Dynamic voltage scaling (DVS) is one of the most effective techniques for reducing energy consumption on battery-operated embedded systems. According to the granularity of units to which voltage scaling is applied, the DVS problem can be divided into two subproblems: (i) inter-task DVS problem and (ii) intra-task DVS problem. A lot of effective DVS techniques have addressed either one of the two subproblems, but none of them have attempted to solve both simultaneously. This paper examines the problem of combined inter- and intra-task DVS, called the combined DVS (CDVS) problem. We solve the CDVS problem in two embedded system domains: one is systems with a sleep state and the other without sleep state. For systems without sleep state, we propose a close-to-optimal algorithm for the CDVS problem. We show that the algorithm is optimal when the power is a quadratically increasing function of the system's clock speed or the applied voltage level. For systems with a sleep state, we propose a refinement algorithm that fine-tunes the solution to the CDVS problem without sleep state to further reduce energy consumption by exploiting sleep state. Experimental results show that our proposed CDVS algorithm without sleep state is able to reduce the energy consumption by 12.5% on average over the results by the method that sequentially performs two existing inter- and intra-task DVS techniques, which are both optimal under no sleep state. Furthermore, our CDVS algorithm with a sleep state can reduce the energy consumption by 7.1% on average over the results by the conventional representative method that utilizes sleep state, but does not consider intra- and inter-task DVS simultaneously.
Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:
Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.
Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.
If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.
Enter your library card number to sign in. If you cannot sign in, please contact your librarian.
Society member access to a journal is achieved in one of the following ways:
Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:
If you do not have a society account or have forgotten your username or password, please contact your society.
Some societies use Oxford Academic personal accounts to provide access to their members. See below.
A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.
Some societies use Oxford Academic personal accounts to provide access to their members.
Click the account icon in the top right to:
Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.
For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.
To purchase short-term access, please sign in to your personal account above.
Don't already have a personal account?Register
Month: | Total Views: |
---|---|
February 2017 | 3 |
May 2017 | 1 |
July 2017 | 1 |
August 2017 | 1 |
September 2017 | 1 |
January 2018 | 1 |
April 2018 | 2 |
June 2018 | 1 |
July 2018 | 2 |
November 2018 | 1 |
December 2019 | 2 |
April 2020 | 1 |
July 2020 | 4 |
December 2020 | 1 |
March 2021 | 1 |
July 2022 | 1 |
March 2023 | 1 |
April 2023 | 1 |
October 2023 | 1 |
Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.