
Contents
More
Seenumpy.absolute().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.absolute().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.arccos().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.arccosh().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
See
numpy.amax().
Signature:
(x:TensorType[numerics,'T'],axis:OptParType[int],keepdims:OptParType[int],)->TensorType[numerics,'T']:
See
numpy.amin().
Signature:
(x:TensorType[numerics,'T'],axis:OptParType[int],keepdims:OptParType[int],)->TensorType[numerics,'T']:
Seenumpy.arange().
Signature:
(start_or_stop:TensorType[{'float64','int16','int64','float32','int32'},(1,),'I'],stop_or_step:OptTensorType[{'float64','int16','int64','float32','int32'},(1,),'I'],step:OptTensorType[{'float64','int16','int64','float32','int32'},(1,),'I'],dtype:OptParType[DType],)->TensorType[numerics,'T']:
See
numpy.amax().
Signature:
(x:TensorType[numerics,'T'],axis:OptParType[int],keepdims:OptParType[int],)->TensorType[numerics,'T']:
See
numpy.argmin().
Signature:
(x:TensorType[numerics,'T'],axis:OptParType[int],keepdims:OptParType[int],)->TensorType[numerics,'T']:
Seenumpy.arcsin().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.arcsinh().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.arctan().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.arctanh().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
See
scipy.special.distance.cdist().
Signature:
(xa:TensorType[numerics,'T'],xb:TensorType[numerics,'T'],metric:OptParType[str],)->TensorType[numerics,'T']:
Seenumpy.ceil().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.clip().
Signature:
(x:TensorType[numerics,'T'],a_min:TensorType[numerics,'T'],a_max:TensorType[numerics,'T'],):
See
numpy.compress().np.compress(condition, x) ornpnx.compress(x, condition).
Signature:
(condition:TensorType['bool_','B'],x:TensorType[numerics,'T'],axis:OptParType[int],)->TensorType[numerics,'T']:
Executes an onnx proto.
- param x:
inputs
- param proto:
proto to execute
- param name:
model name
- return:
outputs
Signature:
(x:SequenceType["TensorType[numerics, 'T']"],proto:ParType[typing.Union[onnx.onnx_ml_pb2.FunctionProto,onnx.onnx_ml_pb2.ModelProto,onnx.onnx_ml_pb2.NodeProto]],name:ParType[str],)->TupleType[TensorType[numerics,'T']]:
Operator concat, handle
numpy.vstack()andnumpy.hstack().
Signature:
(x:SequenceType["TensorType[numerics, 'T']"],axis:ParType[int],)->TensorType[numerics,'T']:
Seenumpy.cos().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.cosh().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.cumsum().
Signature:
(x:TensorType[numerics,'T'],axis:OptTensorType['int64','I'],)->TensorType[numerics,'T']:
Seenumpy.linalg:det().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
See
numpy.dot()dot is equivalent tonpx.matmul == np.matmul != np.dotwith arrays with more than 3D dimensions.
Signature:
(a:TensorType[numerics,'T'],b:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.einsum().
Signature:
(x:SequenceType["TensorType[numerics, 'T']"],equation:ParType[str],)->TensorType[numerics,'T']:
Seescipy.special.erf().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.exp().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Signature:
(x:TensorType[numerics,'T'],axis:TensorType['int64','I'],)->TensorType[numerics,'T']:
Seescipy.special.expit().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.floor().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.hstack().
Signature:
(x:SequenceType["TensorType[numerics, 'T']"],)->TensorType[numerics,'T']:
Makes a copy.
Signature:
(x:TensorType[allowed,'T'],)->TensorType[allowed,'T']:
Makes a copy.
Signature:
(n:ParType[int],dtype:OptParType[DType],)->TensorType[numerics,'T']:
Seenumpy.isnan().
Signature:
(x:TensorType[numerics,'T'],)->TensorType['bool_','T1']:
Seenumpy.log().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.log1p().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.matmul().
Signature:
(a:TensorType[numerics,'T'],b:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
It does not implement
numpy.pad()but the ONNX version.
Signature:
(x:TensorType[numerics,'T'],pads:TensorType['int64','I'],constant_value:OptTensorType[numerics,'T'],axes:OptTensorType['int64','I'],mode:ParType[str],):
Seenumpy.reciprocal().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.round().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seescipy.special.expit().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.sign().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.sin().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.sinh().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.squeeze().
Signature:
(x:TensorType[numerics,'T'],axis:OptTensorType['int64','I'],)->TensorType[numerics,'T']:
Seenumpy.tan().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.tanh().
Signature:
(x:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
Seenumpy.argsort().
Signature:
(x:TensorType[numerics,'T'],k:TensorType['int64',(1,),'I'],axis:OptParType[int],largest:OptParType[int],sorted:OptParType[int],)->TupleType[TensorType[numerics,'T'],TensorType['int64','I']]:
Signature:
(x:TensorType[numerics,'T'],perm:ParType[typing.Tuple[int,...]],)->TensorType[numerics,'T']:
Signature:
(x:TensorType[numerics,'T'],axis:TensorType['int64','I'],)->TensorType[numerics,'T']:
Seenumpy.vstack().
Signature:
(x:SequenceType["TensorType[numerics, 'T']"],)->TensorType[numerics,'T']:
Seenumpy.where().
Signature:
(cond:TensorType['bool_','B'],x:TensorType[numerics,'T'],y:TensorType[numerics,'T'],)->TensorType[numerics,'T']:
abs()absolute()arccos()arccosh()amax()amin()arange()argmax()argmin()arcsin()arcsinh()arctan()arctanh()cdist()ceil()clip()compress()compute()concat()cos()cosh()cumsum()det()dot()einsum()erf()exp()expand_dims()expit()floor()hstack()copy()identity()isnan()log()log1p()matmul()pad()reciprocal()relu()round()sigmoid()sign()sin()sinh()squeeze()tan()tanh()topk()transpose()unsqueeze()vstack()where()