Movatterモバイル変換


[0]ホーム

URL:


Now on home page

ADS

On the Area Requirements of Planar Greedy Drawings of Triconnected Planar Graphs

Abstract

In this paper we study the area requirements of planar greedy drawings of triconnected planar graphs. Cao, Strelzoff, and Sun exhibited a family $\cal H$ of subdivisions of triconnected plane graphs and claimed that every planar greedy drawing of the graphs in $\mathcal H$ respecting the prescribed plane embedding requires exponential area. However, we show that every $n$-vertex graph in $\cal H$ actually has a planar greedy drawing respecting the prescribed plane embedding on an $O(n)\times O(n)$ grid. This reopens the question whether triconnected planar graphs admit planar greedy drawings on a polynomial-size grid. Further, we provide evidence for a positive answer to the above question by proving that every $n$-vertex Halin graph admits a planar greedy drawing on an $O(n)\times O(n)$ grid. Both such results are obtained by actually constructing drawings that are convex and angle-monotone. Finally, we consider $\alpha$-Schnyder drawings, which are angle-monotone and hence greedy if $\alpha\leq 30^\circ$, and show that there exist planar triangulations for which every $\alpha$-Schnyder drawing with a fixed $\alpha<60^\circ$ requires exponential area for any resolution rule.


Publication:
arXiv e-prints
Pub Date:
March 2020
DOI:

10.48550/arXiv.2003.00556

arXiv:
arXiv:2003.00556
Bibcode:
2020arXiv200300556D
Keywords:
  • Computer Science - Computational Geometry;
  • Computer Science - Discrete Mathematics;
  • Computer Science - Data Structures and Algorithms;
  • Mathematics - Combinatorics
full text sources
Preprint
|
🌓

[8]ページ先頭

©2009-2025 Movatter.jp