Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

Bucketizer#

classpyspark.ml.feature.Bucketizer(*,splits=None,inputCol=None,outputCol=None,handleInvalid='error',splitsArray=None,inputCols=None,outputCols=None)[source]#

Maps a column of continuous features to a column of feature buckets. Since 3.0.0,Bucketizer can map multiple columns at once by setting theinputColsparameter. Note that when both theinputCol andinputCols parametersare set, an Exception will be thrown. Thesplits parameter is only used for singlecolumn usage, andsplitsArray is for multiple columns.

New in version 1.4.0.

Examples

>>>values=[(0.1,0.0),(0.4,1.0),(1.2,1.3),(1.5,float("nan")),...(float("nan"),1.0),(float("nan"),0.0)]>>>df=spark.createDataFrame(values,["values1","values2"])>>>bucketizer=Bucketizer()>>>bucketizer.setSplits([-float("inf"),0.5,1.4,float("inf")])Bucketizer...>>>bucketizer.setInputCol("values1")Bucketizer...>>>bucketizer.setOutputCol("buckets")Bucketizer...>>>bucketed=bucketizer.setHandleInvalid("keep").transform(df).collect()>>>bucketed=bucketizer.setHandleInvalid("keep").transform(df.select("values1"))>>>bucketed.show(truncate=False)+-------+-------+|values1|buckets|+-------+-------+|0.1    |0.0    ||0.4    |0.0    ||1.2    |1.0    ||1.5    |2.0    ||NaN    |3.0    ||NaN    |3.0    |+-------+-------+...>>>bucketizer.setParams(outputCol="b").transform(df).head().b0.0>>>bucketizerPath=temp_path+"/bucketizer">>>bucketizer.save(bucketizerPath)>>>loadedBucketizer=Bucketizer.load(bucketizerPath)>>>loadedBucketizer.getSplits()==bucketizer.getSplits()True>>>loadedBucketizer.transform(df).take(1)==bucketizer.transform(df).take(1)True>>>bucketed=bucketizer.setHandleInvalid("skip").transform(df).collect()>>>len(bucketed)4>>>bucketizer2=Bucketizer(splitsArray=...[[-float("inf"),0.5,1.4,float("inf")],[-float("inf"),0.5,float("inf")]],...inputCols=["values1","values2"],outputCols=["buckets1","buckets2"])>>>bucketed2=bucketizer2.setHandleInvalid("keep").transform(df)>>>bucketed2.show(truncate=False)+-------+-------+--------+--------+|values1|values2|buckets1|buckets2|+-------+-------+--------+--------+|0.1    |0.0    |0.0     |0.0     ||0.4    |1.0    |0.0     |1.0     ||1.2    |1.3    |1.0     |1.0     ||1.5    |NaN    |2.0     |2.0     ||NaN    |1.0    |3.0     |1.0     ||NaN    |0.0    |3.0     |0.0     |+-------+-------+--------+--------+...

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getHandleInvalid()

Gets the value of handleInvalid or its default value.

getInputCol()

Gets the value of inputCol or its default value.

getInputCols()

Gets the value of inputCols or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getOutputCol()

Gets the value of outputCol or its default value.

getOutputCols()

Gets the value of outputCols or its default value.

getParam(paramName)

Gets a param by its name.

getSplits()

Gets the value of threshold or its default value.

getSplitsArray()

Gets the array of split points or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut ofread().load(path).

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of 'write().save(path)'.

set(param, value)

Sets a parameter in the embedded param map.

setHandleInvalid(value)

Sets the value ofhandleInvalid.

setInputCol(value)

Sets the value ofinputCol.

setInputCols(value)

Sets the value ofinputCols.

setOutputCol(value)

Sets the value ofoutputCol.

setOutputCols(value)

Sets the value ofoutputCols.

setParams(self, \*[, splits, inputCol, ...])

Sets params for this Bucketizer.

setSplits(value)

Sets the value ofsplits.

setSplitsArray(value)

Sets the value ofsplitsArray.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

handleInvalid

inputCol

inputCols

outputCol

outputCols

params

Returns all params ordered by name.

splits

splitsArray

Methods Documentation

clear(param)#

Clears a param from the param map if it has been explicitly set.

copy(extra=None)#

Creates a copy of this instance with the same uid and someextra params. This implementation first calls Params.copy andthen make a copy of the companion Java pipeline component withextra params. So both the Python wrapper and the Java pipelinecomponent get copied.

Parameters
extradict, optional

Extra parameters to copy to the new instance

Returns
JavaParams

Copy of this instance

explainParam(param)#

Explains a single param and returns its name, doc, and optionaldefault value and user-supplied value in a string.

explainParams()#

Returns the documentation of all params with their optionallydefault values and user-supplied values.

extractParamMap(extra=None)#

Extracts the embedded default param values and user-suppliedvalues, and then merges them with extra values from input intoa flat param map, where the latter value is used if there existconflicts, i.e., with ordering: default param values <user-supplied values < extra.

Parameters
extradict, optional

extra param values

Returns
dict

merged param map

getHandleInvalid()#

Gets the value of handleInvalid or its default value.

getInputCol()#

Gets the value of inputCol or its default value.

getInputCols()#

Gets the value of inputCols or its default value.

getOrDefault(param)#

Gets the value of a param in the user-supplied param map or itsdefault value. Raises an error if neither is set.

getOutputCol()#

Gets the value of outputCol or its default value.

getOutputCols()#

Gets the value of outputCols or its default value.

getParam(paramName)#

Gets a param by its name.

getSplits()[source]#

Gets the value of threshold or its default value.

New in version 1.4.0.

getSplitsArray()[source]#

Gets the array of split points or its default value.

New in version 3.0.0.

hasDefault(param)#

Checks whether a param has a default value.

hasParam(paramName)#

Tests whether this instance contains a param with a given(string) name.

isDefined(param)#

Checks whether a param is explicitly set by user or hasa default value.

isSet(param)#

Checks whether a param is explicitly set by user.

classmethodload(path)#

Reads an ML instance from the input path, a shortcut ofread().load(path).

classmethodread()#

Returns an MLReader instance for this class.

save(path)#

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param,value)#

Sets a parameter in the embedded param map.

setHandleInvalid(value)[source]#

Sets the value ofhandleInvalid.

setInputCol(value)[source]#

Sets the value ofinputCol.

setInputCols(value)[source]#

Sets the value ofinputCols.

New in version 3.0.0.

setOutputCol(value)[source]#

Sets the value ofoutputCol.

setOutputCols(value)[source]#

Sets the value ofoutputCols.

New in version 3.0.0.

setParams(self,\*,splits=None,inputCol=None,outputCol=None,handleInvalid="error",splitsArray=None,inputCols=None,outputCols=None)[source]#

Sets params for this Bucketizer.

New in version 1.4.0.

setSplits(value)[source]#

Sets the value ofsplits.

New in version 1.4.0.

setSplitsArray(value)[source]#

Sets the value ofsplitsArray.

New in version 3.0.0.

transform(dataset,params=None)#

Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns
pyspark.sql.DataFrame

transformed dataset

write()#

Returns an MLWriter instance for this ML instance.

Attributes Documentation

handleInvalid=Param(parent='undefined',name='handleInvalid',doc="howtohandleinvalidentriescontainingNaNvalues.Valuesoutsidethesplitswillalwaysbetreatedaserrors.Optionsare'skip'(filteroutrowswithinvalidvalues),'error'(throwanerror),or'keep'(keepinvalidvaluesinaspecialadditionalbucket).Notethatinthemultiplecolumncase,theinvalidhandlingisappliedtoallcolumns.Thatsaidfor'error'itwillthrowanerrorifanyinvalidsarefoundinanycolumn,for'skip'itwillskiprowswithanyinvalidsinanycolumns,etc.")#
inputCol=Param(parent='undefined',name='inputCol',doc='inputcolumnname.')#
inputCols=Param(parent='undefined',name='inputCols',doc='inputcolumnnames.')#
outputCol=Param(parent='undefined',name='outputCol',doc='outputcolumnname.')#
outputCols=Param(parent='undefined',name='outputCols',doc='outputcolumnnames.')#
params#

Returns all params ordered by name. The default implementationusesdir() to get all attributes of typeParam.

splits=Param(parent='undefined',name='splits',doc='Splitpointsformappingcontinuousfeaturesintobuckets.Withn+1splits,therearenbuckets.Abucketdefinedbysplitsx,yholdsvaluesintherange[x,y)exceptthelastbucket,whichalsoincludesy.Thesplitsshouldbeoflength>=3andstrictlyincreasing.Valuesat-inf,infmustbeexplicitlyprovidedtocoverallDoublevalues;otherwise,valuesoutsidethesplitsspecifiedwillbetreatedaserrors.')#
splitsArray=Param(parent='undefined',name='splitsArray',doc='Thearrayofsplitpointsformappingcontinuousfeaturesintobucketsformultiplecolumns.Foreachinputcolumn,withn+1splits,therearenbuckets.Abucketdefinedbysplitsx,yholdsvaluesintherange[x,y)exceptthelastbucket,whichalsoincludesy.Thesplitsshouldbeoflength>=3andstrictlyincreasing.Valuesat-inf,infmustbeexplicitlyprovidedtocoverallDoublevalues;otherwise,valuesoutsidethesplitsspecifiedwillbetreatedaserrors.')#
uid#

A unique id for the object.


[8]ページ先頭

©2009-2025 Movatter.jp