Число Улама
Число Улама — это членцелочисленной последовательности, придуманной и названной в свою честьСтаниславом Уламом, в 1964 году.
Определение
[править |править код]Стандартная последовательность Улама (или (1, 2)-числа Улама) начинается сU1 = 1 иU2 = 2. Приn > 2,Un определяется, как наименьшеецелое число большееUn-1, которое единственным образом разлагается в сумму двух различных более ранних членов последовательности.
Примеры
[править |править код]Из определения вытекает, что 3 это число Улама (1+2); и 4 это число Улама (1+3). (Тут 2+2 не является вторым представлением 4, потому что предыдущие члены должны быть различными.) Число 5 не является числом Улама, потому что 5 = 1 + 4 = 2 + 3. Последовательность начинается, как:
- 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99, 102, 106, 114, 126, 131, 138, 145, 148, 155, 175, 177, 180, 182, 189, 197, 206, 209, 219, 221, 236, 238, 241, 243, 253, 258, 260, 273, 282, ... последовательностьA002858 вOEIS.
Первые числа Улама, которые также являются простыми числами:
- 2, 3, 11, 13, 47, 53, 97, 131, 197, 241, 409, 431, 607, 673, 739, 751, 983, 991, 1103, 1433, 1489, 1531, 1553, 1709, 1721, 2371, 2393, 2447, 2633, 2789, 2833, 2897, ... последовательностьA068820 вOEIS.
Существует бесконечно много чисел Улама, поскольку после добавления первых n членов всегда можно добавить еще один элемент:Un − 1 +Un , который будет однозначно определен, как сумма двух элементов меньше него и мы можем получить еще меньшие элементы используя подобный метод, поэтому следующий элемент можно определить, как наименьший среди этих однозначно определяемых вариантов.[1]
Улам считал, что числа Улама имеют нулевуюасимптотическую плотность,[2] однако, по-видимому, она равна 0.07398.[3]
Скрытая структура
[править |править код]Было замечено[4] , что первые 10 миллионов чисел Улама удовлетворяют свойству: кроме 4 элементов (и это продолжается и далее, как известно, до). Неравенства такого типа обычно верны для последовательностей, обладающих некоторой формой периодичности, но последовательность Улама, как известно, не является периодической, и явление не было объяснено. Его можно использовать для быстрого вычисления последовательности Улама (см. внешние ссылки).
Вариации и обобщения
[править |править код]Идею можно обобщить как (u, v)-числа Улама, выбрав разные начальные значения (u, v). Последовательность чисел (u, v)-чисел Улама является периодичной, если последовательность разностей между последовательными числами в последовательности периодическая. Когда v - нечетное число больше трех, последовательность (2, v)-чисел Улама является периодической. Когда v совпадает с 1 (по модулю 4) и не менее пяти, последовательность (4, v)-чисел Улама снова периодическая. Однако стандартные числа Улама не являются периодическими.[5]
Последовательность чисел называется s-аддитивной, если каждое число в последовательности после начальных 2s-членов последовательности имеет ровно s-представлений в виде суммы двух предыдущих чисел. Таким образом, числа Улама и (u, v)-числа Улама являются 1-аддитивными последовательностями.[6]
Если последовательность формируется путем добавления наибольшего числа с уникальным представлением в виде суммы двух более ранних чисел, вместо добавления наименьшего однозначно представимого числа, то результирующая последовательность представляет собой последовательностьчисел Фибоначчи.[7]
Примечания
[править |править код]- ↑Recaman (1973) использует похожий аргумент, сформулированный какдоказательство от противного. Он утверждает, что если бы было конечное число чисел Улама, то сумма последних двух также была бы числом Улама - противоречие. Однако, хотя сумма последних двух чисел в этом случае имеет единственное представление в виде суммы двух чисел Улама, она не обязательно является наименьшим числом с единственным представлением.
- ↑Утверждение, что Улам предполагал это находится в OEISA002858, но Улам не пытался дать оценку своей последовательности вUlam (1964a), а вUlam (1964b) он упоминал проблему асимптотической плотности этого множества, но также не пытался оценить ее.Recaman (1973) повторяет вопрос изUlam (1964b) об асимптотической плотности, снова не выдвигая предположения о ее значении.
- ↑OEISA002858
- ↑Steinerberger (2015)
- ↑Queneau (1972) впервые заметил закономерность для u = 2 иv = 7 илиv = 9.Finch (1992) первым выдвинул гипотезу о нечетном v больше трех, и она была доказанаSchmerl & Spiegel (1994). Периодичность (4, v)-чисел Улама была доказанаCassaigne & Finch (1995).
- ↑Queneau (1972).
- ↑Finch (1992).
Литература
[править |править код]- Cassaigne, Julien; Finch, Steven R. (1995),A class of 1-additive sequences and quadratic recurrences,Experimental Mathematics,4 (1):49–60,doi:10.1080/10586458.1995.10504307,MR 1359417Архивная копия от 4 марта 2016 наWayback Machine
- Finch, Steven R. (1992), On the regularity of certain 1-additive sequences,Journal of Combinatorial Theory, Series A,60 (1):123–130,doi:10.1016/0097-3165(92)90042-S,MR 1156652
- Guy, Richard (2004),Unsolved Problems in Number Theory (3rd ed.),Springer-Verlag, pp. 166–167,ISBN 0-387-20860-7
- Queneau, Raymond (1972), Sur les suitess-additives,Journal of Combinatorial Theory, Series A (фр.),12 (1):31–71,doi:10.1016/0097-3165(72)90083-0,MR 0302597
- Recaman, Bernardo (1973), Questions on a sequence of Ulam,American Mathematical Monthly,80 (8):919–920,doi:10.2307/2319404,JSTOR 2319404,MR 1537172
- Schmerl, James; Spiegel, Eugene (1994), The regularity of some 1-additive sequences,Journal of Combinatorial Theory, Series A,66 (1):172–175,doi:10.1016/0097-3165(94)90058-2,MR 1273299
- Ulam, Stanislaw (1964a), Combinatorial analysis in infinite sets and some physical theories,SIAM Review,6:343–355,doi:10.1137/1006090,JSTOR 2027963,MR 0170832
- Ulam, Stanislaw (1964b),Problems in Modern Mathematics, New York: John Wiley & Sons, Inc, p. xi,MR 0280310
- Steinerberger, Stefan (2015),A Hidden Signal in the Ulam sequence, Experimental Mathematics,arXiv:1507.00267