p53 | |
---|---|
![]() | |
Ідентифікатори | |
Символ | TP53; BCC7; LFS1; P53; TRP53 |
Entrez | 7157 |
HUGO | 11998 |
OMIM | 191170 |
PDB | 1A1U1AIE, 1C26, 1DT7, 1GZH, 1H26, 1HS5, 1JSP, 1KZY, 1MA3, 1OLG, 1OLH, 1PES, 1PET, 1SAE, 1SAF, 1SAK, 1SAL, 1TSR, 1TUP, 1UOL, 1XQH, 1YC5, 1YCQ, 1YCR, 1YCS, 2AC0, 2ADY, 2AHI, 2ATA, 2B3G, 2BIM, 2BIN, 2BIO, 2BIP, 2BIQ, 2FEJ, 2FOJ, 2FOO, 2GS0, 2H1L, 2H2D, 2H2F, 2H4F, 2H4H, 2H4J, 2H59, 2J0Z, 2J10, 2J11, 2J1W, 2J1X, 2J1Y, 2J1Z, 2J20, 2J21, 2K8F, 2L14, 2LY4, 2OCJ, 2PCX, 2QVQ, 2QXA, 2QXB, 2QXC, 2VUK, 2WGX, 2X0U, 2X0V, 2X0W, 2XWR, 2YBG, 2Z5S, 2Z5T, 3D05, 3D06, 3D07, 3D08, 3D09, 3D0A, 3DAB, 3DAC, 3IGK, 3IGL, 3KMD, 3KZ8, 3LW1, 3PDH, 3Q01, 3Q05, 3Q06, 3SAK, 3TG5, 3TS8, 4AGL, 4AGM, 4AGN, 4AGO, 4AGP, 4AGQ |
RefSeq | NM_000546.5 |
UniProt | H2EHT1 |
Інша інформація | |
Локус | Хр. 17p13.1 |
p53, також відомий якбілок 53, кодується у людини геномTP53, розташованим на короткому плечі17-ї хромосоми (мишачий ген називаютьTrp53). За своєю природою p53 —фактор транскрипції. p53 регулюєклітинний цикл і функціонує, як супресорпухлин. Його діяльність дуже важлива длябагатоклітинних організмів, оскільки він допомагає запобігати виникненнюраку, приблизно у 50 % злоякісно трансформованих клітин генTP53 мутував[1], що дозволяє їм швидше накопичувати мутації в інших генах[2]. p53 був описаний як «охоронець геному»[3] або «ген-ангел-охоронець», посилаючись на його роль в збереженні стабільностігеному.
Розташування гену TP53 у геномах різних ссавців:
У людини білок p53 складається з 393 амінокислотних залишків і має 5 доменів:
Мутації, що інактивують p53 при раковій трансформації, зазвичай трапляються у ДНК-зв'язуючому домені. Ці мутації призводять до нездатності білка p53 зв'язуватися з ДНК і, отже, виконувати функцію активатора транскрипції. Такі мутації звичайно є рецесивними.
Своєю назвою p53 завдячує молекулярній масі розрахованій за його рухливістю приелектрофорезі вполіакриламідному гелі. Пізніше була розрахована реальна молекулярна маса цього білка за кількістю залишківамінокислот, і з'ясувалось, що вона становить всього 43,7 кДа. Ця різниця виникає завдяки високому числу кислих залишківпроліну в p53, які уповільнюють його міграцію в поліакріламідних гелях, через що він здається масивнішим[5].
GGGCAAGTCT||||||||||CCCGTTCAGA |
p53-response element[6] |
Білок p53 не є життєво необхідним за нормальних умов. Так миші із делецією обидвох копій його гену нормально розвиваються і відрізняються від тварин дикого типу тільки однією ознакою — у них всіх за перші 10 місяців життя розвивається рак. Функції p53 необхідні тільки у стресових умовах, таких як нестача кисню, дія факторів, що викликають ушкодження ДНК (наприклад ультрафіолетове і γ-випромінювання) тощо[7].
Білок р53 є продуктом гена-супресора пухлиниTP53 іекспресується у всіх клітинах організму. Попри конститутивний характер експресії за нормальних умов він міститься у цитоплазмі в дуже низькій концентрації у зв'язку із нестабільністю. Найважливішою причиною такої нестабільності є взаємодія p53 ізMdm2 (людський білок зазвичай називають HDM2[5]). Останній діє якубіквітин-лігаза і скеровує p53 напротеасомну деградацію[2].
При появі пошкоджень ДНК відбувається активація двох спорідненихпротеїнкіназ —ATM (англ.ataxia telangiectasia mutated) іATR (англ.ATM-related), середсубстратів цих білків є так звані чекпойнт кіназиChk1 іChk2. Останні здійснюютьфосфорилювання великої кількості білків, серед яких і p53, що в результаті призводить до зупинки клітинного циклу. Фосфорильована форма p53 втрачає спорідненість із Mdm2, внаслідок чого стає значно більш стабільною і накопичується у клітині. Одночасно зростає здатність p53 стимулювати транскрипцію генів, що містять у регуляторній області нуклеотидну послідовність p53-response element (ділянка ДНК, з яким зв'язується білок р53)[2]. Відомо кілька десятків[5] таких генів, до яких зокрема належить інгібіторциклін-залежних кіназ (CKI)p21. Цей білок приєднується до комплексів G1/S-Cdk і S-Cdk та пригнічує їхню активність, допомагаючи зупинити проходження клітинного циклу[2][3]. Таким чином, р53 — фактор, який запускає транскрипцію групи генів і який активується при нагромадженні пошкоджень ДНК. Результатом активації р53 є зупинкаклітинного циклу іреплікації ДНК, при сильному стресовому сигналі — запуск апоптозу.
До безпосередніх мішеней p53 експресію яких він активує належить також Mdm2. Таким чином формуєтьсянегативний зворотний зв'язок: накопичення p53 призводить до збільшення рівня Mdm2, який у свою чергу пригнічує p53 не допускаючи його недоречної або надмірної активації. Mdm2 є не негативним регулятором p53, таку ж функцію виконує MDMX (також відомий як MDM4). Він хоч і не є убіквітин лігазою, але може пригнічувати активність p53 і сприяти його убіквітинуванню MDM2. У деяких типах ракових клітин спостерігається підвищена експресія MDM2 або/і MDMX[5].
У людських клітинах p53 задіяний у механізмах так званогореплікативного старіння — явища, яке полягає у тому, що клітини можуть ділитись тільки обмежену кількість раз (наприклад, 25—50 разів дляфібробластів) через вкороченнятеломер із кожним цикломреплікації ДНК. Коли довжина теломер сягає певної критичного мінімального значення, у клітині активується сигнальний шлях p53 відповіді на пошкодження ДНК[8].
Сигнальний шлях p53 може активуватись не тільки у разі пошкодження ДНК, а й захищати організм від інших загрозливих подій у клітині, наприклад анормальної мітогенної стимуляції. Так зокрема для клітин, що надекспресуютьонкогениRas абоMyc, не характерна надмірнапроліферація, навпаки — у них зупиняється клітинний цикл і запускається апоптоз. Це пов'язано із білкомArf, що активується у таких випадках, він зв'язується із Mdm2 та пригнічує його, дозволяючи таким чином накопичення p53[8].
Окрім того, що p53 активує транскрипцію багатьох генів, було виявлено й інші механізми його функціонування. Зокрема, він може діяти як транскрипційний репресор, а також безпосередньо взаємодіяти у цитоплазмі ізбілками родини Bcl-2, роблячи прямий внесок у запуск внутрішнього шляху апоптозу[5].
У випадку, коли ушкодження ДНК не можуть бутирепаровані, накопичення p53 призводить до активації транскрипції генів проапоптичнихбілків родини Bcl-2, що містять тільки BH3 домен,Puma (англ.p53 upregulated modulator of apoptosis) іNoxa. Вони забезпечують запуск внутрішнього (мітохондріального) шляху апоптозу[9]. Окрім цього p53 може приєднуватись до антиапоптичних білків родини Bcl-2 на поверхнімітохондрій та інгібувати їх. Таким чином знешкоджуються клітин, що могли б в іншому випадку стати раковими[10][3].
Близько 50 % типів ракових клітин містять мутантний генTP53. Внаслідок цього ушкодження ДНК в них не призводить до зупинки клітинного циклу та апоптозу. Таким чином вони можуть накопичувати мутації і ставати ще більш злоякісними, а також і уникати реплікативного старіння. Окрім цього багато протиракових препаратів ірадіотерапія діють шляхом активації p53-залежногоапоптозу, а отже мутантні по його гену клітини одночасно і резистентніші до таких типів терапії[11].
Спадкове захворюваннясиндром Лі-Фраумені виникає внаслідок наявності однієї мутантної копіїTP53 угенотипі особи, і проявляється у виникненні різних типів раку в перші 20 років життя внаслідок мутацій, що інактивують нормальну копію гену p53[12].
Через свою унікальну роль у запобіганні виникнення раку p53 є мішенню для деякихонкогенних вірусів. Наприклад геномпапіломавірусів кодує білок E6, що зв'язується зі p53 і сприяє його деградації. Білки із схожими функціями наявні і в багатьох інших онковірусів[13]. Мтуації у p53 можуть специфічно викликати і інші агенти, наприклад поліциклічні арени із тютюнового диму зв'язуються із конкретною ділянкою генуTP53 і викликають заміну залишку тиміну на залишок гуаніну[14]. Ультрафіолетове випромінювання призводить до мутації p53 у ракових клітинах шкіри. У деяких випадках зміни навіть в одній копії цього гену достатньо для інактивації білка, оскільки p53 функціонує як тетрамер, наявність в якому навіть одного мутантного ланцюга може призвести до некоректного поводження[12].
Враховуючи центральну роль p53 у розвитку ракових захворювань, він може бути вигідною мішенню для терапії. Перші зусилля в цьому напрямку були зосереджені в основному нагенній терапії. Перші успішні клінічні дослідження цього підходу були здійснені у 1996 році компанієюIntrogen Therapeutics, проте впровадження такого методу в клініку затрималось. Тільки 2004 році доставка генуTP53 за допомогою аденовірусного вектора була схвалена в Китаї для лікування раку шиї та голови, це був перший випадок, коли генна терапія була схвалена до використання як рутинна процедура в клініці[5].
Інший підхід генної терапії, що базується на використанні p53 шляху, був розроблений групою Мак-Корміка. Вони також використовували аденовірус, проте він не здійснювавтрансдукціїTP53, а був дефектний по гену білка E1B 55 кДа, що зв'язується із p53 та інактивує його. Таким чином цей вірус може нормально розмножуватись у ракових клітинах, що не мають функціонального p53, але не в здорових, які його мають. Терапія базована на такому ж принципі була схвалена до використання у Китаї[5].
Ще однією можливою стратегією терапії раку є використання низькомолекулярних сполук, що відновлюють активність p53. Частина із цих речовин зв'язуються із мутантним білком в трансформованих клітинах і змінюють його конформацію, повертаючи йому властивості дикого типу. Прикладом сполук такого типу є PRIMA1. Для лікування пацієнтів, у яких p53 не є мутованим, можна використовувати інший тип препаратів, а саме такі, що порушують взаємодію між p53 і MDM2, таким чином збільшуючи активність першого. Найбільш ефективною в цьому розмінні виявилась група речовинНутліни (англ.Nutlins) розроблена дослідниками компаніїHoffmann-La Roche. Нутліни приєднуються до p53-зв'язуючої кишеньки MDM2, таким чином перешкоджаючи взаємодії цих двох білків. Використання цих сполук дозволяє зменшити розміри пухлин у піддослідних тварин. Інший низькомолекулярний активатор p53 - RITA - взаємодіє із самим p53, блокуючи його взаємодію із MDM2. Також розроблені препарати, що пригнічують функцію MDMX. Перелічені сполуки наразі не використовуються у клініці, проте широко застосовуються як інструменти в ракових дослідженнях[5].
Білок p53 був вперше відкритий відразу кількома групами 1979 року. Зокрема Девід Лейн та Лайонел Кроуфорд досліджували індуктори злоякісної трансформації клітинвірусу SV40. У цього вірусу є два білки із такою функцією, вони були названі великим і малим T-антигенами. Лейн і Кроуфорд помітили, що при використанні сироватки із тварин з пухлинами індукованими SV40 дляімунопреципітації великого T-антигену разом із останнім осаджувався і невірусний білок із молекулярною масою 53 кДа. Подальші дослідження показали, що цей білок фізично взаємодіяв із великим T-антигеном. В той же час схожі спостереження зробили Деніел Лінцер та Арнольд Левайн ізПристонського університету, а також П'єр Мей із Франції, Роберт Керролл із США та Алан Сміт із Великої Британії[5].
Ліцнер та Левайн також помітили, що сироватка, яку вони використовували, мала здатність осаджувати той же білок із масою 53 кДа ізтератокарцином — пухлинембріонального походження не викликаних вірусом SV40. В той же час група Олда Ллойда з'ясувала, що при імунізації тварин невірусно трансформованими клітинами в них утворювалисьантитіла до цього білка. Варда Роттер продемонструвала, що надлишок білка масою 53 утворюється в клітинах інфікованих онкогеннимретровірусом —вірусом лейкемії мишей Абельсона. Таким чином стало зрозуміло, що він наявний у великих кількостях у злоякісно трансформованих клітинах різного походження, але його зовсім чи майже не можливо виявити у здорових клітинах[5].
Більшість лабораторій, що займались вивченням p53 на перших етапах, дали йому кожна іншу назву, що призвело плутанини в науковій літературі. Тільки у 1983 році на Першому міжнародному симпозіумі присвяченому p53, що проводився вОкстеді, вченим вдалось погодитись на варіанті p53. Така назва і закріпилась за білком, попри те, що згодом стало відомо, що вона є не зовсім коректною[5].
Перші дослідження p53 явно свідчили про його роль як онкогену: такі віруси як SV40 тааденовірус виробляють білки, які зв'язуються із ним і призводять до його накопичення, високі рівні цього білка були виявлені в ракових, але не нормальних клітинах. Проте, щоб остаточно довести, що p53 є онкобілком, потрібно було клонувати його ген і перевірити як його надекспресія впливатиме на клітини. 1983 року відразу кільком групам вдалось клонувати людський і мишачий гени p53, для цього в першу чергу використовували ракові клітини, в яких було найбільше продукту цього гену. Наступні спробитрансфікувати різні клітини отриманою кДНК виправдали очікування. У лабораторіях Дженкінса, Орена, Роттер та Вайнеберга було встановлено, що при надекспресії p53 він може призводити до імморталізації клітин, а разом із вже відомими онкогенними білками, такими якHRAS, викликати злоякісне переродження. Також було показано, що внаслідок надекспресії p53, зростала здатність ракових клітин утворювати пухлиниin vivo[5].
Проте відразу ж з'явились деякі експериментальні дані, що суперечили припущенню про те, що p53 є онкобілком. Зокрема в кількох лабораторіях було встановлено, що багато вірусів, які викликаютьлейкемію, «вимикають» ген p53, група Роттер встановила, що в пухлинній лінії лейкемії людини HL60TP53 майже повністю делетований. Нарешті 1989 року в лабораторії Лейвана отримали новий клон кДНК p53, на відміну від інших він не міг трансформувати клітин. Суперечливість експериментальних даних вдалось пояснити післясеквенування використаних клонів і порівняння їх нуклеотидних послідовностей із послідовністю генудикого типу. Так стало зрозуміло, що в більшості ракових клітин, з яких і клонувавсяTP53 абоTrp53, в ньому відбуваються мутації, і саме такі мутантні версії можуть сприяти злоякісному переродженню, тоді як продукт нормального гену є навпаки супресором пухлин[5].
В наступні роки було здобуто багато підтверджень того, що p53 є супресором пухлин. Так було показано спочатку на прикладіраку товстої кишки, а потім і на інших видах раку, що в злоякісно трансформованих клітинах дуже часто функція p53 втрачається внаслідок мутацій, делецій або комбінації обидвох. Також з'ясувалось, що алель дикого типу може пригнічувати злоякісне переродження клітин у культурі, викликане потужними онкогенамиHRAS таMYC. Згодом встановлено, що людський синдром Лі-Фраумені викликається мутаціями у геніTP53, і були отримані миші ізнокаутомTrp53, що мали підвищену схильність до розвитку ракових пухлин, особливолімфом. Також вдалось пояснити, чому деякі онковіруси збільшують концентрацію p53 в клітині. Генетична інформація як SV40 так і аденовірусу представлена у формі ДНК, щоб їїреплікувати вони намагаються запустити S-фазуклітинного циклу, під час якої зможуть використовувати клітинніферменти і субстрати для копіювання власної ДНК. Проте сигнальні шляхи, пов'язані із p53 можуть розпізнати таку невчасну S-фазу та індукувати апоптоз. Тому віруси також виробляють білки, такі як великий T-антиген SV40 і E1B аденовірусу, які зв'язуються із p53 і призводять до його накопичення в неактивній формі. Інші віруси, такі якпапіломавірус людини використовують інші стратегії пригнічення p53[5].