scipy.special.itj0y0#
- scipy.special.itj0y0(x,out=None)=<ufunc'itj0y0'>#
Integrals of Bessel functions of the first kind of order 0.
Computes the integrals
\[\begin{split}\int_0^x J_0(t) dt \\\int_0^x Y_0(t) dt.\end{split}\]For more on\(J_0\) and\(Y_0\) see
j0andy0.- Parameters:
- xarray_like
Values at which to evaluate the integrals.
- outtuple of ndarrays, optional
Optional output arrays for the function results.
- Returns:
References
[1]S. Zhang and J.M. Jin, “Computation of Special Functions”,Wiley 1996
Examples
Evaluate the functions at one point.
>>>fromscipy.specialimportitj0y0>>>int_j,int_y=itj0y0(1.)>>>int_j,int_y(0.9197304100897596, -0.637069376607422)
Evaluate the functions at several points.
>>>importnumpyasnp>>>points=np.array([0.,1.5,3.])>>>int_j,int_y=itj0y0(points)>>>int_j,int_y(array([0. , 1.24144951, 1.38756725]), array([ 0. , -0.51175903, 0.19765826]))
Plot the functions from 0 to 10.
>>>importmatplotlib.pyplotasplt>>>fig,ax=plt.subplots()>>>x=np.linspace(0.,10.,1000)>>>int_j,int_y=itj0y0(x)>>>ax.plot(x,int_j,label=r"$\int_0^x J_0(t)\,dt$")>>>ax.plot(x,int_y,label=r"$\int_0^x Y_0(t)\,dt$")>>>ax.legend()>>>plt.show()

On this page