Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gluconeogenesis

From Simple English Wikipedia, the free encyclopedia
Simplified gluconeogenesis processed (in humans). Acetyl-CoA derived from fatty acids (dotted lines) may be changed to pyruvate a bit under fasting.

Gluconeogenesis (GNG) is a chemical process inliving bodies. In gluconeogenesis, the body turnsfats andproteins (glucogenic amino acids) intosugars calledglucose.[1] In mostanimals with spines, gluconeogenesis happens in theliver, but some animals have gluconeogenesis in thekidneys.[2] gluconeogenesis usually happens when the organism has not eaten manystarches or sugars or eatennothing at all for a long time. Not eating and not eating starch can causeketosis, which is when some cells useketones for fuel.[3]

Process

[change |change source]
Simplification ofproteinogenic amino acids. Some amino acids can be used in gluconeogenesis and some cannot:[4]

In humans, the main gluconeogenic compounds arelactate,glycerol (a part of thetriglyceridemolecule),alanine andglutamine. They are involved in over 90% of the overall process.[5]

Lactate comes back to the liver where it is converted intopyruvate by theCori cycle using the enzymelactate dehydrogenase. Pyruvate, the first designatedsubstrate of the gluconeogenic pathway, can then be used to make glucose.[6]

Fat is mostly broken down, but if there is no fat to break down, or the body cannot access the fat stores, then proteins found in themuscle can break down, resulting in muscle loss.[7]

References

[change |change source]
  1. Lehninger, Albert L.; Nelson, David L. (David Lee); Cox, Michael M. (2000).Lehninger principles of biochemistry. Duke University Libraries. New York : Worth Publishers.ISBN 978-1-57259-153-0.{{cite book}}: CS1 maint: publisher location (link)
  2. "Key protein causing excess liver production of glucose in diabetes identified".ScienceDaily. Retrieved2021-06-03.
  3. Rui, Liangyou (January 2014)."Energy Metabolism in the Liver".Comprehensive Physiology.4 (1):177–197.doi:10.1002/cphy.c130024.ISBN 9780470650714.ISSN 2040-4603.PMC 4050641.PMID 24692138.
  4. Ferrier DR, Champe PC, Harvey RA (1 August 2004). "20. Amino Acid Degradation and Synthesis".Biochemistry (Lippincott's Illustrated Reviews). Hagerstwon, MD: Lippincott Williams & Wilkins.ISBN 978-0-7817-2265-0.
  5. Gerich JE, Meyer C, Woerle HJ, Stumvoll M (February 2001)."Renal gluconeogenesis: its importance in human glucose homeostasis".Diabetes Care.24 (2):382–91.doi:10.2337/diacare.24.2.382.PMID 11213896.
  6. Garrett RH, Grisham CM (2002).Principles of Biochemistry with a Human Focus. USA: Brooks/Cole, Thomson Learning. pp. 578, 585.ISBN 978-0-03-097369-7.
  7. Manninen, Anssi H (2006-01-31)."Very-low-carbohydrate diets and preservation of muscle mass".Nutrition & Metabolism.3: 9.doi:10.1186/1743-7075-3-9.ISSN 1743-7075.PMC 1373635.PMID 16448570.
Thisshort article aboutchemistry can be made longer. You can help Wikipedia byadding to it.
Retrieved from "https://simple.wikipedia.org/w/index.php?title=Gluconeogenesis&oldid=10406226"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp