manhattan_distances#
- sklearn.metrics.pairwise.manhattan_distances(X,Y=None)[source]#
Compute the L1 distances between the vectors in X and Y.
Read more in theUser Guide.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples_X, n_features)
An array where each row is a sample and each column is a feature.
- Y{array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
An array where each row is a sample and each column is a feature.If
None, method usesY=X.
- Returns:
- distancesndarray of shape (n_samples_X, n_samples_Y)
Pairwise L1 distances.
Notes
When X and/or Y are CSR sparse matrices and they are not alreadyin canonical format, this function modifies them in-place tomake them canonical.
Examples
>>>fromsklearn.metrics.pairwiseimportmanhattan_distances>>>manhattan_distances([[3]],[[3]])array([[0.]])>>>manhattan_distances([[3]],[[2]])array([[1.]])>>>manhattan_distances([[2]],[[3]])array([[1.]])>>>manhattan_distances([[1,2],[3,4]],[[1,2],[0,3]])array([[0., 2.], [4., 4.]])
On this page
