) and a Neural Network ( NN_TORCH ), and excludes RandomForest ( RF ) from training. import autogluon.core as ag custom_hyperparameters = { 'GBM': { # LightGBM model 'num_leaves': ag.space.Int(lower=26, upper=66, default=36), 'learning_rate': 0.05 }, 'NN_TORCH': {}, # Use default settings for Neural Network 'CAT': {}, # Use default settings for CatBoost # 'RF' is not included, so it won't be trained } hyperparameter_tune_kwargs = { 'num_trials': 10, 'searcher': 'auto', 'scheduler': 'local' } predictor_custom = TabularPredictor(label=label).fit( train_data, hyperparameters=custom_hyperparameters, hyperparameter_tune_kwargs=hyperparameter_tune_kwargs, time_limit=300 34