Movatterモバイル変換


[0]ホーム

URL:


$30 off During Our Annual Pro Sale. View Details »
Speaker DeckSpeaker Deck
Speaker Deck

ルールベース画像処理のススメ

Avatar for fkubota fkubota
June 18, 2021

 ルールベース画像処理のススメ

データ分析LT会第二回で発表した際の資料です。
youtube:https://www.youtube.com/watch?v=jDZwX3jxhK4

conppass url:https://kaggle-friends.connpass.com/event/214854/

github repository:https://github.com/fkubota/bunseki_compe_LT_02

Avatar for fkubota

fkubota

June 18, 2021
Tweet

More Decks by fkubota

See All by fkubota

Other Decks in Programming

See All in Programming

Featured

See All Featured

Transcript

  1. ϧʔϧϕʔεը૾ॲཧͷεεϝ fkubota DeepLearning ωΠςΟϒੈ୅΁޲͚ͯ

  2. ࣗݾ঺հ 02 fkubota (Twitter, Kaggle) - όϯυϧΧʔυͷձࣾ(ΧϯϜ)ͰػցֶशΤϯδχΞ - Kaggle Expert

    - ԭೄग़਎(౦ژʹग़͖ͯͯ3೥൒) - ෺ཧֶՊग़਎(ڧ૬ؔిࢠܥɺ4.2KͷӷମϔϦ΢Ϝʹ࣓ੑମಥͬࠐΜͰͨ) - ϓϩάϥϛϯάྺ͸2೥൒͙Β͍ - झຯ - ૣى͖(4࣌൒ىচ) - Kaggle - ίʔώʔɺϏʔϧɺ΢ΟεΩʔ - ಡॻɺ෺ཧɺ఩ֶ
  3. ͬͦ͘͞Ͱ͕͢ ͋Δݐ෺ͷϑϩΞը૾ ͜Εʹ ͜Μͳײ͡Ͱ੺͍఺Λଧ͍ͪͨ - ੨͍ྖҬʹೖͬͪΌͩΊ - ௨࿏͚ͩ Έͳ͞ΜͳΒͲ͏͠·͔͢ʁ 03

  4. ൃදͷϞνϕʔγϣϯ ࣮͸͜ͷը૾ ͸Indoorίϯϖ ͷը૾Ͱ ੺͍఺ΛଧͭͨΊʹ؆୯ͳը૾ॲཧΛͯ͠ଧͪ·ͨ͠ νʔϜϝΠτʹղઆ͢Δͱ൓ԠΑ͔ͬͨͷͰ ϧʔϧϕʔεը૾ॲཧʹ͍ͭͯൃද͠Α͏ͱࢥ͍·ͨ͠ KaggleΛ͖͔͚ͬʹը૾ॲཧɾը૾ೝࣝΛ͸͡Ίͨਓ͸͍͖ͳΓ DeepLearning͔Βೖͬͨͱࢥ͍·͕͢ྺ࢙తʹ͸ϧʔϧϕʔε͸ͷ΄͏ ͕௕͘ɺະͩ׆༂͍ͯ͠Δٕज़Ͱ͢ɻ

    ֶΜͰଛ͸ͳ͍͸ͣʂʂ 04
  5. ࠓ೔࿩͢͜ͱ σΟʔϓϥʔχϯάωΠςΟϒੈ୅ʹ޲͚ͯʂ 05 ը૾ͬͯͳʹʁ ը૾ॲཧೖ໳ Indoorͷ৔߹ ͦ΋ͦ΋ը૾ͬͯͳʹ͔Λ੔ ཧ͠·͢ɻ ϧʔϧϕʔεը૾ॲཧʹͪΐͬ ͱ͚ͩೖ໳ͯ͠Έ·͢ɻ

    opencvΛ࢖͍·͢ɻ https://github.com/fkubota/ bunseki_compe_LT_02/blob/main/ notebook/nb01_opencv.ipynb IndoorͰ΍ͬͨ͜ͱΛ΄Μͷগ ͠঺հ͠·͢ɻ
  6. ը૾ͬͯԿʁ

  7. ը૾Λ؆୯ʹ - pixel ͱ͍͏࠷খ୯ҐΛ΋ͭ - ࠲ඪx, y Λ΋ͭ - ً౓஋Λ΋ͭ

    - ௨ৗ͸8bit - 0~255ͷ஋ΛऔΔ(256ஈ֊) - 0͕ࠇ - 255͕ന y x നͬΆ͍ͷͰ 255ʹ͍ۙ஋ ࠇͳͷͰ0ʹ͍ۙ஋ փ৭ͳͷͰਅΜதͷ 150͙Β͍ʁ ΧϥʔͩͱRGBͷ3͕ͭͦΕͧΕ8bitͷ৘ใΛ࣋ͭ ྫ: - (133, 30, 88) ←10ਐ਺ - #56a53f ←16ਐ਺ 07
  8. ը૾ॲཧೖ໳

  9. ϧʔϧϕʔεͷ͍͍ͱ͜Ζ ڭࢣσʔλ͍Βͳ͍ ָ͍͠ʂ - ΍ͬͨΒΘ͔Δʂʂʂʂ - ͜Εҙ֎ͱݟམͱ͞Ε͕ͪ 09

  10. ໰1 from fkubota shibutsu dataset Έͳ͞ΜͳΒͲ͏͠·͔͢ʁ (ڭࢣσʔλͳ͠Ͱ͢Αʁ) Ωϟοϓͷ࠲ඪΛऔಘ͍ͯͩ͘͠͞ ༡ͼײ֮Ͱʂʂ 10

    https://github.com/fkubota/ bunseki_compe_LT_02/blob/main/ notebook/nb01_opencv.ipynb શ෦githubʹ͋ΔΑ
  11. ղ๏ͷ1ྫΛ঺հ ·ͣ͸ఆ൪ͷ2஋ԽΛ͢ΔͨΊʹ άϨʔը૾ʹม׵͠·͢ʂ ֤pixelͷً౓஋(r, g, b) ͷ3࣍ݩ͕ 1࣍ݩʹͳΓ͍Ζ͍Ζѻ͍΍͘͢ͳΓ·͢ɻ 11

  12. 2஋Խ എܠͱ෺ମΛ෼͚·͠ΐ͏ ً౓஋ͷώετάϥϜΛݟͯΈΔͱ - നͬΆ͍৭(255ʹ͍ۙ৭)͕ώετάϥ ϜͷϚδϣϦςΟʹͳͬͯΔ - ͜Ε͸എܠ͕ը૾ͷେ෦෼Λ઎ΊΔ͜ ͱʹىҼ͢Δ -

    threshold = 70 ͷલޙͰ2஋Խ͢Δʂ 1 0 Ωϟοϓ എܠ 12
  13. 2஋Խ݁Ռ ϐϯΫͷ෦෼͕1 ͦΕҙ֎͕0 ͷ ΦϒδΣΫτ ͕Ͱ͖ͨ ͜ΕΛ “ྖҬ” ͱݴ͍·͢ 13

  14. ͋ͱ͸៉ྷʹ͢Δ ࠓճ͸݀ΛຒΊ͚ͨͩ 14

  15. ॏ৺Λܭࢉ ྖҬͷྠֲΛऔͬͯॏ৺Λܭࢉ Ͱ͖ͨʂʂ 15

  16. ໰2 from fkubota shibutsu dataset Ωϟοϓͷ࠲ඪΛऔಘ͍ͯͩ͘͠͞ ָ͘͠ͳ͖ͬͯ·ͨ͠ʁ 16

  17. Կ͕೉͍͠ʁ Ωϟοϓͷ࠲ඪΛऔಘ͍ͯͩ͘͠͞ ಉ͡໰୊ͳΜ͚ͩͲෳ਺෺ମ͕͋ΔͷͰ ೉қ౓͕௓Ͷ্͕Γ·͢Ͷɻ 17

  18. ఆ൪ͷॲཧ άϨʔը૾ 2஋Խ 18

  19. νϣοτ͖Ε͍ʹ ϞϧϑΥϩδʔม׵ - ࣌ؒͷ౎߹্ৄࡉ͸ল͖·͢ - ϊΠζআڈɺ݀ຒΊ͕Ͱ͖·͢ - ݪཧ͸؆୯ͳͷͰͥͻௐ΂ͯΈͯ ͍ͩ͘͞ ݀ຒΊ

    ΊͬͪΌ͖Ε͍ʹͳͬͨʂʂ 19
  20. ϥϕϦϯά ࿈ଓͨ͠ΦϒδΣΫτຖʹ෼ׂ - ྡΓ߹ͬͨ1ΛಉҰͷϥϕϧͱͯ͠෼ׂ͢Δ - ϐϯΫͷྖҬ͕ෳ਺ͷྖҬʹ෼ׂ͞Εͨ - ෼ׂޙ໘ੵ͕খ͍͞΋ͷΛϊΠζͱͯ͠আ͍ͨ ໘ੵͷখ͍͞ྖҬ(ϊΠζ) 20

  21. ͓ΘΓ͡Όͳ͍Αʂ ͜ͷத͔ΒΩϟοϓΛબͼ ग़͞ͳ͍ͱ͍͚·ͤΜ ಛ௃ྔΛ࢖͍·͢ ͜ͷ5ͭͷ෺ମΛൺֱͯ͠Ωϟοϓʹ͸Ͳ͏ ͍ͬͨಛ௃͕͋ΔͰ͠ΐ͏͔ʁ - ؙΈ͕͋Δɹ - ໘ੵ͕খ͍͞

    ͕ࢥ͍౰ͨΓ·͢ɻ ໘ੵ͕খ͍͞Λ࢖ͬͯΈ·͢ɻ ͭ·Γ ಛ௃ྔʹ໘ੵΛ࢖͏ͱ͍͏͜ͱʹͳΓ·͢ɻ 21
  22. ྖҬͷ໘ੵΛܭࢉ ໘ੵ࠷খΛબͿ ಛ௃ྔ = ໘ੵ Ͱ͖ͨʂʂ 22

  23. ໰3 Ͱ͖ͦʁ from fkubota shibutsu dataset ϖϯͷ࠲ඪΛऔಘ͍ͯͩ͘͠͞ 23

  24. ϥϕϦϯά·Ͱ͸Ұॹ ϖϯͷಛ௃Λߟ͑Δ fkubota͞Μ͸ɺʮࡉ௕͍ʯҙ֎ ࢥ͍͖ͭ·ͤΜͰͨ͠ɻ ࡉ௕͍͸͜͏දݱ͢Δ͜ͱʹ͠·͢ɻ 1. ྖҬΛ࠷খ֎઀ۣܗͰғ͏ 2. ʮ௕ลͷ௕͞ʯΛʮ୹ลͷ௕͞ʯͰׂΔ 3.

    ͜ΕΛʮࡉ௕͞౓ʯͱ͢Δ 24
  25. ࡉ௕͍౓Λܭࢉ ಛ௃ྔ = ࡉ௕͍౓ ࠷େ஋ΛબͿ Ͱ͖ͨʂʂ 25

  26. ໰4 ࠷ޙͩΑʂ from fkubota shibutsu dataset MINTIAͷ࠲ඪΛऔಘ͍ͯͩ͘͠͞ 26

  27. ಛ௃͸ʁ MINTIAͷಛ௃Λߟ͑Δ ࢛͍֯ͱ͍͏ಛ௃͕͋Γ·͕͢ɺ ଞͷ෺ମͱࠩผԽ͕೉͍͠Ͱ͢ɻ ܗͷ؍఺Ͱ͸೉ͦ͠͏ͳͷͰ ʮ৭ʯͰ߈ΊͯΈ·͠ΐ͏ɻ ʮ੨͞ʯΛදݱ͠·͢ɻ RGBΛHSVʹม׵͠ H(hue, ৭૬)ͷը૾Λ࢖͍·͢ɻ

    27
  28. ৭૬ʁ ͜ͷล͕੨ ৭૬͸৭ͷ༷૬Λ 0~180·ͰͰมԽͤͨ͞΋ͷɻ ੨͸100~140͋ͨΓɻ 28

  29. Hueը૾ hueը૾ ͜ͷลΓ 29

  30. 2஋Խͯ͠ϞϧϑΥϩδʔ 2஋Խ ϞϧϑΥϩδʔ 30

  31. ॏ৺Λܭࢉͯ͠ऴΘΓʂ Ͱ͖ͨʂʂ 31

  32. Indoorͷ৔߹

  33. ࠷ॳͷ࣭໰ ͋Δݐ෺ͷϑϩΞը૾ ͜Εʹ ͜Μͳײ͡Ͱ੺͍఺Λଧ͍ͪͨ - ੨͍ྖҬʹೖͬͪΌͩΊ - ௨࿏͚ͩ Έͳ͞ΜͳΒͲ͏͠·͔͢ʁ 33

  34. ·ͣ͸௨࿏Λऔಘ ੨͍෦෼Λ2஋Խ ຒΊΔ ന͍෦෼Λ 2஋Խ ࿦ཧੵ 34

  35. ׬੒ʂ & ੺͍఺ʑΛॻ͍ͨը૾Λ༻ҙͯ͠ ࿦ཧੵ Ͱ͖ͨʂʂ 35

  36. Thanks :)


[8]ページ先頭

©2009-2025 Movatter.jp