Fosforesans,floresansla ilişkili bir çeşitışıldama şeklidir. Floresanstan farklı olarak fosforesant maddeler soğurdukları enerjiyi hızlıca geri vermezler.
Triplet durumdakielektronlar eski dönüş yönünü kazandıktan sonra normalyörünge düzenindeki diğer elektronların yanına dönebilirler. Bu arada elektron çok daha yüksek bir yörüngede fırlatmada işlev gören enerji, ışık enerjisi olarak geri verilir. Bu olay fosforesans olarak isimlendirilir.
Fosforlu malzemelerde kullanılan yaygın pigmentler arasındaçinko sülfür ve stronsiyum alüminat bulunur. Güvenlikle ilgili ürünlerde çinko sülfürün kullanımı 1930'lara kadar uzanır.
1993 yılında stronsiyum alüminat pigmentlerinin geliştirilmesi, yüksek parlaklığa ve uzun fosforesansa sahip, özellikle de prometyum kullanan, karanlıkta parlayan malzemelerin yerine geçecek bir malzeme bulma ihtiyacıyla teşvik edildi.[1][2] Bu, Yasumitsu Aoki'nin (Nemoto & Co.) çinko sülfürden yaklaşık 10 kat daha fazla parlaklığa ve yaklaşık 10 kat daha uzun fosforesansa sahip malzemeleri keşfetmesine yol açtı.[3][4] Bu, çinko sülfit bazlı ürünlerin çoğunu yenilik kategorisine düşürdü. Stronsiyum alüminat bazlı pigmentler artık çıkış tabelalarında, yol işaretlemelerinde ve güvenlikle ilgili diğer tabelalarda kullanılmaktadır.[5]
Çinko sülfür (solda) ve stronsiyum alüminat (sağda), görünür ışıkta, karanlıkta ve karanlıkta 4 dakika sonra.
Sırasıyla kırmızı ve mavi renkte kalsiyum sülfür (solda) ve metal-toprak silikat (sağda) fosforesans
Hem fosforesans (T1‘den S0‘ya geçiş) hem de sistemler arası geçiş (ISC) yoluyla uyarılmış tekli durumdan (örneğin S1) T1 üretimi spin yasaklı süreçler olduğundan çoğu organik malzeme, uyarılmış üçlü durumu doldurmada çoğunlukla başarısız oldukları için önemsiz fosforesans sergiler ve hatta T1 oluştuğunda, fosforesans çoğunlukla ışınımsal olmayan yolaklar tarafından geride bırakılır.
ISC'yi ve fosforesansı arttırmaya yönelik bir strateji, spin-yörünge eşleşmesini (SOC) artıran ağır atomların dahil edilmesidir.[6] Ayrıca SOC (ve dolayısıyla ISC), Mustafa El-Sayed kuralı olarak da bilinen n-π* ve π-π* geçişlerinin farklı açısal momentumlarla birleştirilmesiyle desteklenebilir.Bu tür geçişler tipik olarak karbonil veya triazin türevleri tarafından sergilenir ve çoğu organik oda sıcaklığında fosforesan (ORTP) malzeme bu tür kısımları içerir.[7][8] Buna karşılık, titreşim gevşemesi ve oksijen söndürme ve üçlü-üçlü imhalar dahil olmak üzere rekabetçi ışınımsız deaktivasyon yollarını engellemek için, organik fosforların polimerler ve moleküler katılar gibi katı matrislere gömülmesi gerekir (kristaller,[9] kovalent organik çerçeveler,[10] ve diğerleri).
^Zitoun, D.; Bernaud, L.; Manteghetti, A. Microwave Synthesis of a Long-Lasting Phosphor. J. Chem. Educ. 2009, 86, 72-75.DOI:10.1021/ed086p72
^Wang, J.; Gu, X.; Ma, H.; Peng, Q.; Huang, X.; Zheng, X.; Sung, S. H. P.; Shan, G.; Lam, J. W. Y.; Shuai, Z.; Tang, B. Z. (2018). "A facile strategy for realizing room temperature phosphorescence and single molecule white light emission".Nature Communications.9 (1). s. 2963.Bibcode:2018NatCo...9.2963W.doi:10.1038/s41467-018-05298-y.PMC6063922 $2.PMID30054473.
^Hamzehpoor, E.; Perepichka, D. F. (2020). "Crystal Engineering of Room Temperature Phosphorescence in Organic Solids".Angewandte Chemie International Edition.59 (25). ss. 9977-9981.doi:10.1002/anie.201913393.PMID31725174.
^Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W. Y.; Tang, L.; Lu, P.; Wang, C. L.; Liu, Y.; Wang, Z. M.; Zheng, Q.; Sun, J. Z.; Ma, Y. G.; Tang, B. Z. (2010). "Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature".J. Phys. Chem. C.114 (13). ss. 6090-6099.doi:10.1021/jp909388y.
^Hamzehpoor, E; Ruchlin, C.; Tao, Y.; Liu, C. H.; Titi, H. M.; Perepichka, D. F. (2022). "Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping".Nature Chemistry.15 (1). ss. 83-90.doi:10.1038/s41557-022-01070-4.PMID36302870.