Movatterモバイル変換


[0]ホーム

URL:


\`x^2+y_1+z_12^34\`
AIMS
  • share this content in Facebook
  • share this content in Twitter
  • share this content in Linkedin
  • share this content in ResearchGate
 
Advanced Search

Advances in Mathematics of Communications

Advanced Search
This issuePrevious ArticleNext Article
Article Contents
Article Contents
This issuePrevious ArticleThe $[46, 9, 20]_2$ code is uniqueNext ArticleFinding small solutions of the equation$ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem

$ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $

  • 1.

    Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia

  • 2.

    Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0002, Pretoria, South Africa

  • 3.

    Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium

    Received: September 2019
    Early access: April 2020
    Published: August 2021
    • Abstract

      In this paper we construct $ 2 $-PD-sets of $ 16 $ elements for codes from the Desarguesian projective planes $ \mathrm{PG}(2,q) $, where $ q = 2^h $ and $ 5\leq h \leq 9 $. We also construct $ 3 $-PD-sets of $ 75 $ elements for the code from the Desarguesian projective plane $ \mathrm{PG}(2,q) $, where $ q = 2^9 $. These $ 2 $-PD-sets and $ 3 $-PD-sets can be used for partial permutation decoding of codes obtained from the Desarguesian projective planes.

      Mathematics Subject Classification:Primary: 51E20, 94B05.

      Citation:
      shu

      \begin{equation} \\ \end{equation}
    • 加载中
    • Table 1. Codes of$ \mathrm{PG}(2,q) $: lower bounds on sizes of PD-sets and$ 2 $-PD-sets

      $ q $Code$ t $$ r $$ b $$ b_2 $
      $ 32 $[1057,244, 33]168131803
      $ 64 $[4161,730, 65]32343116233
      $ 128 $[16513, 2188,129]6414325406963
      $ 256 $[65793, 6562,257]1285923139659453
      $ 512 $[262657, 19684,513]25624297336251712873
       | Show Table
      DownLoad:CSV
    • References

      [1]E. F. AssmusJr. and J. D. KeyDesigns and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.
      [2]D. Crnković and N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs,Trans. Comb.,7 (2018), 37-50. doi: 10.22108/toc.2017.21615.
      [3]D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes,IEEE Trans. Inform. Theory,28 (1982), 541-543. doi: 10.1109/TIT.1982.1056504.
      [4]J. W. P. Hirschfeld,Projective Geometries Over Finite Fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
      [5]W. C. Huffman, Codes and groups,Handbook of Coding Theory, North-Holland, Amsterdam,1, 2 (1998), 1345-1440. 
      [6]J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs,Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam,29 (2011), 172-201. 
      [7]J. D. KeyT. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes,European J. Combin.,26 (2005), 665-682. doi: 10.1016/j.ejc.2004.04.007.
      [8]J. MacWilliams, Permutation decoding of systematic codes,Bell Syst. Tech. J.,43 (1964), 485-505. doi: 10.1002/j.1538-7305.1964.tb04075.x.
      [9]F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
      [10]G. E. Moorhouse, Bruck nets, codes, and characters of loops,Des. Codes Cryptogr.,1 (1991), 7-29. doi: 10.1007/BF00123956.
      [11]N. Pace and A. Sonnino, On linear codes admitting large automorphism groups,Des. Codes Cryptogr.,83 (2017), 115-143. doi: 10.1007/s10623-016-0207-6.
      [12]K. J. C. Smith, On the $p$-rank of the incidence matrix of points in hyperplanes in a finite projective geometry,J. Combin. Theory,7 (1969), 122-129. doi: 10.1016/S0021-9800(69)80046-3.
      [13]P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and $(q + t, t)$-arcs of type $(0, 2, t)$,Finite Fields Appl.,17 (2011), 521-531. doi: 10.1016/j.ffa.2011.03.003.
      [14]P. Vandendriessche,Intertwined Results on Linear Codes and Galois Geometries, Ph.D thesis, Ghent University, Faculty of Sciences, Ghent, Belgium, 2014.https://cage.ugent.be/geometry/theses.php.
    • Access History

      加载中

    Tables(1)

    Article Metrics

    HTML views(2490)PDF downloads(281)Cited by(0)

    Catalog

      Export File

      Citation

      shu

      Format

      Content

      /

      DownLoad: Full-Size Img PowerPoint
        Return
        Return
          Site map Copyright © 2025 American Institute of Mathematical Sciences

          [8]ページ先頭

          ©2009-2025 Movatter.jp