A complex number can be represented as a paired real number with imaginaryunit; a+bi. Where a is real part, b is imaginary part and i is imaginaryunit. Real a equals complex a+0i mathematically.
Complex object can be created as literal, andalso by using Kernel#Complex,::rect,::polar or#to_c method.
2+1i#=> (2+1i)Complex(1)#=> (1+0i)Complex(2,3)#=> (2+3i)Complex.polar(2,3)#=> (-1.9799849932008908+0.2822400161197344i)3.to_c#=> (3+0i)
You can also create complex object from floating-point numbers or strings.
Complex(0.3)#=> (0.3+0i)Complex('0.3-0.5i')#=> (0.3-0.5i)Complex('2/3+3/4i')#=> ((2/3)+(3/4)*i)Complex('1@2')#=> (-0.4161468365471424+0.9092974268256817i)0.3.to_c#=> (0.3+0i)'0.3-0.5i'.to_c#=> (0.3-0.5i)'2/3+3/4i'.to_c#=> ((2/3)+(3/4)*i)'1@2'.to_c#=> (-0.4161468365471424+0.9092974268256817i)
A complex object is either an exact or an inexact number.
Complex(1,1)/2#=> ((1/2)+(1/2)*i)Complex(1,1)/2.0#=> (0.5+0.5i)
The imaginary unit.
Returns a complex object which denotes the given polar form.
Complex.polar(3,0)#=> (3.0+0.0i)Complex.polar(3,Math::PI/2)#=> (1.836909530733566e-16+3.0i)Complex.polar(3,Math::PI)#=> (-3.0+3.673819061467132e-16i)Complex.polar(3,-Math::PI/2)#=> (1.836909530733566e-16-3.0i)
static VALUEnucomp_s_polar(int argc, VALUE *argv, VALUE klass){ VALUE abs, arg; switch (rb_scan_args(argc, argv, "11", &abs, &arg)) { case 1: nucomp_real_check(abs); return nucomp_s_new_internal(klass, abs, ZERO); default: nucomp_real_check(abs); nucomp_real_check(arg); break; } if (RB_TYPE_P(abs, T_COMPLEX)) { get_dat1(abs); abs = dat->real; } if (RB_TYPE_P(arg, T_COMPLEX)) { get_dat1(arg); arg = dat->real; } return f_complex_polar(klass, abs, arg);}
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1,2)#=> (1+2i)
static VALUEnucomp_s_new(int argc, VALUE *argv, VALUE klass){ VALUE real, imag; switch (rb_scan_args(argc, argv, "11", &real, &imag)) { case 1: nucomp_real_check(real); imag = ZERO; break; default: nucomp_real_check(real); nucomp_real_check(imag); break; } return nucomp_s_canonicalize_internal(klass, real, imag);}
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1,2)#=> (1+2i)
static VALUEnucomp_s_new(int argc, VALUE *argv, VALUE klass){ VALUE real, imag; switch (rb_scan_args(argc, argv, "11", &real, &imag)) { case 1: nucomp_real_check(real); imag = ZERO; break; default: nucomp_real_check(real); nucomp_real_check(imag); break; } return nucomp_s_canonicalize_internal(klass, real, imag);}
Performs multiplication.
Complex(2,3)*Complex(2,3)#=> (-5+12i)Complex(900)*Complex(1)#=> (900+0i)Complex(-2,9)*Complex(-9,2)#=> (0-85i)Complex(9,8)*4#=> (36+32i)Complex(20,9)*9.8#=> (196.0+88.2i)
VALUErb_complex_mul(VALUE self, VALUE other){ if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_mul(dat->real, other), f_mul(dat->imag, other)); } return rb_num_coerce_bin(self, other, '*');}
Performs exponentiation.
Complex('i')**2#=> (-1+0i)Complex(-8)**Rational(1,3)#=> (1.0000000000000002+1.7320508075688772i)
VALUErb_complex_pow(VALUE self, VALUE other){ if (k_numeric_p(other) && k_exact_zero_p(other)) return f_complex_new_bang1(CLASS_OF(self), ONE); if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1)) other = RRATIONAL(other)->num; /* c14n */ if (RB_TYPE_P(other, T_COMPLEX)) { get_dat1(other); if (k_exact_zero_p(dat->imag)) other = dat->real; /* c14n */ } if (RB_TYPE_P(other, T_COMPLEX)) { VALUE r, theta, nr, ntheta; get_dat1(other); r = f_abs(self); theta = f_arg(self); nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)), f_mul(dat->imag, theta))); ntheta = f_add(f_mul(theta, dat->real), f_mul(dat->imag, m_log_bang(r))); return f_complex_polar(CLASS_OF(self), nr, ntheta); } if (FIXNUM_P(other)) { long n = FIX2LONG(other); if (n == 0) { return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO); } if (n < 0) { self = f_reciprocal(self); other = rb_int_uminus(other); n = -n; } { get_dat1(self); VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi; if (f_zero_p(xi)) { zr = rb_num_pow(zr, other); } else if (f_zero_p(xr)) { zi = rb_num_pow(zi, other); if (n & 2) zi = f_negate(zi); if (!(n & 1)) { VALUE tmp = zr; zr = zi; zi = tmp; } } else { while (--n) { long q, r; for (; q = n / 2, r = n % 2, r == 0; n = q) { VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi)); xi = f_mul(f_mul(TWO, xr), xi); xr = tmp; } comp_mul(zr, zi, xr, xi, &zr, &zi); } } return nucomp_s_new_internal(CLASS_OF(self), zr, zi); } } if (k_numeric_p(other) && f_real_p(other)) { VALUE r, theta; if (RB_TYPE_P(other, T_BIGNUM)) rb_warn("in a**b, b may be too big"); r = f_abs(self); theta = f_arg(self); return f_complex_polar(CLASS_OF(self), f_expt(r, other), f_mul(theta, other)); } return rb_num_coerce_bin(self, other, id_expt);}
Performs addition.
Complex(2,3)+Complex(2,3)#=> (4+6i)Complex(900)+Complex(1)#=> (901+0i)Complex(-2,9)+Complex(-9,2)#=> (-11+11i)Complex(9,8)+4#=> (13+8i)Complex(20,9)+9.8#=> (29.8+9i)
VALUErb_complex_plus(VALUE self, VALUE other){ if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); real = f_add(adat->real, bdat->real); imag = f_add(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_add(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '+');}
Performs subtraction.
Complex(2,3)-Complex(2,3)#=> (0+0i)Complex(900)-Complex(1)#=> (899+0i)Complex(-2,9)-Complex(-9,2)#=> (7+7i)Complex(9,8)-4#=> (5+8i)Complex(20,9)-9.8#=> (10.2+9i)
VALUErb_complex_minus(VALUE self, VALUE other){ if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); real = f_sub(adat->real, bdat->real); imag = f_sub(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_sub(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '-');}
Returns negation of the value.
-Complex(1,2)#=> (-1-2i)
VALUErb_complex_uminus(VALUE self){ get_dat1(self); return f_complex_new2(CLASS_OF(self), f_negate(dat->real), f_negate(dat->imag));}
Performs division.
Complex(2,3)/Complex(2,3)#=> ((1/1)+(0/1)*i)Complex(900)/Complex(1)#=> ((900/1)+(0/1)*i)Complex(-2,9)/Complex(-9,2)#=> ((36/85)-(77/85)*i)Complex(9,8)/4#=> ((9/4)+(2/1)*i)Complex(20,9)/9.8#=> (2.0408163265306123+0.9183673469387754i)
VALUErb_complex_div(VALUE self, VALUE other){ return f_divide(self, other, f_quo, id_quo);}
Ifcmp
's imaginary part is zero, andobject
is also a real number (or aComplex number wherethe imaginary part is zero), compare the real part ofcmp
toobject. Otherwise, return nil.
Complex(2,3)<=>Complex(2,3)#=> nilComplex(2,3)<=>1#=> nilComplex(2)<=>1#=> 1Complex(2)<=>2#=> 0Complex(2)<=>3#=> -1
static VALUEnucomp_cmp(VALUE self, VALUE other){ if (nucomp_real_p(self) && k_numeric_p(other)) { if (RB_TYPE_P(other, T_COMPLEX) && nucomp_real_p(other)) { get_dat2(self, other); return rb_funcall(adat->real, idCmp, 1, bdat->real); } else if (f_real_p(other)) { get_dat1(self); return rb_funcall(dat->real, idCmp, 1, other); } } return Qnil;}
Returns true if cmp equals object numerically.
Complex(2,3)==Complex(2,3)#=> trueComplex(5)==5#=> trueComplex(0)==0.0#=> trueComplex('1/3')==0.33#=> falseComplex('1/2')=='1/2'#=> false
static VALUEnucomp_eqeq_p(VALUE self, VALUE other){ if (RB_TYPE_P(other, T_COMPLEX)) { get_dat2(self, other); return f_boolcast(f_eqeq_p(adat->real, bdat->real) && f_eqeq_p(adat->imag, bdat->imag)); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag)); } return f_boolcast(f_eqeq_p(other, self));}
Returns the absolute part of its polar form.
Complex(-1).abs#=> 1Complex(3.0,-4.0).abs#=> 5.0
VALUErb_complex_abs(VALUE self){ get_dat1(self); if (f_zero_p(dat->real)) { VALUE a = f_abs(dat->imag); if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } if (f_zero_p(dat->imag)) { VALUE a = f_abs(dat->real); if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } return rb_math_hypot(dat->real, dat->imag);}
Returns square of the absolute value.
Complex(-1).abs2#=> 1Complex(3.0,-4.0).abs2#=> 25.0
static VALUEnucomp_abs2(VALUE self){ get_dat1(self); return f_add(f_mul(dat->real, dat->real), f_mul(dat->imag, dat->imag));}
Returns the angle part of its polar form.
Complex.polar(3,Math::PI/2).arg#=> 1.5707963267948966
VALUErb_complex_arg(VALUE self){ get_dat1(self); return rb_math_atan2(dat->imag, dat->real);}
Returns the angle part of its polar form.
Complex.polar(3,Math::PI/2).arg#=> 1.5707963267948966
VALUErb_complex_arg(VALUE self){ get_dat1(self); return rb_math_atan2(dat->imag, dat->real);}
Returns the complex conjugate.
Complex(1,2).conjugate#=> (1-2i)
VALUErb_complex_conjugate(VALUE self){ get_dat1(self); return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));}
Returns the complex conjugate.
Complex(1,2).conjugate#=> (1-2i)
VALUErb_complex_conjugate(VALUE self){ get_dat1(self); return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));}
Returns the denominator (lcm of both denominator - real and imag).
See numerator.
static VALUEnucomp_denominator(VALUE self){ get_dat1(self); return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));}
Performs division as each part is a float, never returns a float.
Complex(11,22).fdiv(3)#=> (3.6666666666666665+7.333333333333333i)
static VALUEnucomp_fdiv(VALUE self, VALUE other){ return f_divide(self, other, f_fdiv, id_fdiv);}
Returnstrue
ifcmp
's real and imaginaryparts are both finite numbers, otherwise returnsfalse
.
static VALUErb_complex_finite_p(VALUE self){ get_dat1(self); if (f_finite_p(dat->real) && f_finite_p(dat->imag)) { return Qtrue; } return Qfalse;}
Returns the imaginary part.
Complex(7).imaginary#=> 0Complex(9,-4).imaginary#=> -4
VALUErb_complex_imag(VALUE self){ get_dat1(self); return dat->imag;}
Returns the imaginary part.
Complex(7).imaginary#=> 0Complex(9,-4).imaginary#=> -4
VALUErb_complex_imag(VALUE self){ get_dat1(self); return dat->imag;}
Returns1
ifcmp
's real or imaginary part isan infinite number, otherwise returnsnil
.
Forexample: (1+1i).infinite?#=> nil (Float::INFINITY+1i).infinite?#=> 1
static VALUErb_complex_infinite_p(VALUE self){ get_dat1(self); if (NIL_P(f_infinite_p(dat->real)) && NIL_P(f_infinite_p(dat->imag))) { return Qnil; } return ONE;}
Returns the value as a string for inspection.
Complex(2).inspect#=> "(2+0i)"Complex('-8/6').inspect#=> "((-4/3)+0i)"Complex('1/2i').inspect#=> "(0+(1/2)*i)"Complex(0,Float::INFINITY).inspect#=> "(0+Infinity*i)"Complex(Float::NAN,Float::NAN).inspect#=> "(NaN+NaN*i)"
static VALUEnucomp_inspect(VALUE self){ VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, f_format(self, rb_inspect)); rb_str_cat2(s, ")"); return s;}
Returns the absolute part of its polar form.
Complex(-1).abs#=> 1Complex(3.0,-4.0).abs#=> 5.0
VALUErb_complex_abs(VALUE self){ get_dat1(self); if (f_zero_p(dat->real)) { VALUE a = f_abs(dat->imag); if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } if (f_zero_p(dat->imag)) { VALUE a = f_abs(dat->real); if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } return rb_math_hypot(dat->real, dat->imag);}
Returns the numerator.
1 2 3+4i <- numerator - + -i -> ---- 2 3 6 <- denominatorc = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)n = c.numerator #=> (3+4i)d = c.denominator #=> 6n / d #=> ((1/2)+(2/3)*i)Complex(Rational(n.real, d), Rational(n.imag, d)) #=> ((1/2)+(2/3)*i)
See denominator.
static VALUEnucomp_numerator(VALUE self){ VALUE cd; get_dat1(self); cd = nucomp_denominator(self); return f_complex_new2(CLASS_OF(self), f_mul(f_numerator(dat->real), f_div(cd, f_denominator(dat->real))), f_mul(f_numerator(dat->imag), f_div(cd, f_denominator(dat->imag))));}
Returns the angle part of its polar form.
Complex.polar(3,Math::PI/2).arg#=> 1.5707963267948966
VALUErb_complex_arg(VALUE self){ get_dat1(self); return rb_math_atan2(dat->imag, dat->real);}
Returns an array; [cmp.abs, cmp.arg].
Complex(1,2).polar#=> [2.23606797749979, 1.1071487177940904]
static VALUEnucomp_polar(VALUE self){ return rb_assoc_new(f_abs(self), f_arg(self));}
Performs division.
Complex(2,3)/Complex(2,3)#=> ((1/1)+(0/1)*i)Complex(900)/Complex(1)#=> ((900/1)+(0/1)*i)Complex(-2,9)/Complex(-9,2)#=> ((36/85)-(77/85)*i)Complex(9,8)/4#=> ((9/4)+(2/1)*i)Complex(20,9)/9.8#=> (2.0408163265306123+0.9183673469387754i)
VALUErb_complex_div(VALUE self, VALUE other){ return f_divide(self, other, f_quo, id_quo);}
Returns the value as a rational if possible (the imaginary part should beexactly zero).
Complex(1.0/3,0).rationalize#=> (1/3)Complex(1,0.0).rationalize# RangeErrorComplex(1,2).rationalize# RangeError
See to_r.
static VALUEnucomp_rationalize(int argc, VALUE *argv, VALUE self){ get_dat1(self); rb_check_arity(argc, 0, 1); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", self); } return rb_funcallv(dat->real, id_rationalize, argc, argv);}
Returns the real part.
Complex(7).real#=> 7Complex(9,-4).real#=> 9
VALUErb_complex_real(VALUE self){ get_dat1(self); return dat->real;}
Returns false, even if the complex number has no imaginary part.
static VALUEnucomp_false(VALUE self){ return Qfalse;}
Returns an array; [cmp.real, cmp.imag].
Complex(1,2).rectangular#=> [1, 2]
static VALUEnucomp_rect(VALUE self){ get_dat1(self); return rb_assoc_new(dat->real, dat->imag);}
Returns an array; [cmp.real, cmp.imag].
Complex(1,2).rectangular#=> [1, 2]
static VALUEnucomp_rect(VALUE self){ get_dat1(self); return rb_assoc_new(dat->real, dat->imag);}
Returns self.
Complex(2).to_c#=> (2+0i)Complex(-8,6).to_c#=> (-8+6i)
static VALUEnucomp_to_c(VALUE self){ return self;}
Returns the value as a float if possible (the imaginary part should beexactly zero).
Complex(1,0).to_f#=> 1.0Complex(1,0.0).to_f# RangeErrorComplex(1,2).to_f# RangeError
static VALUEnucomp_to_f(VALUE self){ get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float", self); } return f_to_f(dat->real);}
Returns the value as an integer if possible (the imaginary part should beexactly zero).
Complex(1,0).to_i#=> 1Complex(1,0.0).to_i# RangeErrorComplex(1,2).to_i# RangeError
static VALUEnucomp_to_i(VALUE self){ get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer", self); } return f_to_i(dat->real);}
Returns the value as a rational if possible (the imaginary part should beexactly zero).
Complex(1,0).to_r#=> (1/1)Complex(1,0.0).to_r# RangeErrorComplex(1,2).to_r# RangeError
See rationalize.
static VALUEnucomp_to_r(VALUE self){ get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", self); } return f_to_r(dat->real);}
Returns the value as a string.
Complex(2).to_s#=> "2+0i"Complex('-8/6').to_s#=> "-4/3+0i"Complex('1/2i').to_s#=> "0+1/2i"Complex(0,Float::INFINITY).to_s#=> "0+Infinity*i"Complex(Float::NAN,Float::NAN).to_s#=> "NaN+NaN*i"
static VALUEnucomp_to_s(VALUE self){ return f_format(self, rb_String);}
This page was generated for Ruby 3.0.0
Generated with Ruby-doc Rdoc Generator 0.42.0.