Movatterモバイル変換


[0]ホーム

URL:


Paul's Online Notes
Paul's Online Notes
Home/Calculus I/Review / Common Graphs
Prev. Section
NotesPractice ProblemsAssignment Problems
Next Section
Show General NoticeShow Mobile NoticeShow All Notes Hide All Notes
General Notice

I have been informed that on March 7th from 6:00am to 6:00pm Central Time Lamar University will be doing some maintenance to replace a faulty UPS component and to do this they will be completely powering down their data center.

Unfortunately, this means that the site will be down during this time. I apologize for any inconvenience this might cause.

Paul
February 18, 2026

Mobile Notice
You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 1.10 : Common Graphs

Without using a graphing calculator sketch the graph of each of the following.

  1. \(\displaystyle y = \frac{4}{3}x - 2\)Solution
  2. \(f\left( x \right) = \left| {x - 3} \right|\)Solution
  3. \(g\left( x \right) = \sin \left( x \right) + 6\)Solution
  4. \(f\left( x \right) = \ln \left( x \right) - 5\)Solution
  5. \(\displaystyle h\left( x \right) = \cos \left( {x + \frac{\pi }{2}} \right)\)Solution
  6. \(h\left( x \right) = {\left( {x - 3} \right)^2} + 4\)Solution
  7. \(W\left( x \right) = {{\bf{e}}^{x + 2}} - 3\)Solution
  8. \(f\left( y \right) = {\left( {y - 1} \right)^2} + 2\)Solution
  9. \(R\left( x \right) = - \sqrt x \)Solution
  10. \(g\left( x \right) = \sqrt { - x} \)Solution
  11. \(h\left( x \right) = 2{x^2} - 3x + 4\)Solution
  12. \(f\left( y \right) = - 4{y^2} + 8y + 3\)Solution
  13. \({\left( {x + 1} \right)^2} + {\left( {y - 5} \right)^2} = 9\)Solution
  14. \({x^2} - 4x + {y^2} - 6y - 87 = 0\)Solution
  15. \(\displaystyle 25{\left( {x + 2} \right)^2} + \frac{{{y^2}}}{4} = 1\)Solution
  16. \(\displaystyle {x^2} + \frac{{{{\left( {y - 6} \right)}^2}}}{9} = 1\)Solution
  17. \(\displaystyle \frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{49}} = 1\)Solution
  18. \(\displaystyle {\left( {y + 2} \right)^2} - \frac{{{{\left( {x + 4} \right)}^2}}}{{16}} = 1\)Solution
[Contact Me] [Privacy Statement] [Site Help & FAQ] [Terms of Use]
© 2003 - 2026 Paul Dawkins
Page Last Modified :11/16/2022

[8]ページ先頭

©2009-2026 Movatter.jp