR) as a useful measure indicator of the robustness of $ (n, m) $-functions $ F = (f_1, \ldots, f_m) $ (cryptographic S-boxes) against differential power analysis (DPA), has received extensive attention during the previous decade. In this paper, we give an upper bound on the SNR of balanced $ (n, m) $-functions, and a clear upper bound regarding unbalanced $ (n, m) $-functions. Moreover, we derive some deep relationships between the SNR of $ (n, m) $-functions and three other cryptographic parameters (the maximum value of the absolute value of the Walsh transform, the sum-of-squares indicator, and the nonlinearity of its coordinates), respectively. In particular, we give a trade-off between the SNR and the refined transparency order of $ (n, m) $-functions. Finally, we prove that the SNR of $ (n, m) $-functions is not affine invariant, and data experiments verify this result.
Addendum: The grant no. 2021ZYD0011 is added so it reads “Yu Zhou and Xinfeng Dong are supported in part by the National Key R & D Program of China (No. 2017YFB0802000, No. 2017YFB0802004), and in part by Sichuan Science and Technology Program (No. 2020JDJQ0076, 2021ZYD0011).” We apologize for any inconvenience this may cause.
Citation:![]() |
Table 1. Walsh transform of
$ \alpha=(\gamma, \gamma_1, \gamma_2) $ | $ (\gamma, 0, 0) $ | $ (\gamma, 0, 1) $ | $ (\gamma, 1, 0) $ | $ (\gamma, 1, 1) $ |
$ \mathcal{F}(f_1\oplus \varphi_{\alpha}) $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $ |
$ \mathcal{F}(f_2\oplus \varphi_{\alpha}) $ | $ 0 $ | $ 0 $ | $ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $ | $ 0 $ |
$ \mathcal{F}(f_3\oplus \varphi_{\alpha}) $ | $ 0 $ | $ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $ | $ 0 $ | $ 0 $ |
$ \mathcal{F}(f_4\oplus \varphi_{\alpha}) $ | $ 2^2\cdot \mathcal{F}(g\oplus \varphi_{\gamma}) $ | $ 0 $ | $ 0 $ | $ 0 $ |
Table 2. The signal-to-noise ratio bounds on S-boxes
Ref. | $ SNR $ | S-Box type |
[11] | $ 1\leq SNR\leq 2^{n/2} $ | Balanced S-Boxes |
Theorem 15 | $ SNR< 2^{n/2} $ | Balanced S-Boxes |
[11] | $ 1/m\leq SNR $ | Unbalanced S-Boxes |
Theorem 16 | $ SNR\leq \frac{m\cdot \sqrt{2^{3n}}}{m\cdot 2^n+2H_F} $ | Unbalanced S-Boxes |
[11] | $ 2^{n/2}/q\lesssim SNR $ | Bent S-Boxes |
Corollary 1 | $ SNR\leq \frac{2^{n}}{2^{n/2}-m+1} $ | Bent S-Boxes |
Corollary 2 | $ SNR=m\sqrt{\frac{2^{3n}}{\sum_{i=1}^m\mathcal{V}(f_i)}} $ | $ f_i $ and $ f_j $ are perfectly |
uncorrelated $ (1\leq i<j\leq m) $ |
Table 3. Distribution of the SNR of
$ Class $ | SNR(DPA)(F)$ _{(4, 4)} $ | $ Number $ | $ Per(\%) $ |
0 | 1.612137 | 1 | 0.33 |
1 | 1.663601 | 2 | 0.66 |
2 | 1.691253 | 9 | 2.98 |
3 | 1.705606 | 1 | 0.33 |
4 | 1.783290 | 1 | 0.33 |
5 | 1.976967 | 1 | 0.33 |
6 | 2.000000 | 1 | 0.33 |
7 | 2.023858 | 57 | 18.87 |
8 | 2.074252 | 14 | 4.64 |
9 | 2.128608 | 10 | 3.31 |
10 | 2.187475 | 43 | 14.24 |
11 | 2.218801 | 6 | 1.99 |
12 | 2.251512 | 4 | 1.32 |
13 | 2.398501 | 42 | 13.91 |
14 | 2.483682 | 29 | 9.60 |
15 | 2.529822 | 11 | 3.64 |
16 | 2.578633 | 16 | 5.30 |
17 | 2.685380 | 39 | 12.91 |
18 | 2.806586 | 6 | 1.99 |
19 | 2.945839 | 7 | 2.32 |
20 | 3.023716 | 1 | 0.33 |
21 | 3.108115 | 1 | 0.33 |
Table 4. The SNR of well known S-boxes
Name of algorithm | S-box | SNR(DPA)(S-box)$ _{(4, 4)} $ |
Lblock [22] | E9F0D4AB128376C5 | 2.945839 |
4BE9FD0A7C562813 | 2.806586 | |
1E7CFD06B593248A | 2.806586 | |
768B0F3E9ACD5241 | 2.945839 | |
E5F072CD1849BA63 | 2.945839 | |
2DBCFE097A631845 | 2.806586 | |
B94E0FAD6C573812 | 2.945839 | |
DAF0E49B218375C6 | 2.945839 | |
87E5FD06BC9A2413 | 2.806586 | |
B5F0729D481CEA36 | 2.945839 | |
PRESENT [4] | C56B90AD3EF84712 | 2.128608 |
Piccolo [18] | E4B238091A7F6C5D | 3.108115 |
SKINNY [3] | C6901A2B385D4E7F | 2.685380 |
MANTIS [3] | CAD3EBF789150246 | 1.663601 |
Marvin [19] | 021B83ED46F5C79A | 3.023716 |
Midori [1] | CAD3EBF789150246 | 1.663601 |
1053E2F7DA9BC846 | 2.128608 | |
Gift [2] | 1A4C6F392DB7508E | 2.398501 |
Table 5. Representatives for all 16 classes of optimal
Class | $ (4, 4) $ S-boxes |
$ G_0 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 12, 9, 3, 14, 10, 5 |
$ G_1 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 5, 9, 10, 12 |
$ G_2 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 10, 12, 5, 9 |
$ G_3 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9 |
$ G_4 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 9, 11, 10, 14, 5, 3 |
$ G_5 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 3, 5 |
$ G_6 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 5, 3 |
$ G_7 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 14, 11, 10, 9, 3, 5 |
$ G_8 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 9, 5, 10, 11, 3, 12 |
$ G_9 $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 3, 5, 9, 10, 12 |
$ G_{10} $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 5, 10, 9, 3, 12 |
$ G_{11} $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 5, 9, 12, 3 |
$ G_{12} $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 9, 3, 12, 5 |
$ G_{13} $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 9, 5, 11, 10, 3 |
$ G_{14} $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 3, 9, 5, 10 |
$ G_{15} $ | 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5 |
Table 6. The SNR of affine equivalent S-boxes of 16 optimal
Class | SNR(DPA)($ G_i $) | $ RV $ | $ DN $ | Mean | Variance |
$ G_0 $ | 2.945839 | [1.600000, 3.108115] | 22 | 2.457354 | 0.110006 |
$ G_1 $ | 2.685380 | [1.600000, 3.108115] | 22 | 2.456126 | 0.108045 |
$ G_2 $ | 2.685380 | [1.600000, 3.108115] | 22 | 2.456967 | 0.108855 |
$ G_3 $ | 2.685380 | [1.612137, 3.108115] | 15 | 2.466327 | 0.102287 |
$ G_4 $ | 3.108115 | [1.612137, 3.108115] | 17 | 2.466608 | 0.102820 |
$ G_5 $ | 3.108115 | [1.612137, 3.108115] | 17 | 2.466729 | 0.104456 |
$ G_6 $ | 3.108115 | [1.612137, 3.108115] | 17 | 2.465285 | 0.102089 |
$ G_7 $ | 2.806586 | [1.612137, 3.108115] | 16 | 2.478125 | 0.092405 |
$ G_8 $ | 2.945839 | [1.612137, 3.108115] | 22 | 2.456613 | 0.108452 |
$ G_9 $ | 2.685380 | [1.612137, 3.108115] | 22 | 2.453230 | 0.110267 |
$ G_{10} $ | 2.685380 | [1.612137, 3.108115] | 22 | 2.452648 | 0.109412 |
$ G_{11} $ | 2.685380 | [1.612137, 3.108115] | 17 | 2.464596 | 0.101206 |
$ G_{12} $ | 2.685380 | [1.612137, 3.108115] | 17 | 2.448995 | 0.106486 |
$ G_{13} $ | 2.945839 | [1.612137, 3.108115] | 17 | 2.481046 | 0.096809 |
$ G_{14} $ | 2.945839 | [1.612137, 3.108115] | 21 | 2.465687 | 0.099087 |
$ G_{15} $ | 2.945839 | [1.600000, 3.108115] | 21 | 2.466658 | 0.101133 |
Table 7. Distribution of the SNR of affine equivalent S-boxes of
Class | SNR(DPA)($ A\circ G_0 $) | $ Number $ | $ Per(\%) $ |
0 | 1.600000 | 48 | 0.238095 |
1 | 1.612137 | 120 | 0.595238 |
2 | 1.663601 | 192 | 0.952381 |
3 | 1.691253 | 312 | 1.547619 |
4 | 1.705606 | 336 | 1.666667 |
5 | 1.720331 | 144 | 0.714286 |
6 | 1.783290 | 72 | 0.357143 |
7 | 2.023858 | 792 | 3.928571 |
8 | 2.074252 | 696 | 3.452381 |
9 | 2.128608 | 624 | 3.095238 |
10 | 2.187475 | 1968 | 9.761905 |
11 | 2.218801 | 480 | 2.380962 |
12 | 2.251512 | 432 | 2.142857 |
13 | 2.398501 | 2328 | 11.547619 |
14 | 2.483682 | 912 | 4.523810 |
15 | 2.529822 | 2928 | 14.523810 |
16 | 2.578633 | 1368 | 6.785714 |
17 | 2.685380 | 3768 | 18.690476 |
18 | 2.806586 | 672 | 3.333333 |
19 | 2.945839 | 792 | 3.928571 |
20 | 3.023716 | 240 | 1.190476 |
21 | 3.108115 | 936 | 4.642857 |
[1] | S. Banik, A. Bogdanov and T. Isobe, et al., Midori: A block cipher for low energy, inAdvances in Cryptology - ASIACRYPT 2015. Part II, Lecture Notes in Comput. Sci., 9453, Springer, Heidelberg, 2015,411–436.doi: 10.1007/978-3-662-48800-3_17.![]() ![]() ![]() |
[2] | S. Banik, S. K. Pandey and T. Peyrin, et al., GIFT: A small present - Towards reaching the limit of lightweight encryption, inCryptographic Hardware and Embedded Systems, Lecture Notes in Computer Science, 10529, Springer, Cham, 2017,321–345.doi: 10.1007/978-3-319-66787-4_16.![]() ![]() |
[3] | C. Beierle, J. Jean and S. Kölbl, et al., The SKINNY family of block ciphers and its low-latency variant MANTIS, inAdvances in Cryptology - CRYPTO 2016. Part II, Lecture Notes in Comput. Sci., 9815, Springer, Berlin, 2016,123–153.doi: 10.1007/978-3-662-53008-5_5.![]() ![]() ![]() |
[4] | A. Bogdanov, L. R. Knudsen and G. Leander, et al., PRESENT: An ultra-lightweight block cipher, inCryptographic Hardware and Embedded Systems - CHES 2007, Lecture Notes in Comput. Sci., 4727, Springer, 2007,450–466.doi: 10.1007/978-3-540-74735-2_31.![]() ![]() |
[5] | C. D. Cannière,Analysis and Design of Symmetric Encryption Algorithms, Ph.D thesis, Katholieke Universiteit Leuven, 2007.![]() |
[6] | C. Carlet, Boolean functions for cryptography and error-correcting codes, inBoolean Modelsand Methods in Mathematics, Computer Science, and Engineering, Cambridge UniversityPress, 2010,257-397.doi: 10.1017/CBO9780511780448.011.![]() ![]() |
[7] | C. Carlet, Vectorial Boolean functions for cryptography, inBoolean Models and Methods inMathematics, Computer Science, and Engineering, Cambridge University Press, 2010,398-470.doi: 10.1017/CBO9780511780448.012.![]() ![]() |
[8] | K. Chakraborty, S. Sarkar and S. Maitra, et al., Redefining the transparency order,Des. Codes Cryptogr.,82 (2017), 95-115. doi: 10.1007/s10623-016-0250-3.![]() ![]() ![]() |
[9] | Y. Fei, Q. Luo and A. A. Ding, A statistical model for DPA with novel algorithmic confusion analysis, inCryptographic Hardware and Embedded Systems - CHES 2012, Lecture Notes in Computer Science, 7428, Springer, 2012,233–250.doi: 10.1007/978-3-642-33027-8_14.![]() ![]() |
[10] | W. Fischer, B. M. Gammel, O. Kniffler and J. Velten, Differential power analysis of stream ciphers, inTopics in Cryptology - CT-RSA 2007, Lecture Notes in Comput. Sci., 4377, Springer, Berlin, 2006,257–270.doi: 10.1007/11967668_17.![]() ![]() ![]() |
[11] | S. Guilley, P. Hoogvorst and R. Pacalet, Differential power analysis model and some results, inSmart Card Research and Advanced Applications VI, IFIP International Federation for Information Processing, 153, Springer, Boston, MA, 2004,127–142.doi: 10.1007/1-4020-8147-2_9.![]() ![]() |
[12] | A. Heuser, O. Rioul and S. Guilley, A theoretical study of Kolmogorov-Smirnov distinguishers - Side-channel analysis vs. differential cryptanalysis, inConstructive Side-Channel Analysis and Secure Design, Lecture Notes in Comput. Sci., 8622, Springer, 2014, 9–28.doi: 10.1007/978-3-319-10175-0_2.![]() ![]() |
[13] | P. Kocher, J. Jaffe and B. Jun, Differential power analysis, inAdvances in Cryptology - CRYPTO'99, Lecture Notes in Comput. Sci., 1666, Springer, 1999,388–397.doi: 10.1007/3-540-48405-1_25.![]() ![]() |
[14] | G. Leander and A. Poschmann, On the classification of 4 bit S-boxes, inArithmetic of Finite Fields, Lecture Notes in Comput. Sci., 4547, Springer, Berlin, 2007,159–176.doi: 10.1007/978-3-540-73074-3_13.![]() ![]() ![]() |
[15] | E. Pasalic, S. Maitra, T. Johansson and P. Sarkar, New constructions of resilient and correlation immune Boolean functions achieving upper bound on nonlinearity, inInternational Workshop on Coding and Cryptography, Electron. Notes Discrete Math., 6, Elsevier Sci. B. V., Amsterdam, 2001, 10pp.doi: 10.1016/S1571-0653(04)00167-2.![]() ![]() ![]() |
[16] | E. Prouff, DPA attacks and S-Boxes, inFast Software Encryption, Lecture Notes in Comput. Sci., 3557, Springer, 2005,424–441.doi: 10.1007/11502760_29.![]() ![]() |
[17] | P. Sarkar and S. Maitra, Cross-correlation analysis of cryptographically useful Boolean functions and S-boxes,Theory Comput. Syst.,35 (2002), 39–57.doi: 10.1007/s00224-001-1019-1.![]() ![]() ![]() |
[18] | K. Shibutani, T. Isobe and H. Hiwatari, et al., Piccolo: An ultra-lightweight blockcipher, inCryptographic Hardware and Embedded Systems - CHES 2011, Lecture Notes in Comput. Sci., 6917, Springer, 2011,342–357.doi: 10.1007/978-3-642-23951-9_23.![]() ![]() |
[19] | M. A. Simplicio Jr., P. D. F. F. S. Barbuda and P. S. L. M. Barreto, et al., The MARVIN message authentication code and the LETTERSOUP authenticated encryption scheme,Security Comm. Networks,2 (2009), 165–180.doi: 10.1002/sec.66.![]() ![]() |
[20] | J. J. Son, J. I. Lim, S. Chee and S. H. Sung, Global avalanche characteristics and nonlinearity of balanced Boolean function,Inform. Process. Lett.,65 (1998), 139–144.doi: 10.1016/S0020-0190(98)00009-X.![]() ![]() ![]() |
[21] | Q. Wang and P. Stănică, Transparency order for Boolean functions: Analysis and construction,Des. Codes Cryptogr.,87 (2019), 2043–2059.doi: 10.1007/s10623-019-00604-1.![]() ![]() ![]() |
[22] | W. Wu and L. Zhang, LBlock: A lightweight block cipher, inApplied Cryptography and Network Security, Lecture Notes in Comput. Sci., 6715, Springer, 2011,327–344.doi: 10.1007/978-3-642-21554-4_19.![]() ![]() |
[23] | X.-M. Zhang and Y. Zheng, GAC–The criterion for global avalanche characteristics of cryptographic functions,J.UCS,1 (1995), 320–337.doi: 10.1007/978-3-642-80350-5_30.![]() ![]() ![]() |
[24] | Y. Zheng and X.-M. Zhang, On plateaued functions,IEEE Trans. Inform. Theory,47 (2001), 1215–1223.doi: 10.1109/18.915690.![]() ![]() ![]() |
[25] | Y. Zhou, L. Wang, W. Wang, X. Dong and X. Du, One sufficient and necessary condition on balanced Boolean functions with $\sigma_f = 2^2n+2^{n+3}(m\geq 3)$,Internat. J. Found. Comput. Sci.,25 (2014), 343–353.doi: 10.1142/S0129054114500178.![]() ![]() ![]() |
[26] | Y. Zhou, M. Xie and G. Xiao, On the global avalanche characteristics between two Boolean functions and the higher order nonlinearity,Inform. Sci.,180 (2010), 256–265.doi: 10.1016/j.ins.2009.09.012.![]() ![]() ![]() |
[27] | Y. Zhou, W. Zhang, S. Zhu and G. Xiao, The global avalanche characteristics of two Boolean functions and algebraic immunity,Int. J. Comput. Math.,89 (2012), 2165–2179.doi: 10.1080/00207160.2012.712689.![]() ![]() ![]() |
HTML views(3397)PDF downloads(518)Cited by(0)