Spring 5-2012
Dissertation
Ph.D.
Chemistry
Chemistry
Mark Trudell
Guijun Wang
David Mobley
Branco Jursic
A series of rigid azetidenyl-based methamphetamine analogs were synthesized from commercially availableN-Boc-azetidinone. The benzylideneazetidine analogs were prepared via a Wittig olefination via the ylides generated from the corresponding triphenylphosphonium benzylhalide salts. The substituted benzylazetidine analogs were synthesized from the corresponding benzylideneazetidienes via hydrogention over palladium and platinum catalysts. The benzylideneazetidine and benzyliazetidine analogs were evaluated at monoamine transporters as a part of preliminary structure-activity study for the development of novel monoamine transporter ligands. The binding affinities of the azetidine analogs were determined at dopamine (DAT) and serotonin (SERT) transporters in rat brain tissue preparations. The preliminary in vitro binding studies revealed that the rigid scaffold of the azetidine ring system was an effective substitution for the 2-aminopropyl group of methamphetamine and led to compounds with nanomolar binding affinity at dopamine and serotonin. In general, the benzylideneazetidine analogs were more potent than the corresponding benzylazetidine analogs. In addition, the azetidine analogs were more selective for the serotonin transporter than the dopamine transporter. The 3-(3,4-dichlorobenzylidene)azetidine (24m) was the most potent analog of the series with Ki values of 139 nM for SERT and 531 nM for DAT (DAT/SERT = 3.8).

This work is licensed under aCreative Commons Attribution 3.0 License.
Forsyth, Andrea N., "Synthesis and Biological Evaluation of Rigid Analogues of Methamphetamines" (2012).University of New Orleans Theses and Dissertations. 1436.
https://scholarworks.uno.edu/td/1436
Rights
The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.