Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nihonium

From Simple English Wikipedia, the free encyclopedia
Nihonium, 00Nh
Nihonium
Pronunciation/nɪˈhniəm/(nih-HOH-nee-əm)
Mass number[286]
Nihonium in theperiodic table
HydrogenHelium
LithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon
SodiumMagnesiumAluminiumSiliconPhosphorusSulfurChlorineArgon
PotassiumCalciumScandiumTitaniumVanadiumChromiumManganeseIronCobaltNickelCopperZincGalliumGermaniumArsenicSeleniumBromineKrypton
RubidiumStrontiumYttriumZirconiumNiobiumMolybdenumTechnetiumRutheniumRhodiumPalladiumSilverCadmiumIndiumTinAntimonyTelluriumIodineXenon
CaesiumBariumLanthanumCeriumPraseodymiumNeodymiumPromethiumSamariumEuropiumGadoliniumTerbiumDysprosiumHolmiumErbiumThuliumYtterbiumLutetiumHafniumTantalumTungstenRheniumOsmiumIridiumPlatinumGoldMercury (element)ThalliumLeadBismuthPoloniumAstatineRadon
FranciumRadiumActiniumThoriumProtactiniumUraniumNeptuniumPlutoniumAmericiumCuriumBerkeliumCaliforniumEinsteiniumFermiumMendeleviumNobeliumLawrenciumRutherfordiumDubniumSeaborgiumBohriumHassiumMeitneriumDarmstadtiumRoentgeniumCoperniciumNihoniumFleroviumMoscoviumLivermoriumTennessineOganesson
Tl

Nh

(Uhs)
coperniciumnihoniumflerovium
Groupgroup 13 (boron group)
Periodperiod 7
Block p-block
Electron configuration[Rn] 5f14 6d10 7s2 7p1(predicted)[1](predicted)
Electrons per shell2, 8, 18, 32, 32, 18, 3(predicted)
Physical properties
Phaseat STPsolid(predicted)[1][2][3]
Melting point700 K(430 °C,810 °F)(predicted)[1]
Boiling point1430 K(1130 °C,2070 °F)(predicted)[1][4]
Density(near r.t.)16 g/cm3(predicted)[4]
Heat of fusion7.61 kJ/mol(extrapolated)[3]
Heat of vaporization130 kJ/mol(predicted)[2][4]
Atomic properties
Oxidation states(−1), (+1), (+3), (+5)(predicted)[1][5][6]
Ionization energies
  • 1st: 704.9 kJ/mol(predicted)[1]
  • 2nd: 2240 kJ/mol(predicted)[4]
  • 3rd: 3020 kJ/mol(predicted)[4]
  • (more)
Atomic radiusempirical:170 pm(predicted)[1]
Covalent radius172180 pm(extrapolated)[3]
Other properties
Natural occurrencesynthetic
Crystal structurehexagonal close-packed (hcp)
Hexagonal close-packed crystal structure for nihonium

(extrapolated)[7]
CAS Number54084-70-7
History
NamingAfterJapan (Nihon in Japanese)
DiscoveryRiken (Japan, first undisputed claim 2004)
JINR (Russia) andLivermore (US, first announcement 2003)
Isotopes of nihonium
Main isotopes[8]Decay
abun­dancehalf-life(t1/2)modepro­duct
278Nhsynth0.002 sα274Rg
282Nhsynth0.061 sα278Rg
283Nhsynth0.123 sα279Rg
284Nhsynth0.90 sα280Rg
ε284Cn
285Nhsynth2.1 sα281Rg
SF
286Nhsynth9.5 sα282Rg
287Nhsynth5.5 s?[9]α283Rg
290Nhsynth2 s?[10]α286Rg
 Category: Nihonium
|references

Nihonium (ニホニウム) is achemical element. It is also namedeka-thallium. It has the symbolNh. It has theatomic number 113. It is atransuranium element. The name "nihonium" comes from the name ofJapan inJapanese, 日本 (nihon).

Nihonium does not exist in nature, and can only be madeartificially. It is made from thealpha decay ofmoscovium.

There are no known uses for nihonium. What nihonium looks like is not known because not enough has been made to see it with human eyesight. Based on trends in thePeriodic Table it could be a soft, silver colored, veryreactive metal likesodium.

History

[change |change source]

On February 1, 2004, Nihonium andmoscovium werediscovered. A team ofRussianscientists atDubna from theJoint Institute for Nuclear Research andAmerican scientists at theLawrence Livermore National Laboratory firstreported the chemical elements.

On September 28, 2004, a team ofJapanese scientists said that they had made the element.[11],[12],[13]

In May 2006, in theJoint Institute for Nuclear Research made nihonium using a different method. They found theidentity of the last products of the radioactive decay of the nihonium they made.

Name

[change |change source]

Ununtrium was a temporaryIUPACsystematic element name meaning "one-one-three" in Latin. Scientists from Japan suggested the namejaponium (symbolJp) orrikenium (Rk).[14] However, they picked Nihonium because not only is it discovered in Japan, but it means Japan, too, as Nihon is Japan or Japanese in Japanese.

References

[change |change source]
  1. 1234567Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.).The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands:Springer Science+Business Media.ISBN 978-1-4020-3555-5.
  2. 12Seaborg, Glenn T. (c. 2006)."transuranium element (chemical element)".Encyclopædia Britannica. Retrieved2010-03-16.
  3. 123Bonchev, Danail; Kamenska, Verginia (1981)."Predicting the Properties of the 113–120 Transactinide Elements".Journal of Physical Chemistry.85 (9):1177–1186.doi:10.1021/j150609a021.
  4. 12345Fricke, Burkhard (1975)."Superheavy elements: a prediction of their chemical and physical properties".Recent Impact of Physics on Inorganic Chemistry.21:89–144.doi:10.1007/BFb0116498. Retrieved4 October 2013.
  5. Fricke, Burkhard (1975)."Superheavy elements: a prediction of their chemical and physical properties".Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding.21:89–144.doi:10.1007/BFb0116498.ISBN 978-3-540-07109-9. Retrieved4 October 2013.
  6. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.).Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. Vol. 10. Springer. pp. 63–67.doi:10.1007/978-1-4020-9975-5_2.ISBN 978-1-4020-9974-8.
  7. Keller, O. L., Jr.; Burnett, J. L.; Carlson, T. A.; Nestor, C. W., Jr. (1969). "Predicted Properties of the Super Heavy Elements. I. Elements 113 and 114, Eka-Thallium and Eka-Lead".The Journal of Physical Chemistry.74 (5): 1127−1134.doi:10.1021/j100700a029.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  9. Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.).Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164.ISBN 9789813226555.
  10. Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120".The European Physics Journal A.2016 (52).doi:10.1140/epja/i2016-16180-4.
  11. Moritaet al.,Experiment on the Synthesis of Element 113 in the Reaction209Bi(70Zn, n)278113Archived 2007-07-05 at theWayback Machine,J. Phys. Soc. Jpn.Archived 2007-07-01 at theWayback Machine, Vol. 73, No.10.
  12. "press release in Japanese". Archived fromthe original on 2007-03-01. Retrieved2019-01-15.
  13. Japanese scientists create heaviest ever element
  14. Discovering element 113Archived 2011-08-12 at theWayback Machine Riken News. Accessed 23 November 2006.

Other websites

[change |change source]
H He
LiBe BCNOFNe
NaMg AlSiPSClAr
KCa ScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr
RbSr YZrNbMoTcRuRhPdAgCdInSnSbTeIXe
CsBaLaCePrNdPmSmEuGdTbDyHoErTmYbLuHfTaWReOsIrPtAuHgTlPbBiPoAtRn
FrRaAcThPaUNpPuAmCmBkCfEsFmMdNoLrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
Alkali metalsAlkaline earth metalsLanthanidesActinidesTransition metalsPoor metalsMetalloidsOthernonmetalsHalogensNoble gases


Thisshort article aboutchemistry can be made longer. You can help Wikipedia byadding to it.
Retrieved from "https://simple.wikipedia.org/w/index.php?title=Nihonium&oldid=10046556"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp