Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Sphere

From Simple English Wikipedia, the free encyclopedia
A Sphere

Asphere is a round,three-dimensional shape. Allpoints on the edge of the sphere are at the samedistance from the center. The distance from the center is called theradius of the sphere. A real-world sphere is called aglobe if it is large (such as the Earth), and as aball if it is small, like anassociation football.

Common things that have the shape of a sphere are basketballs, superballs, and playground balls. TheEarth and theSun are nearlyspherical, meaning sphere-shaped.

A sphere is the three-dimensionalanalog of acircle.

Calculating measures of a sphere

[change |change source]

Surface area

[change |change source]

Using the circumference:A=c2π=2c2τ{\displaystyle A={\frac {c^{2}}{\pi }}={\frac {2c^{2}}{\tau }}}

Using thediameter:A=πd2=τd22{\displaystyle A=\pi d^{2}={\frac {\tau d^{2}}{2}}}

Using the radius:A=2τr2=4πr2{\displaystyle A=2\tau r^{2}=4\pi r^{2}}

Using the volume:A=3τV23=6πV23{\displaystyle A={\sqrt[{3}]{3\tau V^{2}}}={\sqrt[{3}]{6\pi V^{2}}}}

Circumference

[change |change source]

Using thesurface area:c=πA=τA2{\displaystyle c={\sqrt {\pi A}}={\sqrt {\frac {\tau A}{2}}}}

Using the diameter:c=πd=τd2{\displaystyle c=\pi d={\frac {\tau d}{2}}}

Using the radius:c=τr=2πr{\displaystyle c=\tau r=2\pi r}

Using the volume:c=6π2V3=3τ2V23{\displaystyle c={\sqrt[{3}]{6\pi ^{2}V}}={\sqrt[{3}]{\frac {3\tau ^{2}V}{2}}}}

Using the surface area:d=Aπ=2Aτ{\displaystyle d={\sqrt {\frac {A}{\pi }}}={\sqrt {\frac {2A}{\tau }}}}

Using the circumference:d=cπ=2cτ{\displaystyle d={\frac {c}{\pi }}={\frac {2c}{\tau }}}

Using the radius:d=2r{\displaystyle d=2r}

Using the volume:d=6Vπ3=12Vτ3{\displaystyle d={\sqrt[{3}]{\frac {6V}{\pi }}}={\sqrt[{3}]{\frac {12V}{\tau }}}}

Using the surface area:r=A2τ=A4π{\displaystyle r={\sqrt {\frac {A}{2\tau }}}={\sqrt {\frac {A}{4\pi }}}}

Using the circumference:r=cτ=c2π{\displaystyle r={\frac {c}{\tau }}={\frac {c}{2\pi }}}

Using the diameter:r=d2{\displaystyle r={\frac {d}{2}}}

Using the volume:r=3V2τ3=3V4π3{\displaystyle r={\sqrt[{3}]{\frac {3V}{2\tau }}}={\sqrt[{3}]{\frac {3V}{4\pi }}}}

Using the surface area:V=A318τ=A336π{\displaystyle V={\sqrt {\frac {A^{3}}{18\tau }}}={\sqrt {\frac {A^{3}}{36\pi }}}}

Using the circumference:V=c36π2=2c33τ2{\displaystyle V={\frac {c^{3}}{6\pi ^{2}}}={\frac {2c^{3}}{3\tau ^{2}}}}

Using the diameter:V=πd36=τd312{\displaystyle V={\frac {\pi d^{3}}{6}}={\frac {\tau d^{3}}{12}}}

Using the radius:V=2τr33=4πr33{\displaystyle V={\frac {2\tau r^{3}}{3}}={\frac {4\pi r^{3}}{3}}}

Equation of a sphere

[change |change source]

InCartesian coordinates, the equation for a sphere with a center at(x0,y0,z0){\displaystyle (x_{0},y_{0},z_{0})} is as follows:

(xx0)2+(yy0)2+(zz0)2=r2{\displaystyle (x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}=r^{2}}

wherer{\displaystyle r} is the radius of the sphere.

Related pages

[change |change source]
Thisshort article aboutmathematics can be made longer. You can help Wikipedia byadding to it.
Retrieved from "https://simple.wikipedia.org/w/index.php?title=Sphere&oldid=10567839"
Category:
Hidden category:

[8]ページ先頭

©2009-2026 Movatter.jp