Movatterモバイル変換


[0]ホーム

URL:


HomeClassesMethods

In Files

  • complex.c
  • numeric.c
  • rational.c

Parent

Numeric

Methods

Files

Class/Module Index[+]

Quicksearch
No matching classes.

Float

Float objects represent inexact real numbers usingthe native architecture's double-precision floating pointrepresentation.

Floating point has a different arithmetic and is an inexact number. So youshould know its esoteric system. See following:

Constants

DIG

The minimum number of significant decimal digits in a double-precisionfloating point.

Usually defaults to 15.

EPSILON

The difference between 1 and the smallest double-precision floating pointnumber greater than 1.

Usually defaults to 2.2204460492503131e-16.

INFINITY

An expression representing positive infinity.

MANT_DIG

The number of base digits for thedouble data type.

Usually defaults to 53.

MAX

The largest possible integer in a double-precision floating point number.

Usually defaults to 1.7976931348623157e+308.

MAX_10_EXP

The largest positive exponent in a double-precision floating point where 10raised to this power minus 1.

Usually defaults to 308.

MAX_EXP

The largest possible exponent value in a double-precision floating point.

Usually defaults to 1024.

MIN

The smallest positive normalized number in a double-precision floatingpoint.

Usually defaults to 2.2250738585072014e-308.

If the platform supports denormalized numbers, there are numbers betweenzero andFloat::MIN. 0.0.next_float returnsthe smallest positive floating point number including denormalized numbers.

MIN_10_EXP

The smallest negative exponent in a double-precision floating point where10 raised to this power minus 1.

Usually defaults to -307.

MIN_EXP

The smallest possible exponent value in a double-precision floating point.

Usually defaults to -1021.

NAN

An expression representing a value which is “not a number”.

RADIX

The base of the floating point, or number of unique digits used torepresent the number.

Usually defaults to 2 on most systems, which would represent a base-10decimal.

Public Instance Methods

float % other → floatclick to toggle source

Returns the modulo after division offloat byother.

6543.21.modulo(137)#=> 104.210000000000046543.21.modulo(137.24)#=> 92.92999999999961
                static VALUEflo_mod(VALUE x, VALUE y){    double fy;    if (RB_TYPE_P(y, T_FIXNUM)) {        fy = (double)FIX2LONG(y);    }    else if (RB_TYPE_P(y, T_BIGNUM)) {        fy = rb_big2dbl(y);    }    else if (RB_TYPE_P(y, T_FLOAT)) {        fy = RFLOAT_VALUE(y);    }    else {        return rb_num_coerce_bin(x, y, '%');    }    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));}
float * other → floatclick to toggle source

Returns a newFloat which is the product offloat andother.

                VALUErb_float_mul(VALUE x, VALUE y){    if (RB_TYPE_P(y, T_FIXNUM)) {        return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));    }    else if (RB_TYPE_P(y, T_BIGNUM)) {        return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));    }    else if (RB_TYPE_P(y, T_FLOAT)) {        return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));    }    else {        return rb_num_coerce_bin(x, y, '*');    }}
float ** other → floatclick to toggle source

Raisesfloat to the power ofother.

2.0**3#=> 8.0
                VALUErb_float_pow(VALUE x, VALUE y){    double dx, dy;    if (y == INT2FIX(2)) {        dx = RFLOAT_VALUE(x);        return DBL2NUM(dx * dx);    }    else if (RB_TYPE_P(y, T_FIXNUM)) {        dx = RFLOAT_VALUE(x);        dy = (double)FIX2LONG(y);    }    else if (RB_TYPE_P(y, T_BIGNUM)) {        dx = RFLOAT_VALUE(x);        dy = rb_big2dbl(y);    }    else if (RB_TYPE_P(y, T_FLOAT)) {        dx = RFLOAT_VALUE(x);        dy = RFLOAT_VALUE(y);        if (dx < 0 && dy != round(dy))            return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);    }    else {        return rb_num_coerce_bin(x, y, idPow);    }    return DBL2NUM(pow(dx, dy));}
float + other → floatclick to toggle source

Returns a newFloat which is the sum offloat andother.

                VALUErb_float_plus(VALUE x, VALUE y){    if (RB_TYPE_P(y, T_FIXNUM)) {        return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));    }    else if (RB_TYPE_P(y, T_BIGNUM)) {        return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));    }    else if (RB_TYPE_P(y, T_FLOAT)) {        return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));    }    else {        return rb_num_coerce_bin(x, y, '+');    }}
float - other → floatclick to toggle source

Returns a newFloat which is the difference offloat andother.

                VALUErb_float_minus(VALUE x, VALUE y){    if (RB_TYPE_P(y, T_FIXNUM)) {        return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));    }    else if (RB_TYPE_P(y, T_BIGNUM)) {        return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));    }    else if (RB_TYPE_P(y, T_FLOAT)) {        return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));    }    else {        return rb_num_coerce_bin(x, y, '-');    }}
-float → floatclick to toggle source

Returnsfloat, negated.

                VALUErb_float_uminus(VALUE flt){    return DBL2NUM(-RFLOAT_VALUE(flt));}
float / other → floatclick to toggle source

Returns a newFloat which is the result ofdividingfloat byother.

                VALUErb_float_div(VALUE x, VALUE y){    double num = RFLOAT_VALUE(x);    double den;    double ret;    if (RB_TYPE_P(y, T_FIXNUM)) {        den = FIX2LONG(y);    }    else if (RB_TYPE_P(y, T_BIGNUM)) {        den = rb_big2dbl(y);    }    else if (RB_TYPE_P(y, T_FLOAT)) {        den = RFLOAT_VALUE(y);    }    else {        return rb_num_coerce_bin(x, y, '/');    }    ret = double_div_double(num, den);    return DBL2NUM(ret);}
float< real → true or falseclick to toggle source

Returnstrue iffloat is less thanreal.

The result ofNaN < NaN is undefined, so animplementation-dependent value is returned.

                static VALUEflo_lt(VALUE x, VALUE y){    double a, b;    a = RFLOAT_VALUE(x);    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {        VALUE rel = rb_integer_float_cmp(y, x);        if (FIXNUM_P(rel))            return -FIX2LONG(rel) < 0 ? Qtrue : Qfalse;        return Qfalse;    }    else if (RB_TYPE_P(y, T_FLOAT)) {        b = RFLOAT_VALUE(y);#if MSC_VERSION_BEFORE(1300)        if (isnan(b)) return Qfalse;#endif    }    else {        return rb_num_coerce_relop(x, y, '<');    }#if MSC_VERSION_BEFORE(1300)    if (isnan(a)) return Qfalse;#endif    return (a < b)?Qtrue:Qfalse;}
float<= real → true or falseclick to toggle source

Returnstrue iffloat is less than or equal toreal.

The result ofNaN <= NaN is undefined, so animplementation-dependent value is returned.

                static VALUEflo_le(VALUE x, VALUE y){    double a, b;    a = RFLOAT_VALUE(x);    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {        VALUE rel = rb_integer_float_cmp(y, x);        if (FIXNUM_P(rel))            return -FIX2LONG(rel) <= 0 ? Qtrue : Qfalse;        return Qfalse;    }    else if (RB_TYPE_P(y, T_FLOAT)) {        b = RFLOAT_VALUE(y);#if MSC_VERSION_BEFORE(1300)        if (isnan(b)) return Qfalse;#endif    }    else {        return rb_num_coerce_relop(x, y, idLE);    }#if MSC_VERSION_BEFORE(1300)    if (isnan(a)) return Qfalse;#endif    return (a <= b)?Qtrue:Qfalse;}
float<=> real → -1, 0, +1, or nilclick to toggle source

Returns -1, 0, or +1 depending on whetherfloat is less than,equal to, or greater thanreal. This is the basis for thetests in theComparable module.

The result ofNaN <=> NaN is undefined, so animplementation-dependent value is returned.

nil is returned if the two values are incomparable.

                static VALUEflo_cmp(VALUE x, VALUE y){    double a, b;    VALUE i;    a = RFLOAT_VALUE(x);    if (isnan(a)) return Qnil;    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {        VALUE rel = rb_integer_float_cmp(y, x);        if (FIXNUM_P(rel))            return LONG2FIX(-FIX2LONG(rel));        return rel;    }    else if (RB_TYPE_P(y, T_FLOAT)) {        b = RFLOAT_VALUE(y);    }    else {        if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {            if (RTEST(i)) {                int j = rb_cmpint(i, x, y);                j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);                return INT2FIX(j);            }            if (a > 0.0) return INT2FIX(1);            return INT2FIX(-1);        }        return rb_num_coerce_cmp(x, y, id_cmp);    }    return rb_dbl_cmp(a, b);}
float == obj → true or falseclick to toggle source

Returnstrue only ifobj has the same value asfloat. Contrast this with#eql?, which requiresobj to be aFloat.

1.0==1#=> true

The result ofNaN == NaN is undefined, so animplementation-dependent value is returned.

                MJIT_FUNC_EXPORTED VALUErb_float_equal(VALUE x, VALUE y){    volatile double a, b;    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {        return rb_integer_float_eq(y, x);    }    else if (RB_TYPE_P(y, T_FLOAT)) {        b = RFLOAT_VALUE(y);#if MSC_VERSION_BEFORE(1300)        if (isnan(b)) return Qfalse;#endif    }    else {        return num_equal(x, y);    }    a = RFLOAT_VALUE(x);#if MSC_VERSION_BEFORE(1300)    if (isnan(a)) return Qfalse;#endif    return (a == b)?Qtrue:Qfalse;}
float == obj → true or falseclick to toggle source

Returnstrue only ifobj has the same value asfloat. Contrast this with#eql?, which requiresobj to be aFloat.

1.0==1#=> true

The result ofNaN == NaN is undefined, so animplementation-dependent value is returned.

                MJIT_FUNC_EXPORTED VALUErb_float_equal(VALUE x, VALUE y){    volatile double a, b;    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {        return rb_integer_float_eq(y, x);    }    else if (RB_TYPE_P(y, T_FLOAT)) {        b = RFLOAT_VALUE(y);#if MSC_VERSION_BEFORE(1300)        if (isnan(b)) return Qfalse;#endif    }    else {        return num_equal(x, y);    }    a = RFLOAT_VALUE(x);#if MSC_VERSION_BEFORE(1300)    if (isnan(a)) return Qfalse;#endif    return (a == b)?Qtrue:Qfalse;}
float > real → true or falseclick to toggle source

Returnstrue iffloat is greater thanreal.

The result ofNaN > NaN is undefined, so animplementation-dependent value is returned.

                VALUErb_float_gt(VALUE x, VALUE y){    double a, b;    a = RFLOAT_VALUE(x);    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {        VALUE rel = rb_integer_float_cmp(y, x);        if (FIXNUM_P(rel))            return -FIX2LONG(rel) > 0 ? Qtrue : Qfalse;        return Qfalse;    }    else if (RB_TYPE_P(y, T_FLOAT)) {        b = RFLOAT_VALUE(y);#if MSC_VERSION_BEFORE(1300)        if (isnan(b)) return Qfalse;#endif    }    else {        return rb_num_coerce_relop(x, y, '>');    }#if MSC_VERSION_BEFORE(1300)    if (isnan(a)) return Qfalse;#endif    return (a > b)?Qtrue:Qfalse;}
float >= real → true or falseclick to toggle source

Returnstrue iffloat is greater than or equal toreal.

The result ofNaN >= NaN is undefined, so animplementation-dependent value is returned.

                static VALUEflo_ge(VALUE x, VALUE y){    double a, b;    a = RFLOAT_VALUE(x);    if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {        VALUE rel = rb_integer_float_cmp(y, x);        if (FIXNUM_P(rel))            return -FIX2LONG(rel) >= 0 ? Qtrue : Qfalse;        return Qfalse;    }    else if (RB_TYPE_P(y, T_FLOAT)) {        b = RFLOAT_VALUE(y);#if MSC_VERSION_BEFORE(1300)        if (isnan(b)) return Qfalse;#endif    }    else {        return rb_num_coerce_relop(x, y, idGE);    }#if MSC_VERSION_BEFORE(1300)    if (isnan(a)) return Qfalse;#endif    return (a >= b)?Qtrue:Qfalse;}
abs → floatclick to toggle source

Returns the absolute value offloat.

(-34.56).abs#=> 34.56-34.56.abs#=> 34.5634.56.abs#=> 34.56

#magnitude is an alias for#abs.

                VALUErb_float_abs(VALUE flt){    double val = fabs(RFLOAT_VALUE(flt));    return DBL2NUM(val);}
angle → 0 or floatclick to toggle source

Returns 0 if the value is positive, pi otherwise.

                static VALUEfloat_arg(VALUE self){    if (isnan(RFLOAT_VALUE(self)))        return self;    if (f_tpositive_p(self))        return INT2FIX(0);    return rb_const_get(rb_mMath, id_PI);}
arg → 0 or floatclick to toggle source

Returns 0 if the value is positive, pi otherwise.

                static VALUEfloat_arg(VALUE self){    if (isnan(RFLOAT_VALUE(self)))        return self;    if (f_tpositive_p(self))        return INT2FIX(0);    return rb_const_get(rb_mMath, id_PI);}
ceil([ndigits]) → integer or floatclick to toggle source

Returns the smallest number greater than or equal tofloatwith a precision ofndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with atleastndigits.abs trailing zeros.

Returns a floating point number whenndigits is positive,otherwise returns an integer.

1.2.ceil#=> 22.0.ceil#=> 2(-1.2).ceil#=> -1(-2.0).ceil#=> -21.234567.ceil(2)#=> 1.241.234567.ceil(3)#=> 1.2351.234567.ceil(4)#=> 1.23461.234567.ceil(5)#=> 1.2345734567.89.ceil(-5)#=> 10000034567.89.ceil(-4)#=> 4000034567.89.ceil(-3)#=> 3500034567.89.ceil(-2)#=> 3460034567.89.ceil(-1)#=> 3457034567.89.ceil(0)#=> 3456834567.89.ceil(1)#=> 34567.934567.89.ceil(2)#=> 34567.8934567.89.ceil(3)#=> 34567.89

Note that the limited precision of floating point arithmetic might lead tosurprising results:

(2.1/0.7).ceil#=> 4 (!)
                static VALUEflo_ceil(int argc, VALUE *argv, VALUE num){    int ndigits = 0;    if (rb_check_arity(argc, 0, 1)) {        ndigits = NUM2INT(argv[0]);    }    return rb_float_ceil(num, ndigits);}
coerce(numeric) → arrayclick to toggle source

Returns an array with bothnumeric andfloatrepresented asFloat objects.

This is achieved by convertingnumeric to aFloat.

1.2.coerce(3)#=> [3.0, 1.2]2.5.coerce(1.1)#=> [1.1, 2.5]
                static VALUEflo_coerce(VALUE x, VALUE y){    return rb_assoc_new(rb_Float(y), x);}
denominator → integerclick to toggle source

Returns the denominator (always positive). The result is machinedependent.

See also#numerator.

                VALUErb_float_denominator(VALUE self){    double d = RFLOAT_VALUE(self);    VALUE r;    if (isinf(d) || isnan(d))        return INT2FIX(1);    r = float_to_r(self);    return nurat_denominator(r);}
divmod(numeric) → arrayclick to toggle source

SeeNumeric#divmod.

42.0.divmod(6)#=> [7, 0.0]42.0.divmod(5)#=> [8, 2.0]
                static VALUEflo_divmod(VALUE x, VALUE y){    double fy, div, mod;    volatile VALUE a, b;    if (RB_TYPE_P(y, T_FIXNUM)) {        fy = (double)FIX2LONG(y);    }    else if (RB_TYPE_P(y, T_BIGNUM)) {        fy = rb_big2dbl(y);    }    else if (RB_TYPE_P(y, T_FLOAT)) {        fy = RFLOAT_VALUE(y);    }    else {        return rb_num_coerce_bin(x, y, id_divmod);    }    flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);    a = dbl2ival(div);    b = DBL2NUM(mod);    return rb_assoc_new(a, b);}
eql?(obj) → true or falseclick to toggle source

Returnstrue only ifobj is aFloat with the same value asfloat.Contrast this with Float#==, which performs type conversions.

1.0.eql?(1)#=> false

The result ofNaN.eql?(NaN) is undefined, so animplementation-dependent value is returned.

                MJIT_FUNC_EXPORTED VALUErb_float_eql(VALUE x, VALUE y){    if (RB_TYPE_P(y, T_FLOAT)) {        double a = RFLOAT_VALUE(x);        double b = RFLOAT_VALUE(y);#if MSC_VERSION_BEFORE(1300)        if (isnan(a) || isnan(b)) return Qfalse;#endif        if (a == b)            return Qtrue;    }    return Qfalse;}
fdiv(numeric) → floatclick to toggle source

Returnsfloat / numeric, same as Float#/.

                static VALUEflo_quo(VALUE x, VALUE y){    return num_funcall1(x, '/', y);}
finite? → true or falseclick to toggle source

Returnstrue iffloat is a valid IEEE floatingpoint number, i.e. it is not infinite and#nan? isfalse.

                VALUErb_flo_is_finite_p(VALUE num){    double value = RFLOAT_VALUE(num);#ifdef HAVE_ISFINITE    if (!isfinite(value))        return Qfalse;#else    if (isinf(value) || isnan(value))        return Qfalse;#endif    return Qtrue;}
floor([ndigits]) → integer or floatclick to toggle source

Returns the largest number less than or equal tofloat with aprecision ofndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with atleastndigits.abs trailing zeros.

Returns a floating point number whenndigits is positive,otherwise returns an integer.

1.2.floor#=> 12.0.floor#=> 2(-1.2).floor#=> -2(-2.0).floor#=> -21.234567.floor(2)#=> 1.231.234567.floor(3)#=> 1.2341.234567.floor(4)#=> 1.23451.234567.floor(5)#=> 1.2345634567.89.floor(-5)#=> 034567.89.floor(-4)#=> 3000034567.89.floor(-3)#=> 3400034567.89.floor(-2)#=> 3450034567.89.floor(-1)#=> 3456034567.89.floor(0)#=> 3456734567.89.floor(1)#=> 34567.834567.89.floor(2)#=> 34567.8934567.89.floor(3)#=> 34567.89

Note that the limited precision of floating point arithmetic might lead tosurprising results:

(0.3/0.1).floor#=> 2 (!)
                static VALUEflo_floor(int argc, VALUE *argv, VALUE num){    int ndigits = 0;    if (rb_check_arity(argc, 0, 1)) {        ndigits = NUM2INT(argv[0]);    }    return rb_float_floor(num, ndigits);}
hash → integerclick to toggle source

Returns a hash code for this float.

See alsoObject#hash.

                static VALUEflo_hash(VALUE num){    return rb_dbl_hash(RFLOAT_VALUE(num));}
infinite? → -1, 1, or nilclick to toggle source

Returnsnil, -1, or 1 depending on whether the value isfinite,-Infinity, or+Infinity.

(0.0).infinite?#=> nil(-1.0/0.0).infinite?#=> -1(+1.0/0.0).infinite?#=> 1
                VALUErb_flo_is_infinite_p(VALUE num){    double value = RFLOAT_VALUE(num);    if (isinf(value)) {        return INT2FIX( value < 0 ? -1 : 1 );    }    return Qnil;}
inspect()click to toggle source
Alias for:to_s
magnitude → floatclick to toggle source

Returns the absolute value offloat.

(-34.56).abs#=> 34.56-34.56.abs#=> 34.5634.56.abs#=> 34.56

#magnitude is an alias for#abs.

                VALUErb_float_abs(VALUE flt){    double val = fabs(RFLOAT_VALUE(flt));    return DBL2NUM(val);}
modulo(other) → floatclick to toggle source

Returns the modulo after division offloat byother.

6543.21.modulo(137)#=> 104.210000000000046543.21.modulo(137.24)#=> 92.92999999999961
                static VALUEflo_mod(VALUE x, VALUE y){    double fy;    if (RB_TYPE_P(y, T_FIXNUM)) {        fy = (double)FIX2LONG(y);    }    else if (RB_TYPE_P(y, T_BIGNUM)) {        fy = rb_big2dbl(y);    }    else if (RB_TYPE_P(y, T_FLOAT)) {        fy = RFLOAT_VALUE(y);    }    else {        return rb_num_coerce_bin(x, y, '%');    }    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));}
nan? → true or falseclick to toggle source

Returnstrue iffloat is an invalid IEEE floatingpoint number.

a =-1.0#=> -1.0a.nan?#=> falsea =0.0/0.0#=> NaNa.nan?#=> true
                static VALUEflo_is_nan_p(VALUE num){    double value = RFLOAT_VALUE(num);    return isnan(value) ? Qtrue : Qfalse;}
negative? → true or falseclick to toggle source

Returnstrue iffloat is less than 0.

                static VALUEflo_negative_p(VALUE num){    double f = RFLOAT_VALUE(num);    return f < 0.0 ? Qtrue : Qfalse;}
next_float → floatclick to toggle source

Returns the next representable floating point number.

Float::MAX.next_float and Float::INFINITY.next_float isFloat::INFINITY.

Float::NAN.next_float isFloat::NAN.

For example:

0.01.next_float#=> 0.0100000000000000021.0.next_float#=> 1.0000000000000002100.0.next_float#=> 100.000000000000010.01.next_float-0.01#=> 1.734723475976807e-181.0.next_float-1.0#=> 2.220446049250313e-16100.0.next_float-100.0#=> 1.4210854715202004e-14f =0.01;20.times {printf"%-20a %s\n",f,f.to_s;f =f.next_float }#=> 0x1.47ae147ae147bp-7 0.01#   0x1.47ae147ae147cp-7 0.010000000000000002#   0x1.47ae147ae147dp-7 0.010000000000000004#   0x1.47ae147ae147ep-7 0.010000000000000005#   0x1.47ae147ae147fp-7 0.010000000000000007#   0x1.47ae147ae148p-7  0.010000000000000009#   0x1.47ae147ae1481p-7 0.01000000000000001#   0x1.47ae147ae1482p-7 0.010000000000000012#   0x1.47ae147ae1483p-7 0.010000000000000014#   0x1.47ae147ae1484p-7 0.010000000000000016#   0x1.47ae147ae1485p-7 0.010000000000000018#   0x1.47ae147ae1486p-7 0.01000000000000002#   0x1.47ae147ae1487p-7 0.010000000000000021#   0x1.47ae147ae1488p-7 0.010000000000000023#   0x1.47ae147ae1489p-7 0.010000000000000024#   0x1.47ae147ae148ap-7 0.010000000000000026#   0x1.47ae147ae148bp-7 0.010000000000000028#   0x1.47ae147ae148cp-7 0.01000000000000003#   0x1.47ae147ae148dp-7 0.010000000000000031#   0x1.47ae147ae148ep-7 0.010000000000000033f =0.0100.times {f+=0.1 }f#=> 9.99999999999998       # should be 10.0 in the ideal world.10-f#=> 1.9539925233402755e-14 # the floating point error.10.0.next_float-10#=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).(10-f)/(10.0.next_float-10)#=> 11.0                   # the error is 11 ulp.(10-f)/(10*Float::EPSILON)#=> 8.8                    # approximation of the above."%a"%10#=> "0x1.4p+3""%a"%f#=> "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.
                static VALUEflo_next_float(VALUE vx){    return flo_nextafter(vx, HUGE_VAL);}
numerator → integerclick to toggle source

Returns the numerator. The result is machine dependent.

n =0.3.numerator#=> 5404319552844595d =0.3.denominator#=> 18014398509481984n.fdiv(d)#=> 0.3

See also#denominator.

                VALUErb_float_numerator(VALUE self){    double d = RFLOAT_VALUE(self);    VALUE r;    if (isinf(d) || isnan(d))        return self;    r = float_to_r(self);    return nurat_numerator(r);}
phase → 0 or floatclick to toggle source

Returns 0 if the value is positive, pi otherwise.

                static VALUEfloat_arg(VALUE self){    if (isnan(RFLOAT_VALUE(self)))        return self;    if (f_tpositive_p(self))        return INT2FIX(0);    return rb_const_get(rb_mMath, id_PI);}
positive? → true or falseclick to toggle source

Returnstrue iffloat is greater than 0.

                static VALUEflo_positive_p(VALUE num){    double f = RFLOAT_VALUE(num);    return f > 0.0 ? Qtrue : Qfalse;}
prev_float → floatclick to toggle source

Returns the previous representable floating point number.

(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is-Float::INFINITY.

Float::NAN.prev_float isFloat::NAN.

For example:

0.01.prev_float#=> 0.0099999999999999981.0.prev_float#=> 0.9999999999999999100.0.prev_float#=> 99.999999999999990.01-0.01.prev_float#=> 1.734723475976807e-181.0-1.0.prev_float#=> 1.1102230246251565e-16100.0-100.0.prev_float#=> 1.4210854715202004e-14f =0.01;20.times {printf"%-20a %s\n",f,f.to_s;f =f.prev_float }#=> 0x1.47ae147ae147bp-7 0.01#   0x1.47ae147ae147ap-7 0.009999999999999998#   0x1.47ae147ae1479p-7 0.009999999999999997#   0x1.47ae147ae1478p-7 0.009999999999999995#   0x1.47ae147ae1477p-7 0.009999999999999993#   0x1.47ae147ae1476p-7 0.009999999999999992#   0x1.47ae147ae1475p-7 0.00999999999999999#   0x1.47ae147ae1474p-7 0.009999999999999988#   0x1.47ae147ae1473p-7 0.009999999999999986#   0x1.47ae147ae1472p-7 0.009999999999999985#   0x1.47ae147ae1471p-7 0.009999999999999983#   0x1.47ae147ae147p-7  0.009999999999999981#   0x1.47ae147ae146fp-7 0.00999999999999998#   0x1.47ae147ae146ep-7 0.009999999999999978#   0x1.47ae147ae146dp-7 0.009999999999999976#   0x1.47ae147ae146cp-7 0.009999999999999974#   0x1.47ae147ae146bp-7 0.009999999999999972#   0x1.47ae147ae146ap-7 0.00999999999999997#   0x1.47ae147ae1469p-7 0.009999999999999969#   0x1.47ae147ae1468p-7 0.009999999999999967
                static VALUEflo_prev_float(VALUE vx){    return flo_nextafter(vx, -HUGE_VAL);}
quo(numeric) → floatclick to toggle source

Returnsfloat / numeric, same as Float#/.

                static VALUEflo_quo(VALUE x, VALUE y){    return num_funcall1(x, '/', y);}
rationalize([eps]) → rationalclick to toggle source

Returns a simpler approximation of the value (flt-|eps| <= result <=flt+|eps|). If the optional argumenteps is not given, itwill be chosen automatically.

0.3.rationalize#=> (3/10)1.333.rationalize#=> (1333/1000)1.333.rationalize(0.01)#=> (4/3)

See also#to_r.

                static VALUEfloat_rationalize(int argc, VALUE *argv, VALUE self){    double d = RFLOAT_VALUE(self);    VALUE rat;    int neg = d < 0.0;    if (neg) self = DBL2NUM(-d);    if (rb_check_arity(argc, 0, 1)) {        rat = rb_flt_rationalize_with_prec(self, argv[0]);    }    else {        rat = rb_flt_rationalize(self);    }    if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));    return rat;}
round([ndigits] [, half: mode]) → integer or floatclick to toggle source

Returnsfloat rounded to the nearest value with a precision ofndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with atleastndigits.abs trailing zeros.

Returns a floating point number whenndigits is positive,otherwise returns an integer.

1.4.round#=> 11.5.round#=> 21.6.round#=> 2(-1.5).round#=> -21.234567.round(2)#=> 1.231.234567.round(3)#=> 1.2351.234567.round(4)#=> 1.23461.234567.round(5)#=> 1.2345734567.89.round(-5)#=> 034567.89.round(-4)#=> 3000034567.89.round(-3)#=> 3500034567.89.round(-2)#=> 3460034567.89.round(-1)#=> 3457034567.89.round(0)#=> 3456834567.89.round(1)#=> 34567.934567.89.round(2)#=> 34567.8934567.89.round(3)#=> 34567.89

If the optionalhalf keyword argument is given, numbers thatare half-way between two possible rounded values will be rounded accordingto the specified tie-breakingmode:

  • :up ornil: round half away from zero (default)

  • :down: round half toward zero

  • :even: round half toward the nearest even number

    2.5.round(half: :up)#=> 32.5.round(half: :down)#=> 22.5.round(half: :even)#=> 23.5.round(half: :up)#=> 43.5.round(half: :down)#=> 33.5.round(half: :even)#=> 4(-2.5).round(half: :up)#=> -3(-2.5).round(half: :down)#=> -2(-2.5).round(half: :even)#=> -2
                static VALUEflo_round(int argc, VALUE *argv, VALUE num){    double number, f, x;    VALUE nd, opt;    int ndigits = 0;    enum ruby_num_rounding_mode mode;    if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {        ndigits = NUM2INT(nd);    }    mode = rb_num_get_rounding_option(opt);    number = RFLOAT_VALUE(num);    if (number == 0.0) {        return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);    }    if (ndigits < 0) {        return rb_int_round(flo_to_i(num), ndigits, mode);    }    if (ndigits == 0) {        x = ROUND_CALL(mode, round, (number, 1.0));        return dbl2ival(x);    }    if (isfinite(number)) {        int binexp;        frexp(number, &binexp);        if (float_round_overflow(ndigits, binexp)) return num;        if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);        f = pow(10, ndigits);        x = ROUND_CALL(mode, round, (number, f));        return DBL2NUM(x / f);    }    return num;}
to_f → selfclick to toggle source

Sincefloat is already aFloat,returnsself.

                static VALUEflo_to_f(VALUE num){    return num;}
to_i → integerclick to toggle source
to_int → integer

Returns thefloat truncated to anInteger.

1.2.to_i#=> 1(-1.2).to_i#=> -1

Note that the limited precision of floating point arithmetic might lead tosurprising results:

(0.3/0.1).to_i#=> 2 (!)

to_int is an alias forto_i.

                static VALUEflo_to_i(VALUE num){    double f = RFLOAT_VALUE(num);    if (f > 0.0) f = floor(f);    if (f < 0.0) f = ceil(f);    return dbl2ival(f);}
to_int → integerclick to toggle source

Returns thefloat truncated to anInteger.

1.2.to_i#=> 1(-1.2).to_i#=> -1

Note that the limited precision of floating point arithmetic might lead tosurprising results:

(0.3/0.1).to_i#=> 2 (!)

to_int is an alias forto_i.

                static VALUEflo_to_i(VALUE num){    double f = RFLOAT_VALUE(num);    if (f > 0.0) f = floor(f);    if (f < 0.0) f = ceil(f);    return dbl2ival(f);}
to_r → rationalclick to toggle source

Returns the value as a rational.

2.0.to_r#=> (2/1)2.5.to_r#=> (5/2)-0.75.to_r#=> (-3/4)0.0.to_r#=> (0/1)0.3.to_r#=> (5404319552844595/18014398509481984)

NOTE: 0.3.to_r isn't the same as “0.3”.to_r. The latter is equivalentto “3/10”.to_r, but the former isn't so.

0.3.to_r==3/10r#=> false"0.3".to_r==3/10r#=> true

See also#rationalize.

                static VALUEfloat_to_r(VALUE self){    VALUE f;    int n;    float_decode_internal(self, &f, &n);#if FLT_RADIX == 2    if (n == 0)        return rb_rational_new1(f);    if (n > 0)        return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));    n = -n;    return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));#else    f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));    if (RB_TYPE_P(f, T_RATIONAL))        return f;    return rb_rational_new1(f);#endif}
to_s → stringclick to toggle source

Returns a string containing a representation ofself. As wellas a fixed or exponential form of thefloat, the call mayreturnNaN,Infinity, and-Infinity.

                static VALUEflo_to_s(VALUE flt){    enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};    enum {float_dig = DBL_DIG+1};    char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];    double value = RFLOAT_VALUE(flt);    VALUE s;    char *p, *e;    int sign, decpt, digs;    if (isinf(value)) {        static const char minf[] = "-Infinity";        const int pos = (value > 0); /* skip "-" */        return rb_usascii_str_new(minf+pos, strlen(minf)-pos);    }    else if (isnan(value))        return rb_usascii_str_new2("NaN");    p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);    s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);    if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;    memcpy(buf, p, digs);    xfree(p);    if (decpt > 0) {        if (decpt < digs) {            memmove(buf + decpt + 1, buf + decpt, digs - decpt);            buf[decpt] = '.';            rb_str_cat(s, buf, digs + 1);        }        else if (decpt <= DBL_DIG) {            long len;            char *ptr;            rb_str_cat(s, buf, digs);            rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);            ptr = RSTRING_PTR(s) + len;            if (decpt > digs) {                memset(ptr, '0', decpt - digs);                ptr += decpt - digs;            }            memcpy(ptr, ".0", 2);        }        else {            goto exp;        }    }    else if (decpt > -4) {        long len;        char *ptr;        rb_str_cat(s, "0.", 2);        rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);        ptr = RSTRING_PTR(s);        memset(ptr += len, '0', -decpt);        memcpy(ptr -= decpt, buf, digs);    }    else {        goto exp;    }    return s;  exp:    if (digs > 1) {        memmove(buf + 2, buf + 1, digs - 1);    }    else {        buf[2] = '0';        digs++;    }    buf[1] = '.';    rb_str_cat(s, buf, digs + 1);    rb_str_catf(s, "e%+03d", decpt - 1);    return s;}
Also aliased as:inspect
truncate([ndigits]) → integer or floatclick to toggle source

Returnsfloat truncated (toward zero) to a precision ofndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with atleastndigits.abs trailing zeros.

Returns a floating point number whenndigits is positive,otherwise returns an integer.

2.8.truncate#=> 2(-2.8).truncate#=> -21.234567.truncate(2)#=> 1.2334567.89.truncate(-2)#=> 34500

Note that the limited precision of floating point arithmetic might lead tosurprising results:

(0.3/0.1).truncate#=> 2 (!)
                static VALUEflo_truncate(int argc, VALUE *argv, VALUE num){    if (signbit(RFLOAT_VALUE(num)))        return flo_ceil(argc, argv, num);    else        return flo_floor(argc, argv, num);}
zero? → true or falseclick to toggle source

Returnstrue iffloat is 0.0.

                static VALUEflo_zero_p(VALUE num){    return flo_iszero(num) ? Qtrue : Qfalse;}

This page was generated for Ruby 3.0.0

Generated with Ruby-doc Rdoc Generator 0.42.0.


[8]ページ先頭

©2009-2025 Movatter.jp