Movatterモバイル変換


[0]ホーム

URL:


渋谷駅前で働くデータサイエンティストのブログ

元祖「六本木で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木→渋谷駅前

2014-10-01から1ヶ月間の記事一覧

先日、とあるコンサルの社長さんとお酒を飲みながらお話していて出てきた話題が「畢竟データ分析って何の役に立つんだろう?」というものだったんですが、そこで僕が思い出して紹介したのが「獺祭」で世界進出を成功させている旭酒造のエピソードだったので…

はてなブックマーク - 杜氏のいない蔵元が示した「データ分析さえすれば職人の技を職人抜きでも再現できる」という事実の凄み(追記あり)

我らが自称ゆるふわ*1ガチ勢代表@motivic_氏がこんな記事をupしてました。 Deep Learningの性能を見てみよう ~Iris編~ ということで、こんなに簡単にDeep LearningをR上で試せるんだったらついでに僕もやってみようと思ったのでした。ただし同じirisでやる…

はてなブックマーク - H2OのRパッケージ{h2o}でお手軽にDeep Learningを実践してみる(1):まずは決定境界を描く

追記(2018年4月) 2017年4月にアップデート記事を出しておりますので、そちらもご覧ください。 以前の記事でSVM(しかもsvm{e1071}に限って)で不均衡データをクラス分類する方法について取り上げましたが、色々調べた結果その他のRの分類器でもやれるとい…

はてなブックマーク - Rで不均衡データをクラス分類する方法まとめ:SVM、ランダムフォレスト、ロジスティック回帰の場合

相変わらずグダグダな上に挙句の果てに既にRでやっちゃった例をまとめたPDF bookまであると判明してモチベーションだだ下がりなんですが、備忘録も兼ねてめげずに続けます。もちろんテキストは相変わらずこちらの2冊。 状態空間時系列分析入門作者: J.J.F.コ…

はてなブックマーク - Rでベイジアン動的線形モデルを学ぶ(3):ローカル線形トレンドモデル

今年のKDD cupが絵に描いたような不均衡データ(正例と負例との数的比率が極端に偏っているデータ)で苦労させられたので、ちょっと調べたら色々と良い方法があるなぁと気が付きましたよということで備忘録的に紹介しておきます。 ちなみにググったら普通に@…

はてなブックマーク - 不均衡データをSVMでクラス分類するにはどうすれば良いか

と言っても大した話ではないです。以下がそのスライド。 Jc 20141003 tjo from Takashi J Ozaki とりあえず読んでみた印象から言うと、「おいおいこんなんでKDD通るのかよ!」という。でも確かに言われてみれば、そもそもuser return timeみたいな概念って普…

はてなブックマーク - チーム内Journal ClubでKDD2014から1報選んで紹介してきました
プロフィール
id:TJOid:TJO

Takashi J. OZAKI, Ph.D.
Data Scientist (尾崎 隆)

English:https://tjo-en.hatenablog.com/

このブログにはApache 2.0ライセンスのもとで配布されている製作物が含まれています。

ブログの内容は個人の意見・見解の表明であり、所属組織の意見・見解を代表しません。またブログ内容の正確性については一切保証いたしません(誤りを見つけた場合はコメント欄などでお知らせいただけると有難いです)。

また、ブログの中で取り上げられているデータ分析事例・データセット・分析上の知見など全ての記述は、特に明記されていない限りは、いずれもいかなる実在する企業・組織・機関の、いかなる個別の事例とも無関係です。ブログ記事内容は予告なく公開後に改変されることがあります。改変した事実は明示されることもあれば明示されないこともあります。

現在、講演依頼・書籍執筆依頼・メディア取材及び出演依頼等は全てお断りしております。悪しからずご了承ください。

ご連絡はLinkedInメッセージでお願いいたします。

Copyright © Takashi J. OZAKI 2013 All rights reserved.

検索
カテゴリー
忍者アナライズ

引用をストックしました

引用するにはまずログインしてください

引用をストックできませんでした。再度お試しください

限定公開記事のため引用できません。

読者です読者をやめる読者になる読者になる

[8]ページ先頭

©2009-2025 Movatter.jp