Movatterモバイル変換


[0]ホーム

URL:


Jump to content
Rosetta Code
Search

Towers of Hanoi

From Rosetta Code
Task
Towers of Hanoi
You are encouraged tosolve this task according to the task description, using any language you may know.
Task

Solve the  Towers of Hanoi   problem with recursion.

11l

Translation of:Python
F hanoi(ndisks, startPeg = 1, endPeg = 3) -> Void   I ndisks      hanoi(ndisks - 1, startPeg, 6 - startPeg - endPeg)      print(‘Move disk #. from peg #. to peg #.’.format(ndisks, startPeg, endPeg))      hanoi(ndisks - 1, 6 - startPeg - endPeg, endPeg)hanoi(ndisks' 3)
Output:
Move disk 1 from peg 1 to peg 3Move disk 2 from peg 1 to peg 2Move disk 1 from peg 3 to peg 2Move disk 3 from peg 1 to peg 3Move disk 1 from peg 2 to peg 1Move disk 2 from peg 2 to peg 3Move disk 1 from peg 1 to peg 3

360 Assembly

Translation of:PL/I
*        Towers of Hanoi           08/09/2015HANOITOW CSECT         USING  HANOITOW,R12       r12 : base register         LR     R12,R15            establish base register         ST     R14,SAVE14         save r14BEGIN    LH     R2,=H'4'           n <===         L      R3,=C'123 '        stating position         BAL    R14,MOVE           r1=move(m,n)RETURN   L      R14,SAVE14         restore r14         BR     R14                return to callerSAVE14   DS     F                  static save r14PG       DC     CL44'xxxxxxxxxxxx Move disc from pole X to pole Y' NN       DC     F'0'POLEX    DS     F                  current polesPOLEN    DS     F                  new poles*        ....   recursive          subroutine move(n, poles)  [r2,r3]MOVE     LR     R10,R11            save stackptr (r11) in r10 temp         LA     R1,STACKLEN        amount of storage required         GETMAIN RU,LV=(R1)        allocate storage for stack         USING  STACKDS,R11        make storage addressable         LR     R11,R1             establish stack addressability         ST     R14,SAVE14M        save previous r14         ST     R10,SAVE11M        save previous r11         LR     R1,R5              restore saved argument r5BEGINM   STM    R2,R3,STACK        push arguments to stack         ST     R3,POLEX         CH     R2,=H'1'           if n<>1         BNE    RECURSE            then goto recurse         L      R1,NN         LA     R1,1(R1)           nn=nn+1         ST     R1,NN         XDECO  R1,PG              nn         MVC    PG+33(1),POLEX+0   from         MVC    PG+43(1),POLEX+1   to         XPRNT  PG,44              print "move disk from to"         B      RETURNMRECURSE  L      R2,N               n         BCTR   R2,0               n=n-1         MVC    POLEN+0(1),POLES+0 from         MVC    POLEN+1(1),POLES+2 via         MVC    POLEN+2(1),POLES+1 to         L      R3,POLEN           new poles         BAL    R14,MOVE           call move(n-1,from,via,to)         LA     R2,1               n=1         MVC    POLEN,POLES          L      R3,POLEN           new poles         BAL    R14,MOVE           call move(1,from,to,via)         L      R2,N               n         BCTR   R2,0               n=n-1         MVC    POLEN+0(1),POLES+2 via         MVC    POLEN+1(1),POLES+1 to         MVC    POLEN+2(1),POLES+0 from         L      R3,POLEN           new poles         BAL    R14,MOVE           call move(n-1,via,to,from)RETURNM  LM     R2,R3,STACK        pull arguments from stack         LR     R1,R11             current stack         L      R14,SAVE14M        restore r14         L      R11,SAVE11M        restore r11         LA     R0,STACKLEN        amount of storage to free         FREEMAIN A=(R1),LV=(R0)   free allocated storage         BR     R14                return to caller         LTORG         DROP   R12                base no longer neededSTACKDS  DSECT                     dynamic areaSAVE14M  DS     F                  saved r14SAVE11M  DS     F                  saved r11STACK    DS     0F                 stackN        DS     F                  r2 nPOLES    DS     F                  r3 polesSTACKLEN EQU    *-STACKDS         YREGS           END    HANOITOW
Output:
           1 Move disc from pole 1 to pole 3           2 Move disc from pole 1 to pole 2           3 Move disc from pole 3 to pole 2           4 Move disc from pole 1 to pole 3           5 Move disc from pole 2 to pole 1           6 Move disc from pole 2 to pole 3           7 Move disc from pole 1 to pole 3           8 Move disc from pole 1 to pole 2           9 Move disc from pole 3 to pole 2          10 Move disc from pole 3 to pole 1          11 Move disc from pole 2 to pole 1          12 Move disc from pole 3 to pole 2          13 Move disc from pole 1 to pole 3          14 Move disc from pole 1 to pole 2          15 Move disc from pole 3 to pole 2

6502 Assembly

Works with:Commodore

This should work on any Commodore 8-bit computer; just set `temp` to an appropriate zero-page location.

temp   = $FB   ; this works on a VIC-20 or C-64; adjust for other machines. Need two bytes zero-page space unused by the OS.; kernal print-char routinechrout  = $FFD2; Main Towers of Hanoi routine. To call, load the accumulator with the number of disks to move,; the X register with the source peg (1-3), and the Y register with the target peg.hanoi:   cmp #$00       ; do nothing if the number of disks to move is zero         bne nonzero         rtsnonzero: pha            ; save registers on stack         txa         pha         tya         pha         pha            ; and make room for the spare peg number         ; Parameters are now on the stack at these offsets:         count  = $0104         source = $0103         target = $0102         spare  = $0101         ; compute spare rod number (6 - source - dest)         tsx         lda #6         sec         sbc source, x         sec         sbc target, x         sta spare, x         ; prepare for first recursive call         tay                ; target is the spare peg         tsx         lda source, x      ; source is the same         sta temp           ; we're using X to access the stack, so save its value here for now         lda count, x       ; move count - 1 disks         sec         sbc #1         ldx temp           ; now load X for call          ; and recurse         jsr hanoi         ; restore X and Y for print call         tsx         ldy target, x         lda source, x         tax         ; print instructions to move the last disk         jsr print_move         ; prepare for final recursive call         tsx         lda spare, x    ; source is now spare         sta temp         lda target, x   ; going to the original target         tay                     lda count, x    ; and again moving count-1 disks         sec                  sbc #1         ldx temp         jsr hanoi         ; pop our stack frame, restore registers, and return         pla         pla         tay         pla         tax         pla         rts; constants for printingprelude:   .asciiz "MOVE DISK FROM "interlude: .asciiz " TO "postlude:  .byte 13,0; print instructions: move disk from (X) to (Y)print_move:         pha         txa         pha         tya         pha         ; Parameters are now on the stack at these offsets:         from   = $0102           to   = $0101         lda #<prelude         ldx #>prelude         jsr print_string         tsx         lda from,x         clc         adc #$30         jsr chrout         lda #<interlude         ldx #>interlude         jsr print_string         tsx         lda to,x         clc         adc #$30         jsr chrout         lda #<postlude         ldx #>postlude         jsr print_string         pla         tay         pla         tax         pla         rts; utility routine: print null-terminated string at address AXprint_string:         sta temp         stx temp+1         ldy #0loop:    lda (temp),y         beq done_print         jsr chrout         iny         bne loopdone_print:         rts
Output:
MOVE DISK FROM 1 TO 2MOVE DISK FROM 1 TO 3MOVE DISK FROM 2 TO 3MOVE DISK FROM 1 TO 2MOVE DISK FROM 3 TO 1MOVE DISK FROM 3 TO 2MOVE DISK FROM 1 TO 2MOVE DISK FROM 1 TO 3MOVE DISK FROM 2 TO 3MOVE DISK FROM 2 TO 1MOVE DISK FROM 3 TO 1MOVE DISK FROM 2 TO 3MOVE DISK FROM 1 TO 2MOVE DISK FROM 1 TO 3MOVE DISK FROM 2 TO 3

8080 Assembly

org100hlhld6; Top of CP/M usable memorysphl; Put the stack therelxib,0401h; Set up first arguments to move()lxid,0203hcallmove; move(4, 1, 2, 3)rst0; quit program;;;Move B disks from C via D to E. move:dcrb; One fewer disk in next iterationjzmvout; If this was the last disk, print move and stoppushb; Otherwise, save registers,pushd mova,d; First recursive callmovd,emove,acallmove; move(B-1, C, E, D)popd; Restore registerspopbcallmvout; Print current movemova,c; Second recursive callmovc,dmovd,ajmpmove; move(B-1, D, C, E) - tail call optimization;;;Print move, saving registers.mvout:pushb; Save registers on stackpushdmova,c; Store 'from' as ASCII digit in 'from' spaceadi'0'staout1mova,e; Store 'to' as ASCII digit in 'to' spaceadi'0'staout2lxid,outstrmvic,9; CP/M call to print the stringcall5popd; Restore register contentspopbret;;;Move output with placeholder for pole numbersoutstr:db'Move disk from pole 'out1:db'* to pole 'out2:db'*',13,10,'$'
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

8086 Assembly

cpu8086bits16org100hsection.textmovbx,0402h; Set up first arguments to move()movcx,0103h; Registers chosen s.t. CX contains output;;;Move BH disks from CH via BL to CLmove:decbh; One fewer disk in next iterationjz.out; If this was last disk, just print movepushbx; Save the registers for a recursive callpushcxxchgbl,cl; Swap the 'to' and 'via' registerscallmove; move(BH, CH, CL, BL)popcx; Restore the registers from the stackpopbxcall.out; Print the movexchgch,bl; Swap the 'from' and 'via' registersjmpmove; move(BH, BL, CH, CL);;;Print the move.out:movax,'00'; Add ASCII 0 to both 'from' and 'to'addax,cx; in one 16-bit operationmov[out1],ah; Store 'from' field in outputmov[out2],al; Store 'to' field in outputmovdx,outstr; MS-DOS system call to print stringmovah,9int21hretsection.dataoutstr:db'Movediskfrompole'out1:db'*topole'out2:db'*',13,10,'$'
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

8th

5var,disksvarsavarsbvarsc:savesc!sb!sa!disks!;:getsa@sb@sc@;:get2getswap;:hanoisavedisks@notif;;thendisks@getdisks@n:1-get2hanoisavecr"movearingfrom".sa@."to".sb@.disks@n:1-get2rothanoi;"TowerofHanoi,with".disks@."rings:".disks@123hanoicrbye

ABC

HOW TO MOVE n DISKS FROM src VIA via TO dest:    IF n>0:        MOVE n-1 DISKS FROM src VIA dest TO via        WRITE "Move disk from pole", src, "to pole", dest/        MOVE n-1 DISKS FROM via VIA dest TO srcMOVE 4 DISKS FROM 1 VIA 2 TO 3
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 1Move disk from pole 1 to pole 2Move disk from pole 3 to pole 2Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 3Move disk from pole 2 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 3

Action!

Translation of:Tiny BASIC

...via PL/M

;;; Iterative Towers of Hanoi; translated from Tiny BASIC via PL/M;;;DEFINE NUMBER_OF_DISCS = "4"PROC Main()  INT d, n, x  n = 1  FOR d = 1 TO NUMBER_OF_DISCS DO    n = n + n  OD  FOR x = 1 TO n - 1 DO    ; as with Algol W, PL/M, Action! has bit and MOD operators    Print( "Move disc on peg " )    Put( '1 + (   ( x AND ( x - 1 ) )       MOD 3 ) )    Print( " to peg " )    Put( '1 + ( ( ( x OR  ( x - 1 ) ) + 1 ) MOD 3 ) )    PutE()  ODRETURN
Output:
Move disc on peg 1 to peg 3Move disc on peg 1 to peg 2Move disc on peg 3 to peg 2Move disc on peg 1 to peg 3Move disc on peg 2 to peg 1Move disc on peg 2 to peg 3Move disc on peg 1 to peg 3Move disc on peg 1 to peg 2Move disc on peg 3 to peg 2Move disc on peg 3 to peg 1Move disc on peg 2 to peg 1Move disc on peg 3 to peg 2Move disc on peg 1 to peg 3Move disc on peg 1 to peg 2Move disc on peg 3 to peg 2

ActionScript

publicfunctionmove(n:int,from:int,to:int,via:int):void{if(n>0){move(n-1,from,via,to);trace("Move disk from pole "+from+" to pole "+to);move(n-1,via,to,from);}}

Ada

withAda.Text_Io;useAda.Text_Io;procedureTowersistypePegsis(Left,Center,Right);procedureHanoi(Ndisks:Natural;Start_Peg:Pegs:=Left;End_Peg:Pegs:=Right;Via_Peg:Pegs:=Center)isbeginifNdisks>0thenHanoi(Ndisks-1,Start_Peg,Via_Peg,End_Peg);Put_Line("Move disk"&Natural'Image(Ndisks)&" from "&Pegs'Image(Start_Peg)&" to "&Pegs'Image(End_Peg));Hanoi(Ndisks-1,Via_Peg,End_Peg,Start_Peg);endif;endHanoi;beginHanoi(4);endTowers;

Agena

move := proc(n::number, src::number, dst::number, via::number) is   if n > 0 then      move(n - 1, src, via, dst)      print(src & ' to ' & dst)      move(n - 1, via, dst, src)   fiendmove(4, 1, 2, 3)

ALGOL 60

begin  procedure movedisk(n, f, t);  integer n, f, t;  begin    outstring (1, "Move disk from");    outinteger(1, f);    outstring (1, "to");    outinteger(1, t);    outstring (1, "\n");  end;  procedure dohanoi(n, f, t, u);  integer n, f, t, u;  begin    if n < 2 then      movedisk(1, f, t)    else      begin        dohanoi(n - 1, f, u, t);        movedisk(1, f, t);        dohanoi(n - 1, u, t, f);      end;  end;  dohanoi(4, 1, 2, 3);  outstring(1,"Towers of Hanoi puzzle completed!")end
Output:
Move disk from 1 to 3 Move disk from 1 to 2 Move disk from 3 to 2 Move disk from 1 to 3 Move disk from 2 to 1 Move disk from 2 to 3 Move disk from 1 to 3 Move disk from 1 to 2 Move disk from 3 to 2 Move disk from 3 to 1 Move disk from 2 to 1 Move disk from 3 to 2 Move disk from 1 to 3 Move disk from 1 to 2 Move disk from 3 to 2 Towers of Hanoi puzzle completed!


ALGOL 68

PROC move = (INT n, from, to, via) VOID:  IF n > 0 THEN    move(n - 1, from, via, to);    printf(($"Move disk from pole "g" to pole "gl$, from, to));    move(n - 1, via, to, from)  FI;main: (  move(4, 1,2,3))


COMMENT Disk number is also printed in this code (works with a68g): COMMENT

PROC move = (INT n, from, to, via) VOID:  IF n > 0 THEN    move(n - 1, from, via, to);    printf(($"Move disk "g"     from pole "g"     to pole "gl$, n,  from, to));    move(n - 1, via, to, from)  FI ;main: (  move(4, 1,2,3))

ALGOL-M

beginprocedure move(n, src, via, dest);integer n;string(1) src, via, dest;begin    if n > 0 then    begin        move(n-1, src, dest, via);        write("Move disk from pole ");        writeon(src);        writeon(" to pole ");        writeon(dest);        move(n-1, via, src, dest);    end;end;move(4, "1", "2", "3");end
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

ALGOL W

Recursive

Following Agena, Algol 68, AmigaE...

beginproceduremove(integervaluen,from,to,via);ifn>0thenbeginmove(n-1,from,via,to);write(i_w:=1,s_w:=0,"Movediskfrompeg:",from,"topeg:",to);move(n-1,via,to,from)endmove;move(4,1,2,3)end.

Iterative

Translation of:Tiny BASIC
begin%iterativetowersofhanoi-translatedfromTinyBasic%integerd,n;whilebeginwriteon("Howmanydisks?");read(d);d<1ord>10enddobeginend;n:=1;whilednot=0dobegind:=d-1;n:=2*nend;forx:=1untiln-1dobeginintegers,t;%AlgolWhasthenecessarybitandmodulooperatorssotheseareusedhere%%insteadofimplementingthemviasubroutines%s:=number(bitstring(x)andbitstring(x-1))rem3;t:=(number(bitstring(x)orbitstring(x-1))+1)rem3;write(i_w:=1,s_w:=0,"Movedisconpeg",s+1,"topeg",t+1)endend.

AmigaE

PROC move(n, from, to, via)  IF n > 0    move(n-1, from, via, to)    WriteF('Move disk from pole \d to pole \d\n', from, to)    move(n-1, via, to, from)  ENDIFENDPROCPROC main()  move(4, 1,2,3)ENDPROC

Amazing Hopper

#include <hopper.h>#proto hanoi(_X_,_Y_,_Z_,_W_)main:   get arg number (2,discos)   {discos}!neg? do{fail=0,mov(fail),{"I need a positive (or zero) number here, not: ",fail}println,exit(0)}   pos? do{      _hanoi( discos, "A", "B", "C" )   }exit(0).localshanoi(discos,inicio,aux,fin)   iif( {discos}eqto(1), {inicio, "->", fin, "\n"};print,  _hanoi({discos}minus(1), inicio,fin,aux);\                                                           {inicio, "->", fin, "\n"};print;\                                                           _hanoi({discos}minus(1), aux, inicio, fin))back
Output:
For 4 discs:A->BA->CB->CA->BC->AC->BA->BA->CB->CB->AC->AB->CA->BA->CB->C

APL

Works with:Dyalog APL
hanoi{move{nfromtovian0:l(n-1)fromviator(n-1)viatofroml,(fromto),r}'⊂Move disk from pole ⊃,I1,⊂ to pole ⊃,I1'⎕FMTmove}
Output:
      hanoi 4 1 2 3Move disk from pole 1 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 2Move disk from pole 3 to pole 1Move disk from pole 2 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 2

AppleScript

--------------------- TOWERS OF HANOI ---------------------- hanoi :: Int -> (String, String, String) -> [(String, String)]onhanoi(n,abc)scriptgoon|λ|(n,{x,y,z})ifn>0thensetmton-1|λ|(m,{x,z,y})&¬{{x,y}}&|λ|(m,{z,y,x})else{}endifend|λ|endscriptgo's|λ|(n,abc)endhanoi--------------------------- TEST -------------------------onrununlines(map(intercalate(" -> "),¬hanoi(3,{"left","right","mid"})))endrun-------------------- GENERIC FUNCTIONS --------------------- intercalate :: String -> [String] -> Stringonintercalate(delim)scripton|λ|(xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,delim}setstoxsastextsetmytext item delimiterstodlmsend|λ|endscriptendintercalate-- Lift 2nd class handler function into 1st class script wrapper-- mReturn :: First-class m => (a -> b) -> m (a -> b)onmReturn(f)ifclassoffisscriptthenfelsescriptproperty|λ|:fendscriptendifendmReturn-- map :: (a -> b) -> [a] -> [b]onmap(f,xs)tellmReturn(f)setlngtolengthofxssetlstto{}repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,i,xs)endrepeatreturnlstendtellendmap-- unlines :: [String] -> Stringonunlines(xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,linefeed}setstrtoxsastextsetmytext item delimiterstodlmstrendunlines
Output:
left -> rightleft -> midright -> midleft -> rightmid -> leftmid -> rightleft -> right

More illustratively:

(I've now eliminated the recursive|move|() handler's tail calls. So it's now only called 2 ^ (n - 1) times as opposed to 2 ^ (n + 1) - 1 with full recursion. The maximum call depth of n is only reached once, whereas with full recursion, the maximum depth was n + 1 and this was reached 2 ^ n times.)

onhanoi(n,source,target)sett1totab&"tower 1: "&tabsett2totab&"tower 2: "&tabsett3totab&"tower 3: "&tabscriptopropertym:0propertytower1:{}propertytower2:{}propertytower3:{}propertytowerRefs:{areference totower1,areference totower2,areference totower3}propertyprocess:missing valueon|move|(n,source,target)setauxto6-source-targetrepeatwithnfromnto2by-1-- Tail call elimination repeat.|move|(n-1,source,aux)setendofitemtargetofmytowerRefstontellitemsourceofmytowerRefstosetitscontentstoreverseofrestofitsreversesetmtom+1setendofmyprocessto¬{(mastext)&". move disc "&n&(" from tower "&source)&(" to tower "&target&":"),¬t1&tower1,¬t2&tower2,¬t3&tower3}tellsourcesetsourcetoauxsetauxtoitendtellendrepeat-- Specific code for n = 1:setendofitemtargetofmytowerRefsto1tellitemsourceofmytowerRefstosetitscontentstoreverseofrestofitsreversesetmtom+1setendofmyprocessto¬{(mastext)&". move disc 1 from tower "&source&(" to tower "&target&":"),¬t1&tower1,¬t2&tower2,¬t3&tower3}end|move|endscriptrepeatwithifromnto1by-1setendofitemsourceofo'stowerRefstoiendrepeatsetastidtoAppleScript'stext item delimiterssetAppleScript'stext item delimitersto", "seto'sprocessto{"Starting with "&n&(" discs on tower "&(source&":")),¬t1&o'stower1,t2&o'stower2,t3&o'stower3}if(n>0)thentelloto|move|(n,source,target)setendofo'sprocessto"That's it!"setAppleScript'stext item delimiterstolinefeedsetprocesstoo'sprocessastextsetAppleScript'stext item delimiterstoastidreturnprocessendhanoi-- Test:setnumberOfDiscsto3setsourceTowerto1setdestinationTowerto2hanoi(numberOfDiscs,sourceTower,destinationTower)
Output:
"Starting with 3 discs on tower 1:    tower 1:     3, 2, 1    tower 2:         tower 3:     1. move disc 1 from tower 1 to tower 2:    tower 1:     3, 2    tower 2:     1    tower 3:     2. move disc 2 from tower 1 to tower 3:    tower 1:     3    tower 2:     1    tower 3:     23. move disc 1 from tower 2 to tower 3:    tower 1:     3    tower 2:         tower 3:     2, 14. move disc 3 from tower 1 to tower 2:    tower 1:         tower 2:     3    tower 3:     2, 15. move disc 1 from tower 3 to tower 1:    tower 1:     1    tower 2:     3    tower 3:     26. move disc 2 from tower 3 to tower 2:    tower 1:     1    tower 2:     3, 2    tower 3:     7. move disc 1 from tower 1 to tower 2:    tower 1:         tower 2:     3, 2, 1    tower 3:     That's it!"

ARM Assembly

.text.global_start_start:movr0,#4@ 4 disks,movr1,#1@ from pole 1,movr2,#2@ via pole 2,movr3,#3@ to pole 3.blmovemovr0,#0@ Exit to Linux afterwardsmovr7,#1swi#0@@@Move r0 disks from r1 via r2 to r3move:subsr0,r0,#1@ One fewer disk in next iterationbeqshow@ If last disk, just print movepush{r0-r3,lr}@ Save all the registers incl. link registereorr2,r2,r3@ Swap the 'to' and 'via' registerseorr3,r2,r3eorr2,r2,r3blmove@ Recursive callpop{r0-r3}@ Restore all the registers except LRblshow@ Show current moveeorr1,r1,r3@ Swap the 'to' and 'via' registerseorr3,r1,r3eorr1,r1,r3pop{lr}@ Restore link registerbmove@ Tail call@@@Show moveshow:push{r0-r3,lr}@ Save all the registersaddr1,r1,#'0@ Write the source poleldrlr,=spolestrbr1,[lr] addr3,r3,#'0@ Write the destination poleldrlr,=dpolestrbr3,[lr]movr0,#1@ 1 = stdoutldrr1,=moves@ Pointer to stringldrr2,=mlen@ Length of stringmovr7,#4@ 4 = Linux write syscallswi#0 @ Print the movepop{r0-r3,pc}@ Restore all the registers and return.datamoves:.ascii"Move disk from pole "spole:.ascii"* to pole "dpole:.ascii"*\n"mlen=. - moves
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 3 to pole 1Move disk from pole 1 to pole 2Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 2 to pole 3Move disk from pole 3 to pole 1Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 3 to pole 1

Arturo

Translation of:D
hanoi:function[nfdirvia][ifn>0[hanoin-1fviadirprint["Move disk"n"from"f"to"dir]hanoin-1viadirf]]hanoi3'L'M'R
Output:
Move disk 1 from L to M Move disk 2 from L to R Move disk 1 from M to R Move disk 3 from L to M Move disk 1 from R to L Move disk 2 from R to M Move disk 1 from L to M

Asymptote

voidhanoi(intn,stringorigen,stringauxiliar,stringdestino){if(n==1){write("Move disk 1 from "+origen+" to "+destino);}else{hanoi(n-1,origen,destino,auxiliar);write("Move disk "+string(n)+" from "+origen+" to "+destino);hanoi(n-1,auxiliar,origen,destino);}}hanoi(3,"pole 1","pole 2","pole 3");write("Towers of Hanoi puzzle completed!");
Output:
Move disk 1 from pole 1 to pole 3Move disk 2 from pole 1 to pole 2Move disk 1 from pole 3 to pole 2Move disk 3 from pole 1 to pole 3Move disk 1 from pole 2 to pole 1Move disk 2 from pole 2 to pole 3Move disk 1 from pole 1 to pole 3Towers of Hanoi puzzle completed!

AutoHotkey

move(n,from,to,via)  ;n = # of disks, from = start pole, to = end pole, via = remaining pole{if(n=1){msgbox,Movediskfrompole%from%topole%to%}else{move(n-1,from,via,to)move(1,from,to,via)move(n-1,via,to,from)}}move(64,1,3,2)

AutoIt

Funcmove($n,$from,$to,$via)If($n=1)ThenConsoleWrite(StringFormat("Move disk from pole "&$from&" To pole "&$to&"\n"))Elsemove($n-1,$from,$via,$to)move(1,$from,$to,$via)move($n-1,$via,$to,$from)EndIfEndFuncmove(4,1,2,3)

AWK

Translation of:Logo
$awk'func hanoi(n,f,t,v){if(n>0){hanoi(n-1,f,v,t);print(f,"->",t);hanoi(n-1,v,t,f)}}BEGIN{hanoi(4,"left","middle","right")}'
Output:
left -> rightleft -> middleright -> middleleft -> rightmiddle -> leftmiddle -> rightleft -> rightleft -> middleright -> middleright -> leftmiddle -> leftright -> middleleft -> rightleft -> middleright -> middle

BASIC

Using a Subroutine

Works with:FreeBASIC
Works with:RapidQ
SUBmove(nASInteger,fromPegASInteger,toPegASInteger,viaPegASInteger)IFn>0THENmoven-1,fromPeg,viaPeg,toPegPRINT"Move disk from ";fromPeg;" to ";toPegmoven-1,viaPeg,toPeg,fromPegENDIFENDSUBmove4,1,2,3

UsingGOSUBs

Here's an example of implementing recursion in an old BASIC that only has global variables:

Works with:Applesoft BASIC
Works with:Chipmunk Basic
Works with:Commodore BASIC
Works with:GW-BASIC
Works with:MSX_BASIC
10DEPTH=4:REMSHOULDEQUALNUMBEROFDISKS20DIMN(DEPTH),F(DEPTH),T(DEPTH),V(DEPTH):REMSTACKPERPARAMETER30SP=0:REMSTACKPOINTER40N(SP)=4:REMSTARTWITH4DISCS50F(SP)=1:REMONPEG160T(SP)=2:REMMOVETOPEG270V(SP)=3:REMVIAPEG380GOSUB10090END99REM MOVE SUBROUTINE100IFN(SP)=0THENRETURN110OS=SP:REMSTORESTACKPOINTER120SP=SP+1:REMINCREMENTSTACKPOINTER130N(SP)=N(OS)-1:REMMOVEN-1DISCS140F(SP)=F(OS):REMFROMSTARTPEG150T(SP)=V(OS):REMTOVIAPEG160V(SP)=T(OS):REMVIATOPEG170GOSUB100180OS=SP-1:REMOSWILLHAVECHANGED190PRINT"MOVE DISC FROM";F(OS);"TO";T(OS)200N(SP)=N(OS)-1:REMMOVEN-1DISCS210F(SP)=V(OS):REMFROMVIAPEG220T(SP)=T(OS):REMTODESTPEG230V(SP)=F(OS):REMVIAFROMPEG240GOSUB100250SP=SP-1:REMRESTORESTACKPOINTERFORCALLER260RETURN

Using binary method

Works with:Chipmunk Basic
Works with:Commodore BASIC

Very fast version in BASIC V2 on Commodore C-64

Works with:MSX_BASIC
10DEFFNM3(X)=X-INT(X/3)*3:REMMODULO320N=4:GOSUB10030END99REMHANOI100:FORM=1TO2^N-1110::PRINTMID$(STR$(M),2);":",FNM3(MANDM-1)+1;"TO";FNM3((MORM-1)+1)+1130:NEXTM140RETURN
Output:
1:     1 TO 3 2:     1 TO 2 3:     3 TO 2 4:     1 TO 3 5:     2 TO 1 6:     2 TO 3 7:     1 TO 3 8:     1 TO 2 9:     3 TO 2 10:    3 TO 1 11:    2 TO 1 12:    3 TO 2 13:    1 TO 3 14:    1 TO 2 15:    3 TO 2

BASIC256

call move(4,1,2,3)print "Towers of Hanoi puzzle completed!"endsubroutine move (n, fromPeg, toPeg, viaPeg)    if n>0 then        call move(n-1, fromPeg, viaPeg, toPeg)        print "Move disk from "+fromPeg+" to "+toPeg        call move(n-1, viaPeg, toPeg, fromPeg)    end ifend subroutine
Output:
Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 1 to 3Move disk from 2 to 1Move disk from 2 to 3Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 3 to 1Move disk from 2 to 1Move disk from 3 to 2Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Towers of Hanoi puzzle completed!

IS-BASIC

100 PROGRAM "Hanoi.bas"110 CALL HANOI(4,1,3,2)120 DEF HANOI(DISK,FRO,TO,WITH)130   IF DISK>0 THEN140     CALL HANOI(DISK-1,FRO,WITH,TO)150     PRINT "Move disk";DISK;"from";FRO;"to";TO160     CALL HANOI(DISK-1,WITH,TO,FRO)170   END IF180 END DEF

Quite BASIC

Translation of:BASIC
100CLS120LETD=4:REMSHOULDEQUALNUMBEROFDISKS130ARRAYN:ARRAYF:ARRAYT:ARRAYV:REMSTACKPERPARAMETER140LETS=0:REMSTACKPOINTER150LETN(S)=4:REMSTARTWITH4DISCS160LETF(S)=1:REMONPEG1170LETT(S)=2:REMMOVETOPEG2180LETV(S)=3:REMVIAPEG3190GOSUB220200END210REM MOVE SUBROUTINE220IFN(S)=0THENRETURN230LETO=S:REMSTORESTACKPOINTER240LETS=S+1:REMINCREMENTSTACKPOINTER250LETN(S)=N(O)-1:REMMOVEN-1DISCS260LETF(S)=F(O):REMFROMSTARTPEG270LETT(S)=V(O):REMTOVIAPEG280LETV(S)=T(O):REMVIATOPEG290GOSUB220300LETO=S-1:REMOWILLHAVECHANGED310PRINT"MOVE DISC FROM ";F(O);" TO ";T(O)320LETN(S)=N(O)-1:REMMOVEN-1DISCS330LETF(S)=V(O):REMFROMVIAPEG340LETT(S)=T(O):REMTODESTPEG350LETV(S)=F(O):REMVIAFROMPEG360GOSUB220370LETS=S-1:REMRESTORESTACKPOINTERFORCALLER380RETURN390END
Output:
MOVE DISC FROM 1 TO 3MOVE DISC FROM 1 TO 2MOVE DISC FROM 3 TO 2MOVE DISC FROM 1 TO 3MOVE DISC FROM 2 TO 1MOVE DISC FROM 2 TO 3MOVE DISC FROM 1 TO 3MOVE DISC FROM 1 TO 2MOVE DISC FROM 3 TO 2MOVE DISC FROM 3 TO 1MOVE DISC FROM 2 TO 1MOVE DISC FROM 3 TO 2MOVE DISC FROM 1 TO 3MOVE DISC FROM 1 TO 2MOVE DISC FROM 3 TO 2

Batch File

@echo offsetlocal enabledelayedexpansion%==The main thing==%%==First param - Number of disks==%%==Second param - Start pole==%%==Third param - End pole==%%==Fourth param - Helper pole==%call:move 4 START END HELPERecho.pauseexit /b 0%==The "function"==%:movesetlocalsetn=%1setfrom=%2setto=%3setvia=%4if%n%gtr 0(set/ax=!n!-1call:move!x!%from%%via%%to%echo Move top disk from pole%from% to pole%to%.call:move!x!%via%%to%%from%)exit /b 0
Output:
Move top disk from pole START to pole HELPER.Move top disk from pole START to pole END.Move top disk from pole HELPER to pole END.Move top disk from pole START to pole HELPER.Move top disk from pole END to pole START.Move top disk from pole END to pole HELPER.Move top disk from pole START to pole HELPER.Move top disk from pole START to pole END.Move top disk from pole HELPER to pole END.Move top disk from pole HELPER to pole START.Move top disk from pole END to pole START.Move top disk from pole HELPER to pole END.Move top disk from pole START to pole HELPER.Move top disk from pole START to pole END.Move top disk from pole HELPER to pole END.Press any key to continue . . .

BBC BASIC

Works with:BBC BASIC for Windows
DIMDisc$(13),Size%(3)FORdisc%=1TO13Disc$(disc%)=STRING$(disc%," ")+STR$disc%+STRING$(disc%," ")IFdisc%>=10Disc$(disc%)=MID$(Disc$(disc%),2)Disc$(disc%)=CHR$17+CHR$(128+disc%-(disc%>7))+Disc$(disc%)+CHR$17+CHR$128NEXTdisc%MODE3OFFndiscs%=13FORn%=ndiscs%TO1STEP-1PROCput(n%,1)NEXTINPUTTAB(0,0)"Press Enter to start"dummy$PRINTTAB(0,0)SPC(20);PROChanoi(ndiscs%,1,2,3)VDU30ENDDEFPROChanoi(a%,b%,c%,d%)IFa%=0ENDPROCPROChanoi(a%-1,b%,d%,c%)PROCtake(a%,b%)PROCput(a%,c%)PROChanoi(a%-1,d%,c%,b%)ENDPROCDEFPROCput(disc%,peg%)PRINTTAB(13+26*(peg%-1)-disc%,20-Size%(peg%))Disc$(disc%);Size%(peg%)=Size%(peg%)+1ENDPROCDEFPROCtake(disc%,peg%)Size%(peg%)=Size%(peg%)-1PRINTTAB(13+26*(peg%-1)-disc%,20-Size%(peg%))STRING$(2*disc%+1," ");ENDPROC

BCPL

get "libhdr"let start() be move(4, 1, 2, 3)and move(n, src, via, dest) be if n > 0 do $(  move(n-1, src, dest, via)    writef("Move disk from pole %N to pole %N*N", src, dest);    move(n-1, via, src, dest)$)
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

Befunge

This is loosely based on thePython sample. The number of disks is specified by the first integer on the stack (the initial character4 in the example below). If you want the program to prompt the user for that value, you can replace the4 with a& (the read integer command).

48*2+1>#v_:!#@_0" ksid evoM">:#,_$:8/:.v>8v8:<$#<+9-+*2%3\*3/3:,+55.+1%3:$_,#!>#:<:>/!#^_:0\:8/1-8vv,_$8%:3/1+.>0" gep ot"^^++3-%3\*2/3:%8\*<>:^:"from peg "0\*8-1<
Output:
Move disk 1 from peg 1 to peg 2Move disk 2 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3Move disk 3 from peg 1 to peg 2Move disk 1 from peg 3 to peg 1Move disk 2 from peg 3 to peg 2Move disk 1 from peg 1 to peg 2Move disk 4 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3Move disk 2 from peg 2 to peg 1Move disk 1 from peg 3 to peg 1Move disk 3 from peg 2 to peg 3Move disk 1 from peg 1 to peg 2Move disk 2 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3

BQN

Based on:APL

Move{𝕩0?⟨⟩;𝕊nfromtovia:l𝕊n-1,from,via,tor𝕊n-1,via,to,froml(<fromto)r}{"Move disk from pole "(•Fmt𝕨)" to pole "∾•Fmt𝕩}´˘>Move4123
┌─                                 ╵"Move disk from pole 1 to pole 3    Move disk from pole 1 to pole 2    Move disk from pole 3 to pole 2    Move disk from pole 1 to pole 3    Move disk from pole 2 to pole 1    Move disk from pole 2 to pole 3    Move disk from pole 1 to pole 3    Move disk from pole 1 to pole 2    Move disk from pole 3 to pole 2    Move disk from pole 3 to pole 1    Move disk from pole 2 to pole 1    Move disk from pole 3 to pole 2    Move disk from pole 1 to pole 3    Move disk from pole 1 to pole 2    Move disk from pole 3 to pole 2"                                   ┘

Bracmat

( ( move  =   n from to via    .   !arg:(?n,?from,?to,?via)      & (   !n:>0          & move$(!n+-1,!from,!via,!to)          & out$("Move disk from pole " !from " to pole " !to)          & move$(!n+-1,!via,!to,!from)        |         )  )& move$(4,1,2,3));
Output:
Move disk from pole  1  to pole  3Move disk from pole  1  to pole  2Move disk from pole  3  to pole  2Move disk from pole  1  to pole  3Move disk from pole  2  to pole  1Move disk from pole  2  to pole  3Move disk from pole  1  to pole  3Move disk from pole  1  to pole  2Move disk from pole  3  to pole  2Move disk from pole  3  to pole  1Move disk from pole  2  to pole  1Move disk from pole  3  to pole  2Move disk from pole  1  to pole  3Move disk from pole  1  to pole  2Move disk from pole  3  to pole  2

Brainf***

[This implementation is recursive and usesa stack, consisting of frames that are 8bytes long. The layout is as follows:Byte   Description   0   recursion flag       (the program stops if the flag is        zero)   1   the step which is currently       executed       4 means a call to               move(a, c, b, n- 1)       3 means a call to               move(a, b, c, 1)       2 means a call to               move(b, a, c, n- 1)       1 prints the source and dest pile   2   flag to check whether the current       step has already been done or if       it still must be executed   3   the step which will be executed       in the next loop   4   the source pile   5   the helper pile   6   the destination pile   7   the number of disks to moveThe first stack frame (0 0 0 0 0 0 0 0)is used to abort the recursion.]>>>>>>>>These are the parameters for the program(1 4 1 0 'a 'b 'c 5)+>++++>+>>>>>>++++++++[<++++++++++++>-]<[<<<+>+>+>-]<<<+>++>+++>+++++><<<<<<<<[> while (recurse)[- if (step gt 0)>[-]+< todo = 1[- if (step gt 1)[- if (step gt 2)[- if (step gt 3)>>+++<< next = 3>-< todo = 0>>>>>>[>+>+<<-]>[<+>-]> n dup-[[-] if (sub(n 1) gt 0)<+>>>++++> push (1 0 0 4)            copy and push a<<<<<<<<[>>>>>>>>+>+<<<<<<<<<-]>>>>>>>>>[<<<<<<<<<+>>>>>>>>>-]<>            copy and push c<<<<<<<[>>>>>>>+>+<<<<<<<<-]>>>>>>>>[<<<<<<<<+>>>>>>>>-]<>            copy and push b<<<<<<<<<[>>>>>>>>>+>+<<<<<<<<<<-]>>>>>>>>>>[<<<<<<<<<<+>>>>>>>>>>-]<>            copy n and push sub(n 1)<<<<<<<<[>>>>>>>>+>+<<<<<<<<<-]>>>>>>>>>[<<<<<<<<<+>>>>>>>>>-]<->>]<<<<<<<<]>[-< if ((step gt 2) and todo)>>++<< next = 2>>>>>>>+>>>+> push 1 0 0 1 a b c 1<<<<<<<<[>>>>>>>>+>+<<<<<<<<<-]>>>>>>>>>[<<<<<<<<<+>>>>>>>>>-]<> a<<<<<<<<[>>>>>>>>+>+<<<<<<<<<-]>>>>>>>>>[<<<<<<<<<+>>>>>>>>>-]<> b<<<<<<<<[>>>>>>>>+>+<<<<<<<<<-]>>>>>>>>>[<<<<<<<<<+>>>>>>>>>-]<> c+>>>]<]>[-< if ((step gt 1) and todo)>>>>>>[>+>+<<-]>[<+>-]> n dup-[[-] if (n sub 1 gt 0)<+>>>++++> push (1 0 0 4)          copy and push b<<<<<<<[>>>>>>>+<<<<<<<-]>>>>>>>>[<<<<<<<<+>>>>>>>>-]<>          copy and push a<<<<<<<<<[>>>>>>>>>+<<<<<<<<<-]>>>>>>>>>>[<<<<<<<<<<+>>>>>>>>>>-]<>          copy and push c<<<<<<<<[>>>>>>>>+<<<<<<<<-]>>>>>>>>>[<<<<<<<<<+>>>>>>>>>-]<>          copy n and push sub(n 1)<<<<<<<<[>>>>>>>>+>+<<<<<<<<<-]>>>>>>>>>[<<<<<<<<<+>>>>>>>>>-]<->>]<<<<<<<<>]<]>[-< if ((step gt 0) and todo)>>>>>>>>++++[<++++++++>-]<>>++++++++[<+++++++++>-]<++++>>++++++++[<++++++++++++>-]<+++++>>+++++++++[<++++++++++++>-]<+++<<<>.+++++++>.++.--.<<.>>-.+++++.----.<<.>>>.<---.+++.>+++.+.+.<.<<.>.>--.+++++.---.++++.-------.+++.<<.>>>++.-------.-.<<<.>+.>>+++++++.---.-----.<<<.<<<<.>>>>.>>----.>++++++++.<+++++.<<.>.>>.---.-----.<<<.<<.>>++++++++++++++.>>>[-]<[-]<[-]<[-]+++++++++++++.---.[-]<<<<<<<>]<>>[<<+>>-]<< step = next]  return with clear stack frame<[-]>[-]>[-]>[-]>[-]>[-]>[-]>[-]<<<<<<<<<<<<<<>>[<<+>>-]<< step = next<]

Bruijn

Translation of:Python
:import std/Combinator .:import std/Number .:import std/String .hanoi y [[[[=?2 empty go]]]]go [(4 --3 2 0) ++ str ++ (4 --3 0 1)] ((+6) - 1 - 0)str "Move " ++ disk ++ " from " ++ source ++ " to " ++ destination ++ "\n"disk number→string 3source number→string 2destination number→string 1

C

#include<stdio.h>voidmove(intn,intfrom,intvia,intto){if(n>1){move(n-1,from,to,via);printf("Move disk from pole %d to pole %d\n",from,to);move(n-1,via,from,to);}else{printf("Move disk from pole %d to pole %d\n",from,to);}}intmain(){move(4,1,2,3);return0;}

Animate it for fun:

#include<stdio.h>#include<stdlib.h>#include<unistd.h>typedefstruct{int*x,n;}tower;tower*new_tower(intcap){tower*t=calloc(1,sizeof(tower)+sizeof(int)*cap);t->x=(int*)(t+1);returnt;}tower*t[3];intheight;voidtext(inty,inti,intd,constchar*s){printf("\033[%d;%dH",height-y+1,(height+1)*(2*i+1)-d);while(d--)printf("%s",s);}voidadd_disk(inti,intd){t[i]->x[t[i]->n++]=d;text(t[i]->n,i,d,"==");usleep(100000);fflush(stdout);}intremove_disk(inti){intd=t[i]->x[--t[i]->n];text(t[i]->n+1,i,d,"  ");returnd;}voidmove(intn,intfrom,intto,intvia){if(!n)return;move(n-1,from,via,to);add_disk(to,remove_disk(from));move(n-1,via,to,from);}intmain(intc,char*v[]){puts("\033[H\033[J");if(c<=1||(height=atoi(v[1]))<=0)height=8;for(c=0;c<3;c++)t[c]=new_tower(height);for(c=height;c;c--)add_disk(0,c);move(height,0,2,1);text(1,0,1,"\n");return0;}

C#

publicvoidmove(intn,intfrom,intto,intvia){if(n==1){System.Console.WriteLine("Move disk from pole "+from+" to pole "+to);}else{move(n-1,from,via,to);move(1,from,to,via);move(n-1,via,to,from);}}

C++

Works with:g++
voidmove(intn,intfrom,intto,intvia){if(n==1){std::cout<<"Move disk from pole "<<from<<" to pole "<<to<<std::endl;}else{move(n-1,from,via,to);move(1,from,to,via);move(n-1,via,to,from);}}

Chipmunk Basic

Works with:Chipmunk Basic version 3.6.4
Translation of:FreeBASIC
100cls110print"Three disks":print120hanoi(3,1,2,3)130printchr$(10)"Four disks"chr$(10)140hanoi(4,1,2,3)150print:print"Towers of Hanoi puzzle completed!"160end170subhanoi(n,desde,hasta,via)180ifn>0then190hanoi(n-1,desde,via,hasta)200print"Move disk "n"from pole "desde"to pole "hasta210hanoi(n-1,via,hasta,desde)220endif230endsub

Clojure

Side-Effecting Solution

(defntowers-of-hanoi[nfromtovia](when(pos?n)(towers-of-hanoi(decn)fromviato)(printf"Move from %s to %s\n"fromto)(recur(decn)viatofrom)))

Lazy Solution

(defntowers-of-hanoi[nfromtovia](when(pos?n)(lazy-cat(towers-of-hanoi(decn)fromviato)(cons[from'->to](towers-of-hanoi(decn)viatofrom)))))

CLU

move = proc (n, from, via, to: int)    po: stream := stream$primary_output()    if n > 0 then        move(n-1, from, to, via)        stream$putl(po, "Move disk from pole "                     || int$unparse(from)                     || " to pole "                     || int$unparse(to))        move(n-1, via, from, to)    endend movestart_up = proc ()    move(4, 1, 2, 3)end start_up
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

COBOL

Translation of:C
Works with:OpenCOBOL version 2.0
>>SOURCEFREEIDENTIFICATIONDIVISION.PROGRAM-ID.towers-of-hanoi.PROCEDUREDIVISION.    CALL"move-disk"USING4,1,2,3.END PROGRAMtowers-of-hanoi.IDENTIFICATIONDIVISION.PROGRAM-ID.move-diskRECURSIVE.DATA DIVISION.LINKAGESECTION.01  nPIC 9USAGECOMP.01  from-polePIC 9USAGECOMP.01  to-polePIC 9USAGECOMP.01  via-polePIC 9USAGECOMP.PROCEDUREDIVISIONUSINGn,from-pole,to-pole,via-pole.    IFn>0SUBTRACT1FROMnCALL"move-disk"USINGCONTENTn,from-pole,via-pole,to-poleDISPLAY"Move disk from pole "from-pole" to pole "to-poleCALL"move-disk"USINGCONTENTn,via-pole,to-pole,from-pole    END-IF.END PROGRAMmove-disk.

Template:Number of disks also

IDENTIFICATIONDIVISION.PROGRAM-ID.towers-of-hanoi.PROCEDUREDIVISION.    CALL"move-disk"USING4,1,2,3.END PROGRAMtowers-of-hanoi.IDENTIFICATIONDIVISION.PROGRAM-ID.move-diskRECURSIVE.DATA DIVISION.LINKAGESECTION.01  nPIC 9USAGECOMP.01  from-polePIC 9USAGECOMP.01  to-polePIC 9USAGECOMP.01  via-polePIC 9USAGECOMP.PROCEDUREDIVISIONUSINGn,from-pole,to-pole,via-pole.    IFn>0SUBTRACT1FROMnCALL"move-disk"USINGCONTENTn,from-pole,via-pole,to-poleADD1TOnDISPLAY"Move disk number "n" from pole "from-pole" to pole "to-poleSUBTRACT1FROMnCALL"move-disk"USINGCONTENTn,via-pole,to-pole,from-pole    END-IF.END PROGRAMmove-disk.

ANSI-74 solution

Early versions of COBOL did not have recursion. There are no locally-scoped variables and the call of a procedure does not have to use a stack to save return state. Recursion would cause undefined results. It is therefore necessary to use an iterative algorithm. This solution is an adaptation ofKolar's Hanoi Tower algorithm no. 1.

Works with:CIS COBOL version 4.2
Works with:GnuCOBOL version 3.0-rc1.0
IDENTIFICATIONDIVISION.PROGRAM-ID.ITERATIVE-TOWERS-OF-HANOI.AUTHOR.SORENROUG.DATE-WRITTEN.2019-06-28.ENVIRONMENTDIVISION.CONFIGURATIONSECTION.SOURCE-COMPUTER.LINUX.OBJECT-COMPUTER.KAYPRO4.INPUT-OUTPUTSECTION.FILE-CONTROL.DATADIVISION.WORKING-STORAGESECTION.77NUM-DISKSPIC 9VALUE4.77N1PIC 9COMP.77N2PIC 9COMP.77FROM-POLEPIC 9COMP.77TO-POLEPIC 9COMP.77VIA-POLEPIC 9COMP.77FP-TMPPIC 9COMP.77TO-TMPPIC 9COMP.77P-TMPPIC 9COMP.77TMP-PPIC 9COMP.77IPIC 9COMP.77DIVPIC 9COMP.01STACKNUMS.05NUMSETOCCURS3TIMES.10DNUMPIC 9COMP.01GAMESET.05POLESOCCURS3TIMES.10STACKOCCURS10TIMES.15POLEPIC 9USAGECOMP.PROCEDUREDIVISION.HANOI.DISPLAY"TOWERS OF HANOI PUZZLE WITH ",NUM-DISKS," DISKS.".ADDNUM-DISKS,1GIVINGN1.ADDNUM-DISKS,2GIVINGN2.MOVE1TODNUM(1).MOVEN1TODNUM(2),DNUM(3).MOVEN1TOPOLE(1,N1),POLE(2,N1),POLE(3,N1).MOVE1TOPOLE(1,N2).MOVE2TOPOLE(2,N2).MOVE3TOPOLE(3,N2).MOVE1TOI.PERFORMINIT-PUZZLEUNTILI=N1.MOVE1TOFROM-POLE.DIVIDE2INTONUM-DISKSGIVINGDIV.MULTIPLY2BYDIV.IFDIVNOT=NUM-DISKSPERFORMINITODDELSEPERFORMINITEVEN.PERFORMMOVE-DISKUNTILDNUM(3)NOT>1.DISPLAY"TOWERS OF HANOI PUZZLE COMPLETED!".STOPRUN.INIT-PUZZLE.MOVEITOPOLE(1,I).MOVE0TOPOLE(2,I),POLE(3,I).ADD1TOI.INITEVEN.MOVE2TOTO-POLE.MOVE3TOVIA-POLE.INITODD.MOVE3TOTO-POLE.MOVE2TOVIA-POLE.MOVE-DISK.MOVEDNUM(FROM-POLE)TOFP-TMP.MOVEPOLE(FROM-POLE,FP-TMP)TOI.DISPLAY"MOVE DISK FROM ",POLE(FROM-POLE,N2)," TO ",POLE(TO-POLE,N2).ADD1TODNUM(FROM-POLE).MOVEVIA-POLETOTMP-P.SUBTRACT1FROMDNUM(TO-POLE).MOVEDNUM(TO-POLE)TOTO-TMP.MOVEITOPOLE(TO-POLE,TO-TMP).DIVIDE2INTOIGIVINGDIV.MULTIPLY2BYDIV.IFINOT=DIVPERFORMMOVE-TO-VIAELSEPERFORMMOVE-FROM-VIA.MOVE-TO-VIA.MOVETO-POLETOVIA-POLE.MOVEDNUM(FROM-POLE)TOFP-TMP.MOVEDNUM(TMP-P)TOP-TMP.IFPOLE(FROM-POLE,FP-TMP)>POLE(TMP-P,P-TMP)PERFORMMOVE-FROM-TOELSEMOVETMP-PTOTO-POLE.MOVE-FROM-TO.MOVEFROM-POLETOTO-POLE.MOVETMP-PTOFROM-POLE.MOVEDNUM(FROM-POLE)TOFP-TMP.MOVEDNUM(TMP-P)TOP-TMP.MOVE-FROM-VIA.MOVEFROM-POLETOVIA-POLE.MOVETMP-PTOFROM-POLE.

CoffeeScript

hanoi=(ndisks, start_peg=1, end_peg=3) ->ifndisksstaging_peg=1+2+3-start_peg-end_peghanoi(ndisks-1,start_peg,staging_peg)console.log"Move disk#{ndisks} from peg#{start_peg} to#{end_peg}"hanoi(ndisks-1,staging_peg,end_peg)hanoi(4)

Common Lisp

(defunmove(nfromtovia)(cond((=n1)(formatt"Move from ~A to ~A.~%"fromto))(t(move(-n1)fromviato)(formatt"Move from ~A to ~A.~%"fromto)(move(-n1)viatofrom))))

D

Recursive Version

importstd.stdio;voidhanoi(inintn,incharfrom,incharto,incharvia){if(n>0){hanoi(n-1,from,via,to);writefln("Move disk %d from %s to %s",n,from,to);hanoi(n-1,via,to,from);}}voidmain(){hanoi(3,'L','M','R');}
Output:
Move disk 1 from L to MMove disk 2 from L to RMove disk 1 from M to RMove disk 3 from L to MMove disk 1 from R to LMove disk 2 from R to MMove disk 1 from L to M

Fast Iterative Version

See:The shortest and "mysterious" TH algorithm

// Code found and then improved by Glenn C. Rhoads,// then some more by M. Kolar (2000).voidmain(instring[]args){importcore.stdc.stdio,std.conv,std.typetuple;immutablesize_tn=(args.length>1)?args[1].to!size_t:3;size_t[3]p=[(1<<n)-1,0,0];// Show the start configuration of the pegs.'|'.putchar;foreach_reverse(immutablei;1..n+1)printf(" %d",i);"\n|\n|".puts;foreach(immutablesize_tx;1..(1<<n)){{immutablesize_ti1=x&(x-1);immutablesize_tfr=(i1+i1/3)&3;immutablesize_ti2=(x|(x-1))+1;immutablesize_tto=(i2+i2/3)&3;size_tj=1;for(size_tw=x;!(w&1);w>>=1,j<<=1){}// Now j is not the number of the disk to move,// it contains the single bit to be moved:p[fr]&=~j;p[to]|=j;}// Show the current configuration of pegs.foreach(immutablesize_tk;TypeTuple!(0,1,2)){"\n|".printf;size_tj=1<<n;foreach_reverse(immutablesize_tw;1..n+1){j>>=1;if(j&p[k])printf(" %zd",w);}}'\n'.putchar;}}
Output:
| 3 2 1||| 3 2|| 1| 3| 2| 1| 3| 2 1||| 2 1| 3| 1| 2| 3| 1|| 3 2||| 3 2 1

Dart

main(){moveit(from,to){print("move${from} --->${to}");}hanoi(height,toPole,fromPole,usePole){if(height>0){hanoi(height-1,usePole,fromPole,toPole);moveit(fromPole,toPole);hanoi(height-1,toPole,usePole,fromPole);}}hanoi(3,3,1,2);}

The same as above, with optional static type annotations and styled according tohttp://www.dartlang.org/articles/style-guide/

main(){Stringsay(Stringfrom,Stringto)=>"$from --->$to";hanoi(intheight,inttoPole,intfromPole,intusePole){if(height>0){hanoi(height-1,usePole,fromPole,toPole);print(say(fromPole.toString(),toPole.toString()));hanoi(height-1,toPole,usePole,fromPole);}}hanoi(3,3,1,2);}
Output:
move 1 ---> 3move 1 ---> 2move 3 ---> 2move 1 ---> 3move 2 ---> 1move 2 ---> 3move 1 ---> 3

Dc

FromHere

 [ # move(from, to)    n           # print from    [ --> ]n    # print " --> "    p           # print to\n    sw          # p doesn't pop, so get rid of the value ]sm  [ # init(n)    sw          # tuck n away temporarily    9           # sentinel as bottom of stack    lw          # bring n back    1           # "from" tower's label    3           # "to" tower's label    0           # processed marker ]si  [ # Move()    lt          # push to    lf          # push from    lmx         # call move(from, to) ]sM  [ # code block <d>    ln          # push n    lf          # push from    lt          # push to    1           # push processed marker 1    ln          # push n    1           # push 1    -           # n - 1    lf          # push from    ll          # push left    0           # push processed marker 0 ]sd  [ # code block <e>    ln          # push n    1           # push 1    -           # n - 1    ll          # push left    lt          # push to    0           # push processed marker 0 ]se  [ # code block <x>    ln 1 =M    ln 1 !=d ]sx  [ # code block <y>    lMx    lex ]sy  [ # quit()    q           # exit the program ]sq  [ # run()    d 9 =q      # if stack empty, quit()    sp          # processed    st          # to    sf          # from    sn          # n    6           #    lf          #    -           #    lt          #    -           # 6 - from - to    sl          #    lp 0 =x     #    lp 0 !=y    #    lrx         # loop ]sr  5lix # init(n) lrx # run()

Delphi

SeePascal.

Draco

proc move(byte n, src, via, dest) void:    if n>0 then        move(n-1, src, dest, via);        writeln("Move disk from pole ",src," to pole ",dest);        move(n-1, via, src, dest)    ficorpproc nonrec main() void:     move(4, 1, 2, 3) corp
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

Dyalect

Translation of:Swift
func hanoi(n, a, b, c) {    if n > 0 {        hanoi(n - 1, a, c, b)        print("Move disk from \(a) to \(c)")        hanoi(n - 1, b, a, c)    }} hanoi(4, "A", "B", "C")
Output:
Move disk from A to BMove disk from A to CMove disk from B to CMove disk from A to BMove disk from C to AMove disk from C to BMove disk from A to BMove disk from A to CMove disk from B to CMove disk from B to AMove disk from C to AMove disk from B to CMove disk from A to BMove disk from A to CMove disk from B to C

E

def move(out, n, fromPeg, toPeg, viaPeg) {    if (n.aboveZero()) {        move(out, n.previous(), fromPeg, viaPeg, toPeg)        out.println(`Move disk $n from $fromPeg to $toPeg.`)        move(out, n.previous(), viaPeg, toPeg, fromPeg)    }}move(stdout, 4, def left {}, def right {}, def middle {})

EasyLang

proc hanoi n src dst aux . .   if n >= 1      hanoi n - 1 src aux dst      print "Move " & src & " to " & dst      hanoi n - 1 aux dst src   ..hanoi 5 1 2 3

EDSAC order code

The Wikipedia article on EDSAC says "recursive calls were forbidden", and this is true if the standard "Wheeler jump" is used. In the Wheeler jump, the caller (in effect) passes the return address to the subroutine, which uses that address to manufacture a "link order", i.e. a jump back to the caller. This link order is normally stored at a fixed location in the subroutine, so if the subroutine were to call itself then the original link order would be overwritten and lost. However, it is easy enough to make a subroutine save its link orders in a stack, so that it can be called recursively, as the Rosetta Code task requires.

The program has a maximum of 9 discs, so as to simplify the printout of the disc numbers. Discs are numbered 1, 2, 3, ... in increasing order of size. The program could be speeded up by shortening the messages, which at present take up most of the runtime.

[Towers of Hanoi task for Rosetta Code.][EDSAC program, Initial Orders 2.]            T100K   [load program at location 100 (arbitrary)]            GK[Number of discs, in the address field]      [0]   P3F     [<--- edit here, value 1..9][Letters to represent the rods]      [1]   LF      [left]      [2]   CF      [centre]      [3]   RF      [right][Main routine. Enter with acc = 0]      [4]   T1F     [1F := 0]      [5]   A5@     [initialize recursive subroutine]            G104@            A@      [number of discs]            T1F     [pass to subroutines]            A1@     [source rod]            T4F     [pass to subroutines]            A3@     [target rod]            T5F     [pass to subroutines]     [13]   A13@    [call subroutine to write header ]            G18@     [15]   A15@    [call recursive subroutine to write moves ]            G104@            ZF      [stop][Subroutine to write a header][Input:  1F = number of discs (in the address field)]        [4F = letter for starting rod]        [5F = letter for ending rod][Output: None. 1F, 4F, 5F must be preserved.]     [18]   A3F     [plant return link as usual]            T35@            A1F     [number of discs]            L512F   [shift 11 left to make output char]            T39@    [plant in message]            A4F     [starting rod]            T53@    [plant in message]            A5F     [ending rod]            T58@    [plant in message]            A36@    [O order for first char of message]            E30@    [skip next order (code for 'O' is positive)]     [29]   A37@    [restore acc after test below]     [30]   U31@    [plant order to write next character]     [31]   OF      [(planted) write next character]            A2F     [inc address in previous order]            S37@    [finished yet?]            G29@    [if not, loop back]     [35]   ZF      [(planted) exit with acc = 0]     [36]   O38@    [O order for start of message]     [37]   O61@    [O order for exclusive end of message]     [38]   #F     [39]   PFK2048F!FDFIFSFCFSF!FFFRFOFMF!F     [53]   PF!FTFOF!F     [58]   PF@F&F     [61][Subroutine to write a move of one disc.][Input:  1F = disc number 1..9 (in the address field)]        [4F = letter for source rod]        [5F = letter for target rod][Output: None. 1F, 4F, 5F must be preserved.][Condensed to save space; very similar to previous subroutine.]     [61]   A3FT78@A1FL512FT88@ A4FT96@A5FT101@A79@E73@     [72]   A80@     [73]   U74@     [74]   OFA2FS80@G72@     [78]   ZF      [(planted) exit with acc = 0]     [79]   O81@     [80]   O104@     [81]   K2048FMFOFVFEF!F#F     [88]   PFK2048F!FFFRFOFMF!F     [96]   PF!FTFOF!F    [101]   PF@F&F    [104][Recursive subroutine to move discs 1..n, where 1 <= n <= 9.][Call with n = 0 to initialize.][Input:  1F = n (in the address field)]        [4F = letter for source rod]        [5F = letter for target rod][Output: None. 1F, 4F, 5F must be preserved.]    [104]   A3F     [plant link as usual ]            T167@[The link will be saved in a stack if recursive calls are required.]            S1F     [load -n]            G115@   [jump if n > 0][Here if n = 0. Initialize; no recursive calls.]            A169@   [initialize push order to start of stack]            T122@            A1@     [find total of the codes for the rod letters]            A2@            A3@            T168@   [store for future use]            E167@   [jump to link][Here with acc = -n in address field]    [115]   A2F     [add 1]            G120@   [jump if n > 1][Here if n = 1. Just write the move; no recursive calls.]    [117]   A117@   [call write subroutine]            G61@            E167@   [jump to link][Here if n > 1. Recursive calls are required.]    [120]   TF      [clear acc]            A167@   [load link order]    [122]   TF      [(planted) push link order onto stack]            A122@   [inc address in previous order]            A2F            T122@[First recursive call. Modify parameters 1F and 5F; 4F stays the same]            A1F     [load n]            S2F     [make n - 1]            T1F     [pass as parameter]            A168@   [get 3rd rod, neither source nor target]            S4F            S5F            T5F    [133]   A133@   [recursive call]            G104@[Returned, restore parameters]            A1F            A2F            T1F            A168@            S4F            S5F            T5F[Write move of largest disc]    [142]   A142@            G61@[Second recursive call. Modify parameters 1F and 4F; 5F stays the same][Condensed to save space; very similar to first recursice call.]            A1FS2FT1FA168@S4FS5FT4F    [151]   A151@G104@A1FA2FT1FA168@S4FS5FT4F[Pop return link off stack]            A122@   [dec address in push order]            S2F            U122@            A170@   [make A order with same address]            T165@   [plant in code]    [165]   AF      [(planted) pop return link from stack]            T167@   [plant in code]    [167]   ZF      [(planted) return to caller][Constants]    [168]   PF      [(planted) sum of letters for rods]    [169]   T171@   [T order for start of stack]    [170]   MF      [add to T order to make A order, same address][Stack: placed at end of program, grows into free space.]    [171]            E4Z     [define entry point]            PF      [acc = 0 on entry][end]
Output:
3 DISCS FROM L TO RMOVE 1 FROM L TO RMOVE 2 FROM L TO CMOVE 1 FROM R TO CMOVE 3 FROM L TO RMOVE 1 FROM C TO LMOVE 2 FROM C TO RMOVE 1 FROM L TO R

Eiffel

classAPPLICATIONcreatemakefeature{NONE}-- Initializationmakedomove(4,"A","B","C")endfeature-- Towers of Hanoimove(n:INTEGER;frm,to,via:STRING)requiren>0doifn=1thenprint("Move disk from pole "+frm+" to pole "+to+"%N")elsemove(n-1,frm,via,to)move(1,frm,to,via)move(n-1,via,to,frm)endendend

Ela

Translation of:Haskell
open monad io:::IO//Functional approachhanoi 0 _ _ _ = []hanoi n a b c = hanoi (n - 1) a c b ++ [(a,b)] ++ hanoi (n - 1) c b ahanoiIO n = mapM_ f $ hanoi n 1 2 3 where  f (x,y) = putStrLn $ "Move " ++ show x ++ " to " ++ show y//Imperative approach using IO monadhanoiM n = hanoiM' n 1 2 3 where  hanoiM' 0 _ _ _ = return ()  hanoiM' n a b c = do    hanoiM' (n - 1) a c b    putStrLn $ "Move " ++ show a ++ " to " ++ show b    hanoiM' (n - 1) c b a

Elena

ELENA 4.x :

move = (n,from,to,via){    if (n == 1)    {        console.printLine("Move disk from pole ",from," to pole ",to)    }    else    {        move(n-1,from,via,to);        move(1,from,to,via);        move(n-1,via,to,from)    }};

Elixir

defmoduleRCdodefhanoi(n)when0<nandn<10,do:hanoi(n,1,2,3)defphanoi(1,f,_,t),do:move(f,t)defphanoi(n,f,u,t)dohanoi(n-1,f,t,u)move(f,t)hanoi(n-1,u,f,t)enddefpmove(f,t),do:IO.puts"Move disk from#{f} to#{t}"endRC.hanoi(3)
Output:
Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 1 to 3Move disk from 2 to 1Move disk from 2 to 3Move disk from 1 to 3

Emacs Lisp

Translation of:Common Lisp
(defunmove(nfromtovia)(if(=n1)(message"Move from %S to %S"fromto)(move(-n1)fromviato)(message"Move from %S to %S"fromto)(move(-n1)viatofrom)))

EMal

Translation of:C#
fun move = void by int n, int from, int to, int via  if n == 1    writeLine("Move disk from pole " + from + " to pole " + to)    return  end  move(n - 1, from, via, to)  move(1, from, to, via)  move(n - 1, via, to, from)endmove(3, 1, 2, 3)
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2

Erlang

move(1,F,T,_V)->io:format("Move from~p to~p~n",[F,T]);move(N,F,T,V)->move(N-1,F,V,T),move(1,F,T,V),move(N-1,V,T,F).

ERRE

!-----------------------------------------------------------! HANOI.R : solve tower of Hanoi puzzle using a recursive ! modified algorithm.!-----------------------------------------------------------PROGRAM HANOI!$INTEGER!VAR I,J,MOSSE,NUMBERPROCEDURE PRINTMOVE  LOCAL SOURCE$,DEST$  MOSSE=MOSSE+1  CASE I OF     1-> SOURCE$="Left" END ->     2-> SOURCE$="Center" END ->     3-> SOURCE$="Right" END ->  END CASE  CASE J OF     1-> DEST$="Left" END ->     2-> DEST$="Center" END ->     3-> DEST$="Right" END ->  END CASE  PRINT("I move a disk from ";SOURCE$;" to ";DEST$)END PROCEDUREPROCEDURE MOVE  IF NUMBER<>0 THEN     NUMBER=NUMBER-1     J=6-I-J     MOVE     J=6-I-J     PRINTMOVE     I=6-I-J     MOVE     I=6-I-J     NUMBER=NUMBER+1  END IFEND PROCEDUREBEGIN  MAXNUM=12  MOSSE=0  PRINT(CHR$(12);TAB(25);"--- TOWERS OF HANOI ---")  REPEAT     PRINT("Number of disks ";)     INPUT(NUMBER)  UNTIL NUMBER>1 AND NUMBER<=MAXNUM  PRINT  PRINT("For ";NUMBER;"disks the total number of moves is";2^NUMBER-1)  I=1  ! number of source pole  J=3  ! number of destination pole  MOVEEND PROGRAM
Output:
                        --- TOWER OF HANOI ---Number of disks ? 3For  3 disks the total number of moves is 7I move a disk from Left to RightI move a disk from Left to CenterI move a disk from Right to CenterI move a disk from Left to RightI move a disk from Center to LeftI move a disk from Center to RightI move a disk from Left to Right

Excel

LAMBDA

With the names HANOI and SHOWHANOI bound to the following lambdas in the Excel worksheet Name Manager:

(SeeLAMBDA: The ultimate Excel worksheet function)

Works with:Office 365 Betas 2021
SHOWHANOI=LAMBDA(n,FILTERP(LAMBDA(x,""<>x))(HANOI(n)("left")("right")("mid")))HANOI=LAMBDA(n,LAMBDA(l,LAMBDA(r,LAMBDA(m,IF(0=n,"",LET(next,n-1,APPEND(APPEND(HANOI(next)(l)(m)(r))(CONCAT(l," -> ",r)))(HANOI(next)(m)(r)(l))))))))

And assuming that these generic lambdas are also bound to the following names in Name Manager:

APPEND=LAMBDA(xs,LAMBDA(ys,LET(nx,ROWS(xs),rowIndexes,SEQUENCE(nx+ROWS(ys)),colIndexes,SEQUENCE(1,MAX(COLUMNS(xs),COLUMNS(ys))),IF(rowIndexes<=nx,INDEX(xs,rowIndexes,colIndexes),INDEX(ys,rowIndexes-nx,colIndexes)))))FILTERP=LAMBDA(p,LAMBDA(xs,FILTER(xs,p(xs))))

In the output below, the expression in B2 defines an array of strings which additionally populate the following cells.

Output:
fx=SHOWHANOI(A2)
AB
1DisksSteps
23left -> right
3left -> mid
4right -> mid
5left -> right
6mid -> left
7mid -> right
8left -> right

Ezhil

# (C) 2013 Ezhil Language Project# Tower of Hanoi – recursive solutionநிரல்பாகம்ஹோனாய்(வட்டுகள்,முதல்அச்சு,இறுதிஅச்சு,வட்டு)@(வட்டுகள்==1)ஆனால்பதிப்பிவட்டு+str(வட்டு)+ \t(+str(முதல்அச்சு)+>+str(இறுதிஅச்சு)+)அச்சிற்குநகர்த்துக.இல்லை@(["இ","அ","ஆ"]இல்அச்சு)ஒவ்வொன்றாக@((முதல்அச்சு!=அச்சு)&&(இறுதிஅச்சு!=அச்சு))ஆனால்நடு=அச்சுமுடிமுடி# solve problem for n-1 again between src and temp pegsஹோனாய்(வட்டுகள்-1,முதல்அச்சு,நடு,வட்டுகள்-1)# move largest disk from src to destinationஹோனாய்(1,முதல்அச்சு,இறுதிஅச்சு,வட்டுகள்)# solve problem for n-1 again between different pegsஹோனாய்(வட்டுகள்-1,நடு,இறுதிஅச்சு,வட்டுகள்-1)முடிமுடிஹோனாய்(4,,,0)

F#

#lightletrechanoinumstartfinish=matchnumwith|0->[]|_->lettemp=(6-start-finish)(hanoi(num-1)starttemp)@[start,finish]@(hanoi(num-1)tempfinish)[<EntryPoint>]letmainargs=(hanoi412)|>List.iter(funpair->matchpairwith|a,b->printf"Move disc from %A to %A\n"ab)0

Factor

USING:formattingkernellocalsmath;IN:rosettacode.hanoi:move(fromto--)"%d->%d\n"printf;::hanoi(nfromtoother--)n0>[n1-fromothertohanoifromtomoven1-othertofromhanoi]when;

In the REPL:

( scratchpad ) 3 1 3 2 hanoi1->31->23->21->32->12->31->3

FALSE

["Move disk from "$!\" to "$!\""]p:  { to from }[n;0>[n;1-n: @\ h;! @\ p;! \@ h;! \@ n;1+n:]?]h:  { via to from }4n:["right"]["middle"]["left"]h;!%%%

Fermat

Func Hanoi( n, f, t, v ) = if n = 0 then     !'';else     Hanoi(n - 1, f, v, t);     !f;!' -> ';!t;!',   ';    Hanoi(n - 1, v, t, f)  fi.
Output:
1 -> 3,   1 -> 2,   3 -> 2,   1 -> 3,   2 -> 1,   2 -> 3,   1 -> 3,   1 -> 2,   3 -> 2,   3 -> 1,   2 -> 1,   3 -> 2,   1 -> 3,   1 -> 2,   3 -> 2,

FOCAL

01.10 S N=4;S S=1;S V=2;S T=301.20 D 201.30 Q02.02 S N(D)=N(D)-1;I (N(D)),2.2,2.0402.04 S D=D+102.06 S N(D)=N(D-1);S S(D)=S(D-1)02.08 S T(D)=V(D-1);S V(D)=T(D-1)02.10 D 202.12 S D=D-102.14 D 302.16 S A=S(D);S S(D)=V(D);S V(D)=A02.18 G 2.0202.20 D 303.10 T %1,"MOVE DISK FROM POLE",S(D)03.20 T " TO POLE",T(D),!
Output:
MOVE DISK FROM POLE= 1 TO POLE= 2MOVE DISK FROM POLE= 1 TO POLE= 3MOVE DISK FROM POLE= 2 TO POLE= 3MOVE DISK FROM POLE= 1 TO POLE= 2MOVE DISK FROM POLE= 3 TO POLE= 1MOVE DISK FROM POLE= 3 TO POLE= 2MOVE DISK FROM POLE= 1 TO POLE= 2MOVE DISK FROM POLE= 1 TO POLE= 3MOVE DISK FROM POLE= 2 TO POLE= 3MOVE DISK FROM POLE= 2 TO POLE= 1MOVE DISK FROM POLE= 3 TO POLE= 1MOVE DISK FROM POLE= 2 TO POLE= 3MOVE DISK FROM POLE= 1 TO POLE= 2MOVE DISK FROM POLE= 1 TO POLE= 3MOVE DISK FROM POLE= 2 TO POLE= 3

Forth

With locals:

CREATEpeg1,"left"CREATEpeg2,"middle"CREATEpeg3,"right":.$COUNTTYPE;:MOVE-DISKLOCALS|viatofromn|n1=IFCR."Move disk from"from.$."to"to.$ELSEn1-fromviatoRECURSE1fromtoviaRECURSEn1-viatofromRECURSETHEN;

Without locals, executable pegs:

:left."left";:right."right";:middle."middle";:move-disk( v t f n -- v t f )dup0=ifdropexitthen1->RrotswapR@( t v f n-1 )recurserotswap2dupcr."Move disk from"execute." to"executeswaprotR>( f t v n-1 )recurseswaprot;:hanoi( n -- )1max>R[']right[']middle[']leftR>move-diskdropdropdrop;

Fortran

Works with:Fortran version 90 and later
PROGRAMTOWERCALLMove(4,1,2,3)CONTAINS  RECURSIVE SUBROUTINEMove(ndisks,from,to,via)INTEGER,INTENT(IN)::ndisks,from,to,viaIF(ndisks==1)THEN       WRITE(*,"(A,I1,A,I1)")"Move disk from pole ",from," to pole ",toELSE       CALLMove(ndisks-1,from,via,to)CALLMove(1,from,to,via)CALLMove(ndisks-1,via,to,from)END IF  END SUBROUTINEMoveEND PROGRAMTOWER

Template:More informative version

!This is a nice alternative to the usual recursive Hanoi solutions. It runs about 10x!       faster than a well crafted recursive solution for 30 disks.SUBROUTINEolives(Numdisk)!>  This is an implementation of "Olive's Algorithm"!!  The “simpler” algorithm where the smallest disk moves circularly every second!!  move is attributed to Raoul Olive, the nephew of Edouard Lucas, the inventor of the!!  Towers of Hanoi puzzle. We alternately move disk one in it's established direction!!  Then we move the one of the 'non-one' disks, depending on the legality of the move.!!  In this implementation, I use a small array of the stack entities. This allows us!!  to easily find the stack where the disk to be moved resides.USEdata_defsIMPLICIT NONE!! PARAMETER definitions!INTEGER(int32),PARAMETER::bigm=maxpos*3!! Dummy arguments!INTEGER(int32)::NumdiskINTENT(IN)Numdisk!! Local variables!TYPE(stack),POINTER::a,b,c,on_now!< on_now is where disk 1 isTYPE(stack),TARGET,DIMENSION(3)::abc!< The three stack are put in an array for identification i.e. abc(1)%stack_id = 1INTEGER::direction!< Direction of disk1, negative is counter clockwise, positive = clockwiseINTEGER(int32)::i,jDATA(abc(i)%height,i=1,3)/3*0/DATA(abc(i)%stack_id,i=1,3)/1,2,3/DATA((abc(i)%disks(j),i=1,3),j=1,maxpos)/bigm*0/! Code starts here!! Move numdisks from A to C using B as intermediate!a=>abc(1)b=>abc(2)c=>abc(3)on_now=>a!< Point to the starting polea%height=Numdisk!< A = the starting pole!last_move=-1!a%disks=[(Numdisk+1-j,j=1,Numdisk)]IF(btest(Numdisk,0))THEN!< First move rule always involves disk 1, test odd/even for first moveCALLmove(a,c)direction=-1! Counter clockwiseon_now=>cELSE         CALLmove(a,b)direction=1! Clockwiseon_now=>bEND IF!DO WHILE(c%height/=Numdisk)!SELECT CASE(on_now%stack_id)!< Depending where disk one is, make a legal moveCASE(1)!< One is on stack 1 i.e. a so we can only make a legal move in between b and cIF(legal(b,c))THEN               CALLmove(b,c)ELSE               CALLmove(c,b)END IF         CASE(2)! Disk one on stack 2 i.e. "b"IF(legal(a,c))THEN               CALLmove(a,c)ELSE               CALLmove(c,a)END IF         CASE(3)! Disk one on stack 3 i.e. "c"IF(legal(a,b))THEN               CALLmove(a,b)ELSE               CALLmove(b,a)END IF         END SELECT!< Now move disk 1 in the direction it was headingi=on_now%stack_id+direction!< Increment the stack a->b->c->a or vice versa Decrement the stack c->b->a->c!< Note that here we use the stack_id to figure out which disk destination to use. As we increment or decrement the stack counter!! we reset it to the correct disk when it is outside the 1..3 range. It is set so as to maintain the correct disk direction.SELECT CASE(i)CASE(0)i=3CASE(1:3)CASE(4)i=1END SELECT         CALLmove(on_now,abc(i))on_now=>abc(i)END DO      PRINT'(*(i0,2x))',(c%disks(i),i=1,Numdisk)! Print final disk configurationon_now=>null()!RETURN      END SUBROUTINEolivesSUBROUTINEMove(Donor,Receiver)USEData_defsIMPLICIT NONE! Dummy arguments!TYPE(stack)::Donor,ReceiverINTENT(INOUT)Donor,Receiver! Code starts here!$GCC$ attributes INLINE :: MOVE!! Code starts herelast_move=Receiver%Stack_idReceiver%Height=Receiver%Height+1! make slot in receiverReceiver%Disks(Receiver%Height)=Donor%Disks(Donor%Height)!Move the diskDonor%Disks(Donor%Height)=0! Black it outDonor%Height=Donor%Height-1! Decrement the donor heightRETURN      END SUBROUTINEMoveModuledata_defsIMPLICIT NONE!! PARAMETER definitions!INTEGER,PARAMETER::int32=selected_int_kind(8),&&int64=selected_int_kind(16)INTEGER(int32),PARAMETER::maxpos=40! Maximum possible disks without a huge blowout!! Derived Type definitions!TYPE::stackINTEGER(int32)::stack_idINTEGER(int32)::heightINTEGER(int32),DIMENSION(maxpos)::disksEND TYPEstack!! Local variables!INTEGER::last_move! Holds the destination of the last moveend moduledata_defs

FreeBASIC

' FB 1.05.0 Win64Submove(nAsInteger,fromAsInteger,to_AsInteger,viaAsInteger)Ifn>0Thenmove(n-1,from,via,to_)Print"Move disk";n;" from pole";from;" to pole";to_move(n-1,via,to_,from)EndIfEndSubPrint"Three disks":Printmove3,1,2,3PrintPrint"Four disks":Printmove4,1,2,3Print"Press any key to quit"Sleep
Output:
Three disksMove disk 1 from pole 1 to pole 2Move disk 2 from pole 1 to pole 3Move disk 1 from pole 2 to pole 3Move disk 3 from pole 1 to pole 2Move disk 1 from pole 3 to pole 1Move disk 2 from pole 3 to pole 2Move disk 1 from pole 1 to pole 2Four disksMove disk 1 from pole 1 to pole 3Move disk 2 from pole 1 to pole 2Move disk 1 from pole 3 to pole 2Move disk 3 from pole 1 to pole 3Move disk 1 from pole 2 to pole 1Move disk 2 from pole 2 to pole 3Move disk 1 from pole 1 to pole 3Move disk 4 from pole 1 to pole 2Move disk 1 from pole 3 to pole 2Move disk 2 from pole 3 to pole 1Move disk 1 from pole 2 to pole 1Move disk 3 from pole 3 to pole 2Move disk 1 from pole 1 to pole 3Move disk 2 from pole 1 to pole 2Move disk 1 from pole 3 to pole 2

Frink

/** Set up the recursive call for n disks */hanoi[n] := hanoi[n, 1, 3, 2]/** The recursive call. */hanoi[n, source, target, aux] :={   if n > 0   {                             hanoi[n-1, source, aux, target]                                println["Move from $source to $target"]                                                                           hanoi[n-1, aux, target, source]   }}hanoi[7]

FutureBasic

window 1, @"Towers of Hanoi", ( 0, 0, 300, 300 )void local fn Move( n as long, fromPeg as long, toPeg as long, viaPeg as long )  if n > 0    fn Move( n-1, fromPeg, viaPeg, toPeg )    print "Move disk from "; fromPeg; " to "; toPeg    fn Move( n-1, viaPeg, toPeg, fromPeg )  end ifend fnfn Move( 4, 1, 2, 3 )printprint "Towers of Hanoi puzzle solved."HandleEvents

Output:

Move disk from  1 to  3Move disk from  1 to  2Move disk from  3 to  2Move disk from  1 to  3Move disk from  2 to  1Move disk from  2 to  3Move disk from  1 to  3Move disk from  1 to  2Move disk from  3 to  2Move disk from  3 to  1Move disk from  2 to  1Move disk from  3 to  2Move disk from  1 to  3Move disk from  1 to  2Move disk from  3 to  2Towers of Hanoi puzzle solved.

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in itswebsite.

Inthis page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

Test case

Gambas

Translation of:FreeBASIC
PublicSubMain()Print"Three disks\n"move_(3,1,2,3)PrintPrint"Four disks\n"move_(4,1,2,3)EndPublicSubmove_(nAsInteger,fromAsInteger,toAsInteger,viaAsInteger)Ifn>0Thenmove_(n-1,from,via,to)Print"Move disk ";n;" from pole ";from;" to pole ";tomove_(n-1,via,to,from)EndIfEndSub
Output:
Same as FreeBASIC entry.

GAP

Hanoi:=function(n)localmove;move:=function(n,a,b,c)# from, through, toifn=1thenPrint(a," -> ",c,"\n");elsemove(n-1,a,c,b);move(1,a,b,c);move(n-1,b,a,c);fi;end;move(n,"A","B","C");end;Hanoi(1);# A -> CHanoi(2);# A -> B# A -> C# B -> CHanoi(3);# A -> C# A -> B# C -> B# A -> C# B -> A# B -> C# A -> C

Go

packagemainimport"fmt"// a towers of hanoi solver just has one method, playtypesolverinterface{play(int)}funcmain(){vartsolver// declare variable of solver typet=new(towers)// type towers must satisfy solver interfacet.play(4)}// towers is example of type satisfying solver interfacetypetowersstruct{// an empty struct.  some other solver might fill this with some// data representation, maybe for algorithm validation, or maybe for// visualization.}// play is sole method required to implement solver typefunc(t*towers)play(nint){// drive recursive solution, per task descriptiont.moveN(n,1,2,3)}// recursive algorithmfunc(t*towers)moveN(n,from,to,viaint){ifn>0{t.moveN(n-1,from,via,to)t.move1(from,to)t.moveN(n-1,via,to,from)}}// example function prints actions to screen.// enhance with validation or visualization as needed.func(t*towers)move1(from,toint){fmt.Println("move disk from rod",from,"to rod",to)}

In other words:

packagemainimport"fmt"funcmain(){move(3,"A","B","C")}funcmove(nuint64,a,b,cstring){ifn>0{move(n-1,a,c,b)fmt.Println("Move disk from "+a+" to "+c)move(n-1,b,a,c)}}

Golfscript

{:q;.@.@<@@\)>q\++}:at;{\.@\}:over;{1 [" -> "] at puts}:disp;{ . 0>  { over over      \ ~[\]+ \(      move    \ .disp \    over over      \ )\~\[@] \(      move  } *;;}:move;[1 2 3] 3 move
Output:
1 -> 31 -> 23 -> 21 -> 32 -> 12 -> 31 -> 3

Groovy

Unlike most solutions here this solution manipulates more-or-less actual stacks of more-or-less actual rings.

deftail={list,n->defm=list.size();list.subList([m-n,0].max(),m)}finalSTACK=[A:[],B:[],C:[]].asImmutable()defreport={it->}defcheck={it->}defmoveRing={from,to->to<<from.pop();report();check(to)}defmoveStackmoveStack={from,to,using=STACK.values().find{!(it.is(from)||it.is(to))}->if(!from)returndefn=from.size()moveStack(tail(from,n-1),using,to)moveRing(from,to)moveStack(tail(using,n-1),to,from)}

Test program:

enumRing{S('°'),M('o'),L('O'),XL('( )');privatesymprivateRing(sym){this.sym=sym}StringtoString(){sym}}report={STACK.each{k,v->println"${k}: ${v}"};println()}check={to->assertto==([]+to).sort().reverse()}Ring.values().reverseEach{STACK.A<<it}report()check(STACK.A)moveStack(STACK.A,STACK.C)
Output:
A: [( ), O, o, °]B: []C: []A: [( ), O, o]B: [°]C: []A: [( ), O]B: [°]C: [o]A: [( ), O]B: []C: [o, °]A: [( )]B: [O]C: [o, °]A: [( ), °]B: [O]C: [o]A: [( ), °]B: [O, o]C: []A: [( )]B: [O, o, °]C: []A: []B: [O, o, °]C: [( )]A: []B: [O, o]C: [( ), °]A: [o]B: [O]C: [( ), °]A: [o, °]B: [O]C: [( )]A: [o, °]B: []C: [( ), O]A: [o]B: [°]C: [( ), O]A: []B: [°]C: [( ), O, o]A: []B: []C: [( ), O, o, °]

Haskell

Most of the programs on this page use an imperative approach (i.e., print out movements as side effects during program execution). Haskell favors a purely functional approach, where you would for example return a (lazy) list of movements from a to b via c:

hanoi::Integer->a->a->a->[(a,a)]hanoi0___=[]hanoinabc=hanoi(n-1)acb++[(a,b)]++hanoi(n-1)cba

You can also do the above with one tail-recursion call:

hanoi::Integer->a->a->a->[(a,a)]hanoinabc=hanoiToListnabc[]wherehanoiToList0___l=lhanoiToListnabcl=hanoiToList(n-1)acb((a,b):hanoiToList(n-1)cbal)

One can use this function to produce output, just like the other programs:

hanoiIOn=mapM_f$hanoin123wheref(x,y)=putStrLn$"Move "++showx++" to "++showy

or, instead, one can of course also program imperatively, using the IO monad directly:

hanoiM::Integer->IO()hanoiMn=hanoiM'n123wherehanoiM'0___=return()hanoiM'nabc=dohanoiM'(n-1)acbputStrLn$"Move "++showa++" to "++showbhanoiM'(n-1)cba

or, defining it as a monoid, and adding some output:

-------------------------- HANOI -------------------------hanoi::Int->String->String->String->[(String,String)]hanoi0___=memptyhanoinlrm=hanoi(n-1)lmr<>[(l,r)]<>hanoi(n-1)mrl--------------------------- TEST -------------------------main::IO()main=putStrLn$showHanoi5------------------------- DISPLAY ------------------------showHanoi::Int->StringshowHanoin=unlines$fmap(\(from,to)->concat[justifyRight5' 'from," -> ",to])(hanoin"left""right""mid")justifyRight::Int->Char->String->StringjustifyRightnc=(drop.length)<*>(replicatenc<>)
Output:
 left -> right left -> midright -> mid left -> right  mid -> left  mid -> right left -> right left -> midright -> midright -> left  mid -> leftright -> mid left -> right left -> midright -> mid left -> right  mid -> left  mid -> right left -> right  mid -> leftright -> midright -> left  mid -> left  mid -> right left -> right left -> midright -> mid left -> right  mid -> left  mid -> right left -> right

HolyC

Translation of:C
U0 Move(U8 n, U8 from, U8 to, U8 via) {  if (n > 0) {    Move(n - 1, from, via, to);    Print("Move disk from pole %d to pole %d\n", from, to);    Move(n - 1, via, to, from);  }}Move(4, 1, 2, 3);

Icon andUnicon

The following is based on a solution in the Unicon book.

proceduremain(arglist)hanoi(arglist[1])|stop("Usage: hanoi n\n\rWhere n is the number of disks to move.")end#procedure hanoi(n:integer, needle1:1, needle2:2)   # unicon shorthand for icon code 1,2,3 belowprocedurehanoi(n,needle1,needle2)#: solve towers of hanoi by moving  n disks from needle 1 to needle2 via otherlocalothern:=integer(0<n)|runerr(n,101)# 1 ensure integer (this also ensures it's positive too)/needle1:=1# 2 default/needle2:=2# 3 defaultifn=1thenwrite("Move disk from ",needle1," to ",needle2)else{other:=6-needle1-needle2# clever but somewhat un-iconish way to find otherhanoi(n-1,needle1,other)write("Move disk from ",needle1," to ",needle2)hanoi(n-1,other,needle2)}returnend

Imp77

%begin  %routine do hanoi(%integer n, f, t, u)    do hanoi(n - 1, f, u, t) %if n >= 2    print string("Move disk from ".itos(f,0)." to ".itos(t,0).to string(nl))    do hanoi(n - 1, u, t, f) %if n >= 2  %end  do hanoi(4, 1, 2, 3)  print string("Towers of Hanoi puzzle completed!".to string(nl))%end %of %program
Output:
Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 1 to 3Move disk from 2 to 1Move disk from 2 to 3Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 3 to 1Move disk from 2 to 1Move disk from 3 to 2Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Towers of Hanoi puzzle completed!

Inform 7

Hanoi is a room.A post is a kind of supporter. A post is always fixed in place.The left post, the middle post, and the right post are posts in Hanoi.A disk is a kind of supporter.The red disk is a disk on the left post.The orange disk is a disk on the red disk.The yellow disk is a disk on the orange disk.The green disk is a disk on the yellow disk.Definition: a disk is topmost if nothing is on it.When play begins:move 4 disks from the left post to the right post via the middle post.To move (N - number) disk/disks from (FP - post) to (TP - post) via (VP - post):if N > 0:move N - 1 disks from FP to VP via TP;say"Moving a disk from[FP] to[TP]...";let D be a random topmost disk enclosed by FP;if a topmost disk (called TD) is enclosed by TP, now D is on TD;otherwise now D is on TP;move N - 1 disks from VP to TP via FP.

Io

hanoi:=method(n,from,to,via,if(n==1)then(writeln("Move from ",from," to ",to))else(hanoi(n-1,from,via,to)hanoi(1,from,to,via)hanoi(n-1,via,to,from)))

Ioke

=method(n,f,u,t,if(n<2,"#{f} -->#{t}"println,H(n-1,f,t,u)"#{f} -->#{t}"printlnH(n-1,u,f,t)))hanoi=method(n,H(n,1,2,3))

J

Solutions

H=:i.@,&2`(({&021,02,{&102)@$:@<:)@.*NB. tacit using anonymous recursion
Example use:
H302012102121020

The result is a 2-column table; a rowi,j is interpreted as: move a disk (the top disk) from pegi to peg j .Or, using explicit rather than implicit code:

H1=:monaddefineNB. explicit equivalent of Hif.ydo.({&021,02,{&102)H1y-1else.i.02end.)

The usage here is the same:

   H1 20 10 21 2
Alternative solution

If a textual display is desired, similar to some of the other solutions here (counting from 1 instead of 0, tracking which disk is on the top of the stack, and of course formatting the result for a human reader instead of providing a numeric result):

hanoi=:monaddefinemoves=.Hydisks=.$~`((],[,])$:@<:)@.*y('move disk ';' from peg ';' to peg ');@,."1":&.>disks,.1+moves)
Demonstration:
hanoi3movedisk1frompeg1topeg3movedisk2frompeg1topeg2movedisk1frompeg3topeg2movedisk3frompeg1topeg3movedisk1frompeg2topeg1movedisk2frompeg2topeg3movedisk1frompeg1topeg3

Java

publicvoidmove(intn,intfrom,intto,intvia){if(n==1){System.out.println("Move disk from pole "+from+" to pole "+to);}else{move(n-1,from,via,to);move(1,from,to,via);move(n-1,via,to,from);}}

Where n is the number of disks to move and from, to, and via are the poles.

Example use:
move(3,1,2,3);
Output:
Movediskfrompole1topole2Movediskfrompole1topole3Movediskfrompole2topole3Movediskfrompole1topole2Movediskfrompole3topole1Movediskfrompole3topole2Movediskfrompole1topole2

JavaScript

ES5

functionmove(n,a,b,c){if(n>0){move(n-1,a,c,b);console.log("Move disk from "+a+" to "+c);move(n-1,b,a,c);}}move(4,"A","B","C");


Or, as a functional expression, rather than a statement with side effects:

(function(){// hanoi :: Int -> String -> String -> String -> [[String, String]]functionhanoi(n,a,b,c){returnn?hanoi(n-1,a,c,b).concat([[a,b]]).concat(hanoi(n-1,c,b,a)):[];}returnhanoi(3,'left','right','mid').map(function(d){returnd[0]+' -> '+d[1];});})();
Output:
["left -> right","left -> mid","right -> mid","left -> right","mid -> left","mid -> right","left -> right"]

ES6

(()=>{"use strict";// ----------------- TOWERS OF HANOI -----------------// hanoi :: Int -> String -> String ->// String -> [[String, String]]consthanoi=n=>(a,b,c)=>{constgo=hanoi(n-1);returnn?[...go(a,c,b),[a,b],...go(c,b,a)]:[];};// ---------------------- TEST -----------------------returnhanoi(3)("left","right","mid").map(d=>`${d[0]} ->${d[1]}`).join("\n");})();
Output:
left -> rightleft -> midright -> midleft -> rightmid -> leftmid -> rightleft -> right

Joy

DEFINE hanoi == [[rolldown] infra] dip [[[null] [pop pop] ]  [[dup2 [[rotate] infra] dip pred]  [[dup rest put] dip   [[swap] infra] dip pred]  []]] condnestrec.

Using it (5 is the number of disks.)

[source destination temp] 5 hanoi.

jq

Works with:jq version 1.4

The algorithm used here is used elsewhere on this page but it is worthwhile pointing out that it can also be read as a proof that:

(a) move(n;"A";"B";"C") will logically succeed for n>=0; and

(b) move(n;"A";"B";"C") will generate the sequence of moves, assuming sufficient computing resources.

The proof of (a) is by induction:

  • As explained in the comments, the algorithm establishes that move(n;x;y;z) is possible for all n>=0 and distinct x,y,z if move(n-1;x;y;z)) is possible;
  • Since move(0;x;y;z) evidently succeeds, (a) is established by induction.


The truth of (b) follows from the fact that the algorithm emits an instruction of what to do when moving a single disk.

# n is the number of disks to move from From to Todef move(n; From; To; Via):  if n > 0 then     # move all but the largest at From to Via (according to the rules):     move(n-1; From; Via; To),     # ... so the largest disk at From is now free to move to its final destination:     "Move disk from \(From) to \(To)",     # Move the remaining disks at Via to To:     move(n-1; Via; To; From)  else empty  end;

Example:

move(5; "A"; "B"; "C")

Jsish

From Javascript ES5 entry.

/* Towers of Hanoi, in Jsish */functionmove(n,a,b,c){if(n>0){move(n-1,a,c,b);puts("Move disk from "+a+" to "+c);move(n-1,b,a,c);}}if(Interp.conf('unitTest'))move(4,"A","B","C");/*=!EXPECTSTART!=Move disk from A to BMove disk from A to CMove disk from B to CMove disk from A to BMove disk from C to AMove disk from C to BMove disk from A to BMove disk from A to CMove disk from B to CMove disk from B to AMove disk from C to AMove disk from B to CMove disk from A to BMove disk from A to CMove disk from B to C=!EXPECTEND!=*/
Output:
prompt$ jsish -u towersOfHanoi.jsi[PASS] towersOfHanoi.jsi

Julia

Translation of:R
functionsolve(n::Integer,from::Integer,to::Integer,via::Integer)ifn==1println("Move disk from$from to$to")elsesolve(n-1,from,via,to)solve(1,from,to,via)solve(n-1,via,to,from)endendsolve(4,1,2,3)
Output:
Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 1 to 3Move disk from 2 to 1Move disk from 2 to 3Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 3 to 1Move disk from 2 to 1Move disk from 3 to 2Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2

K

h:{[n;a;b;c]if[n>0;_f[n-1;a;c;b];`0:,//$($n,":",$a,"->",$b,"\n");_f[n-1;c;b;a]]}h[4;1;2;3]1:1->32:1->21:3->23:1->31:2->12:2->31:1->34:1->21:3->22:3->11:2->13:3->21:1->32:1->21:3->2

The disk to move in the i'th step is the same as the position of the leftmost 1 in the binary representation of 1..2^n.

s:();{[n;a;b;c]if[n>0;_f[n-1;a;c;b];s,:n;_f[n-1;c;b;a]]}[4;1;2;3];s1213121412131211_{*1+&|x}'a:(2_vs!_2^4)121312141213121

Klingphix

Translation of:MiniScript
include ..\Utilitys.tlhy:moveDisc %B !B %C !C %A !A %n !n { n A C B }    $n [        $n 1 - $A $B $C moveDisc        ( "Move disc " $n " from pole " $A " to pole " $C ) lprint nl        $n 1 - $B $C $A moveDisc    ] if; { Move disc 3 from pole 1 to pole 3, with pole 2 as spare }3 1 3 2 moveDisc" " input
Output:
Move disc 1 from pole 1 to pole 3Move disc 2 from pole 1 to pole 2Move disc 1 from pole 3 to pole 2Move disc 3 from pole 1 to pole 3Move disc 1 from pole 2 to pole 1Move disc 2 from pole 2 to pole 3Move disc 1 from pole 1 to pole 3

Kotlin

// version 1.1.0classHanoi(disks:Int){privatevarmoves=0init{println("Towers of Hanoi with $disks disks:\n")move(disks,'L','C','R')println("\nCompleted in $moves moves\n")}privatefunmove(n:Int,from:Char,to:Char,via:Char){if(n>0){move(n-1,from,via,to)moves++println("Move disk $n from $from to $to")move(n-1,via,to,from)}}}funmain(args:Array<String>){Hanoi(3)Hanoi(4)}
Output:
Towers of Hanoi with 3 disks:Move disk 1 from L to CMove disk 2 from L to RMove disk 1 from C to RMove disk 3 from L to CMove disk 1 from R to LMove disk 2 from R to CMove disk 1 from L to CCompleted in 7 movesTowers of Hanoi with 4 disks:Move disk 1 from L to RMove disk 2 from L to CMove disk 1 from R to CMove disk 3 from L to RMove disk 1 from C to LMove disk 2 from C to RMove disk 1 from L to RMove disk 4 from L to CMove disk 1 from R to CMove disk 2 from R to LMove disk 1 from C to LMove disk 3 from R to CMove disk 1 from L to RMove disk 2 from L to CMove disk 1 from R to CCompleted in 15 moves

Lambdatalk

PSEUDO-CODE:hanoidisksfromAtoBviaCifnodisksthenstopelsehanoiupperdisksfromAtoCviaBmovelowerdiskfromAtoBhanoiupperdisksfromCtoBviaACODE:{defhanoi{lambda{:disks:a:b:c}{if{A.empty?:disks}thenelse{hanoi{A.rest:disks}:a:c:b}{div>move{A.first:disks}from:ato:b}{hanoi{A.rest:disks}:c:b:a}}}}->hanoi{hanoi{A.new==========}ABC}->>move=fromAtoC>move==fromAtoB>move=fromCtoB>move===fromAtoC>move=fromBtoA>move==fromBtoC>move=fromAtoC>move====fromAtoB>move=fromCtoB>move==fromCtoA>move=fromBtoA>move===fromCtoB>move=fromAtoC>move==fromAtoB>move=fromCtoB

Lasso

#!/usr/bin/lasso9definetowermove(disks::integer,a,b,c)=>{if(#disks>0)=>{towermove(#disks-1,#a,#c,#b)stdoutnl("Move disk from "+#a+" to "+#c)towermove(#disks-1,#b,#a,#c)}}towermove((integer($argv->second||3)),"A","B","C")

Called from command line:

./towers
Output:
Move disk from A to CMove disk from A to BMove disk from C to BMove disk from A to CMove disk from B to AMove disk from B to CMove disk from A to C

Called from command line:

./towers4
Output:
Move disk from A to BMove disk from A to CMove disk from B to CMove disk from A to BMove disk from C to AMove disk from C to BMove disk from A to BMove disk from A to CMove disk from B to CMove disk from B to AMove disk from C to AMove disk from B to CMove disk from A to BMove disk from A to CMove disk from B to C

Liberty BASIC

This looks much better with a GUI interface.

   source$ ="A"    via$    ="B"    target$ ="C"    call hanoi 4, source$, target$, via$        '   ie call procedure to move legally 4 disks from peg A to peg C via peg B    wait    sub hanoi numDisks, source$, target$, via$        if numDisks =0 then            exit sub        else            call hanoi numDisks -1, source$, via$, target$            print " Move disk "; numDisks; " from peg "; source$; " to peg "; target$            call hanoi numDisks -1, via$, target$, source$        end if    end sub    end

Lingo

on hanoi (n, a, b, c)  if n > 0 then    hanoi(n-1, a, c, b)    put "Move disk from" && a && "to" && c    hanoi(n-1, b, a, c)  end ifend
hanoi(3, "A", "B", "C")-- "Move disk from A to C"-- "Move disk from A to B"-- "Move disk from C to B"-- "Move disk from A to C"-- "Move disk from B to A"-- "Move disk from B to C"-- "Move disk from A to C"

Logo

to move :n :from :to :via  if :n = 0 [stop]  move :n-1 :from :via :to  (print [Move disk from] :from [to] :to)  move :n-1 :via :to :fromendmove 4 "left "middle "right

Logtalk

:-object(hanoi).    :-public(run/1).    :-mode(run(+integer), one).    :-info(run/1, [        commentis'Solves the towers of Hanoi problem for the specified number of disks.',        argnamesis ['Disks']]).    run(Disks):-        move(Disks, left, middle, right).    move(1,Left,_,Right):-!,        report(Left,Right).    move(Disks,Left,Aux,Right):-Disks2isDisks-1,        move(Disks2,Left,Right,Aux),        report(Left,Right),        move(Disks2,Aux,Left,Right).    report(Pole1,Pole2):-write('Move a disk from '),writeq(Pole1),write(' to '),writeq(Pole2),write('.'),nl.:-end_object.

LOLCODE

HAI 1.2 HOW IZ I HANOI YR N AN YR SRC AN YR DST AN YR VIA    BTW VISIBLE SMOOSH "HANOI N=" N " SRC=" SRC " DST=" DST " VIA=" VIA MKAY    BOTH SAEM N AN 0, O RLY?        YA RLY            BTW VISIBLE "Done."            GTFO        NO WAI            I HAS A LOWER ITZ DIFF OF N AN 1            I IZ HANOI YR LOWER AN YR SRC AN YR VIA AN YR DST MKAY            VISIBLE SMOOSH "Move disc " N " from " SRC " to " DST MKAY            I IZ HANOI YR LOWER AN YR VIA AN YR DST AN YR SRC MKAY    OICIF U SAY SO I IZ HANOI YR 4 AN YR 1 AN YR 2 AN YR 3  MKAY KTHXBYE

Lua

functionmove(n,src,dst,via)ifn>0thenmove(n-1,src,via,dst)print(src,'to',dst)move(n-1,via,dst,src)endendmove(4,1,2,3)

Template:More informative version

functionmove(n,src,via,dst)ifn>0thenmove(n-1,src,dst,via)print('Disk ',n,' from ',src,'to',dst)move(n-1,via,src,dst)endendmove(4,1,2,3)

Hanoi Iterative

#!/usr/bin/env luajitlocalfunctionprintf(fmt,...)io.write(string.format(fmt,...))endlocalruns=0localfunctionmove(tower,from,to)if#tower[from]==0or(#tower[to]>0andtower[from][#tower[from]]>tower[to][#tower[to]])thento,from=from,toendif#tower[from]>0thentower[to][#tower[to]+1]=tower[from][#tower[from]]tower[from][#tower[from]]=nilio.write(tower[to][#tower[to]],":",from,"→",to," ")endendlocalfunctionhanoi(n)localsrc,dst,via={},{},{}localtower={src,dst,via}fori=1,ndosrc[i]=n-i+1endlocalone,nxt,lstifn%2==1then-- oddone,nxt,lst=1,2,3elseone,nxt,lst=1,3,2end--repeat::loop::move(tower,one,nxt)if#dst==nthenreturnendmove(tower,one,lst)one,nxt,lst=nxt,lst,onegotoloop--until falseendlocalnum=arg[1]andtonumber(arg[1])or4hanoi(num)
Output:
> ./hanoi_iter.lua 51:1→2 2:1→3 1:2→3 3:1→2 1:3→1 2:3→2 1:1→2 4:1→3 1:2→3 2:2→1 1:3→1 3:2→3 1:1→2 2:1→3 1:2→3 5:1→2 1:3→1 2:3→2 1:1→2 3:3→1 1:2→3 2:2→1 1:3→1 4:3→2 1:1→2 2:1→3 1:2→3 3:1→2 1:3→1 2:3→2 1:1→2

Hanoi Bitwise Fast

#!/usr/bin/env luajit-- binary solutionlocalbit=require"bit"localband,bor=bit.band,bit.borlocalfunctionhanoi(n)localeven=(n-1)%2form=1,2^n-1doio.write(m,":",band(m,m-1)%3+1,"→",(bor(m,m-1)+1)%3+1," ")endendlocalnum=arg[1]andtonumber(arg[1])or4hanoi(num)
Output:
> ./hanoi_bit.lua 41:1→3 2:1→2 3:3→2 4:1→3 5:2→1 6:2→3 7:1→3 8:1→2 9:3→2 10:3→1 11:2→1 12:3→2 13:1→3 14:1→2 15:3→2 > time ./hanoi_bit.lua 30 >/dev/null  ; on AMD FX-8350 @ 4 GHz./hanoi_bit.lua 30 > /dev/null  297,40s user 1,39s system 99% cpu 4:59,01 total

M2000 Interpreter

Translation of:FreeBasic
Module Hanoi {      Rem HANOI TOWERS      Print "Three disks" : Print      move(3, 1, 2, 3)      Print       Print "Four disks" : Print      move(4, 1, 2, 3)                  Sub move(n, from, to, via)            If n <=0 Then Exit Sub            move(n - 1, from, via, to)            Print "Move disk"; n; " from pole"; from; " to pole"; to            move(n - 1, via, to, from)      End Sub}Hanoi
Output:

same as in FreeBasic

MACRO-11

        .TITLE  HANOI        .MCALL  .PRINT,.EXITHANOI:: MOV     #4,R2        MOV     #61,R3        MOV     #62,R4        MOV     #63,R5        JSR     PC,MOVE        .EXITMOVE:   DEC     R2        BLT     1$        MOV     R2,-(SP)        MOV     R3,-(SP)        MOV     R4,-(SP)        MOV     R5,-(SP)        MOV     R5,R0        MOV     R4,R5        MOV     R0,R4        JSR     PC,MOVE        MOV     (SP)+,R5        MOV     (SP)+,R4        MOV     (SP)+,R3        MOV     (SP)+,R2        MOVB    R3,3$        MOVB    R4,4$        .PRINT  #2$        MOV     R3,R0        MOV     R4,R3        MOV     R5,R4        MOV     R0,R5        BR      MOVE1$:     RTS     PC2$:     .ASCII  /MOVE DISK FROM PEG /3$:     .ASCII  /* TO PEG /4$:     .ASCIZ  /*/        .EVEN        .END    HANOI
Output:
MOVE DISK FROM PEG 1 TO PEG 3MOVE DISK FROM PEG 1 TO PEG 2MOVE DISK FROM PEG 2 TO PEG 3MOVE DISK FROM PEG 1 TO PEG 3MOVE DISK FROM PEG 3 TO PEG 1MOVE DISK FROM PEG 3 TO PEG 2MOVE DISK FROM PEG 2 TO PEG 1MOVE DISK FROM PEG 1 TO PEG 2MOVE DISK FROM PEG 2 TO PEG 3MOVE DISK FROM PEG 2 TO PEG 1MOVE DISK FROM PEG 1 TO PEG 3MOVE DISK FROM PEG 2 TO PEG 3MOVE DISK FROM PEG 3 TO PEG 2MOVE DISK FROM PEG 3 TO PEG 1MOVE DISK FROM PEG 1 TO PEG 2

MAD

            NORMAL MODE IS INTEGER            DIMENSION LIST(100)            SET LIST TO LIST                        VECTOR VALUES MOVFMT =           0  $20HMOVE DISK FROM POLE ,I1,S1,8HTO POLE ,I1*$                       INTERNAL FUNCTION(DUMMY)            ENTRY TO MOVE.LOOP        NUM = NUM - 1            WHENEVER NUM.E.0                PRINT FORMAT MOVFMT,FROM,DEST            OTHERWISE                SAVE RETURN                SAVE DATA NUM,FROM,VIA,DEST                TEMP=DEST                DEST=VIA                VIA=TEMP                MOVE.(0)                RESTORE DATA NUM,FROM,VIA,DEST                RESTORE RETURN                PRINT FORMAT MOVFMT,FROM,DEST                TEMP=FROM                FROM=VIA                VIA=TEMP                TRANSFER TO LOOP            END OF CONDITIONAL            FUNCTION RETURN            END OF FUNCTION                        NUM  = 4            FROM = 1            VIA  = 2            DEST = 3            MOVE.(0)                        END OF PROGRAM
Output:
MOVE DISK FROM POLE 1 TO POLE 2MOVE DISK FROM POLE 1 TO POLE 3MOVE DISK FROM POLE 2 TO POLE 3MOVE DISK FROM POLE 1 TO POLE 2MOVE DISK FROM POLE 3 TO POLE 1MOVE DISK FROM POLE 3 TO POLE 2MOVE DISK FROM POLE 1 TO POLE 2MOVE DISK FROM POLE 1 TO POLE 3MOVE DISK FROM POLE 2 TO POLE 3MOVE DISK FROM POLE 2 TO POLE 1MOVE DISK FROM POLE 3 TO POLE 1MOVE DISK FROM POLE 2 TO POLE 3MOVE DISK FROM POLE 1 TO POLE 2MOVE DISK FROM POLE 1 TO POLE 3MOVE DISK FROM POLE 2 TO POLE 3

Maple

Hanoi := proc(n::posint,a,b,c)   if n = 1 then       printf("Move disk from tower %a to tower %a.\n",a,c);   else       Hanoi(n-1,a,c,b);       Hanoi(1,a,b,c);       Hanoi(n-1,b,a,c);    fi;end:printf("Moving 2 disks from tower A to tower C using tower B.\n");Hanoi(2,A,B,C);
Output:

Moving 2 disks from tower A to tower C using tower B.

Move disk from tower A to tower B.

Move disk from tower A to tower C.

Move disk from tower B to tower C.

Mathematica /Wolfram Language

Hanoi[0,from_,to_,via_]:=NullHanoi[n_Integer,from_,to_,via_]:=(Hanoi[n-1,from,via,to];Print["Move disk from pole ",from," to ",to,"."];Hanoi[n-1,via,to,from])

MATLAB

This is a direct translation from the Python example given in the Wikipedia entry for the Tower of Hanoi puzzle.

functiontowerOfHanoi(n,A,C,B)if(n~=0)towerOfHanoi(n-1,A,B,C);disp(sprintf('Move plate %d from tower %d to tower %d',[nAC]));towerOfHanoi(n-1,B,C,A);endend
Sample output:
towerOfHanoi(3,1,3,2)Move plate 1 from tower 1 to tower 3Move plate 2 from tower 1 to tower 2Move plate 1 from tower 3 to tower 2Move plate 3 from tower 1 to tower 3Move plate 1 from tower 2 to tower 1Move plate 2 from tower 2 to tower 3Move plate 1 from tower 1 to tower 3

MiniScript

moveDisc = function(n, A, C, B)    if n == 0 then return    moveDisc n-1, A, B, C    print "Move disc " + n + " from pole " + A + " to pole " + C    moveDisc n-1, B, C, Aend function// Move disc 3 from pole 1 to pole 3, with pole 2 as sparemoveDisc 3, 1, 3, 2
Output:
Move disc 1 from pole 1 to pole 3Move disc 2 from pole 1 to pole 2Move disc 1 from pole 3 to pole 2Move disc 3 from pole 1 to pole 3Move disc 1 from pole 2 to pole 1Move disc 2 from pole 2 to pole 3Move disc 1 from pole 1 to pole 3

Miranda

main :: [sys_message]main = [Stdout (lay (map showmove (move 4 1 2 3)))]showmove :: (num,num)->[char]showmove (src,dest)    = "Move disk from pole " ++ show src ++ " to pole " ++ show destmove :: num->*->*->*->[(*,*)]move n src via dest    = [], if n=0    = left ++ [(src,dest)] ++ right, otherwise      where left  = move (n-1) src dest via            right = move (n-1) via src dest
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

MIPS Assembly

# Towers of Hanoi# MIPS assembly implementation (tested with MARS)# Source: https://stackoverflow.com/questions/50382420/hanoi-towers-recursive-solution-using-mips/50383530#50383530.dataprompt: .asciiz "Enter a number: "part1: .asciiz "\nMove disk "part2: .asciiz " from rod "part3: .asciiz " to rod ".text.globl mainmain:    li $v0,  4          # print string    la $a0,  prompt    syscall    li $v0,  5          # read integer    syscall    # parameters for the routine    add $a0, $v0, $zero # move to $a0    li $a1, 'A'    li $a2, 'B'    li $a3, 'C'    jal hanoi           # call hanoi routine    li $v0, 10          # exit    syscallhanoi:    #save in stack    addi $sp, $sp, -20     sw   $ra, 0($sp)    sw   $s0, 4($sp)    sw   $s1, 8($sp)    sw   $s2, 12($sp)    sw   $s3, 16($sp)    add $s0, $a0, $zero    add $s1, $a1, $zero    add $s2, $a2, $zero    add $s3, $a3, $zero    addi $t1, $zero, 1    beq $s0, $t1, output    recur1:        addi $a0, $s0, -1        add $a1, $s1, $zero        add $a2, $s3, $zero        add $a3, $s2, $zero        jal hanoi        j output    recur2:        addi $a0, $s0, -1        add $a1, $s3, $zero        add $a2, $s2, $zero        add $a3, $s1, $zero        jal hanoi    exithanoi:        lw   $ra, 0($sp)        # restore registers from stack        lw   $s0, 4($sp)        lw   $s1, 8($sp)        lw   $s2, 12($sp)        lw   $s3, 16($sp)        addi $sp, $sp, 20       # restore stack pointer        jr $ra    output:        li $v0,  4              # print string        la $a0,  part1        syscall        li $v0,  1              # print integer        add $a0, $s0, $zero        syscall        li $v0,  4              # print string        la $a0,  part2        syscall        li $v0,  11             # print character        add $a0, $s1, $zero        syscall        li $v0,  4              # print string        la $a0,  part3        syscall        li $v0,  11             # print character        add $a0, $s2, $zero        syscall        beq $s0, $t1, exithanoi        j recur2

МК-61/52

^2x^yП0<->2/{x}x#0163П32П2БП203П22П31П1ПП25КППBПП28КППAПП31КППBПП34КППAИП1ИП3КППCИП1ИП2КППCИП3ИП2КППCИП1ИП3КППCИП2ИП1КППCИП2ИП3КППCИП1ИП3КППCВ/ОИП1ИП2БП62ИП2ИП1КППCИП1ИП2ИП3П1->П3->П2В/О10/+С/ПКИП0ИП0x=089331ИНВ^ВП2С/ПВ/О

Instruction: РA = 56; РB = 60; РC = 72; N В/О С/П, where 2 <= N <= 7.

Modula-2

MODULE Towers;FROM FormatString IMPORT FormatString;FROM Terminal IMPORT WriteString,ReadChar;PROCEDURE Move(n,from,to,via : INTEGER);VAR buf : ARRAY[0..63] OF CHAR;BEGIN    IF n>0 THEN        Move(n-1, from, via, to);        FormatString("Move disk %i from pole %i to pole %i\n", buf, n, from, to);        WriteString(buf);        Move(n-1, via, to, from)    ENDEND Move;BEGIN    Move(3, 1, 3, 2);    ReadCharEND Towers.

Modula-3

MODULE Hanoi EXPORTS Main;FROM IO IMPORT Put;FROM Fmt IMPORT Int;PROCEDURE doHanoi(n, from, to, using: INTEGER) =  BEGIN    IF n > 0 THEN      doHanoi(n - 1, from, using, to);      Put("move " & Int(from) & " --> " & Int(to) & "\n");      doHanoi(n - 1, using, to, from);    END;  END doHanoi;BEGIN  doHanoi(4, 1, 2, 3);END Hanoi.

Monte

def move(n, fromPeg, toPeg, viaPeg):    if (n > 0):        move(n.previous(), fromPeg, viaPeg, toPeg)        traceln(`Move disk $n from $fromPeg to $toPeg`)        move(n.previous(), viaPeg, toPeg, fromPeg)move(3, "left", "right", "middle")

MoonScript

hanoi = (n, src, dest, via) ->  if n > 1    hanoi n-1, src, via, dest  print "#{src} -> #{dest}"  if n > 1    hanoi n-1, via, dest, srchanoi 4,1,3,2
Output:
1 -> 21 -> 32 -> 31 -> 23 -> 13 -> 21 -> 21 -> 32 -> 32 -> 13 -> 12 -> 31 -> 21 -> 32 -> 3

Nemerle

using System; using System.Console;module Towers{    Hanoi(n : int, from = 1, to = 3, via = 2) : void    {        when (n > 0)        {            Hanoi(n - 1, from, via, to);            WriteLine("Move disk from peg {0} to peg {1}", from, to);            Hanoi(n - 1, via, to, from);        }    }        Main() : void    {        Hanoi(4)    } }

NetRexx

/* NetRexx */options replace format comments java crossref symbols binaryrunSample(arg)return-- 09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)~~method runSample(arg) private static  parse arg discs .  if discs = '', discs < 1 then discs = 4  say 'Minimum moves to solution:' 2 ** discs - 1  moves = move(discs)  say 'Solved in' moves 'moves.'  return-- 09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)09:02, 27 August 2022 (UTC)~~method move(discs = int 4, towerFrom = int 1, towerTo = int 2, towerVia = int 3, moves = int 0) public static  if discs == 1 then do    moves = moves + 1    say 'Move disc from peg' towerFrom 'to peg' towerTo '- Move No:' Rexx(moves).right(5)    end  else do    moves = move(discs - 1, towerFrom, towerVia, towerTo, moves)    moves = move(1, towerFrom, towerTo, towerVia, moves)    moves = move(discs - 1, towerVia, towerTo, towerFrom, moves)    end  return moves
Output:
Minimum moves to solution: 15Move disc from peg 1 to peg 3 - Move No:     1Move disc from peg 1 to peg 2 - Move No:     2Move disc from peg 3 to peg 2 - Move No:     3Move disc from peg 1 to peg 3 - Move No:     4Move disc from peg 2 to peg 1 - Move No:     5Move disc from peg 2 to peg 3 - Move No:     6Move disc from peg 1 to peg 3 - Move No:     7Move disc from peg 1 to peg 2 - Move No:     8Move disc from peg 3 to peg 2 - Move No:     9Move disc from peg 3 to peg 1 - Move No:    10Move disc from peg 2 to peg 1 - Move No:    11Move disc from peg 3 to peg 2 - Move No:    12Move disc from peg 1 to peg 3 - Move No:    13Move disc from peg 1 to peg 2 - Move No:    14Move disc from peg 3 to peg 2 - Move No:    15Solved in 15 moves.

NewLISP

(define (move n from to via)(if (> n 0) (move (- n 1) from via to(print "move disk from pole " from " to pole " to "\n")(move (- n 1) via to from))))(move 4 1 2 3)

Nim

proc hanoi(disks: int; fromTower, toTower, viaTower: string) =  if disks != 0:    hanoi(disks - 1, fromTower, viaTower, toTower)    echo("Move disk ", disks, " from ", fromTower, " to ", toTower)    hanoi(disks - 1, viaTower, toTower, fromTower)    hanoi(4, "1", "2", "3")
Output:
Move disk 1 from 1 to 3Move disk 2 from 1 to 2Move disk 1 from 3 to 2Move disk 3 from 1 to 3Move disk 1 from 2 to 1Move disk 2 from 2 to 3Move disk 1 from 1 to 3Move disk 4 from 1 to 2Move disk 1 from 3 to 2Move disk 2 from 3 to 1Move disk 1 from 2 to 1Move disk 3 from 3 to 2Move disk 1 from 1 to 3Move disk 2 from 1 to 2Move disk 1 from 3 to 2

Oberon-2

Translation of:C
MODULE Hanoi;  IMPORT Out;  PROCEDURE Move(n,from,via,to:INTEGER);  BEGIN    IF n > 1 THEN      Move(n-1,from,to,via);      Out.String("Move disk from pole ");      Out.Int(from,0);      Out.String(" to pole ");      Out.Int(to,0);      Out.Ln;      Move(n-1,via,from,to);    ELSE      Out.String("Move disk from pole ");      Out.Int(from,0);      Out.String(" to pole ");      Out.Int(to,0);      Out.Ln;    END;  END Move;  BEGIN  Move(4,1,2,3);END Hanoi.
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

Objeck

class Hanoi {  function : Main(args : String[]) ~ Nil {    Move(4, 1, 2, 3);  }  function: Move(n:Int, f:Int, t:Int, v:Int) ~ Nil {    if(n = 1) {      "Move disk from pole {$f} to pole {$t}"->PrintLine();    }    else {      Move(n - 1, f, v, t);      Move(1, f, t, v);      Move(n - 1, v, t, f);    };  }}

Objective-C

Fromhere

Works with:GNUstep

It should be compatible with XCode/Cocoa on MacOS too.

The Interface - TowersOfHanoi.h:

#import <Foundation/NSObject.h>@interface TowersOfHanoi: NSObject {int pegFrom;int pegTo;int pegVia;int numDisks;}-(void) setPegFrom: (int) from andSetPegTo: (int) to andSetPegVia: (int) via andSetNumDisks: (int) disks;-(void) movePegFrom: (int) from andMovePegTo: (int) to andMovePegVia: (int) via andWithNumDisks: (int) disks;@end

The Implementation - TowersOfHanoi.m:

#import "TowersOfHanoi.h"@implementation TowersOfHanoi-(void) setPegFrom: (int) from andSetPegTo: (int) to andSetPegVia: (int) via andSetNumDisks: (int) disks {pegFrom = from;pegTo = to;pegVia = via;numDisks = disks;}-(void) movePegFrom: (int) from andMovePegTo: (int) to andMovePegVia: (int) via andWithNumDisks: (int) disks {if (disks == 1) {            printf("Move disk from pole %i to pole %i\n", from, to);        } else { [self movePegFrom: from andMovePegTo: via andMovePegVia: to andWithNumDisks: disks-1];[self movePegFrom: from andMovePegTo: to andMovePegVia: via andWithNumDisks: 1];[self movePegFrom: via andMovePegTo: to andMovePegVia: from andWithNumDisks: disks-1];        }}@end

Test code: TowersTest.m:

#import <stdio.h>#import "TowersOfHanoi.h"int main( int argc, const char *argv[] ) {@autoreleasepool {TowersOfHanoi *tower = [[TowersOfHanoi alloc] init];int from = 1;int to = 3;int via = 2;int disks = 3;[tower setPegFrom: from andSetPegTo: to andSetPegVia: via andSetNumDisks: disks];[tower movePegFrom: from andMovePegTo: to andMovePegVia: via andWithNumDisks: disks];}return 0;}

OCaml

let rec hanoi n a b c =  if n <> 0 then begin    hanoi (pred n) a c b;    Printf.printf "Move disk from pole %d to pole %d\n" a b;    hanoi (pred n) c b a  endlet () =  hanoi 4 1 2 3

Octave

function hanoimove(ndisks, from, to, via)  if ( ndisks == 1 )    printf("Move disk from pole %d to pole %d\n", from, to);  else    hanoimove(ndisks-1, from, via, to);    hanoimove(1, from, to, via);    hanoimove(ndisks-1, via, to, from);  endifendfunctionhanoimove(4, 1, 2, 3);

Oforth

: move(n, from, to, via)   n 0 > ifTrue: [      move(n 1-, from, via, to)      System.Out "Move disk from " << from << " to " << to << cr      move(n 1-, via, to, from)      ] ;5 $left $middle $right) move

Oz

declare  proc {TowersOfHanoi N From To Via}     if N > 0 then        {TowersOfHanoi N-1 From Via To}        {System.showInfo "Move from "#From#" to "#To}        {TowersOfHanoi N-1 Via To From}     end  endin  {TowersOfHanoi 4 left middle right}

PARI/GP

Translation of:Python
\\ Towers of Hanoi\\ 8/19/2016 aev\\ Where: n - number of disks, sp - start pole, ep - end pole.HanoiTowers(n,sp,ep)={  if(n!=0,     HanoiTowers(n-1,sp,6-sp-ep);    print("Move disk ", n, " from pole ", sp," to pole ", ep);    HanoiTowers(n-1,6-sp-ep,ep);     );}\\ Testing n=3:HanoiTowers(3,1,3);
Output:
> HanoiTower(3,1,3);Move disk 1 from pole 1 to pole 3Move disk 2 from pole 1 to pole 2Move disk 1 from pole 3 to pole 2Move disk 3 from pole 1 to pole 3Move disk 1 from pole 2 to pole 1Move disk 2 from pole 2 to pole 3Move disk 1 from pole 1 to pole 3

Pascal

Works with:Free Pascal version 2.0.4

I think it is standard pascal, except for the constant array "strPole". I am not sure if constant arrays are part of the standard. However, as far as I know, they are a "de facto" standard in every compiler.

program Hanoi;type  TPole = (tpLeft, tpCenter, tpRight);const  strPole:array[TPole] of string[6]=('left','center','right'); procedure MoveStack (const Ndisks : integer; const Origin,Destination,Auxiliary:TPole); begin  if Ndisks >0 then begin     MoveStack(Ndisks - 1, Origin,Auxiliary, Destination );     Writeln('Move disk ',Ndisks ,' from ',strPole[Origin],' to ',strPole[Destination]);     MoveStack(Ndisks - 1, Auxiliary, Destination, origin);  end; end;begin MoveStack(4,tpLeft,tpCenter,tpRight);end.

A little longer, but clearer for my taste

program Hanoi;type  TPole = (tpLeft, tpCenter, tpRight);const  strPole:array[TPole] of string[6]=('left','center','right'); procedure MoveOneDisk(const DiskNum:integer; const Origin,Destination:TPole); begin  Writeln('Move disk ',DiskNum,' from ',strPole[Origin],' to ',strPole[Destination]); end; procedure MoveStack (const Ndisks : integer; const Origin,Destination,Auxiliary:TPole); begin  if Ndisks =1 then       MoveOneDisk(1,origin,Destination)  else begin       MoveStack(Ndisks - 1, Origin,Auxiliary, Destination );       MoveOneDisk(Ndisks,origin,Destination);       MoveStack(Ndisks - 1, Auxiliary, Destination, origin);  end; end;begin MoveStack(4,tpLeft,tpCenter,tpRight);end.

PascalABC.NET

## procedure Hanoi(n,rfrom,rto,rwork: integer);begin  if n = 0 then    exit;  Hanoi(n-1,rfrom,rwork,rto);  Print($'{rfrom}→{rto} ');  Hanoi(n-1,rwork,rto,rfrom);end;Hanoi(5,1,3,2);
Output:
1→3  1→2  3→2  1→3  2→1  2→3  1→3  1→2  3→2  3→1  2→1  3→2  1→3  1→2  3→2  1→3  2→1  2→3  1→3  2→1  3→2  3→1  2→1  2→3  1→3  1→2  3→2  1→3  2→1  2→3  1→3

Perl

sub hanoi {    my ($n, $from, $to, $via) = (@_, 1, 2, 3);    if ($n == 1) {        print "Move disk from pole $from to pole $to.\n";    } else {        hanoi($n - 1, $from, $via, $to);        hanoi(1, $from, $to, $via);        hanoi($n - 1, $via, $to, $from);    };};

Phix

constantpoles={"left","middle","right"}enumleft,middle,rightsequencedisksintegermovesprocedureshowpegs(integersrc,integerdest)stringdesc=sprintf("%s to %s:",{poles[src],poles[dest]})disks[dest]&=disks[src][$]disks[src]=disks[src][1..$-1]fori=1tolength(disks)doprintf(1,"%-16s | %s\n",{desc,join(sq_add(disks[i],'0'),' ')})desc=""endforprintf(1,"\n")moves+=1endprocedureprocedurehanoir(integern,src=left,dest=right,via=middle)ifn>0thenhanoir(n-1,src,via,dest)showpegs(src,dest)hanoir(n-1,via,dest,src)endifendprocedureprocedurehanoi(integern)disks={reverse(tagset(n)),{},{}}moves=0hanoir(n)printf(1,"completed in %d moves\n",{moves})endprocedurehanoi(3)-- (output of 4,5,6 also shown)
Output:
left to right:   | 3 2                 |                 | 1left to middle:  | 3                 | 2                 | 1right to middle: | 3                 | 2 1                 |left to right:   |                 | 2 1                 | 3middle to left:  | 1                 | 2                 | 3middle to right: | 1                 |                 | 3 2left to right:   |                 |                 | 3 2 1completed in 7 moves
left to middle:  | 4 3 2                 | 1                 |left to right:   | 4 3                 | 1                 | 2middle to right: | 4 3                 |                 | 2 1   ...left to middle:  | 2                 | 1                 | 4 3left to right:   |                 | 1                 | 4 3 2middle to right: |                 |                 | 4 3 2 1completed in 15 moves
left to right:   | 5 4 3 2                 |                 | 1left to middle:  | 5 4 3                 | 2                 | 1right to middle: | 5 4 3                 | 2 1                 |    ...middle to left:  | 1                 | 2                 | 5 4 3middle to right: | 1                 |                 | 5 4 3 2left to right:   |                 |                 | 5 4 3 2 1completed in 31 moves
left to middle:  | 6 5 4 3 2                 | 1                 |left to right:   | 6 5 4 3                 | 1                 | 2middle to right: | 6 5 4 3                 |                 | 2 1    ...left to middle:  | 2                 | 1                 | 6 5 4 3left to right:   |                 | 1                 | 6 5 4 3 2middle to right: |                 |                 | 6 5 4 3 2 1completed in 63 moves

PHL

Translation of:C
module hanoi;extern printf;@Void move(@Integer n, @Integer from, @Integer to, @Integer via) [if (n > 0) {move(n - 1, from, via, to);printf("Move disk from pole %d to pole %d\n", from, to);move(n - 1, via, to, from);}]@Integer main [move(4, 1,2,3);return 0;]

PHP

Translation of:Java
function move($n,$from,$to,$via) {    if ($n === 1) {        print("Move disk from pole $from to pole $to");    } else {        move($n-1,$from,$via,$to);        move(1,$from,$to,$via);        move($n-1,$via,$to,$from);    }}

Picat

main =>     hanoi(3, left, center, right).hanoi(0, _From, _To, _Via) => true.hanoi(N, From, To, Via) =>    hanoi(N - 1, From, Via, To),    printf("Move disk %w from pole %w to pole %w\n", N, From, To),    hanoi(N - 1, Via, To, From).
Output:
Move disk 1 from pole left to pole centerMove disk 2 from pole left to pole rightMove disk 1 from pole center to pole rightMove disk 3 from pole left to pole centerMove disk 1 from pole right to pole leftMove disk 2 from pole right to pole centerMove disk 1 from pole left to pole centercount=7, theoretical=7

Fast counting

main =>    hanoi(64).hanoi(N) =>    printf("N=%d\n", N),   Count = move(N, left, center, right) ,   printf("count=%w, theoretical=%w\n", Count, 2**N-1). tablemove(0, _From, _To, _Via) = 0.move(N, From, To, Via) = Count =>     Count1 = move(N - 1, From, Via, To),    Count2 = move(N - 1, Via, To, From),    Count = Count1+Count2+1.
Output:
N=64count=18446744073709551615, theoretical=18446744073709551615

PicoLisp

(de move (N A B C)  # Use: (move 3 'left 'center 'right)   (unless (=0 N)      (move (dec N) A C B)      (println 'Move 'disk 'from A 'to B)      (move (dec N) C B A) ) )

PL/I

Translation of:Fortran
tower: proc options (main);   call Move (4,1,2,3);Move: procedure (ndiscs, from, to, via) recursive;   declare (ndiscs, from, to, via) fixed binary;   if ndiscs = 1 then      put skip edit ('Move disc from pole ', trim(from), ' to pole ',         trim(to) ) (a);   else      do;         call Move (ndiscs-1, from, via, to);         call Move (1, from, to, via);         call Move (ndiscs-1, via, to, from);      end;end Move;end tower;

PL/M

Translation of:Tiny BASIC

Iterative solution as PL/M doesn't do recursion.

Works with:8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* ITERATIVE TOWERS OF HANOI; TRANSLATED FROM TINY BASIC (VIA ALGOL W) */   /* CP/M BDOS SYSTEM CALL                                                  */   BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;   /* I/O ROUTINES                                                           */   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );  END;   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S );  END;   DECLARE ( D, N, X, S, T ) ADDRESS;   /* FIXED NUMBER OF DISCS: 4 */   N = 1;   DO D = 1 TO 4;       N = N + N;   END;   DO X = 1 TO N - 1;       /* AS IN ALGOL W, WE CAN USE PL/M'S BIT ABD MOD OPERATORS             */       S =   ( X AND ( X - 1 ) )       MOD 3;       T = ( ( X OR  ( X - 1 ) ) + 1 ) MOD 3;       CALL PR$STRING( .'MOVE DISC ON PEG $' );       CALL PR$CHAR( '1' + S );       CALL PR$STRING( .' TO PEG $' );       CALL PR$CHAR( '1' + T );       CALL PR$STRING( .( 0DH, 0AH, '$' ) );   END;EOF
Output:
MOVE DISC ON PEG 1 TO PEG 3MOVE DISC ON PEG 1 TO PEG 2MOVE DISC ON PEG 3 TO PEG 2MOVE DISC ON PEG 1 TO PEG 3MOVE DISC ON PEG 2 TO PEG 1MOVE DISC ON PEG 2 TO PEG 3MOVE DISC ON PEG 1 TO PEG 3MOVE DISC ON PEG 1 TO PEG 2MOVE DISC ON PEG 3 TO PEG 2MOVE DISC ON PEG 3 TO PEG 1MOVE DISC ON PEG 2 TO PEG 1MOVE DISC ON PEG 3 TO PEG 2MOVE DISC ON PEG 1 TO PEG 3MOVE DISC ON PEG 1 TO PEG 2MOVE DISC ON PEG 3 TO PEG 2

PlainTeX

\newcount\hanoidepth\def\hanoi#1{%  \hanoidepth = #1  \move abc}%\def\move#1#2#3{%  \advance \hanoidepth by -1  \ifnum \hanoidepth > 0    \move #1#3#2  \fi  Move the upper disk from pole #1 to pole #3.\par  \ifnum \hanoidepth > 0    \move#2#1#3  \fi  \advance \hanoidepth by 1}\hanoi{5}\end

Pop11

define hanoi(n, src, dst, via);if n > 0 then    hanoi(n - 1, src, via, dst);    'Move disk ' >< n >< ' from ' >< src >< ' to ' >< dst >< '.' =>    hanoi(n - 1, via, dst, src);endif;enddefine;hanoi(4, "left", "middle", "right");

PostScript

A million-page document, each page showing one move.

%!PS-Adobe-3.0%%BoundingBox: 0 0 300 300/plate {        exch 100 mul 50 add exch th mul 10 add moveto        dup s mul neg 2 div 0 rmoveto        dup s mul 0 rlineto        0 th rlineto        s neg mul 0 rlineto        closepath gsave .5 setgray fill grestore 0 setgray stroke} def/drawtower {        0 1 2 { /x exch def /y 0 def                tower x get {                        dup 0 gt { x y plate /y y 1 add def } {pop} ifelse                } forall        } for showpage} def/apop { [ exch aload pop /last exch def ] last } def/apush{ [ 3 1 roll aload pop counttomark -1 roll ] } def/hanoi {        0 dict begin /from /mid /to /h 5 -1 2 { -1 roll def } for        h 1 eq {                        tower from get apop tower to get apush                tower to 3 -1 roll put                tower from 3 -1 roll put                drawtower        } {                     /h h 1 sub def                from to mid h hanoi                from mid to 1 hanoi                mid from to h hanoi        } ifelse        end} def/n 12 def/s 90 n div def/th 180 n div def/tower [ [n 1 add -1 2 { } for ] [] [] ] defdrawtower 0 1 2 n hanoi%%EOF

PowerShell

Works with:PowerShell version 4.0
function hanoi($n, $a,  $b, $c) {    if($n -eq 1) {        "$a -> $c"    } else{             hanoi ($n - 1) $a $c $b         hanoi 1 $a $b $c         hanoi ($n - 1) $b $a $c    }}hanoi 3 "A" "B" "C"

Output:

A -> CA -> BC -> BA -> CB -> AB -> CA -> C

Prolog

From Programming in Prolog by W.F. Clocksin & C.S. Mellish

hanoi(N) :- move(N,left,center,right).move(0,_,_,_) :- !.move(N,A,B,C) :-    M is N-1,    move(M,A,C,B),    inform(A,B),    move(M,C,B,A).inform(X,Y) :- write([move,a,disk,from,the,X,pole,to,Y,pole]), nl.

Using DCGs and separating core logic from IO

hanoi(N, Src, Aux, Dest, Moves-NMoves) :-  NMoves is 2^N - 1,  length(Moves, NMoves),  phrase(move(N, Src, Aux, Dest), Moves).move(1, Src, _, Dest) --> !,  [Src->Dest].move(2, Src, Aux, Dest) --> !,  [Src->Aux,Src->Dest,Aux->Dest].move(N, Src, Aux, Dest) -->  { succ(N0, N) },  move(N0, Src, Dest, Aux),  move(1, Src, Aux, Dest),  move(N0, Aux, Src, Dest).

PureBasic

Algorithm according tohttp://en.wikipedia.org/wiki/Towers_of_Hanoi

Procedure Hanoi(n, A.s, C.s, B.s)  If n    Hanoi(n-1, A, B, C)    PrintN("Move the plate from "+A+" to "+C)    Hanoi(n-1, B, C, A)  EndIfEndProcedure

Full program

Procedure Hanoi(n, A.s, C.s, B.s)  If n    Hanoi(n-1, A, B, C)    PrintN("Move the plate from "+A+" to "+C)    Hanoi(n-1, B, C, A)  EndIfEndProcedureIf OpenConsole()  Define n=3  PrintN("Moving "+Str(n)+" pegs."+#CRLF$)  Hanoi(n,"Left Peg","Middle Peg","Right Peg")  PrintN(#CRLF$+"Press ENTER to exit."): Input()EndIf
Output:
Moving 3 pegs.Move the plate from Left Peg to Middle PegMove the plate from Left Peg to Right PegMove the plate from Middle Peg to Right PegMove the plate from Left Peg to Middle PegMove the plate from Right Peg to Left PegMove the plate from Right Peg to Middle PegMove the plate from Left Peg to Middle PegPress ENTER to exit.

Python

Recursive

def hanoi(ndisks, startPeg=1, endPeg=3):    if ndisks:        hanoi(ndisks-1, startPeg, 6-startPeg-endPeg)        print(f"Move disk {ndisks} from peg {startPeg} to peg {endPeg}")        hanoi(ndisks-1, 6-startPeg-endPeg, endPeg) hanoi(4)
Output:

for ndisks=2

Move disk 1 from peg 1 to peg 2Move disk 2 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3


Or, separating the definition of the data from its display:

Works with:Python version 3.7
'''Towers of Hanoi'''# hanoi :: Int -> String -> String -> String -> [(String, String)]def hanoi(n):    '''A list of (from, to) label pairs,       where a, b and c are labels for each of the       three Hanoi tower positions.'''    def go(n, a, b, c):        p = n - 1        return (            go(p, a, c, b) + [(a, b)] + go(p, c, b, a)        ) if 0 < n else []    return lambda a: lambda b: lambda c: go(n, a, b, c)# TEST ----------------------------------------------------if __name__ == '__main__':    # fromTo :: (String, String) -> String    def fromTo(xy):        '''x -> y'''        x, y = xy        return x.rjust(5, ' ') + ' -> ' + y    print(__doc__ + ':\n\n' + '\n'.join(        map(fromTo, hanoi(4)('left')('right')('mid'))    ))
Output:
Towers of Hanoi: left -> mid left -> right  mid -> right left -> midright -> leftright -> mid left -> mid left -> right  mid -> right  mid -> leftright -> left  mid -> right left -> mid left -> right  mid -> right

Graphic

Refactoring the version above to recursively generate a simple visualisation:

Works with:Python version 3.7
'''Towers of Hanoi'''from itertools import accumulate, chain, repeatfrom inspect import signatureimport operator# hanoi :: Int -> [(Int, Int)]def hanoi(n):    '''A list of index pairs, representing disk moves       between indexed Hanoi positions.    '''    def go(n, a, b, c):        p = n - 1        return (            go(p, a, c, b) + [(a, b)] + go(p, c, b, a)        ) if 0 < n else []    return go(n, 0, 2, 1)# hanoiState :: ([Int],[Int],[Int], String) -> (Int, Int) ->#               ([Int],[Int],[Int], String)def hanoiState(tpl, ab):    '''A new Hanoi tower state'''    a, b = ab    xs, ys = tpl[a], tpl[b]    w = 3 * (2 + (2 * max(map(max, filter(len, tpl[:-1])))))    def delta(i):        return tpl[i] if i not in ab else xs[1:] if (            i == a        ) else [xs[0]] + ys    tkns = moveName(('left', 'mid', 'right'))(ab)    caption = ' '.join(tkns)    return tuple(map(delta, [0, 1, 2])) + (        (caption if tkns[0] != 'mid' else caption.rjust(w, ' ')),    )# showHanoi :: ([Int],[Int],[Int], String) -> Stringdef showHanoi(tpl):    '''Captioned string representation of an updated Hanoi tower state.'''    def fullHeight(n):        return lambda xs: list(repeat('', n - len(xs))) + xs    mul = curry(operator.mul)    lt = curry(operator.lt)    rods = fmap(fmap(mul('__')))(        list(tpl[0:3])    )    h = max(map(len, rods))    w = 2 + max(        map(            compose(max)(fmap(len)),            filter(compose(lt(0))(len), rods)        )    )    xs = fmap(concat)(        transpose(fmap(            compose(fmap(center(w)(' ')))(                fullHeight(h)            )        )(rods))    )    return tpl[3] + '\n\n' + unlines(xs) + '\n' + ('___' * w)# moveName :: (String, String, String) -> (Int, Int) -> [String]def moveName(labels):    '''(from, to) index pair represented as an a -> b string.'''    def go(ab):        a, b = ab        return [labels[a], ' to ', labels[b]] if a < b else [            labels[b], ' from ', labels[a]        ]    return lambda ab: go(ab)# TEST ----------------------------------------------------def main():    '''Visualisation of a Hanoi tower sequence for N discs.    '''    n = 3    print('Hanoi sequence for ' + str(n) + ' disks:\n')    print(unlines(        fmap(showHanoi)(            scanl(hanoiState)(                (enumFromTo(1)(n), [], [], '')            )(hanoi(n))        )    ))# GENERIC -------------------------------------------------# center :: Int -> Char -> String -> Stringdef center(n):    '''String s padded with c to approximate centre,       fitting in but not truncated to width n.'''    return lambda c: lambda s: s.center(n, c)# compose (<<<) :: (b -> c) -> (a -> b) -> a -> cdef compose(g):    '''Right to left function composition.'''    return lambda f: lambda x: g(f(x))# concat :: [[a]] -> [a]# concat :: [String] -> Stringdef concat(xs):    '''The concatenation of all the elements       in a list or iterable.'''    def f(ys):        zs = list(chain(*ys))        return ''.join(zs) if isinstance(ys[0], str) else zs    return (        f(xs) if isinstance(xs, list) else (            chain.from_iterable(xs)        )    ) if xs else []# curry :: ((a, b) -> c) -> a -> b -> cdef curry(f):    '''A curried function derived       from an uncurried function.'''    if 1 < len(signature(f).parameters):        return lambda x: lambda y: f(x, y)    else:        return f# enumFromTo :: (Int, Int) -> [Int]def enumFromTo(m):    '''Integer enumeration from m to n.'''    return lambda n: list(range(m, 1 + n))# fmap :: (a -> b) -> [a] -> [b]def fmap(f):    '''fmap over a list.       f lifted to a function over a list.    '''    return lambda xs: list(map(f, xs))# scanl :: (b -> a -> b) -> b -> [a] -> [b]def scanl(f):    '''scanl is like reduce, but returns a succession of       intermediate values, building from the left.    '''    return lambda a: lambda xs: (        accumulate(chain([a], xs), f)    )# showLog :: a -> IO Stringdef showLog(*s):    '''Arguments printed with       intercalated arrows.'''    print(        ' -> '.join(map(str, s))    )# transpose :: Matrix a -> Matrix adef transpose(m):    '''The rows and columns of the argument transposed.       (The matrix containers and rows can be lists or tuples).    '''    if m:        inner = type(m[0])        z = zip(*m)        return (type(m))(            map(inner, z) if tuple != inner else z        )    else:        return m# unlines :: [String] -> Stringdef unlines(xs):    '''A single string derived by the intercalation       of a list of strings with the newline character.    '''    return '\n'.join(xs)# TEST ----------------------------------------------------if __name__ == '__main__':    main()
Hanoi sequence for 3 disks:   __                     ____                   ______                 ________________________left  to  right  ____                   ______            __   ________________________left  to  mid ______   ____     __   ________________________        mid  from  right           __            ______   ____          ________________________left  to  right           __                     ____   ______ ________________________left  from  mid   __     ____   ______ ________________________          mid  to  right                  ____     __            ______ ________________________left  to  right                   __                     ____                   ______ ________________________

Library:VPython

There is a 3D hanoi-game in the examples that come with VPython,and atgithub.

Quackery

  [ stack ]                     is rings    (     --> [ )  [ rings share    depth share -    8 * times sp    emit sp emit sp    say 'move' cr ]             is echomove ( c c -->   )  [ dup rings put    depth put    char a char b char c    [ swap decurse      rot 2dup echomove      decurse      swap rot ]    3 times drop    depth release    rings release ]             is hanoi    (   n --> n )  say 'How to solve a three ring Towers of Hanoi puzzle:' cr cr  3 hanoi cr
Output:
How to solve a three ring Towers of Hanoi puzzle:                        a c move                a b move                        c b move        a c move                        b a move                b c move                        a c movea b move                        c b move                c a move                        b a move        c b move                        a c move                a b move                        c b move

Quite BASIC

'This is implemented on the Quite BASIC website'http://www.quitebasic.com/prj/puzzle/towers-of-hanoi/
1000 REM Towers of Hanoi1010 REM Quite BASIC Puzzle Project1020 CLS1030 PRINT "Towers of Hanoi"1040 PRINT1050 PRINT "This is a recursive solution for seven discs."1060 PRINT1070 PRINT "See the REM statements in the program if you didn't think that recursion was possible in classic BASIC!"1080 REM Yep, recursive GOSUB calls works in Quite BASIC!  1090 REM However, to actually write useful recursive algorithms, it helps to have variable scoping and parameters to subroutines -- something classic BASIC is lacking.  In this case we have only one "parameter" -- the variable N.  And subroutines are always called with N-1.  This is lucky for us because we can keep track of the value by decrementing it when we enter subroutines and incrementing it back when we exit.1100 REM If we had subroutine parameters we could have written a single subroutine for moving discs from peg P to peg Q where P and Q were subroutine parameters, but no such luck.  Instead we have to write six different subroutines for moving from peg to peg.  See Subroutines 4000, 5000, 6000, 7000, 8000, and 9000.1110 REM ===============================2000 REM A, B, and C are arrays holding the discs2010 REM We refer to the corresponding pegs as peg A, B, and C2020 ARRAY A2030 ARRAY B2040 ARRAY C2050 REM Fill peg A with seven discs2060 FOR I = 0 TO 62070 LET A[I] = 7 - I2080 NEXT I2090 REM X, Y, Z hold the number of discs on pegs A, B, and C2100 LET X = 72110 LET Y = 02120 LET Z = 02130 REM Disc colors2140 ARRAY P2150 LET P[1] = "cyan"2160 LET P[2] = "blue"2170 LET P[3] = "green"2180 LET P[4] = "yellow"2190 LET P[5] = "magenta"2200 LET P[6] = "orange"2210 LET P[7] = "red"2220 REM Draw initial position -- all discs on the A peg2230 FOR I = 0 TO 62240 FOR J = 8 - A[I] TO 8 + A[I]2250 PLOT J, I, P[A[I]]2260 NEXT J2270 NEXT I 2280 REM N is the number of discs to move2290 LET N = 72320 REM Move all discs from peg A to peg B2310 GOSUB 60002320 END3000 REM The subroutines 3400, 3500, 3600, 3700, 3800, 3900 3010 REM handle the drawing of the discs on the canvas as we3020 REM move discs from one peg to another.3030 REM These subroutines also update the variables X, Y, and Z3040 REM which hold the number of discs on each peg.3050 REM ============================== 3400 REM Subroutine -- Remove disc from peg A3410 LET X = X - 13420 FOR I = 8 - A[X] TO 8 + A[X]3430 PLOT I, X, "gray"3440 NEXT I3450 RETURN3500 REM Subroutine -- Add disc to peg A3510 FOR I = 8 - A[X] TO 8 + A[X]3520 PLOT I, X, P[A[X]]3530 NEXT I3540 LET X = X + 13550 PAUSE 400 * (5 - LEVEL) + 10 3560 RETURN3600 REM Subroutine -- Remove disc from peg B3610 LET Y = Y - 13620 FOR I = 24 - B[Y] TO 24 + B[Y]3630 PLOT I, Y, "gray"3640 NEXT I3650 RETURN3700 REM Subroutine -- Add disc to peg B3710 FOR I = 24 - B[Y] TO 24 + B[Y]3720 PLOT I, Y, P[B[Y]]3730 NEXT I3740 LET Y = Y + 13750 PAUSE 400 * (5 - LEVEL) + 10 3760 RETURN3800 REM Subroutine -- Remove disc from peg C3810 LET Z = Z - 13820 FOR I = 40 - C[Z] TO 40 + C[Z]3830 PLOT I, Z, "gray"3840 NEXT I3850 RETURN3900 REM Subroutine -- Add disc to peg C3910 FOR I = 40 - C[Z] TO 40 + C[Z]3920 PLOT I, Z, P[C[Z]]3930 NEXT I3940 LET Z = Z + 13950 PAUSE 400 * (5 - LEVEL) + 10 3960 RETURN4000 REM ======================================4010 REM Recursive Subroutine -- move N discs from peg B to peg A4020 REM First move N-1 discs from peg B to peg C4030 LET N = N - 14040 IF N <> 0 THEN GOSUB 90004050 REM Then move one disc from peg B to peg A 4060 GOSUB 36004070 LET A[X] = B[Y]4080 GOSUB 35004090 REM And finally move N-1 discs from peg C to peg A4100 IF N <> 0 THEN GOSUB 50004110 REM Restore N before returning4120 LET N = N + 14130 RETURN5000 REM ======================================5010 REM Recursive Subroutine -- Move N discs from peg C to peg A5020 REM First move N-1 discs from peg C to peg B5030 LET N = N - 15040 IF N <> 0 THEN GOSUB 80005050 REM Then move one disc from peg C to peg A5060 GOSUB 38005070 LET A[X] = C[Z]5080 GOSUB 35005090 REM And finally move N-1 discs from peg B to peg A5100 IF N <> 0 THEN GOSUB 40005120 REM Restore N before returning5130 LET N = N + 15140 RETURN6000 REM ======================================6000 REM Recursive Subroutine -- Move N discs from peg A to peg B6010 REM First move N-1 discs from peg A to peg C6020 LET N = N - 16030 IF N <> 0 THEN GOSUB 70006040 REM Then move one disc from peg A to peg B6050 GOSUB 34006060 LET B[Y] = A[X]6070 GOSUB 37006090 REM And finally move N-1 discs from peg C to peg B6100 IF N <> 0 THEN GOSUB 80006110 REM Restore N before returning6120 LET N = N + 16130 RETURN7000 REM ======================================7010 REM Recursive Subroutine -- Move N discs from peg A to peg C7020 REM First move N-1 discs from peg A to peg B7030 LET N = N - 17040 IF N <> 0 THEN GOSUB 60007050 REM Then move one disc from peg A to peg C7060 GOSUB 34007070 LET C[Z] = A[X]7080 GOSUB 39007090 REM And finally move N-1 discs from peg B to peg C7100 IF N <> 0 THEN GOSUB 90007110 REM Restore N before returning7120 LET N = N + 17130 RETURN8000 REM ======================================8010 REM Recursive Subroutine -- Move N discs from peg C to peg B8020 REM First move N-1 discs from peg C to peg A8030 LET N = N - 18040 IF N <> 0 THEN GOSUB 50008050 REM Then move one disc from peg C to peg B8060 GOSUB 38008070 LET B[Y] = C[Z]8080 GOSUB 37008090 REM And finally move N-1 discs from peg A to peg B8100 IF N <> 0 THEN GOSUB 60008110 REM Restore N before returning8120 LET N = N + 18130 RETURN9000 REM ======================================9010 REM Recursive Subroutine -- Move N discs from peg B to peg C9020 REM First move N-1 discs from peg B to peg A9030 LET N = N - 19040 IF N <> 0 THEN GOSUB 40009050 REM Then move one disc from peg B to peg C9060 GOSUB 36009070 LET C[Z] = B[Y]9080 GOSUB 39009090 REM And finally move N-1 discs from peg A to peg C9100 IF N <> 0 THEN GOSUB 70009110 REM Restore N before returning9120 LET N = N + 19130 RETURN

R

Translation of:Octave
hanoimove <- function(ndisks, from, to, via) {  if (ndisks == 1) {    cat("move disk from", from, "to", to, "\n")  } else {    hanoimove(ndisks - 1, from, via, to)    hanoimove(1, from, to, via)    hanoimove(ndisks - 1, via, to, from)  }}hanoimove(4, 1, 2, 3)

Racket

#lang racket(define (hanoi n a b c)  (when (> n 0)    (hanoi (- n 1) a c b)    (printf "Move ~a to ~a\n" a b)    (hanoi (- n 1) c b a)))(hanoi 4 'left 'middle 'right)

Raku

(formerly Perl 6)

subset Peg of Int where 1|2|3;multi hanoi (0,      Peg $a,     Peg $b,     Peg $c)     { }multi hanoi (Int $n, Peg $a = 1, Peg $b = 2, Peg $c = 3) {    hanoi $n - 1, $a, $c, $b;    say "Move $a to $b.";    hanoi $n - 1, $c, $b, $a;}

Rascal

Translation of:Python
public void hanoi(ndisks, startPeg, endPeg){if(ndisks>0){hanoi(ndisks-1, startPeg, 6 - startPeg - endPeg);println("Move disk <ndisks> from peg <startPeg> to peg <endPeg>");hanoi(ndisks-1, 6 - startPeg - endPeg, endPeg);}}
Output:
rascal>hanoi(4,1,3)Move disk 1 from peg 1 to peg 2Move disk 2 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3Move disk 3 from peg 1 to peg 2Move disk 1 from peg 3 to peg 1Move disk 2 from peg 3 to peg 2Move disk 1 from peg 1 to peg 2Move disk 4 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3Move disk 2 from peg 2 to peg 1Move disk 1 from peg 3 to peg 1Move disk 3 from peg 2 to peg 3Move disk 1 from peg 1 to peg 2Move disk 2 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3ok

Raven

Translation of:Python
define hanoi use ndisks, startpeg, endpeg   ndisks 0 > if      6 startpeg - endpeg - startpeg ndisks 1 - hanoi      endpeg startpeg ndisks "Move disk %d from peg %d to peg %d\n" print       endpeg 6 startpeg - endpeg - ndisks 1 - hanoidefine dohanoi use ndisks   # startpeg=1, endpeg=3   3 1 ndisks hanoi# 4 disks4 dohanoi
Output:
raven hanoi.rv Move disk 1 from peg 1 to peg 2Move disk 2 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3Move disk 3 from peg 1 to peg 2Move disk 1 from peg 3 to peg 1Move disk 2 from peg 3 to peg 2Move disk 1 from peg 1 to peg 2Move disk 4 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3Move disk 2 from peg 2 to peg 1Move disk 1 from peg 3 to peg 1Move disk 3 from peg 2 to peg 3Move disk 1 from peg 1 to peg 2Move disk 2 from peg 1 to peg 3Move disk 1 from peg 2 to peg 3

REBOL

REBOL [Title: "Towers of Hanoi"URL: http://rosettacode.org/wiki/Towers_of_Hanoi]hanoi: func [{Begin moving the golden disks from one pole to the next. Note: when last disk moved, the world will end.}disks [integer!] "Number of discs on starting pole."/poles "Name poles."from to via][    if disks = 0 [return]if not poles [from: 'left  to: 'middle  via: 'right]    hanoi/poles disks - 1 from via toprint [from "->" to]    hanoi/poles disks - 1 via to from]hanoi 4
Output:
left -> rightleft -> middleright -> middleleft -> rightmiddle -> leftmiddle -> rightleft -> rightleft -> middleright -> middleright -> leftmiddle -> leftright -> middleleft -> rightleft -> middleright -> middle

Refal

$ENTRY Go {    = <Move 4 1 2 3>;};Move {    0 e.X = ;    s.N s.Src s.Via s.Dest, <- s.N 1>: s.Next =        <Move s.Next s.Src s.Dest s.Via>        <Prout "Move disk from pole" s.Src "to pole" s.Dest>        <Move s.Next s.Via s.Src s.Dest>;};
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

Retro

[[User:Wodan58|Wodan58]] ([[User talk:Wodan58|talk]]){ 'Num 'From 'To 'Via } [ var ] a:for-each  :set     !Via !To !From !Num ; :display @To @From 'Move_a_ring_from_%n_to_%n\n s:format s:put ;  :hanoi (num,from,to,via-)   set @Num n:-zero?   [ @Num @From @To @Via     @Num n:dec @From @Via @To hanoi set display     @Num n:dec @Via @To @From hanoi ] if ;  #3 #1 #3 #2 hanoi nl [[User:Wodan58|Wodan58]] ([[User talk:Wodan58|talk]])

REXX

simple text moves

/*REXX program  displays  the  moves  to solve  the  Tower of Hanoi  (with  N  disks).  */parse arg N .                                    /*get optional number of disks from CL.*/if N=='' | N==","  then N=3                      /*Not specified?  Then use the default.*/#= 0                                             /*#:  the number of disk moves (so far)*/z= 2**N  -  1                                    /*Z:   "     "    " minimum # of moves.*/call mov  1, 3, N                                /*move the top disk,  then recurse ··· */say                                              /* [↓]  Display the minimum # of moves.*/say 'The minimum number of moves to solve a '      N"─disk  Tower of Hanoi is "     zexit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/mov: procedure expose # z; parse arg  @1,@2,@3;          L= length(z)     if @3==1  then do;  #= # + 1                /*bump the (disk) move counter by one. */                         say 'step'   right(#, L)":  move disk on tower"   @1  '───►'   @2                    end               else do;  call mov @1,               6 -@1 -@2,         @3 -1                         call mov @1,               @2,                  1                         call mov 6 - @1 - @2,      @2,                @3 -1                    end     return                                      /* [↑]  this subroutine uses recursion.*/
output  when using the default input:
step 1:  move disk on tower 1 ───► 3step 2:  move disk on tower 1 ───► 2step 3:  move disk on tower 3 ───► 2step 4:  move disk on tower 1 ───► 3step 5:  move disk on tower 2 ───► 1step 6:  move disk on tower 2 ───► 3step 7:  move disk on tower 1 ───► 3The minimum number of moves to solve a  3-disk  Tower of Hanoi is  7

output   when the following was entered (to solve with four disks):   4

step  1:  move disk on tower 1 ───► 2step  2:  move disk on tower 1 ───► 3step  3:  move disk on tower 2 ───► 3step  4:  move disk on tower 1 ───► 2step  5:  move disk on tower 3 ───► 1step  6:  move disk on tower 3 ───► 2step  7:  move disk on tower 1 ───► 2step  8:  move disk on tower 1 ───► 3step  9:  move disk on tower 2 ───► 3step 10:  move disk on tower 2 ───► 1step 11:  move disk on tower 3 ───► 1step 12:  move disk on tower 2 ───► 3step 13:  move disk on tower 1 ───► 2step 14:  move disk on tower 1 ───► 3step 15:  move disk on tower 2 ───► 3The minimum number of moves to solve a  4-disk  Tower of Hanoi is  15

pictorial moves

This REXX version pictorially shows   (via ASCII art)   the moves for solving the Town of Hanoi.

Quite a bit of code has been dedicated to showing a "picture" of the towers with the disks, and the movement of the disk (for each move).   "Coloring" of the disks is attempted with dithering.

In addition, it shows each move in a countdown manner (the last move is marked as #1).

It may not be obvious from the pictorial display of the moves, but whenever a disk is moved from one tower to another, it is always the top disk that is moved   (to the target tower).

Also, since the pictorial showing of the moves may be voluminous (especially for a larger number of disks), the move counter is started with the maximum and is the count shown is decremented so the viewer can see how many moves are left to display.

/*REXX program  displays  the  moves  to solve  the  Tower of Hanoi  (with  N  disks).  */parse arg N .                                    /*get optional number of disks from CL.*/if N=='' | N==","  then N=3                      /*Not specified?  Then use the default.*/sw= 80;    wp= sw%3 - 1;   blanks= left('', wp)  /*define some default REXX variables.  */c.1= sw % 3 % 2                                  /* [↑]  SW: assume default Screen Width*/c.2= sw % 2 - 1                                  /* ◄───  C.1 C.2 C.2  are the positions*/c.3= sw - 2 - c.1                                /*                    of the 3 columns.*/#= 0;        z= 2**N - 1;           moveK= z     /*#moves; min# of moves; where to move.*/@abc= 'abcdefghijklmnopqrstuvwxyN'               /*dithering chars when many disks used.*/ebcdic= ('f2'x==2)                               /*determine if EBCDIC or ASCII machine.*/if ebcdic then do;   bar= 'bf'x;    ar= "df"x;    dither= 'db9f9caf'x;         down= "9a"x                      tr= 'bc'x;    bl= "ab"x;    br= 'bb'x;   vert= "fa"x;      tl= 'ac'x               end          else do;   bar= 'c4'x;    ar= "10"x;    dither= 'b0b1b2db'x;         down= "19"x                      tr= 'bf'x;    bl= "c0"x;    br= 'd9'x;   vert= "b3"x;      tl= 'da'x               endverts= vert || vert;           Tcorners= tl || tr;              box     = left(dither, 1)downs= down || down;           Bcorners= bl || br;              boxChars= dither || @abc$.= 0;         $.1= N;         k= N;                            kk= k + k  do j=1  for N;   @.3.j= blanks;    @.2.j= blanks;    @.1.j= center( copies(box, kk), wp)  if N<=length(boxChars)  then @.1.j= translate( @.1.j, , substr( boxChars, kk%2, 1), box)  kk= kk - 2  end   /*j*/                                    /*populate the tower of Hanoi spindles.*/call showTowers;   call mov 1,3,N;   saysay 'The minimum number of moves to solve a '        N"-disk  Tower of Hanoi is "      zexit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/dsk: parse arg from dest;   #= # + 1;       pp=     if from==1  then do;  pp= overlay(bl,  pp, c.1)                           pp= overlay(bar, pp, c.1+1, c.dest-c.1-1, bar) || tr                      end     if from==2  then do                      if dest==1  then do;  pp= overlay(tl,  pp, c.1)                                            pp= overlay(bar, pp, c.1+1, c.2-c.1-1,bar)||br                                       end                      if dest==3  then do;  pp= overlay(bl,  pp, c.2)                                            pp= overlay(bar, pp, c.2+1, c.3-c.2-1,bar)||tr                                       end                      end     if from==3  then do;  pp= overlay(br,  pp, c.3)                           pp= overlay(bar, pp, c.dest+1, c.3-c.dest-1, bar)                           pp= overlay(tl,  pp, c.dest)                      end     say translate(pp, downs, Bcorners || Tcorners || bar);     say overlay(moveK, pp, 1)     say translate(pp, verts, Tcorners || Bcorners || bar)     say translate(pp, downs, Tcorners || Bcorners || bar);     moveK= moveK - 1     $.from= $.from - 1;      $.dest= $.dest + 1;     _f= $.from + 1;           _t= $.dest     @.dest._t= @.from._f;    @.from._f= blanks;      call showTowers     return/*──────────────────────────────────────────────────────────────────────────────────────*/mov: if arg(3)==1  then      call dsk arg(1) arg(2)                   else do;  call mov arg(1),              6 -arg(1) -arg(2),    arg(3) -1                             call mov arg(1),              arg(2),               1                             call mov 6 -arg(1) -arg(2),   arg(2),               arg(3) -1                        end                 /* [↑]  The  MOV  subroutine is recursive,  */     return                                 /*it uses no variables, is uses BIFs instead*//*──────────────────────────────────────────────────────────────────────────────────────*/showTowers: do j=N  by -1  for N; _=@.1.j @.2.j @.3.j;  if _\=''  then say _; end;  return
output  when using the default input:
           ░░          ▒▒▒▒         ▓▓▓▓▓▓            ↓7           └───────────────────────────────────────────────────┐                                                                │                                                                ↓          ▒▒▒▒         ▓▓▓▓▓▓                                                ░░            ↓6           └─────────────────────────┐                                      │                                      ↓         ▓▓▓▓▓▓                     ▒▒▒▒                       ░░                                                                ↓5                                     ┌─────────────────────────┘                                      │                                      ↓                                     ░░         ▓▓▓▓▓▓                     ▒▒▒▒            ↓4           └───────────────────────────────────────────────────┐                                                                │                                                                ↓                                     ░░                                    ▒▒▒▒                     ▓▓▓▓▓▓                                      ↓3           ┌─────────────────────────┘            │            ↓           ░░                       ▒▒▒▒                     ▓▓▓▓▓▓                                      ↓2                                     └─────────────────────────┐                                                                │                                                                ↓                                                              ▒▒▒▒           ░░                                                ▓▓▓▓▓▓            ↓1           └───────────────────────────────────────────────────┐                                                                │                                                                ↓                                                               ░░                                                              ▒▒▒▒                                                             ▓▓▓▓▓▓The minimum number of moves to solve a  3-disk  Tower of Hanoi is  7

Ring

move(4, 1, 2, 3)func move n, src, dst, via     if n > 0 move(n - 1, src, via, dst)        see "" + src + " to " + dst + nl        move(n - 1, via, dst, src) ok

RPL

Translation of:Python
Works with:Halcyon Calc version 4.2.7
≪ → ndisks start end  ≪IF ndisksTHEN        ndisks 1 - start 6 start - end -HANOI        start →STR " → " + end →STR +        ndisks 1 - 6 start - end - endHANOIEND≫ ≫ 'HANOI' STO
3 1 3HANOI
Output:
7: "1 → 3"6: "1 → 2"5: "3 → 2"4: "1 → 3"3: "2 → 1"2: "2 → 3"1: "1 → 3"

Ruby

version 1

def move(num_disks, start=0, target=1, using=2)  if num_disks == 1   @towers[target] << @towers[start].pop    puts "Move disk from #{start} to #{target} : #{@towers}"  else    move(num_disks-1, start, using, target)    move(1,           start, target, using)    move(num_disks-1, using, target, start)  end endn = 5@towers = [[*1..n].reverse, [], []]move(n)
Output:
Move disk from 0 to 1 : [[5, 4, 3, 2], [1], []]Move disk from 0 to 2 : [[5, 4, 3], [1], [2]]Move disk from 1 to 2 : [[5, 4, 3], [], [2, 1]]Move disk from 0 to 1 : [[5, 4], [3], [2, 1]]Move disk from 2 to 0 : [[5, 4, 1], [3], [2]]Move disk from 2 to 1 : [[5, 4, 1], [3, 2], []]Move disk from 0 to 1 : [[5, 4], [3, 2, 1], []]Move disk from 0 to 2 : [[5], [3, 2, 1], [4]]Move disk from 1 to 2 : [[5], [3, 2], [4, 1]]Move disk from 1 to 0 : [[5, 2], [3], [4, 1]]Move disk from 2 to 0 : [[5, 2, 1], [3], [4]]Move disk from 1 to 2 : [[5, 2, 1], [], [4, 3]]Move disk from 0 to 1 : [[5, 2], [1], [4, 3]]Move disk from 0 to 2 : [[5], [1], [4, 3, 2]]Move disk from 1 to 2 : [[5], [], [4, 3, 2, 1]]Move disk from 0 to 1 : [[], [5], [4, 3, 2, 1]]Move disk from 2 to 0 : [[1], [5], [4, 3, 2]]Move disk from 2 to 1 : [[1], [5, 2], [4, 3]]Move disk from 0 to 1 : [[], [5, 2, 1], [4, 3]]Move disk from 2 to 0 : [[3], [5, 2, 1], [4]]Move disk from 1 to 2 : [[3], [5, 2], [4, 1]]Move disk from 1 to 0 : [[3, 2], [5], [4, 1]]Move disk from 2 to 0 : [[3, 2, 1], [5], [4]]Move disk from 2 to 1 : [[3, 2, 1], [5, 4], []]Move disk from 0 to 1 : [[3, 2], [5, 4, 1], []]Move disk from 0 to 2 : [[3], [5, 4, 1], [2]]Move disk from 1 to 2 : [[3], [5, 4], [2, 1]]Move disk from 0 to 1 : [[], [5, 4, 3], [2, 1]]Move disk from 2 to 0 : [[1], [5, 4, 3], [2]]Move disk from 2 to 1 : [[1], [5, 4, 3, 2], []]Move disk from 0 to 1 : [[], [5, 4, 3, 2, 1], []]

version 2

# solve(source, via, target)# Example:# solve([5, 4, 3, 2, 1], [], [])# Note this will also solve randomly placed disks,# "place all disk in target with legal moves only".def solve(*towers)  # total number of disks  disks = towers.inject(0){|sum, tower| sum+tower.length}  x=0 # sequence number  p towers # initial trace  # have we solved the puzzle yet?  while towers.last.length < disks do    x+=1 # assume the next step    from = (x&x-1)%3    to = ((x|(x-1))+1)%3    # can we actually take from tower?    if top = towers[from].last      bottom = towers[to].last      # is the move legal?      if !bottom || bottom > top        # ok, do it!        towers[to].push(towers[from].pop)        p towers # trace      end    end  endendsolve([5, 4, 3, 2, 1], [], [])
Output:
[[5, 4, 3, 2, 1], [], []][[5, 4, 3, 2], [], [1]][[5, 4, 3], [2], [1]][[5, 4, 3], [2, 1], []][[5, 4], [2, 1], [3]][[5, 4, 1], [2], [3]][[5, 4, 1], [], [3, 2]][[5, 4], [], [3, 2, 1]][[5], [4], [3, 2, 1]][[5], [4, 1], [3, 2]][[5, 2], [4, 1], [3]][[5, 2, 1], [4], [3]][[5, 2, 1], [4, 3], []][[5, 2], [4, 3], [1]][[5], [4, 3, 2], [1]][[5], [4, 3, 2, 1], []][[], [4, 3, 2, 1], [5]][[1], [4, 3, 2], [5]][[1], [4, 3], [5, 2]][[], [4, 3], [5, 2, 1]][[3], [4], [5, 2, 1]][[3], [4, 1], [5, 2]][[3, 2], [4, 1], [5]][[3, 2, 1], [4], [5]][[3, 2, 1], [], [5, 4]][[3, 2], [], [5, 4, 1]][[3], [2], [5, 4, 1]][[3], [2, 1], [5, 4]][[], [2, 1], [5, 4, 3]][[1], [2], [5, 4, 3]][[1], [], [5, 4, 3, 2]][[], [], [5, 4, 3, 2, 1]]

Run BASIC

a = move(4, "1", "2", "3")function move(n, a$, b$, c$) if n > 0 thena = move(n-1, a$, c$, b$)print "Move disk from " ; a$ ; " to " ; c$a = move(n-1, b$, a$, c$)end ifend function
Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 1 to 3Move disk from 2 to 1Move disk from 2 to 3Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 3 to 1Move disk from 2 to 1Move disk from 3 to 2Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2

Rust

Translation of:C
fn move_(n: i32, from: i32, to: i32, via: i32) {    if n > 0 {        move_(n - 1, from, via, to);        println!("Move disk from pole {} to pole {}", from, to);        move_(n - 1, via, to, from);    }}fn main() {    move_(4, 1,2,3);}

SASL

Copied from SAL manual, Appendix II, answer (3)

hanoi 8 ‘abc"WHEREhanoi 0 (a,b,c,) = ()hanoi n ( a,b,c) = hanoi (n-1) (a,c,b) ,                   ‘move a disc from " , a , ‘ to " , b , NL ,                   hanoi (n-1) (c,b,a)?

Sather

Translation of:Fortran
class MAIN is    move(ndisks, from, to, via:INT) is    if ndisks = 1 then      #OUT + "Move disk from pole " + from + " to pole " + to + "\n";    else      move(ndisks-1, from, via, to);      move(1, from, to, via);      move(ndisks-1, via, to, from);    end;  end;  main is    move(4, 1, 2, 3);  end;end;

Scala

def move(n: Int, from: Int, to: Int, via: Int) : Unit = {    if (n == 1) {      Console.println("Move disk from pole " + from + " to pole " + to)    } else {      move(n - 1, from, via, to)      move(1, from, to, via)      move(n - 1, via, to, from)    }  }

This next example is fromhttp://gist.github.com/66925 it is a translation to Scala of a Prolog solution and solves the problem at compile time

object TowersOfHanoi {  import scala.reflect.Manifest    def simpleName(m:Manifest[_]):String = {    val name = m.toString    name.substring(name.lastIndexOf('$')+1)  }    trait Nat  final class _0 extends Nat  final class Succ[Pre<:Nat] extends Nat   type _1 = Succ[_0]  type _2 = Succ[_1]  type _3 = Succ[_2]  type _4 = Succ[_3]   case class Move[N<:Nat,A,B,C]()   implicit def move0[A,B,C](implicit a:Manifest[A],b:Manifest[B]):Move[_0,A,B,C] = {        System.out.println("Move from "+simpleName(a)+" to "+simpleName(b));null  }   implicit def moveN[P<:Nat,A,B,C](implicit m1:Move[P,A,C,B],m2:Move[_0,A,B,C],m3:Move[P,C,B,A])   :Move[Succ[P],A,B,C] = null    def run[N<:Nat,A,B,C](implicit m:Move[N,A,B,C]) = null    case class Left()  case class Center()  case class Right()    def main(args:Array[String]){    run[_2,Left,Right,Center]  }}

Scheme

Recursive Process

(define (towers-of-hanoi n from to spare)  (define (print-move from to)    (display "Move[")    (display from)    (display ", ")    (display to)    (display "]")    (newline))  (cond ((= n 0) "done")        (else         (towers-of-hanoi (- n 1) from spare to)         (print-move from to)         (towers-of-hanoi (- n 1) spare to from))))(towers-of-hanoi 3 "A" "B" "C")
Output:
Move[A, B]Move[A, C]Move[B, C]Move[A, B]Move[C, A]Move[C, B]Move[A, B]"done"

Seed7

const proc: hanoi (in integer: disk, in string: source, in string: dest, in string: via) is func  begin    if disk > 0 then      hanoi(pred(disk), source, via, dest);      writeln("Move disk " <& disk <& " from " <& source <& " to " <& dest);      hanoi(pred(disk), via, dest, source);    end if;  end func;

SETL

program hanoi;    loop for [src, dest] in move(4, 1, 2, 3) do        print("Move disk from pole " + src + " to pole " + dest);    end loop;    proc move(n, src, via, dest);        if n=0 then return []; end if;        return move(n-1, src, dest, via)             + [[src, dest]]             + move(n-1, via, src, dest);    end proc;end program;
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

Sidef

Translation of:Perl
func hanoi(n, from=1, to=2, via=3) {    if (n == 1) {        say "Move disk from pole #{from} to pole #{to}.";    } else {        hanoi(n-1, from, via,   to);        hanoi(  1, from,  to,  via);        hanoi(n-1,  via,  to, from);    }}hanoi(4);

SNOBOL4

*       # Note: count is global        define('hanoi(n,src,trg,tmp)') :(hanoi_end)hanoi   hanoi = eq(n,0) 1 :s(return)        hanoi(n - 1, src, tmp, trg)        count  = count + 1        output = count ': Move disc from ' src ' to ' trg        hanoi(n - 1, tmp, trg, src) :(return)hanoi_end*       # Test with 4 discs        hanoi(4,'A','C','B')end
Output:
1: Move disc from A to B2: Move disc from A to C3: Move disc from B to C4: Move disc from A to B5: Move disc from C to A6: Move disc from C to B7: Move disc from A to B8: Move disc from A to C9: Move disc from B to C10: Move disc from B to A11: Move disc from C to A12: Move disc from B to C13: Move disc from A to B14: Move disc from A to C15: Move disc from B to C

SparForte

As a structured script.

#!/usr/local/bin/sparpragma annotate( summary, "hanoi" )       @( description, "Solve the Towers of Hanoi problem with recursion." )       @( see_also, "https://rosettacode.org/wiki/Towers_of_Hanoi" )       @( author, "Ken O. Burtch" );pragma license( unrestricted );pragma restriction( no_external_commands );procedure hanoi is  type pegs is (left, center, right);  -- Determine the moves  procedure solve( num_disks : natural; start_peg : pegs;  end_peg : pegs; via_peg : pegs ) is  begin    if num_disks > 0 then       solve( num_disks - 1, start_peg, via_peg, end_peg );       put( "Move disk" )@( num_disks )@( " from " )@( start_peg )@( " to " )@( end_peg );       new_line;       solve( num_disks - 1, via_peg, end_peg, start_peg );    end if;  end solve;begin  -- solve with 4 disks at the left  --solve( 4, left, right, center );  solve( 4, left, right, center );  put_line( "Towers of Hanoi puzzle completed" );end hanoi;

Standard ML

   fun hanoi(0, a, b, c) = [] |       hanoi(n, a, b, c) = hanoi(n-1, a, c, b) @ [(a,b)] @ hanoi(n-1, c, b, a);

Stata

function hanoi(n, a, b, c) {if (n>0) {hanoi(n-1, a, c, b)printf("Move from %f to %f\n", a, b)hanoi(n-1, c, b, a)}}hanoi(3, 1, 2, 3)Move from 1 to 2Move from 1 to 3Move from 2 to 3Move from 1 to 2Move from 3 to 1Move from 3 to 2Move from 1 to 2

Swift

Translation of:JavaScript
func hanoi(n:Int, a:String, b:String, c:String) {    if (n > 0) {        hanoi(n - 1, a, c, b)        println("Move disk from \(a) to \(c)")        hanoi(n - 1, b, a, c)    }}hanoi(4, "A", "B", "C")

Swift 2.1

func hanoi(n:Int, a:String, b:String, c:String) {  if (n > 0) {    hanoi(n - 1, a: a, b: c, c: b)    print("Move disk from \(a) to \(c)")    hanoi(n - 1, a: b, b: a, c: c)  }} hanoi(4, a:"A", b:"B", c:"C")

Tcl

The use ofinterp alias shown is a sort of closure: keep track of the number of moves required

interp alias {} hanoi {} do_hanoi 0proc do_hanoi {count n {from A} {to C} {via B}} {    if {$n == 1} {        interp alias {} hanoi {} do_hanoi [incr count]        puts "$count: move from $from to $to"    } else {        incr n -1        hanoi $n $from $via $to        hanoi 1  $from $to $via        hanoi $n $via $to $from    }}hanoi 4
Output:
1: move from A to B2: move from A to C3: move from B to C4: move from A to B5: move from C to A6: move from C to B7: move from A to B8: move from A to C9: move from B to C10: move from B to A11: move from C to A12: move from B to C13: move from A to B14: move from A to C15: move from B to C

TI-83 BASIC

TI-83 BASIC lacks recursion, so technically this task is impossible, however here is a version that uses an iterative method.

PROGRAM:TOHSOLVE0→A1→B0→C0→D0→M1→RWhile A<1 or A>7Input "No. of rings=?",AEndrandM(A+1,3)→[C][[1,2][1,3][2,3]]→[E]Fill(0,[C])For(I,1,A,1)I?[C](I,1)EndClrHomeWhile [C](1,3)≠1 and [C](1,2)≠1For(J,1,3)For(I,1,A)If [C](I,J)≠0:ThenOutput(I+1,3J,[C](I,J))EndEndEndWhile C=0Output(1,3B," ")1→I[E](R,2)→JWhile [C](I,J)=0 and I≤AI+1→IEnd[C](I,J)→D1→I[E](R,1)→JWhile [C](I,J)=0 and I≤AI+1→IEndIf (D<[C](I,J) and D≠0) or [C](I,J)=0:Then[E](R,2)→BElse[E](R,1)→BEnd1→IWhile [C](I,B)=0 and I≤AI+1→IEndIf I≤A:Then[C](I,B)→C0→[C](I,B)Output(I+1,3B," ")EndOutput(1,3B,"V")EndWhile C≠0Output(1,3B," ")If B=[E](R,2):Then[E](R,1)→BElse[E](R,2)→BEnd1→IWhile [C](I,B)=0 and I≤AI+1→IEndIf [C](I,B)=0 or [C](I,B)>C:ThenC→[C](I-1,B)0→CM+1→MEndEndOutput(1,3B,"V")R+1→RIf R=4:Then:1→R:EndEnd

Tiny BASIC

Tiny BASIC does not have recursion, so only an iterative solution is possible... and it has no arrays, so actually keeping track of individual discs is not feasible.

But as if by magic, it turns out that the source and destination pegs on iteration number n are given by (n&n-1) mod 3 and ((n|n-1) + 1) mod 3 respectively, where & and | are the bitwise and and or operators. Line 40 onward is dedicated to implementing those bitwise operations, since Tiny BASIC hasn't got them natively.

 5  PRINT "How many disks?"    INPUT D    IF D < 1 THEN GOTO 5    IF D > 10 THEN GOTO 5    LET N = 110  IF D = 0 THEN GOTO 20    LET D = D - 1    LET N = 2*N    GOTO 1020  LET X = 030  LET X = X + 1    IF X = N THEN END    GOSUB 40    LET S = S - 3*(S/3)    GOSUB 50    LET T = T + 1    LET T = T - 3*(T/3)    PRINT "Move disc on peg ",S+1," to peg ",T+1    GOTO 3040  LET B = X - 1    LET A = X    LET S = 0    LET Z = 204845  LET C = 0    IF B >= Z THEN LET C = 1    IF A >= Z THEN LET C = C + 1    IF C = 2 THEN LET S = S + Z    IF A >= Z THEN LET A = A - Z    IF B >= Z THEN LET B = B - Z    LET Z = Z / 2    IF Z = 0 THEN RETURN    GOTO 4550  LET B = X - 1    LET A = X    LET T = 0    LET Z = 204855  LET C = 0    IF B >= Z THEN LET C = 1    IF A >= Z THEN LET C = C + 1    IF C > 0 THEN LET T = T + Z    IF A >= Z THEN LET A = A - Z    IF B >= Z THEN LET B = B - Z    LET Z = Z / 2    IF Z = 0 THEN RETURN    GOTO 55
Output:

How many discs?4Move disc on peg 1 to peg 3Move disc on peg 1 to peg 2Move disc on peg 3 to peg 2Move disc on peg 1 to peg 3Move disc on peg 2 to peg 1Move disc on peg 2 to peg 3Move disc on peg 1 to peg 3Move disc on peg 1 to peg 2Move disc on peg 3 to peg 2Move disc on peg 3 to peg 1Move disc on peg 2 to peg 1Move disc on peg 3 to peg 2Move disc on peg 1 to peg 3Move disc on peg 1 to peg 2Move disc on peg 3 to peg 2

Toka

value| sa sb sc n |[ to sc to sb to sa to n ] is vars![ ( num from to via -- )  vars!  n 0 <>  [    n sa sb sc     n 1- sa sc sb recurse    vars!    ." Move a ring from " sa . ." to " sb . cr    n 1- sc sb sa recurse  ] ifTrue] is hanoi


True BASIC

Translation of:FreeBASIC
DECLARE SUB hanoiSUB hanoi(n, desde , hasta, via)    IF n > 0 THEN       CALL hanoi(n - 1, desde, via, hasta)       PRINT "Mover disco"; n; "desde posición"; desde; "hasta posición"; hasta       CALL hanoi(n - 1, via, hasta, desde)    END IFEND SUBPRINT "Tres discos"PRINTCALL hanoi(3, 1, 2, 3)PRINTPRINT "Cuatro discos"PRINTCALL hanoi(4, 1, 2, 3)PRINTPRINT "Pulsa un tecla para salir"END


TSE SAL

// library: program: run: towersofhanoi: recursive: sub <description></description> <version>1.0.0.0.0</version> <version control></version control> (filenamemacro=runprrsu.s) [kn, ri, tu, 07-02-2012 19:54:23]PROC PROCProgramRunTowersofhanoiRecursiveSub( INTEGER totalDiskI, STRING fromS, STRING toS, STRING viaS, INTEGER bufferI ) IF ( totalDiskI == 0 )  RETURN() ENDIF PROCProgramRunTowersofhanoiRecursiveSub( totalDiskI - 1, fromS, viaS, toS, bufferI ) AddLine( Format( "Move disk", " ", totalDiskI, " ", "from peg", " ", "'", fromS, "'", " ", "to peg", " ", "'", toS, "'" ), bufferI ) PROCProgramRunTowersofhanoiRecursiveSub( totalDiskI - 1, viaS, toS, fromS, bufferI )END// library: program: run: towersofhanoi: recursive <description></description> <version>1.0.0.0.6</version> <version control></version control> (filenamemacro=runprtre.s) [kn, ri, tu, 07-02-2012 19:40:45]PROC PROCProgramRunTowersofhanoiRecursive( INTEGER totalDiskI, STRING fromS, STRING toS, STRING viaS ) INTEGER bufferI = 0 PushPosition() bufferI = CreateTempBuffer() PopPosition() PROCProgramRunTowersofhanoiRecursiveSub( totalDiskI, fromS, toS, viaS, bufferI ) GotoBufferId( bufferI )ENDPROC Main()STRING s1[255] = "4"IF ( NOT ( Ask( "program: run: towersofhanoi: recursive: totalDiskI = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF PROCProgramRunTowersofhanoiRecursive( Val( s1 ), "source", "target", "via" )END

uBasic/4tH

Translation of:C
Proc  _Move(4, 1,2,3)                  ' 4 disks, 3 polesEnd_Move Param(4)  If (a@ > 0) Then    Proc _Move (a@ - 1, b@, d@, c@)    Print "Move disk from pole ";b@;" to pole ";c@    Proc _Move (a@ - 1, d@, c@, b@)  EndIfReturn

Uiua

Works with:Uiua version 0.10.0
F ← |1.0 (  ⨬(    &p $"Move disc from _ to _" °⊟ ⊏[1 2]  | F⍜(⊢|-1)⍜(⊏[2 3]|⇌).    F⍜(⊢|⋅1).    F⍜(⊢|-1)⍜(⊏[1 3]|⇌)  )≠1⊢.)F [4 1 2 3]
Output:
Move disc from 1 to 3Move disc from 1 to 2Move disc from 3 to 2Move disc from 1 to 3Move disc from 2 to 1Move disc from 2 to 3Move disc from 1 to 3Move disc from 1 to 2Move disc from 3 to 2Move disc from 3 to 1Move disc from 2 to 1Move disc from 3 to 2Move disc from 1 to 3Move disc from 1 to 2Move disc from 3 to 2

UNIX Shell

Works with:Bourne Again SHell
Works with:Korn Shell
Works with:Z Shell
function move {  typeset -i n=$1  typeset from=$2  typeset to=$3  typeset via=$4  if (( n )); then    move $(( n - 1 )) "$from" "$via" "$to"    echo "Move disk from pole $from to pole $to"    move $(( n - 1 )) "$via" "$to" "$from"  fi}  move "$@"

A strict POSIX (or just really old) shell has no subprogram capability, but scripts are naturally reentrant, so:

Works with:Bourne Shell
Works with:Almquist Shell
#!/bin/shif [ "$1" -gt 0 ]; then  "$0" "`expr $1 - 1`" "$2" "$4" "$3"  echo "Move disk from pole $2 to pole $3"  "$0" "`expr $1 - 1`" "$4" "$3" "$2"fi

Output from any of the above:

Output:
$ hanoi 4 1 3 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 2 to pole 1Move disk from pole 3 to pole 1Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3

Ursala

#import natmove = ~&al^& ^rlPlrrPCT/~&arhthPX ^|W/~& ^|G/predecessor ^/~&htxPC ~&zyxPC#show+main = ^|T(~&,' -> '--)* move/4 <'start','end','middle'>
Output:
start -> middlestart -> endmiddle -> endstart -> middleend -> startend -> middlestart -> middlestart -> endmiddle -> endmiddle -> startend -> startmiddle -> endstart -> middlestart -> endmiddle -> end

Uxntal

%newline { [ LIT2 0a -Console/write ] DEO }|18 @Console/write|0100#0102 #0304 hanoiPOP2 POP2 BRK@hanoi ( from spare to count -- from spare to count )    ( moving 0 disks is no-op )    DUP ?{ JMP2r }    ( move disks 1..count-1 to the spare peg )    #01 SUB ROT SWP hanoi    ( from to spare count-1 )    ( print the current move )    ;dict/move print/str    INCk #30 ORA .Console/write DEO    STH2    ;dict/from print/str    OVR #30 ORA .Console/write DEO    ;dict/to print/str    DUP #30 ORA .Console/write DEOnewline    STH2r    ( move disks 1..count-1 from the spare peg to the goal peg )    STH ROT ROT STHr hanoi    ( restore original parameters for convenient recursion )    STH2 SWP STH2r INC    JMP2r@print/str ( str* -- )    LDAk .Console/write DEO    INC2 LDAk ?/str    POP2 JMP2r@dict    &move "Move 20 "disk 2000    &from 20 "from 20 "pole 2000    &to 20 "to 20 "pole 2000
Output:
Move disk 1 from pole 1 to pole 2Move disk 2 from pole 1 to pole 3Move disk 1 from pole 2 to pole 3Move disk 3 from pole 1 to pole 2Move disk 1 from pole 3 to pole 1Move disk 2 from pole 3 to pole 2Move disk 1 from pole 1 to pole 2Move disk 4 from pole 1 to pole 3Move disk 1 from pole 2 to pole 3Move disk 2 from pole 2 to pole 1Move disk 1 from pole 3 to pole 1Move disk 3 from pole 2 to pole 3Move disk 1 from pole 1 to pole 2Move disk 2 from pole 1 to pole 3Move disk 1 from pole 2 to pole 3

VBScript

Derived from the BASIC256 version.

Sub Move(n,fromPeg,toPeg,viaPeg)If n > 0 ThenMove n-1, fromPeg, viaPeg, toPegWScript.StdOut.Write "Move disk from " & fromPeg & " to " & toPegWScript.StdOut.WriteBlankLines(1)Move n-1, viaPeg, toPeg, fromPegEnd IfEnd SubMove 4,1,2,3WScript.StdOut.Write("Towers of Hanoi puzzle completed!")
Output:
Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 1 to 3Move disk from 2 to 1Move disk from 2 to 3Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Move disk from 3 to 1Move disk from 2 to 1Move disk from 3 to 2Move disk from 1 to 3Move disk from 1 to 2Move disk from 3 to 2Towers of Hanoi puzzle completed!

Vedit macro language

This implementation outputs the results in current edit buffer.

#1=1; #2=2; #3=3; #4=4          // move 4 disks from 1 to 2Call("MOVE_DISKS")Return// Move disks// #1 = from, #2 = to, #3 = via, #4 = number of disks//:MOVE_DISKS:if (#4 > 0) {    Num_Push(1,4)        #9=#2; #2=#3; #3=#9; #4--       // #1 to #3 via #2        Call("MOVE_DISKS")    Num_Pop(1,4)    Ins_Text("Move a disk from ")       // move one disk    Num_Ins(#1, LEFT+NOCR)    Ins_Text(" to ")    Num_Ins(#2, LEFT)    Num_Push(1,4)        #9=#1; #1=#3; #3 = #9; #4--     // #3 to #2 via #1        Call("MOVE_DISKS")    Num_Pop(1,4)}Return

Vim Script

function TowersOfHanoi(n, from, to, via)  if (a:n > 1)    call TowersOfHanoi(a:n-1, a:from, a:via, a:to)  endif  echom("Move a disc from " . a:from . " to " . a:to)  if (a:n > 1)    call TowersOfHanoi(a:n-1, a:via, a:to, a:from)  endifendfunctioncall TowersOfHanoi(4, 1, 3, 2)
Output:
Move a disc from 1 to 2Move a disc from 1 to 3Move a disc from 2 to 3Move a disc from 1 to 2Move a disc from 3 to 1Move a disc from 3 to 2Move a disc from 1 to 2Move a disc from 1 to 3Move a disc from 2 to 3Move a disc from 2 to 1Move a disc from 3 to 1Move a disc from 2 to 3Move a disc from 1 to 2Move a disc from 1 to 3Move a disc from 2 to 3

Visual Basic .NET

Module TowersOfHanoi    Sub MoveTowerDisks(ByVal disks As Integer, ByVal fromTower As Integer, ByVal toTower As Integer, ByVal viaTower As Integer)        If disks > 0 Then            MoveTowerDisks(disks - 1, fromTower, viaTower, toTower)            System.Console.WriteLine("Move disk {0} from {1} to {2}", disks, fromTower, toTower)            MoveTowerDisks(disks - 1, viaTower, toTower, fromTower)        End If    End Sub    Sub Main()        MoveTowerDisks(4, 1, 2, 3)    End SubEnd Module

V (Vlang)

fn main() {hanoi(4, "A", "B", "C")}fn hanoi(n u64, a string, b string, c string) {    if n > 0 {        hanoi(n - 1, a, c, b)        println("Move disk from ${a} to ${c}")        hanoi(n - 1, b, a, c)    }}
Output:
Move disk from A to BMove disk from A to CMove disk from B to CMove disk from A to BMove disk from C to AMove disk from C to BMove disk from A to BMove disk from A to CMove disk from B to CMove disk from B to AMove disk from C to AMove disk from B to CMove disk from A to BMove disk from A to CMove disk from B to C

VTL-2

VTL-2 doesn't have procedure parameters, so this stacks and unstacks the return line number and parameters as reuired. The "move" routune starts at line 2000, the routine at 4000 stacks the return line number and parameters for "move" and the routine at 5000 unstacks the return line number and parameters.

1000 N=41010 F=11020 T=21030 V=31040 S=01050 #=20001060 #=99992000 R=!2010 #=N<1*22102020 #=40002030 N=N-12040 A=T2050 T=V2060 V=A2070 #=20002080 #=50002090 ?="Move disk from peg: ";2100 ?=F2110 ?=" to peg: ";2120 ?=T2130 ?=""2140 #=40002150 N=N-12160 A=F2170 F=V2180 V=A2190 #=20002200 #=50002210 #=R4000 S=S+14010 :S)=R4020 S=S+14030 :S)=N4040 S=S+14050 :S)=F4060 S=S+14070 :S)=V4080 S=S+14090 :S)=T4100 #=!5000 T=:S)5010 S=S-15020 V=:S)5030 S=S-15040 F=:S)5050 S=S-15060 N=:S)5070 S=S-15080 R=:S)5090 S=S-15100 #=!
Output:
Move disk from peg: 1 to peg: 3Move disk from peg: 1 to peg: 2Move disk from peg: 3 to peg: 2Move disk from peg: 1 to peg: 3Move disk from peg: 2 to peg: 1Move disk from peg: 2 to peg: 3Move disk from peg: 1 to peg: 3Move disk from peg: 1 to peg: 2Move disk from peg: 3 to peg: 2Move disk from peg: 3 to peg: 1Move disk from peg: 2 to peg: 1Move disk from peg: 3 to peg: 2Move disk from peg: 1 to peg: 3Move disk from peg: 1 to peg: 2Move disk from peg: 3 to peg: 2

Wren

Translation of:Kotlin
class Hanoi {    construct new(disks) {        _moves = 0        System.print("Towers of Hanoi with %(disks) disks:\n")        move(disks, "L", "C", "R")        System.print("\nCompleted in %(_moves) moves\n")    }    move(n, from, to, via) {        if (n > 0) {            move(n - 1, from, via, to)            _moves = _moves + 1            System.print("Move disk %(n) from %(from) to %(to)")            move(n - 1, via, to, from)        }    }}Hanoi.new(3)Hanoi.new(4)
Output:
Towers of Hanoi with 3 disks:Move disk 1 from L to CMove disk 2 from L to RMove disk 1 from C to RMove disk 3 from L to CMove disk 1 from R to LMove disk 2 from R to CMove disk 1 from L to CCompleted in 7 movesTowers of Hanoi with 4 disks:Move disk 1 from L to RMove disk 2 from L to CMove disk 1 from R to CMove disk 3 from L to RMove disk 1 from C to LMove disk 2 from C to RMove disk 1 from L to RMove disk 4 from L to CMove disk 1 from R to CMove disk 2 from R to LMove disk 1 from C to LMove disk 3 from R to CMove disk 1 from L to RMove disk 2 from L to CMove disk 1 from R to CCompleted in 15 moves

XBasic

Works with:Windows XBasic
PROGRAM"Hanoi"VERSION"0.0000"DECLARE FUNCTION Entry ()DECLARE FUNCTION Hanoi(n, desde , hasta, via)FUNCTION  Entry ()PRINT "Three disks\n"Hanoi (3, 1, 2, 3)PRINT "\nFour discks\n"Hanoi (4, 1, 2, 3)PRINT "\nTowers of Hanoi puzzle completed!"END FUNCTIONFUNCTION Hanoi (n, desde , hasta, via)    IF n > 0 THEN       Hanoi (n - 1, desde, via, hasta)       PRINT "Move disk"; n; " from pole"; desde; " to pole"; hasta       Hanoi (n - 1, via, hasta, desde)    END IFEND FUNCTIONEND PROGRAM
Output:
Same as FreeBASIC entry.

XPL0

code Text=12;proc MoveTower(Discs, From, To, Using);int  Discs, From, To, Using;[if Discs > 0 then    [MoveTower(Discs-1, From, Using, To);    Text(0, "Move from ");  Text(0, From);    Text(0, " peg to ");  Text(0, To);  Text(0, " peg.^M^J");    MoveTower(Discs-1, Using, To, From);    ];];MoveTower(3, "left", "right", "center")
Output:
Move from left peg to right peg.Move from left peg to center peg.Move from right peg to center peg.Move from left peg to right peg.Move from center peg to left peg.Move from center peg to right peg.Move from left peg to right peg.

XQuery

declare function local:hanoi($disk as xs:integer, $from as xs:integer,    $to as xs:integer, $via as xs:integer) as element()* {  if($disk > 0)  then (    local:hanoi($disk - 1, $from, $via, $to),    <move disk='{$disk}'><from>{$from}</from><to>{$to}</to></move>,    local:hanoi($disk - 1, $via, $to, $from)  )   else ()};<hanoi>{  local:hanoi(4, 1, 2, 3)}</hanoi>
Output:
<?xml version="1.0" encoding="UTF-8"?><hanoi>   <move disk="1">      <from>1</from>      <to>3</to>   </move>   <move disk="2">      <from>1</from>      <to>2</to>   </move>   <move disk="1">      <from>3</from>      <to>2</to>   </move>   <move disk="3">      <from>1</from>      <to>3</to>   </move>   <move disk="1">      <from>2</from>      <to>1</to>   </move>   <move disk="2">      <from>2</from>      <to>3</to>   </move>   <move disk="1">      <from>1</from>      <to>3</to>   </move>   <move disk="4">      <from>1</from>      <to>2</to>   </move>   <move disk="1">      <from>3</from>      <to>2</to>   </move>   <move disk="2">      <from>3</from>      <to>1</to>   </move>   <move disk="1">      <from>2</from>      <to>1</to>   </move>   <move disk="3">      <from>3</from>      <to>2</to>   </move>   <move disk="1">      <from>1</from>      <to>3</to>   </move>   <move disk="2">      <from>1</from>      <to>2</to>   </move>   <move disk="1">      <from>3</from>      <to>2</to>   </move></hanoi>

XSLT

<xsl:template name="hanoi"><xsl:param name="n"/><xsl:param name="from">left</xsl:param><xsl:param name="to">middle</xsl:param><xsl:param name="via">right</xsl:param>  <xsl:if test="$n &gt; 0">    <xsl:call-template name="hanoi">      <xsl:with-param name="n"    select="$n - 1"/>      <xsl:with-param name="from" select="$from"/>      <xsl:with-param name="to"   select="$via"/>      <xsl:with-param name="via"  select="$to"/>    </xsl:call-template>    <fo:block>      <xsl:text>Move disk from </xsl:text>      <xsl:value-of select="$from"/>      <xsl:text> to </xsl:text>      <xsl:value-of select="$to"/>    </fo:block>    <xsl:call-template name="hanoi">      <xsl:with-param name="n"    select="$n - 1"/>      <xsl:with-param name="from" select="$via"/>      <xsl:with-param name="to"   select="$to"/>      <xsl:with-param name="via"  select="$from"/>    </xsl:call-template>  </xsl:if></xsl:template>
<xsl:call-template name="hanoi"><xsl:with-param name="n" select="4"/></xsl:call-template>

Yabasic

sub hanoi(ndisks, startPeg, endPeg)    if ndisks then        hanoi(ndisks-1, startPeg, 6-startPeg-endPeg)        //print "Move disk ", ndisks, " from ", startPeg, " to ", endPeg        hanoi(ndisks-1, 6-startPeg-endPeg, endPeg)    end ifend subprint "Be patient, please.\n\n"print "Hanoi 1 ellapsed ... ";t1 = peek("millisrunning")hanoi(22, 1, 3)t2 = peek("millisrunning")print t2-t1, " ms"sub hanoi2(n, from, to_, via)    if n = 1 then//print "Move from ", from, " to ", to_    elsehanoi2(n - 1, from, via , to_ )    hanoi2(1    , from, to_ , via )    hanoi2(n - 1, via , to_ , from)    end ifend subprint "Hanoi 2 ellapsed ... ";hanoi2(22, 1, 3, 2)print peek("millisrunning") - t2, " ms"

Z80 Assembly

Works with:CP/M 3.1 version YAZE-AG-2.51.2 Z80 emulator
Works with:ZSM4 macro assembler version YAZE-AG-2.51.2 Z80 emulator

Use the /S8 switch on the ZSM4 assembler for 8 significant characters for labels and names

;; Towers of Hanoi using Z80 assembly language;; Runs under CP/M 3.1 on YAZE-AG-2.51.2 Z80 emulator; Assembled with zsm4 on same emulator/OS, uses macro capabilities of said assembler; Created with vim under Windows;; 2023-05-29 Xorph;;; Useful definitions;bdosequ 05h; Call to CP/M BDOS functionstrdelequ 6eh; Set string delimiterwrtstrequ 09h; Write string to consolenulequ 00h; ASCII control characterscrequ 0dhlfequ 0ahcnullequ '0'; ASCII character constantscaequ 'A'cbequ 'B'ccequ 'C'disksequ 4; Number of disks to move;; Macros for BDOS calls;setdel macrochar; Set string delimiter to charldc,strdellde,charcallbdosendmprint macromsg; Output string to consoleldc,wrtstrldde,msgcallbdosendmpushallmacro; Save required registers to stackpushafpushbcpushdeendmpopallmacro; Recall required registers from stackpopdepopbcpopafendm;; =====================; Start of main program; =====================;csegsetdelnul; Set string delimiter to 00hlda,disks; Initialization:ldb,ca; Tower A is sourceldc,cb; Tower B is targetldd,cc; Tower C is intermediatehanoi:;; Parameters in registers:; Move a disks from b (source) to c (target) via d (intermediate);ora; If 0 disks to move, returnretzdeca; Move all but lowest disk from source to intermediate via targetpushall; Save registerslde,c; Exchange c and d (target and intermediate)ldc,dldd,ecallhanoi; First recursionpopall; Restore registersldhl,source; Print move of lowest disk from source to target, save registers during BDOS callld(hl),b; Source is still in bldhl,targetld(hl),c; Target is back in c due to popallpushallprintmovementpopalllde,b; Now move stack from intermediate to target via sourceldb,d; Source is still in b, target in c and intermediate in dldd,ejrhanoi; Optimize tail recursion;; ================; Data definitions; ================;dsegmovement:defb'Move disk from tower 'source:defs1defb' to tower 'target:defs1crlf:defbcr,lf,nul
Output:
E>hanoiMove disk from tower A to tower CMove disk from tower A to tower BMove disk from tower C to tower BMove disk from tower A to tower CMove disk from tower B to tower AMove disk from tower B to tower CMove disk from tower A to tower CMove disk from tower A to tower BMove disk from tower C to tower BMove disk from tower C to tower AMove disk from tower B to tower AMove disk from tower C to tower BMove disk from tower A to tower CMove disk from tower A to tower BMove disk from tower C to tower BE>

Zig

Translation of:C
const std = @import("std");pub fn print(from: u32, to: u32) void {    std.log.info("Moving disk from rod {} to rod {}", .{ from, to });}pub fn move(n: u32, from: u32, via: u32, to: u32) void {    if (n > 1) {        move(n - 1, from, to, via);        print(from, to);        move(n - 1, via, from, to);    } else {        print(from, to);    }}pub fn main() !void {    move(4, 1, 2, 3);}

zkl

Translation of:C
fcn move(n, from,to,via){   if (n>0){      move(n-1, from,via,to);      println("Move disk from pole %d to pole %d".fmt(from, to));      move(n-1, via,to,from);   }}move(3, 1,2,3);
Output:
Move disk from pole 1 to pole 2Move disk from pole 1 to pole 3Move disk from pole 2 to pole 3Move disk from pole 1 to pole 2Move disk from pole 3 to pole 1Move disk from pole 3 to pole 2Move disk from pole 1 to pole 2
Retrieved from "https://rosettacode.org/wiki/Towers_of_Hanoi?oldid=378337"
Categories:
Hidden category:
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

[8]ページ先頭

©2009-2025 Movatter.jp