pyspark.sql.Row#
- classpyspark.sql.Row(*args,**kwargs)[source]#
A row in
DataFrame.The fields in it can be accessed:like attributes (
row.key)like dictionary values (
row[key])
keyinrowwill search through row keys.Row can be used to create a row object by using named arguments.It is not allowed to omit a named argument to represent that the value isNone or missing. This should be explicitly set to None in this case.
Changed in version 3.0.0:Rows created from named arguments no longer havefield names sorted alphabetically and will be ordered in the position asentered.
Examples
>>>frompyspark.sqlimportRow>>>row=Row(name="Alice",age=11)>>>rowRow(name='Alice', age=11)>>>row['name'],row['age']('Alice', 11)>>>row.name,row.age('Alice', 11)>>>'name'inrowTrue>>>'wrong_key'inrowFalse
Row also can be used to create another Row like class, then itcould be used to create Row objects, such as
>>>Person=Row("name","age")>>>Person<Row('name', 'age')>>>>'name'inPersonTrue>>>'wrong_key'inPersonFalse>>>Person("Alice",11)Row(name='Alice', age=11)
This form can also be used to create rows as tuple values, i.e. with unnamedfields.
>>>row1=Row("Alice",11)>>>row2=Row(name="Alice",age=11)>>>row1==row2True
Methods
asDict([recursive])Return as a dict
count(value, /)Return number of occurrences of value.
index(value[, start, stop])Return first index of value.