Numeric is the class from which all higher-levelnumeric classes should inherit.
Numeric allows instantiation of heap-allocatedobjects. Other core numeric classes such asInteger are implemented as immediates, which meansthat eachInteger is a single immutable objectwhich is always passed by value.
a =11.object_id==a.object_id#=> true
There can only ever be one instance of the integer1
, forexample. Ruby ensures this by preventing instantiation. If duplication isattempted, the same instance is returned.
Integer.new(1)#=> NoMethodError: undefined method `new' for Integer:Class1.dup#=> 11.object_id==1.dup.object_id#=> true
For this reason,Numeric should be used whendefining other numeric classes.
Classes which inherit fromNumeric mustimplementcoerce
, which returns a two-memberArray containing an object that has been coerced intoan instance of the new class andself
(seecoerce).
Inheriting classes should also implement arithmetic operator methods(+
,-
,*
and/
) and the<=>
operator (seeComparable). These methods may rely oncoerce
to ensure interoperability with instances of othernumeric classes.
classTally<Numericdefinitialize(string)@string =stringenddefto_s@stringenddefto_i@string.sizeenddefcoerce(other) [self.class.new('|'*other.to_i),self]enddef<=>(other)to_i<=>other.to_ienddef+(other)self.class.new('|'* (to_i+other.to_i))enddef-(other)self.class.new('|'* (to_i-other.to_i))enddef*(other)self.class.new('|'* (to_i*other.to_i))enddef/(other)self.class.new('|'* (to_i/other.to_i))endendtally =Tally.new('||')putstally*2#=> "||||"putstally>1#=> true
x.modulo(y)
meansx-y*(x/y).floor
.
Equivalent tonum.divmod(numeric)[1]
.
See#divmod.
static VALUEnum_modulo(VALUE x, VALUE y){ VALUE q = num_funcall1(x, id_div, y); return rb_funcall(x, '-', 1, rb_funcall(y, '*', 1, q));}
Unary Plus—Returns the receiver.
static VALUEnum_uplus(VALUE num){ return num;}
Unary Minus—Returns the receiver, negated.
static VALUEnum_uminus(VALUE num){ VALUE zero; zero = INT2FIX(0); do_coerce(&zero, &num, TRUE); return num_funcall1(zero, '-', num);}
Returns zero ifnumber
equalsother
, otherwisereturnsnil
.
static VALUEnum_cmp(VALUE x, VALUE y){ if (x == y) return INT2FIX(0); return Qnil;}
Returns the absolute value ofnum
.
12.abs#=> 12(-34.56).abs#=> 34.56-34.56.abs#=> 34.56
#magnitude is an alias for#abs.
static VALUEnum_abs(VALUE num){ if (rb_num_negative_int_p(num)) { return num_funcall0(num, idUMinus); } return num;}
Returns square of self.
static VALUEnumeric_abs2(VALUE self){ return f_mul(self, self);}
Returns 0 if the value is positive, pi otherwise.
static VALUEnumeric_arg(VALUE self){ if (f_positive_p(self)) return INT2FIX(0); return DBL2NUM(M_PI);}
Returns 0 if the value is positive, pi otherwise.
static VALUEnumeric_arg(VALUE self){ if (f_positive_p(self)) return INT2FIX(0); return DBL2NUM(M_PI);}
Returns the smallest number greater than or equal tonum
witha precision ofndigits
decimal digits (default: 0).
Numeric implements this by converting its valueto aFloat and invokingFloat#ceil.
static VALUEnum_ceil(int argc, VALUE *argv, VALUE num){ return flo_ceil(argc, argv, rb_Float(num));}
Returns the receiver.freeze
cannot befalse
.
static VALUEnum_clone(int argc, VALUE *argv, VALUE x){ return rb_immutable_obj_clone(argc, argv, x);}
Ifnumeric
is the same type asnum
, returns anarray[numeric, num]
. Otherwise, returns an array with bothnumeric
andnum
represented asFloat objects.
This coercion mechanism is used by Ruby to handle mixed-type numericoperations: it is intended to find a compatible common type between the twooperands of the operator.
1.coerce(2.5)#=> [2.5, 1.0]1.2.coerce(3)#=> [3.0, 1.2]1.coerce(2)#=> [2, 1]
static VALUEnum_coerce(VALUE x, VALUE y){ if (CLASS_OF(x) == CLASS_OF(y)) return rb_assoc_new(y, x); x = rb_Float(x); y = rb_Float(y); return rb_assoc_new(y, x);}
Returns self.
static VALUEnumeric_conj(VALUE self){ return self;}
Returns self.
static VALUEnumeric_conj(VALUE self){ return self;}
Returns the denominator (always positive).
static VALUEnumeric_denominator(VALUE self){ return f_denominator(f_to_r(self));}
Uses/
to perform division, then converts the result to aninteger.Numeric does not define the/
operator; this is left to subclasses.
Equivalent tonum.divmod(numeric)[0]
.
See#divmod.
static VALUEnum_div(VALUE x, VALUE y){ if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv(); return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);}
Returns an array containing the quotient and modulus obtained by dividingnum
bynumeric
.
Ifq, r = x.divmod(y)
, then
q =floor(x/y)x =q*y+r
The quotient is rounded toward negative infinity, as shown in the followingtable:
a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)------+-----+---------------+---------+-------------+--------------- 13 | 4 | 3, 1 | 3 | 1 | 1------+-----+---------------+---------+-------------+--------------- 13 | -4 | -4, -3 | -4 | -3 | 1------+-----+---------------+---------+-------------+----------------13 | 4 | -4, 3 | -4 | 3 | -1------+-----+---------------+---------+-------------+----------------13 | -4 | 3, -1 | 3 | -1 | -1------+-----+---------------+---------+-------------+--------------- 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5------+-----+---------------+---------+-------------+--------------- 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5------+-----+---------------+---------+-------------+----------------11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5------+-----+---------------+---------+-------------+----------------11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
Examples
11.divmod(3)#=> [3, 2]11.divmod(-3)#=> [-4, -1]11.divmod(3.5)#=> [3, 0.5](-11).divmod(3.5)#=> [-4, 3.0]11.5.divmod(3.5)#=> [3, 1.0]
static VALUEnum_divmod(VALUE x, VALUE y){ return rb_assoc_new(num_div(x, y), num_modulo(x, y));}
Returnstrue
ifnum
andnumeric
arethe same type and have equal values. Contrast this with Numeric#==, whichperforms type conversions.
1==1.0#=> true1.eql?(1.0)#=> false1.0.eql?(1.0)#=> true
static VALUEnum_eql(VALUE x, VALUE y){ if (TYPE(x) != TYPE(y)) return Qfalse; if (RB_TYPE_P(x, T_BIGNUM)) { return rb_big_eql(x, y); } return rb_equal(x, y);}
Returns float division.
static VALUEnum_fdiv(VALUE x, VALUE y){ return rb_funcall(rb_Float(x), '/', 1, y);}
Returnstrue
ifnum
is a finite number, otherwisereturnsfalse
.
static VALUEnum_finite_p(VALUE num){ return Qtrue;}
Returns the largest number less than or equal tonum
with aprecision ofndigits
decimal digits (default: 0).
Numeric implements this by converting its valueto aFloat and invokingFloat#floor.
static VALUEnum_floor(int argc, VALUE *argv, VALUE num){ return flo_floor(argc, argv, rb_Float(num));}
Returns the corresponding imaginary number. Not available for complexnumbers.
-42.i#=> (0-42i)2.0.i#=> (0+2.0i)
static VALUEnum_imaginary(VALUE num){ return rb_complex_new(INT2FIX(0), num);}
Returns zero.
static VALUEnumeric_imag(VALUE self){ return INT2FIX(0);}
Returns zero.
static VALUEnumeric_imag(VALUE self){ return INT2FIX(0);}
Returnsnil
, -1, or 1 depending on whether the value isfinite,-Infinity
, or+Infinity
.
static VALUEnum_infinite_p(VALUE num){ return Qnil;}
Returnstrue
ifnum
is anInteger.
1.0.integer?#=> false1.integer?#=> true
static VALUEnum_int_p(VALUE num){ return Qfalse;}
Returns the absolute value ofnum
.
12.abs#=> 12(-34.56).abs#=> 34.56-34.56.abs#=> 34.56
#magnitude is an alias for#abs.
static VALUEnum_abs(VALUE num){ if (rb_num_negative_int_p(num)) { return num_funcall0(num, idUMinus); } return num;}
x.modulo(y)
meansx-y*(x/y).floor
.
Equivalent tonum.divmod(numeric)[1]
.
See#divmod.
static VALUEnum_modulo(VALUE x, VALUE y){ VALUE q = num_funcall1(x, id_div, y); return rb_funcall(x, '-', 1, rb_funcall(y, '*', 1, q));}
Returnstrue
ifnum
is less than 0.
static VALUEnum_negative_p(VALUE num){ return rb_num_negative_int_p(num) ? Qtrue : Qfalse;}
Returnsself
ifnum
is not zero,nil
otherwise.
This behavior is useful when chaining comparisons:
a =%w( z Bb bB bb BB a aA Aa AA A )b =a.sort {|a,b| (a.downcase<=>b.downcase).nonzero?||a<=>b }b#=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
static VALUEnum_nonzero_p(VALUE num){ if (RTEST(num_funcall0(num, rb_intern("zero?")))) { return Qnil; } return num;}
Returns the numerator.
static VALUEnumeric_numerator(VALUE self){ return f_numerator(f_to_r(self));}
Returns 0 if the value is positive, pi otherwise.
static VALUEnumeric_arg(VALUE self){ if (f_positive_p(self)) return INT2FIX(0); return DBL2NUM(M_PI);}
Returns an array; [num.abs, num.arg].
static VALUEnumeric_polar(VALUE self){ VALUE abs, arg; if (RB_INTEGER_TYPE_P(self)) { abs = rb_int_abs(self); arg = numeric_arg(self); } else if (RB_FLOAT_TYPE_P(self)) { abs = rb_float_abs(self); arg = float_arg(self); } else if (RB_TYPE_P(self, T_RATIONAL)) { abs = rb_rational_abs(self); arg = numeric_arg(self); } else { abs = f_abs(self); arg = f_arg(self); } return rb_assoc_new(abs, arg);}
Returnstrue
ifnum
is greater than 0.
static VALUEnum_positive_p(VALUE num){ const ID mid = '>'; if (FIXNUM_P(num)) { if (method_basic_p(rb_cInteger)) return (SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0) ? Qtrue : Qfalse; } else if (RB_TYPE_P(num, T_BIGNUM)) { if (method_basic_p(rb_cInteger)) return BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num) ? Qtrue : Qfalse; } return rb_num_compare_with_zero(num, mid);}
Returns the most exact division (rational for integers, float for floats).
VALUErb_numeric_quo(VALUE x, VALUE y){ if (RB_TYPE_P(x, T_COMPLEX)) { return rb_complex_div(x, y); } if (RB_FLOAT_TYPE_P(y)) { return rb_funcallv(x, idFdiv, 1, &y); } x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r"); return rb_rational_div(x, y);}
Returnstrue
ifnum
is a real number (i.e. notComplex).
static VALUEnum_real_p(VALUE num){ return Qtrue;}
Returns an array; [num, 0].
static VALUEnumeric_rect(VALUE self){ return rb_assoc_new(self, INT2FIX(0));}
Returns an array; [num, 0].
static VALUEnumeric_rect(VALUE self){ return rb_assoc_new(self, INT2FIX(0));}
x.remainder(y)
meansx-y*(x/y).truncate
.
See#divmod.
static VALUEnum_remainder(VALUE x, VALUE y){ VALUE z = num_funcall1(x, '%', y); if ((!rb_equal(z, INT2FIX(0))) && ((rb_num_negative_int_p(x) && rb_num_positive_int_p(y)) || (rb_num_positive_int_p(x) && rb_num_negative_int_p(y)))) { return rb_funcall(z, '-', 1, y); } return z;}
Returnsnum
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0).
Numeric implements this by converting its valueto aFloat and invokingFloat#round.
static VALUEnum_round(int argc, VALUE* argv, VALUE num){ return flo_round(argc, argv, rb_Float(num));}
Invokes the given block with the sequence of numbers starting atnum
, incremented bystep
(defaulted to1
) on each call.
The loop finishes when the value to be passed to the block is greater thanlimit
(ifstep
is positive) or less thanlimit
(ifstep
is negative), wherelimit
is defaulted to infinity.
In the recommended keyword argument style, either or both ofstep
andlimit
(default infinity) can be omitted.In the fixed position argument style, zero as a step (i.e.num.step(limit, 0)
) is not allowed for historicalcompatibility reasons.
If all the arguments are integers, the loop operates using an integercounter.
If any of the arguments are floating point numbers, all are converted tofloats, and the loop is executedfloor(n + n*Float::EPSILON) + 1times, wheren = (limit - num)/step.
Otherwise, the loop starts atnum
, uses either the less-than(<
) or greater-than (>
) operator to comparethe counter againstlimit
, and increments itself using the+
operator.
If no block is given, anEnumerator isreturned instead. Especially, the enumerator is anEnumerator::ArithmeticSequenceif bothlimit
andstep
are kind ofNumeric ornil
.
For example:
p1.step.take(4)p10.step(by:-1).take(4)3.step(to:5) {|i|printi," " }1.step(10,2) {|i|printi," " }Math::E.step(to:Math::PI,by:0.2) {|f|printf," " }
Will produce:
[1, 2, 3, 4][10, 9, 8, 7]3 4 51 3 5 7 92.718281828459045 2.9182818284590453 3.118281828459045
static VALUEnum_step(int argc, VALUE *argv, VALUE from){ VALUE to, step; int desc, inf; if (!rb_block_given_p()) { VALUE by = Qundef; num_step_extract_args(argc, argv, &to, &step, &by); if (by != Qundef) { step = by; } if (NIL_P(step)) { step = INT2FIX(1); } else if (rb_equal(step, INT2FIX(0))) { rb_raise(rb_eArgError, "step can't be 0"); } if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) && rb_obj_is_kind_of(step, rb_cNumeric)) { return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv, num_step_size, from, to, step, FALSE); } return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size); } desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE); if (rb_equal(step, INT2FIX(0))) { inf = 1; } else if (RB_TYPE_P(to, T_FLOAT)) { double f = RFLOAT_VALUE(to); inf = isinf(f) && (signbit(f) ? desc : !desc); } else inf = 0; if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) { long i = FIX2LONG(from); long diff = FIX2LONG(step); if (inf) { for (;; i += diff) rb_yield(LONG2FIX(i)); } else { long end = FIX2LONG(to); if (desc) { for (; i >= end; i += diff) rb_yield(LONG2FIX(i)); } else { for (; i <= end; i += diff) rb_yield(LONG2FIX(i)); } } } else if (!ruby_float_step(from, to, step, FALSE, FALSE)) { VALUE i = from; if (inf) { for (;; i = rb_funcall(i, '+', 1, step)) rb_yield(i); } else { ID cmp = desc ? '<' : '>'; for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step)) rb_yield(i); } } return from;}
Returns the value as a complex.
static VALUEnumeric_to_c(VALUE self){ return rb_complex_new1(self);}
Invokes the child class'sto_i
method to convertnum
to an integer.
1.0.class#=> Float1.0.to_int.class#=> Integer1.0.to_i.class#=> Integer
static VALUEnum_to_int(VALUE num){ return num_funcall0(num, id_to_i);}
Returnsnum
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0).
Numeric implements this by converting its valueto aFloat and invokingFloat#truncate.
static VALUEnum_truncate(int argc, VALUE *argv, VALUE num){ return flo_truncate(argc, argv, rb_Float(num));}
This page was generated for Ruby 3.0.0
Generated with Ruby-doc Rdoc Generator 0.42.0.