Movatterモバイル変換
[0]
ホーム
URL:
画像なし
夜間モード
Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
Search
画像センシングシンポジウム
PRO
May 26, 2025
Research
7
3.7k
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
画像センシングシンポジウム
PRO
May 26, 2025
Tweet
Share
More Decks by 画像センシングシンポジウム
See All by 画像センシングシンポジウム
SSII2025 [OS3] どの論文でもダメなんだけど! 〜実応用とその課題〜
ssii
PRO
2
1.1k
SSII2025 [OS3-01] End-to-End自動運転の実応用の現場から
ssii
PRO
6
2.5k
SSII2025 [OS3-02] 広告における画像生成技術の実応用の現状
ssii
PRO
5
1.3k
SSII2025 [OS3-03] 有機ミニトマト農場におけるロボット開発と基礎研究
ssii
PRO
0
970
SSII2025 [OS2-01] 自動運転の性能と共に進化するセンシングデバイス
ssii
PRO
2
1.8k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.2k
SSII2025 [OS2] 新たなセンシングの潮流
ssii
PRO
1
550
SSII2025 [OS2-02] イベントカメラの研究紹介と可視光通信への応用
ssii
PRO
1
920
SSII2025 [OS2-03] マルチ/ハイパースペクトル領域における高度な画像撮影および処理技術
ssii
PRO
2
1k
Other Decks in Research
See All in Research
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
450
電力システム最適化入門
mickey_kubo
1
730
数理最適化と機械学習の融合
mickey_kubo
15
8.9k
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
350
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
140
数理最適化に基づく制御
mickey_kubo
5
680
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.6k
Vision And Languageモデルにおける異なるドメインでの継続事前学習が性能に与える影響の検証 / YANS2024
sansan_randd
1
110
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.7k
Principled AI ~深層学習時代における課題解決の方法論~
taniai
3
1.2k
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
140
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
240
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
750
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Documentation Writing (for coders)
carmenintech
72
4.9k
Docker and Python
trallard
45
3.5k
The Cost Of JavaScript in 2023
addyosmani
51
8.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Building Applications with DynamoDB
mza
95
6.5k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Visualization
eitanlees
146
16k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
横浜DeNAベイスターズの躍進を ⽀えたAIプロダクト 2025.5.29 ⼤⻄克典 (DeNA)
© DeNA Co., Ltd. 2 ⾃⼰紹介 • ⼤⻄克典 • 略歴
◦ 2014-2017: 東京⼤学原⽥牛久研でComputer Visionの研究 ▪ 修士時代: CVPR, ACMMM, AAAI ◦ 2017: DeNAに新卒で⼊社 ▪ 横浜DeNAベイスターズ×AIプロジェクトの新規⽴上&主導 • 現在のRole ◦ プロダクトマネージャー 1
© DeNA Co., Ltd. 3 アジェンダ • ベイスターズチーム強化 × AIプロジェクト:プロダクト具体例
◦ Catcher skill metric ◦ 投⼿コマンド ◦ スイング動作解析 • AIをユーザー価値に繋げるための⼯夫 ◦ プロダクトマネジメント ◦ アジャイル 2
© DeNA Co., Ltd. 4 プロダクト具体例 Catcher skill metric 投⼿コマンド
スイング動作解析
© DeNA Co., Ltd. 5 Catcher skill metric • キャッチャーの各スキルを定量的に評価できるように
1 Data Trackman / Hawkeye AI model Skill visualization
© DeNA Co., Ltd. 6 Catcher skill metric • 1球単位で捕逸確率を予測
◦ ブロッキングスキルをより正確に評価 1 Old stats 暴投 or 捕逸 10-0 or 0-10 ⽚⽅の責任 / 減点⽅式 / ⼀律評価 AI stats 捕球難易度を推定 2 : 8 責任割合の分解 / ⽌めたら加点 / 難易度で評価に濃淡
© DeNA Co., Ltd. 7 Catcher skill metric • 単にデータ提供だけでなく、可視化まで⼀貫して作成
◦ 詳細な分析や振り返りも可能に 1
© DeNA Co., Ltd. 8 Catcher skill metric • 現在地点と⽬標地点を明確にできるのが最も効果的だった
◦ 選⼿が漠然と練習から明確な⽬的意識を持って練習に ◦ コーチもデータがあることではっきりと選⼿に伝えやすくなる 1 もっとブロッキング 良くせんとあかんぞ 全然体⼊れられてないやん うーん…やっぱそうですか わかりました (あまりしっくりはきてない) コーチ 選⼿ ブロッキングで-4点分損してるぞ! 特に曲がり球逸らしまくってる (実際に映像⾒せながら) ほら!全然体⼊れられてないやん ほんとですね…! そこもっと重点的に勉強します コーチ 選⼿
© DeNA Co., Ltd. 9 投⼿コマンド • コマンドとは? 2 コントロール
枠の中に投げる能⼒ 四球% 今永選⼿ > ⼤貫選⼿ ≧ ⽯⽥健選⼿ コマンド 狙ったところに投げる能⼒ 実際の制球⼒ ⼤貫選⼿ ≧ 今永選⼿ > ⽯⽥健選⼿ [2023]
© DeNA Co., Ltd. 10 投⼿コマンド • コマンド能⼒を測定可能に 2 映像からミット構えた位置を推定
コマンドスコア化
© DeNA Co., Ltd. 11 投⼿コマンド • 単にデータ提供だけでなく、可視化まで⼀貫して作成 ◦ 詳細な分析や振り返りも可能に
2
© DeNA Co., Ltd. 12 投⼿コマンド • Pitcher skill metricの活⽤
◦ コマンドスキルの定量化によってPitcher版skill metricが作成可能に 2 コーチたちとデータを ⾒ながら議論する定例 選⼿へのFB
© DeNA Co., Ltd. 13 スイング動作解析 • 試合でのスイングを動作解析できるように 3 ハイスピードカメラ
600fps 4台 解析点を3D検出 関節 / バット / ボール 簡易分析ツールも作成 バイオメカニストによる動作解析
© DeNA Co., Ltd. 14 スイング動作解析 • バイオメカニストのFB件数を激増させることに成功 3
© DeNA Co., Ltd. 15 AIをユーザー価値に繋げるための⼯夫
© DeNA Co., Ltd. 16 AIをユーザー価値に繋げるための⼯夫 • キーワードはこの⼆つ ◦ プロダクトマネジメント
◦ アジャイル 1
© DeNA Co., Ltd. 17 AIをユーザー価値に繋げるための⼯夫: プロダクトマネジメント • プロダクトマネジメントって…? ◦
『⼈はドリルが欲しいのではなく⽳をあけたいのだ』 (セオドア・レビット) ◦ 『もし顧客に、彼らの望むものを聞いていたら彼らは「もっと速い⾺が欲しい」 と答えていただろう』(ヘンリー・フォード) • 投⼿コマンドの例で紹介 2
© DeNA Co., Ltd. 18 AIをユーザー価値に繋げるための⼯夫: プロダクトマネジメント • コマンドは計測できるようになったが… ◦
当初のリクエスト:1軍レベルの制球⼒を知りたい 2 2軍投⼿コーチ 制球⼒が測れなくて困ってる 1軍レベルのコマンドって どれくらい? AIチーム コマンドを計測可能にしました! でもここが1軍レベルって ライン特になかったです… いやいや! コマンド計測できるようになった だけでめっちゃありがたい ここで終わっていいのだろうか…?
© DeNA Co., Ltd. 19 AIをユーザー価値に繋げるための⼯夫: プロダクトマネジメント プロダクトの4階層フレームワークで整理 • 2軍投⼿コーチはコマンドを知りたいのではない
◦ 1軍レベルに選⼿を引き上げたい 2
© DeNA Co., Ltd. 20 AIをユーザー価値に繋げるための⼯夫: プロダクトマネジメント • 開発⽅針をpivot ◦
1軍ラインとコマンドスコアのギャップを埋めるべき! • Pitcher版skill metricの発⾒ ◦ コマンド+他データで1軍ラインまでの距離がわかることを解明 2 コマンドスコア ??? ルーキー 1軍平均レベル 1軍レギュラー
© DeNA Co., Ltd. 21 AIをユーザー価値に繋げるための⼯夫: アジャイル • アジャイルとは? ◦
シンプルだが動くものを作って、ユーザー価値を検証しながら進めていくこと ◦ 例)⽔を貯めるバケツを作る 3 各部品をシーケンシャルに開発 • 完成系のイメージを基にそれぞれ作る • 各部品完成後に結合 最低限動くものを少しずつ作る(MVP) • スコープをギリギリまで絞る • バケツ:まずは⽔を掬える浅い桶
© DeNA Co., Ltd. 22 AIをユーザー価値に繋げるための⼯夫: アジャイル • ウォータフォールとアジャイルの違いの1例 3
メリット • 開発難易度が低い • スケールしやすい デメリット • 結合してみるまで動くかわからない • 仕様変更や障害への対応難易度⾼い デメリット • 開発難易度が⾼い • スケールしにくい メリット • 動かしてみての課題が常に把握できる • 変更や障害に柔軟に対応しやすい
© DeNA Co., Ltd. 23 AIをユーザー価値に繋げるための⼯夫: アジャイル • スイング動作解析 ◦
3D検出だが、実は皆さんが想像してるような⾼度なアルゴリズムは使ってない ◦ ベースは固定環境で2Dkeypoint検出を最後三⾓測量してるだけ • なぜか? ◦ 過去別プロダクトでの失敗を踏まえての開発プロセス ▪ 昔あれもこれも詰め込んでリリースしたが、実際にユーザーの価値にはつな がらない機能ばかりなプロダクトを作った失敗があった… ◦ なのでまずは最短でシンプルに作って、ユーザーに実際にぶつけてみた 3
© DeNA Co., Ltd. 24 AIをユーザー価値に繋げるための⼯夫: アジャイル • ユーザーの反応 ◦
関節点に関してはこれで既に精度⼗分 ▪ 600fps下では⼈の関節の移動量は⼩さい ▪ 移動平均取れば⼗⼆分な精度が出る ◦ ただバットの軌道だけは移動量が⼤きく、ここだけもっと精度欲しい ▪ バットの精度向上に注⼒することに! 3
© DeNA Co., Ltd. 25 AIをユーザー価値に繋げるための⼯夫:まとめ • プロダクトを作ることは、仮説を検証すること ◦ プロダクトマネジメント
▪ What/Howだけでなくその上のWhy/Visionまで常に考える • これを作ればいいはずはあくまで仮説 ◦ アジャイル ▪ シンプルに動くものを作ってユーザー価値を検証しながら進める • ユーザーが本当に欲しいものは誰も知らない(ユーザー⾃身含め) • 必要な精度は解決したい課題によって決まる 4
© DeNA Co., Ltd. 26
[8]
ページ先頭
©2009-2025
Movatter.jp