ellipk#
- scipy.special.ellipk(m,out=None)#
Complete elliptic integral of the first kind.
This function is defined as
\[K(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{-1/2} dt\]- Parameters:
- marray_like
The parameter of the elliptic integral.
- outndarray, optional
Optional output array for the function values
- Returns:
- Kscalar or ndarray
Value of the elliptic integral.
See also
Notes
For more precision around point m = 1, use
ellipkm1, which thisfunction calls.The parameterization in terms of\(m\) follows that of section17.2 in[1]. Other parameterizations in terms of thecomplementary parameter\(1 - m\), modular angle\(\sin^2(\alpha) = m\), or modulus\(k^2 = m\) are alsoused, so be careful that you choose the correct parameter.
The Legendre K integral is related to Carlson’s symmetric R_Ffunction by[2]:
\[K(m) = R_F(0, 1-k^2, 1) .\]Array API Standard Support
ellipkhas experimental support for Python Array API Standard compatiblebackends in addition to NumPy. Please consider testing these featuresby setting an environment variableSCIPY_ARRAY_API=1and providingCuPy, PyTorch, JAX, or Dask arrays as array arguments. The followingcombinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
✅
PyTorch
✅
⛔
JAX
⚠️ no JIT
⛔
Dask
✅
n/a
SeeSupport for the array API standard for more information.
References
[1]Milton Abramowitz and Irene A. Stegun, eds.Handbook of Mathematical Functions with Formulas,Graphs, and Mathematical Tables. New York: Dover, 1972.
[2]NIST Digital Library of MathematicalFunctions.http://dlmf.nist.gov/, Release 1.0.28 of2020-09-15. See Sec. 19.25(i)https://dlmf.nist.gov/19.25#i