\`x^2+y_1+z_12^34\` |
Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0002, Pretoria, South Africa
Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium
In this paper we construct $ 2 $-PD-sets of $ 16 $ elements for codes from the Desarguesian projective planes $ \mathrm{PG}(2,q) $, where $ q = 2^h $ and $ 5\leq h \leq 9 $. We also construct $ 3 $-PD-sets of $ 75 $ elements for the code from the Desarguesian projective plane $ \mathrm{PG}(2,q) $, where $ q = 2^9 $. These $ 2 $-PD-sets and $ 3 $-PD-sets can be used for partial permutation decoding of codes obtained from the Desarguesian projective planes.
Citation:![]() |
Table 1. Codes of
$ q $ | Code | $ t $ | $ r $ | $ b $ | $ b_2 $ |
$ 32 $ | [1057,244, 33] | 16 | 813 | 180 | 3 |
$ 64 $ | [4161,730, 65] | 32 | 3431 | 1623 | 3 |
$ 128 $ | [16513, 2188,129] | 64 | 14325 | 40696 | 3 |
$ 256 $ | [65793, 6562,257] | 128 | 59231 | 3965945 | 3 |
$ 512 $ | [262657, 19684,513] | 256 | 242973 | 3625171287 | 3 |
[1] | E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.![]() ![]() ![]() |
[2] | D. Crnković and N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs,Trans. Comb.,7 (2018), 37-50. doi: 10.22108/toc.2017.21615.![]() ![]() ![]() |
[3] | D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes,IEEE Trans. Inform. Theory,28 (1982), 541-543. doi: 10.1109/TIT.1982.1056504.![]() ![]() ![]() |
[4] | J. W. P. Hirschfeld,Projective Geometries Over Finite Fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.![]() ![]() |
[5] | W. C. Huffman, Codes and groups,Handbook of Coding Theory, North-Holland, Amsterdam,1, 2 (1998), 1345-1440. ![]() ![]() |
[6] | J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs,Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam,29 (2011), 172-201. ![]() ![]() |
[7] | J. D. Key, T. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes,European J. Combin.,26 (2005), 665-682. doi: 10.1016/j.ejc.2004.04.007.![]() ![]() ![]() |
[8] | J. MacWilliams, Permutation decoding of systematic codes,Bell Syst. Tech. J.,43 (1964), 485-505. doi: 10.1002/j.1538-7305.1964.tb04075.x.![]() ![]() |
[9] | F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.![]() ![]() |
[10] | G. E. Moorhouse, Bruck nets, codes, and characters of loops,Des. Codes Cryptogr.,1 (1991), 7-29. doi: 10.1007/BF00123956.![]() ![]() ![]() |
[11] | N. Pace and A. Sonnino, On linear codes admitting large automorphism groups,Des. Codes Cryptogr.,83 (2017), 115-143. doi: 10.1007/s10623-016-0207-6.![]() ![]() ![]() |
[12] | K. J. C. Smith, On the $p$-rank of the incidence matrix of points in hyperplanes in a finite projective geometry,J. Combin. Theory,7 (1969), 122-129. doi: 10.1016/S0021-9800(69)80046-3.![]() ![]() ![]() |
[13] | P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and $(q + t, t)$-arcs of type $(0, 2, t)$,Finite Fields Appl.,17 (2011), 521-531. doi: 10.1016/j.ffa.2011.03.003.![]() ![]() ![]() |
[14] | P. Vandendriessche,Intertwined Results on Linear Codes and Galois Geometries, Ph.D thesis, Ghent University, Faculty of Sciences, Ghent, Belgium, 2014.https://cage.ugent.be/geometry/theses.php.![]() |
HTML views(2490)PDF downloads(281)Cited by(0)