Movatterモバイル変換


[0]ホーム

URL:


Jump to content
Rosetta Code
Search

Spiral matrix

From Rosetta Code
Task
Spiral matrix
You are encouraged tosolve this task according to the task description, using any language you may know.
Task

Produce a spiral array.


A  spiral array   is a square arrangement of the first   N2   natural numbers,   where the
numbers increase sequentially as you go around the edges of the array spiraling inwards.


For example, given  5,   produce this array:

 0  1  2  3  415 16 17 18  514 23 24 19  613 22 21 20  712 11 10  9  8


Related tasks



11l

Translation of:Python
F spiral_matrix(n)   V m = [[0] * n] *n   V d = [(0, 1), (1, 0), (0, -1), (-1, 0)]   V xy = (0, -1)   V c = 0   L(i) 0 .< n + n - 1      L 0 .< (n + n - i) I/ 2         xy += d[i % 4]         m[xy.x][xy.y] = c         c++   R mF printspiral(myarray)   L(y) 0 .< myarray.len      L(x) 0 .< myarray.len         print(‘#2’.format(myarray[y][x]), end' ‘ ’)      print()printspiral(spiral_matrix(5))
Output:
 0  1  2  3  415 16 17 18  514 23 24 19  613 22 21 20  712 11 10  9  8

360 Assembly

For maximum compatibility, this program uses only the basic instruction set.

Translation of:BBC BASIC
SPIRALM  CSECT         USING  SPIRALM,R13SAVEAREA B      STM-SAVEAREA(R15)         DC     17F'0'         DC     CL8'SPIRALM'STM      STM    R14,R12,12(R13)         ST     R13,4(R15)         ST     R15,8(R13)         LR     R13,R15*        ----   CODE         LA     R0,0         LA     R1,1         LH     R12,N           n         LR     R4,R1           Row=1         LR     R5,R1           Col=1         LR     R6,R1           BotRow=1         LR     R7,R1           BotCol=1         LR     R8,R12          TopRow=n         LR     R9,R12          TopCol=n         LR     R10,R0          Dir=0         LR     R15,R12         n         MR     R14,R12         R15=n*n         LA     R11,1           k=1LOOP     CR     R11,R15         BH     ENDLOOP         LR     R1,R4         BCTR   R1,0         MH     R1,N         AR     R1,R5         LR     R2,R11          k         BCTR   R2,0         BCTR   R1,0         SLA    R1,1         STH    R2,MATRIX(R1)   Matrix(Row,Col)=k-1         CH     R10,=H'0'         BE     DIR0         CH     R10,=H'1'         BE     DIR1         CH     R10,=H'2'         BE     DIR2         CH     R10,=H'3'         BE     DIR3         B      DIRXDIR0     CR     R5,R9           if Col<TopCol         BNL    DIR0S         LA     R5,1(R5)        Col=Col+1         B      DIRXDIR0S    LA     R10,1           Dir=1         LA     R4,1(R4)        Row=Row+1         LA     R6,1(R6)        BotRow=BotRow+1         B      DIRXDIR1     CR     R4,R8           if Row<TopRow         BNL    DIR1S         LA     R4,1(R4)        Row=Row+1         B      DIRXDIR1S    LA     R10,2           Dir=2         BCTR   R5,0            Col=Col-1         BCTR   R9,0            TopCol=TopCol-1         B      DIRXDIR2     CR     R5,R7           if Col>BotCol         BNH    DIR2S         BCTR   R5,0            Col=Col-1         B      DIRXDIR2S    LA     R10,3           Dir=3         BCTR   R4,0            Row=Row-1         BCTR   R8,0            TopRow=TopRow-1         B      DIRXDIR3     CR     R4,R6           if Row>BotRow         BNH    DIR3S         BCTR   R4,0            Row=Row-1         B      DIRXDIR3S    LA     R10,0           Dir=0         LA     R5,1(R5)        Col=Col+1         LA     R7,1(R7)        BotCol=BotCol+1DIRX     EQU    *         LA     R11,1(R11)      k=k+1         B      LOOPENDLOOP  EQU    *         LA     R4,1            iLOOPI    CR     R4,R12         BH     ENDLOOPI         XR     R10,R10         LA     R5,1            jLOOPJ    CR     R5,R12         BH     ENDLOOPJ         LR     R1,R4         BCTR   R1,0         MH     R1,N         AR     R1,R5         BCTR   R1,0         SLA    R1,1         LH     R2,MATRIX(R1)   Matrix(i,j)         LA     R3,BUF         AR     R3,R10         CVD    R2,P8         MVC    0(4,R3),=X'40202120'         ED     0(4,R3),P8+6         LA     R10,4(R10)         LA     R5,1(R5)         B      LOOPJENDLOOPJ EQU    *         WTO    MF=(E,WTOMSG)           LA     R4,1(R4)         B      LOOPIENDLOOPI EQU    **        ----   END CODE         L      R13,4(0,R13)         LM     R14,R12,12(R13)         XR     R15,R15         BR     R14*        ----   DATAN        DC     H'5'            max=20 (20*4=80)         LTORG  P8       DS     PL8WTOMSG   DS     0F         DC     H'80',XL2'0000'BUF      DC     CL80' 'MATRIX   DS     H               Matrix(n,n)         YREGS           END    SPIRALM
Output:
   0   1   2   3   4  15  16  17  18   5  14  23  24  19   6  13  22  21  20   7  12  11  10   9   8

ABAP

REPORTzspiral_matrix.CLASSlcl_spiral_matrixDEFINITIONFINAL.PUBLIC SECTION.TYPES:BEGIN OFty_coordinates,dyTYPEi,dxTYPEi,valueTYPEi,END OFty_coordinates,ty_t_coordinatesTYPE STANDARD TABLE OFty_coordinatesWITHEMPTYKEY.DATAmv_dimentionTYPEi.DATAmv_initial_valueTYPEi.METHODS:constructorIMPORTINGiv_dimentionTYPEiiv_initial_valueTYPEi,get_coordinatesRETURNINGVALUE(rv_result)TYPEty_t_coordinates,print.PRIVATE SECTION.DATAlt_coordinatesTYPEty_t_coordinates.METHODScreateRETURNINGVALUE(ro_result)TYPE REF TOlcl_spiral_matrix.ENDCLASS.CLASSlcl_spiral_matrixIMPLEMENTATION.METHODconstructor.mv_dimention=iv_dimention.mv_initial_value=iv_initial_value.create().ENDMETHOD.METHODcreate.DATAdyTYPEi.DATAdxTYPEi.DATAvalueTYPEi.DATAseq_numberTYPEi.DATAseq_dimentionTYPEi.DATAsign_coefTYPEiVALUE-1.value=mv_initial_value." Fill in the first row (index 0)DOmv_dimentionTIMES.APPENDVALUE#(dy=dydx=dxvalue=value)TOlt_coordinates.value=value+1.dx=dx+1.ENDDO.seq_dimention=mv_dimention." Find the row and column numbers and set the values.DO(2*mv_dimention-2)/2TIMES.sign_coef=-sign_coef.seq_dimention=seq_dimention-1.DO2TIMES.seq_number=seq_number+1.DOseq_dimentionTIMES.IFseq_numberMOD2<>0.dy=dy+1*sign_coef.ELSE.dx=dx-1*sign_coef.ENDIF.APPENDVALUE#(dy=dydx=dxvalue=value)TOlt_coordinates.value=value+1.ENDDO.ENDDO.ENDDO.ro_result=me.ENDMETHOD.METHODget_coordinates.rv_result=lt_coordinates.ENDMETHOD.METHODprint.DATAcntTYPEi.DATAlineTYPEstring.SORTlt_coordinatesBYdydxASCENDING.LOOP ATlt_coordinatesASSIGNINGFIELD-SYMBOL(<ls_coordinates>).cnt=cnt+1.line=|{line}{<ls_coordinates>-value}|.IFcntMODmv_dimention=0.WRITE/line.CLEARline.ENDIF.ENDLOOP.ENDMETHOD.ENDCLASS.START-OF-SELECTION.DATA(go_spiral_matrix)=NEWlcl_spiral_matrix(iv_dimention=5iv_initial_value=0).go_spiral_matrix->print().
Output:
 0 1 2 3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10 9 8

Screenshot from ABAP system

Action!

DEFINE MAX_SIZE="10"DEFINE MAX_MATRIX_SIZE="100"INT FUNC Index(BYTE size,x,y)RETURN (x+y*size)PROC PrintMatrix(BYTE ARRAY a BYTE size)  BYTE i,j,v    FOR j=0 TO size-1  DO    FOR i=0 TO size-1    DO      v=a(Index(size,i,j))      IF v<10 THEN        Print("  ")      ELSE        Print(" ")      FI      PrintB(v)    OD    PutE()  ODRETURNPROC FillMatrix(BYTE ARRAY a BYTE size)  INT lev,maxLev,dist,maxDist,v  maxLev=size/2  IF (size&1)=0 THEN    maxLev==-1  FI  maxDist=size-1  v=1  FOR lev=0 TO maxLev  DO    FOR dist=0 TO maxDist    DO      a(Index(size,lev+dist,lev))=v v==+1    OD    FOR dist=0 TO maxDist-1    DO      a(Index(size,size-1-lev,lev+dist+1))=v v==+1    OD    FOR dist=0 TO maxDist-1    DO      a(Index(size,size-2-lev-dist,size-1-lev))=v v==+1    OD    FOR dist=0 TO maxDist-2    DO      a(Index(size,lev,size-2-lev-dist))=v v==+1    OD    maxDist==-2  ODRETURNPROC Test(BYTE size)  BYTE ARRAY mat(MAX_MATRIX_SIZE)    PrintF("Matrix size: %B%E",size)  FillMatrix(mat,size)  PrintMatrix(mat,size)  PutE()RETURNPROC Main()  Test(5)  Test(6)RETURN
Output:

Screenshot from Atari 8-bit computer

Matrix size: 5  1  2  3  4  5 16 17 18 19  6 15 24 25 20  7 14 23 22 21  8 13 12 11 10  9Matrix size: 6  1  2  3  4  5  6 20 21 22 23 24  7 19 32 33 34 25  8 18 31 36 35 26  9 17 30 29 28 27 10 16 15 14 13 12 11

Ada

-- Spiral SquarewithAda.Text_Io;useAda.Text_Io;withAda.Integer_Text_Io;useAda.Integer_Text_Io;withAda.Numerics.Elementary_Functions;useAda.Numerics.Elementary_Functions;procedureSpiral_SquareistypeArray_Typeisarray(Positiverange<>,Positiverange<>)ofNatural;functionSpiral(N:Positive)returnArray_TypeisResult:Array_Type(1..N,1..N);Row:Natural:=1;Col:Natural:=1;Max_Row:Natural:=N;Max_Col:Natural:=N;Min_Row:Natural:=1;Min_Col:Natural:=1;beginforIin0..N**2-1loopResult(Row,Col):=I;ifRow=Min_RowthenCol:=Col+1;ifCol>Max_ColthenCol:=Max_Col;Row:=Row+1;endif;elsifCol=Max_ColthenRow:=Row+1;ifRow>Max_RowthenRow:=Max_Row;Col:=Col-1;endif;elsifRow=Max_RowthenCol:=Col-1;ifCol<Min_ColthenCol:=Min_Col;Row:=Row-1;endif;elsifCol=Min_ColthenRow:=Row-1;ifRow=Min_Rowthen-- Reduce spiralMin_Row:=Min_Row+1;Max_Row:=Max_Row-1;Row:=Min_Row;Min_Col:=Min_Col+1;Max_Col:=Max_Col-1;Col:=Min_Col;endif;endif;endloop;returnResult;endSpiral;procedurePrint(Item:Array_Type)isNum_Digits:constantFloat:=Log(X=>Float(Item'Length(1)**2),Base=>10.0);Spacing:constantPositive:=Integer(Num_Digits)+2;beginforIinItem'range(1)loopforJinItem'range(2)loopPut(Item=>Item(I,J),Width=>Spacing);endloop;New_Line;endloop;endPrint;beginPrint(Spiral(5));endSpiral_Square;

The following is a variant using a different algorithm (which can also be used recursively):

functionSpiral(N:Positive)returnArray_TypeisResult:Array_Type(1..N,1..N);Left:Positive:=1;Right:Positive:=N;Top:Positive:=1;Bottom:Positive:=N;Index:Natural:=0;beginwhileLeft<RightloopforIinLeft..Right-1loopResult(Top,I):=Index;Index:=Index+1;endloop;forJinTop..Bottom-1loopResult(J,Right):=Index;Index:=Index+1;endloop;forIinreverseLeft+1..RightloopResult(Bottom,I):=Index;Index:=Index+1;endloop;forJinreverseTop+1..BottomloopResult(J,Left):=Index;Index:=Index+1;endloop;Left:=Left+1;Right:=Right-1;Top:=Top+1;Bottom:=Bottom-1;endloop;Result(Top,Left):=Index;returnResult;endSpiral;

ALGOL 68

Translation of:Python
Works with:ALGOL 68 version Revision 1 - no extensions to language used
Works with:ALGOL 68G version Any - tested with release1.18.0-9h.tiny
Works with:ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release1.8-8d
INT empty=0;PROC spiral = (INT n)[,]INT: (    INT dx:=1, dy:=0;            # Starting increments #    INT x:=0, y:=0;              # Starting location #    [0:n-1,0:n-1]INT my array;    FOR y FROM LWB my array TO UPB my array DO        FOR x FROM LWB my array TO UPB my array DO            my array[x,y]:=empty        OD    OD;    FOR i TO n**2 DO        my array[x,y] := i;        INT nx:=x+dx, ny:=y+dy;        IF ( 0<=nx AND nx<n AND 0<=ny AND ny<n | my array[nx,ny] = empty | FALSE ) THEN            x:=nx; y:=ny        ELSE            INT swap:=dx; dx:=-dy; dy:=swap;            x+:=dx; y+:=dy        FI    OD;    my array); PROC print spiral = ([,]INT my array)VOID:(    FOR y FROM LWB my array TO UPB my array DO        FOR x FROM LWB my array TO UPB my array DO            print(whole(my array[x,y],-3))        OD;        print(new line)    OD); print spiral(spiral(5))
Output:
  1  2  3  4  5 16 17 18 19  6 15 24 25 20  7 14 23 22 21  8 13 12 11 10  9

AppleScript

Translation of:JavaScript

(ES6)

---------------------- SPIRAL MATRIX ----------------------- spiral :: Int -> [[Int]]onspiral(n)scriptgoon|λ|(rows,cols,start)if0<rowsthen{enumFromTo(start,start+pred(cols))}&¬map(my|reverse|,¬transpose(|λ|(cols,pred(rows),start+cols)))else{{}}endifend|λ|endscriptgo's|λ|(n,n,0)endspiral--------------------------- TEST -------------------------onrunwikiTable(spiral(5),¬false,¬"text-align:center;width:12em;height:12em;table-layout:fixed;")endrun-------------------- WIKI TABLE FORMAT --------------------- wikiTable :: [Text] -> Bool -> Text -> TextonwikiTable(lstRows,blnHdr,strStyle)scriptfWikiRowson|λ|(lstRow,iRow)setstrDelimtoif_(blnHdrand(iRow=0),"!","|")setstrDbltostrDelim&strDelimlinefeed&"|-"&linefeed&strDelim&space&¬intercalateS(space&strDbl&space,lstRow)end|λ|endscriptlinefeed&"{| class=\"wikitable\" "&¬if_(strStyle"","style=\""&strStyle&"\"","")&¬intercalateS("",¬map(fWikiRows,lstRows))&linefeed&"|}"&linefeedendwikiTable------------------------- GENERIC -------------------------- comparing :: (a -> b) -> (a -> a -> Ordering)oncomparing(f)scripton|λ|(a,b)tellmReturn(f)setfato|λ|(a)setfbto|λ|(b)iffa<fbthen-1elseiffa>fbthen1else0endifendtellend|λ|endscriptendcomparing-- concatMap :: (a -> [b]) -> [a] -> [b]onconcatMap(f,xs)setlngtolengthofxssetaccto{}tellmReturn(f)repeatwithifrom1tolngsetacctoacc&(|λ|(itemiofxs,i,xs))endrepeatendtellif{text,string}containsclassofxsthenaccastextelseaccendifendconcatMap-- enumFromTo :: Int -> Int -> [Int]onenumFromTo(m,n)ifmnthensetlstto{}repeatwithifrommtonsetendoflsttoiendrepeatreturnlstelsereturn{}endifendenumFromTo-- foldl :: (a -> b -> a) -> a -> [b] -> aonfoldl(f,startValue,xs)tellmReturn(f)setvtostartValuesetlngtolengthofxsrepeatwithifrom1tolngsetvto|λ|(v,itemiofxs,i,xs)endrepeatreturnvendtellendfoldl-- if_ :: Bool -> a -> a -> aonif_(bool,x,y)ifboolthenxelseyendifendif_-- intercalateS :: String -> [String] -> StringonintercalateS(sep,xs)set{dlm,mytext item delimiters}to{mytext item delimiters,sep}setstoxsastextsetmytext item delimiterstodlmreturnsendintercalateS-- length :: [a] -> Inton|length|(xs)lengthofxsend|length|-- max :: Ord a => a -> a -> aonmax(x,y)ifx>ythenxelseyendifendmax-- maximumBy :: (a -> a -> Ordering) -> [a] -> aonmaximumBy(f,xs)setcmptomReturn(f)scriptmaxon|λ|(a,b)ifaismissing valueorcmp's|λ|(a,b)<0thenbelseaendifend|λ|endscriptfoldl(max,missing value,xs)endmaximumBy-- Lift 2nd class handler function into 1st class script wrapper-- mReturn :: First-class m => (a -> b) -> m (a -> b)onmReturn(f)ifclassoffisscriptthenfelsescriptproperty|λ|:fendscriptendifendmReturn-- map :: (a -> b) -> [a] -> [b]onmap(f,xs)tellmReturn(f)setlngtolengthofxssetlstto{}repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,i,xs)endrepeatreturnlstendtellendmap-- pred :: Enum a => a -> aonpred(x)x-1endpred-- Egyptian multiplication - progressively doubling a list, appending-- stages of doubling to an accumulator where needed for binary-- assembly of a target length-- replicate :: Int -> a -> [a]onreplicate(n,a)setoutto{}ifn<1thenreturnoutsetdblto{a}repeatwhile(n>1)if(nmod2)>0thensetouttoout&dblsetnto(ndiv2)setdblto(dbl&dbl)endrepeatreturnout&dblendreplicate-- reverse :: [a] -> [a]on|reverse|(xs)ifclassofxsistextthen(reverseofcharactersofxs)astextelsereverseofxsendifend|reverse|-- Simplified version - assuming rows of unvarying length.-- transpose :: [[a]] -> [[a]]ontranspose(rows)scriptcolson|λ|(_,iCol)scriptcellon|λ|(row)itemiColofrowend|λ|endscriptconcatMap(cell,rows)end|λ|endscriptmap(cols,item1ofrows)endtranspose-- unlines :: [String] -> Stringonunlines(xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,linefeed}setstrtoxsastextsetmytext item delimiterstodlmstrendunlines-- unwords :: [String] -> Stringonunwords(xs)intercalateS(space,xs)endunwords
Output:
01234
151617185
142324196
132221207
12111098

Arturo

Translation of:Python
spiralMatrix:function[n][m:newarray.of:@[n,n]null[dx,dy,x,y]:[1,0,0,0]loop0..dec n^2'i[m\[y]\[x]:i[nx,ny]:@[x+dx,y+dy]if?and?[and?[in?nx0..n-1][in?ny0..n-1]][null?m\[ny]\[nx]][[x,y]:@[nx,ny]]else[bdx:dx[dx,dy]:@[negdy,bdx][x,y]:@[x+dx,y+dy]]]returnm]loopspiralMatrix5'row[printmaprow'x->padto:stringx4]
Output:
   0    1    2    3    4   15   16   17   18    5   14   23   24   19    6   13   22   21   20    7   12   11   10    9    8

AutoHotkey

Translation of:Python

ahk forum:discussion

n:=5,dx:=x:=y:=v:=1,dy:=0Loop%n*n{a_%x%_%y%:=v++nx:=x+dx,ny:=y+dyIf(1>nx||nx>n||1>ny||ny>n||a_%nx%_%ny%)t:=dx,dx:=-dy,dy:=tx:=x+dx,y:=y+dy}Loop%n%{                      ; generate printouty:=A_Index                 ; for each rowLoop%n%                     ; and for each columns.=a_%A_Index%_%y%"`t" ; attach stored indexs.="`n"                    ; row is complete}MsgBox%s%                      ; show output/*---------------------------1   2   3   4   516  17  18  19  615  24  25  20  714  23  22  21  813  12  11  10  9---------------------------*/

AWK

# syntax: GAWK -f SPIRAL_MATRIX.AWK [-v offset={0|1}] [size]# converted from BBC BASICBEGIN{# offset: "0" prints 0 to size^2-1 while "1" prints 1 to size^2offset=(offset=="")?0:offsetsize=(ARGV[1]=="")?5:ARGV[1]if(offset!~/^[01]$/){exit(1)}if(size!~/^[0-9]+$/){exit(1)}bot_col=bot_row=0top_col=top_row=size-1direction=col=row=0for(i=0;i<=size*size-1;i++){# buildarr[col,row]=i+offsetif(direction==0){if(col<top_col){col++}else{direction=1;row++;bot_row++}}elseif(direction==1){if(row<top_row){row++}else{direction=2;col--;top_col--}}elseif(direction==2){if(col>bot_col){col--}else{direction=3;row--;top_row--}}elseif(direction==3){if(row>bot_row){row--}else{direction=0;col++;bot_col++}}}width=length(size^2-1+offset)+1# column widthfor(i=0;i<size;i++){# printfor(j=0;j<size;j++){printf("%*d",width,arr[j,i])}printf("\n")}exit(0)}
Output:
  0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

BBC BASIC

N%=5@%=LENSTR$(N%*N%-1)+1BotCol%=0:TopCol%=N%-1BotRow%=0:TopRow%=N%-1DIMMatrix%(TopCol%,TopRow%)Dir%=0:Col%=0:Row%=0FORI%=0TON%*N%-1Matrix%(Col%,Row%)=I%PRINTTAB(Col%*@%,Row%)I%CASEDir%OFWHEN0:IFCol%<TopCol%THENCol%+=1ELSEDir%=1:Row%+=1:BotRow%+=1WHEN1:IFRow%<TopRow%THENRow%+=1ELSEDir%=2:Col%-=1:TopCol%-=1WHEN2:IFCol%>BotCol%THENCol%-=1ELSEDir%=3:Row%-=1:TopRow%-=1WHEN3:IFRow%>BotRow%THENRow%-=1ELSEDir%=0:Col%+=1:BotCol%+=1ENDCASENEXTEND

C

Note: program produces a matrix starting from 1 instead of 0, because task says "natural numbers".

#include<stdio.h>#include<stdlib.h>#define valid(i, j) 0 <= i && i < m && 0 <= j && j < n && !s[i][j]intmain(intc,char**v){inti,j,m=0,n=0;/* default size: 5 */if(c>=2)m=atoi(v[1]);if(c>=3)n=atoi(v[2]);if(m<=0)m=5;if(n<=0)n=m;int**s=calloc(1,sizeof(int*)*m+sizeof(int)*m*n);s[0]=(int*)(s+m);for(i=1;i<m;i++)s[i]=s[i-1]+n;intdx=1,dy=0,val=0,t;for(i=j=0;valid(i,j);i+=dy,j+=dx){for(;valid(i,j);j+=dx,i+=dy)s[i][j]=++val;j-=dx;i-=dy;t=dy;dy=dx;dx=-t;}for(t=2;val/=10;t++);for(i=0;i<m;i++)for(j=0;j<n||!putchar('\n');j++)printf("%*d",t,s[i][j]);return0;}

Recursive method, width and height given on command line:

#include<stdio.h>#include<stdlib.h>intspiral(intw,inth,intx,inty){returny?w+spiral(h-1,w,y-1,w-x-1):x;}intmain(intargc,char**argv){intw=atoi(argv[1]),h=atoi(argv[2]),i,j;for(i=0;i<h;i++){for(j=0;j<w;j++)printf("%4d",spiral(w,h,j,i));putchar('\n');}return0;}

C#

Solution based on theJ hints:

publicint[,]Spiral(intn){int[,]result=newint[n,n];intpos=0;intcount=n;intvalue=-n;intsum=-1;do{value=-1*value/n;for(inti=0;i<count;i++){sum+=value;result[sum/n,sum%n]=pos++;}value*=n;count--;for(inti=0;i<count;i++){sum+=value;result[sum/n,sum%n]=pos++;}}while(count>0);returnresult;}// Method to print arrays, pads numbers so they line up in columnspublicvoidPrintArray(int[,]array){intn=(array.GetLength(0)*array.GetLength(1)-1).ToString().Length+1;for(inti=0;i<array.GetLength(0);i++){for(intj=0;j<array.GetLength(1);j++){Console.Write(array[i,j].ToString().PadLeft(n,' '));}Console.WriteLine();}}

Translated proper C++ solution:

//generate spiral matrix for given Nint[,]CreateMatrix(intn){int[]dx={0,1,0,-1},dy={1,0,-1,0};intx=0,y=-1,c=0;int[,]m=newint[n,n];for(inti=0,im=0;i<n+n-1;++i,im=i%4)for(intj=0,jlen=(n+n-i)/2;j<jlen;++j)m[x+=dx[im],y+=dy[im]]=++c;returnn;}//print aligned matrixvoidPrint(int[,]matrix){varlen=(int)Math.Ceiling(Math.Log10(m.GetLength(0)*m.GetLength(1)))+1;for(vary=0;y<m.GetLength(1);y++){for(varx=0;x<m.GetLength(0);x++){Console.Write(m[y,x].ToString().PadRight(len,' '));}Console.WriteLine();}}

Spiral Matrix without using an Array

usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;usingSystem.Text;usingSystem.Threading.Tasks;namespacespiralmat{classspiral{publicstaticintlev;intlev_lim,count,bk,cd,low,l,m;spiral(){lev=lev_lim=count=bk=cd=low=l=m=0;}voidlevel(intn1,intr,intc){lev_lim=n1%2==0?n1/2:(n1+1)/2;if((r<=lev_lim)&&(c<=lev_lim))lev=Math.Min(r,c);else{bk=r>c?(n1+1)-r:(n1+1)-c;low=Math.Min(r,c);if(low<=lev_lim)cd=low;lev=cd<bk?cd:bk;}}intfunc(intn2,intxo,intlo){l=xo;m=lo;count=0;level(n2,l,m);for(intak=1;ak<lev;ak++)count+=4*(n2-1-2*(ak-1));returncount;}publicstaticvoidMain(string[]args){spiralob=newspiral();Console.WriteLine("Enter Order..");intn=int.Parse(Console.ReadLine());Console.WriteLine("The Matrix of {0} x {1} Order is=>\n",n,n);for(inti=1;i<=n;i++){for(intj=1;j<=n;j++)Console.Write("{0,3:D} ",ob.func(n,i,j)+Convert.ToInt32(((j>=i)&&(i==lev))?((j-i)+1):((j==((n+1)-lev)&&(i>lev)&&(i<=j)))?(n-2*(lev-1)+(i-1)-(n-j)):((i==((n+1)-lev)&&(j<i)))?((n-2*(lev-1))+((n-2*(lev-1))-1)+(i-j)):((j==lev)&&(i>lev)&&(i<((n+1)-lev)))?((n-2*(lev-1))+((n-2*(lev-1))-1)+((n-2*(lev-1))-1)+(((n+1)-lev)-i)):0));Console.WriteLine();}Console.ReadKey();}}}
Output:
INPUT:-Enterorder..5OUTPUT:-TheMatrixof5x5Orderis=>12345161718196152425207142322218131211109INPUT:-Enterorder..6OUTPUT:-TheMatrixof6x6Orderis=>123456202122232471932333425818313635269173029282710161514131211

C++

#include<vector>#include<memory>// for auto_ptr#include<cmath>// for the ceil and log10 and floor functions#include<iostream>#include<iomanip>// for the setw functionusingnamespacestd;typedefvector<int>IntRow;typedefvector<IntRow>IntTable;auto_ptr<IntTable>getSpiralArray(intdimension){auto_ptr<IntTable>spiralArrayPtr(newIntTable(dimension,IntRow(dimension)));intnumConcentricSquares=static_cast<int>(ceil(static_cast<double>(dimension)/2.0));intj;intsideLen=dimension;intcurrNum=0;for(inti=0;i<numConcentricSquares;i++){// do top sidefor(j=0;j<sideLen;j++)(*spiralArrayPtr)[i][i+j]=currNum++;// do right sidefor(j=1;j<sideLen;j++)(*spiralArrayPtr)[i+j][dimension-1-i]=currNum++;// do bottom sidefor(j=sideLen-2;j>-1;j--)(*spiralArrayPtr)[dimension-1-i][i+j]=currNum++;// do left sidefor(j=sideLen-2;j>0;j--)(*spiralArrayPtr)[i+j][i]=currNum++;sideLen-=2;}returnspiralArrayPtr;}voidprintSpiralArray(constauto_ptr<IntTable>&spiralArrayPtr){size_tdimension=spiralArrayPtr->size();intfieldWidth=static_cast<int>(floor(log10(static_cast<double>(dimension*dimension-1))))+2;size_tcol;for(size_trow=0;row<dimension;row++){for(col=0;col<dimension;col++)cout<<setw(fieldWidth)<<(*spiralArrayPtr)[row][col];cout<<endl;}}intmain(){printSpiralArray(getSpiralArray(5));}

C++ solution done properly:

#include<vector>#include<iostream>usingnamespacestd;intmain(){constintn=5;constintdx[]={0,1,0,-1},dy[]={1,0,-1,0};intx=0,y=-1,c=0;vector<vector<int>>m(n,vector<int>(n));for(inti=0,im=0;i<n+n-1;++i,im=i%4)for(intj=0,jlen=(n+n-i)/2;j<jlen;++j)m[x+=dx[im]][y+=dy[im]]=++c;for(auto&r:m){for(auto&v:r)cout<<v<<' ';cout<<endl;}}

Clojure

Based on theJ hints (almost as incomprehensible, maybe)

(defnspiral[n](let[cyc(cycle[1n-1(-n)])](->>(range(decn)0-1)(mapcat#(repeat2%))(consn)(mapcat#(repeat%2%)cyc)(reductions+)(map vector(range0(*nn)))(sort-bysecond)(mapfirst)))(let[n5](clojure.pprint/cl-formattrue(str" ~{~<~%~,"(*n3)":;~2d ~>~}~%")(spiraln)))

Recursive generation:

Translation of:Common Lisp
(defnspiral-matrix[mn&[start]](let[row(list(map#(+start%)(rangem)))](if(=1n)row(concatrow(mapreverse(apply maplist(spiral-matrix(decn)m(+startm))))))))(defnspiral[nm](spiral-matrixnm1))

CoffeeScript

# Let's say you want to arrange the first N-squared natural numbers# in a spiral, where you fill in the numbers clockwise, starting from# the upper left corner.  This code computes the values for each x/y# coordinate of the square.  (Of course, you could precompute the values# iteratively, but what fun is that?)spiral_value=(x, y, n) ->prior_legs=N:0E:1S:2W:3edge_run=(edge_offset) ->N:->edge_offset.W-edge_offset.NE:->edge_offset.N-edge_offset.ES:->edge_offset.E-edge_offset.SW:->edge_offset.S-edge_offset.Wedge_offset=N:yE:n-1-xS:n-1-yW:xmin_edge_offset=nfordirofedge_offsetifedge_offset[dir]<min_edge_offsetmin_edge_offset=edge_offset[dir]border=dirinner_square_edge=n-2*min_edge_offsetcorner_offset=n*n-inner_square_edge*inner_square_edgecorner_offset+=prior_legs[border]*(inner_square_edge-1)corner_offset+edge_run(edge_offset)[border]()spiral_matrix=(n) -># return a nested array expressionforyin[0...n]forxin[0...n]spiral_valuex,y,ndo->fornin[6,7]console.log"\n----Spiral n=#{n}"console.logspiral_matrixn
Output:
> coffee spiral.coffee ----Spiral n=6[ [ 0, 1, 2, 3, 4, 5 ],  [ 19, 20, 21, 22, 23, 6 ],  [ 18, 31, 32, 33, 24, 7 ],  [ 17, 30, 35, 34, 25, 8 ],  [ 16, 29, 28, 27, 26, 9 ],  [ 15, 14, 13, 12, 11, 10 ] ]----Spiral n=7[ [ 0, 1, 2, 3, 4, 5, 6 ],  [ 23, 24, 25, 26, 27, 28, 7 ],  [ 22, 39, 40, 41, 42, 29, 8 ],  [ 21, 38, 47, 48, 43, 30, 9 ],  [ 20, 37, 46, 45, 44, 31, 10 ],  [ 19, 36, 35, 34, 33, 32, 11 ],  [ 18, 17, 16, 15, 14, 13, 12 ] ]

Common Lisp

Translation of:Python
(defunspiral(rowscolumns)(do((N(*rowscolumns))(spiral(make-array(listrowscolumns):initial-elementnil))(dx1)(dy0)(x0)(y0)(i0(1+i)))((=iN)spiral)(setf(arefspiralyx)i)(let((nx(+xdx))(ny(+ydy)))(cond((and(<-1nxcolumns)(<-1nyrows)(null(arefspiralnynx)))(setfxnxyny))(t(psetfdx(-dy)dydx)(setfx(+xdx)y(+ydy)))))))
> (pprint (spiral 6 6))#2A((0 1 2 3 4 5)    (19 20 21 22 23 6)    (18 31 32 33 24 7)    (17 30 35 34 25 8)    (16 29 28 27 26 9)    (15 14 13 12 11 10))> (pprint (spiral 5 3))#2A((0 1 2)    (11 12 3)    (10 13 4)    (9 14 5)    (8 7 6))

Recursive generation:

(defunspiral(mn&optional(start1))(let((row(list(loopforxfrom0to(1-m)collect(+xstart)))))(if(=1n)row;; first row, plus (n-1) x m spiral rotated 90 degrees(appendrow(map'list#'reverse(apply#'mapcar#'list(spiral(1-n)m(+startm))))))));; test(loopforrowin(spiral43)do(formatt"~{~4d~^~}~%"row))

D

voidmain(){importstd.stdio;enumn=5;int[n][n]M;intpos,side=n;foreach(immutablei;0..n/2+n%2){foreach(immutablej;0..side)M[i][i+j]=pos++;foreach(immutablej;1..side)M[i+j][n-1-i]=pos++;foreach_reverse(immutablej;0..side-1)M[n-1-i][i+j]=pos++;foreach_reverse(immutablej;1..side-1)M[i+j][i]=pos++;side-=2;}writefln("%(%(%2d %)\n%)",M);}
Output:
 0  1  2  3  415 16 17 18  514 23 24 19  613 22 21 20  712 11 10  9  8

Using a generator for any rectangular array:

importstd.stdio;/// 2D spiral generatorconststructSpiral{intw,h;intopApply(intdelegate(refint,refint,refint)dg){intidx,x,y,xy,dx=1,dy;int[]subLen=[w,h-1];voidturn(){autot=-dy;dy=dx;dx=t;xy=1-xy;}voidforward(intd=1){x+=d*dx;y+=d*dy;idx+=d;}Bye:while(true){if(subLen[xy]==0)break;foreach(_;0..subLen[xy]--)if(dg(idx,x,y))breakBye;elseforward();forward(-1);turn();forward();}return0;}}int[][]spiralMatrix(intw,inth){autom=newtypeof(return)(h,w);foreach(value,x,y;Spiral(w,h))m[y][x]=value;returnm;}voidmain(){foreach(r;spiralMatrix(9,4))writefln("%(%2d %)",r);}
Output:
 0  1  2  3  4  5  6  7  821 22 23 24 25 26 27 28  920 35 34 33 32 31 30 29 1019 18 17 16 15 14 13 12 11

DCL

$p1=f$integer(p1)$max=p1*p1$$i=0$r=1$rd=0$c=1$cd=1$loop:$a'r'_'c'=i$nr=r+rd$nc=c+cd$ifnr.eq.0.or.nc.eq.0.or.nr.gt.p1.or.nc.gt.p1.or.f$type(a'nr'_'nc').nes.""$then$gosubchange_directions$endif$r=r+rd$c=c+cd$i=i+1$ifi.lt.maxthen$gotoloop$length=f$length(f$string(max-1))$r=1$loop2:$c=1$output=""$loop3:$output=output+f$fao("!#UL ",length,a'r'_'c')$c=c+1$ifc.le.p1then$gotoloop3$writesys$outputoutput$r=r+1$ifr.le.p1then$gotoloop2$exit$$change_directions:$ifrd.eq.0.andcd.eq.1$then$rd=1$cd=0$else$ifrd.eq.1.and.cd.eq.0$then$rd=0$cd=-1$else$ifrd.eq.0.and.cd.eq.-1$then$rd=-1$cd=0$else$rd=0$cd=1$endif$endif$endif$return
Output:
$ @spiral_matrix 3 0 1 2 7 8 3 6 5 4 $ @spiral_matrix 5 0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8...

Delphi

Works with:Delphi version 6.0
Library:SysUtils,StdCtrls, Windows

This code actually creates a matrix in memory and stores values in the matrix, instead of just simulating one by drawing the pattern. It can also create matrices of any size and the matrices don't have to be square. It works by creating a rectangle of the same size as the matrix. It enters the values in the matrix along circumference of the matrix. It then uses the Windows library routine "InflateRect" to decrease the size of the rectangle until the whole matrix is filled with spiraling values. Since a rectangle can be any size and doesn't have to be square, it works with any size matrix, including non-square matrices.

typeTMatrix=arrayofarrayofdouble;procedureDisplayMatrix(Memo:TMemo;Mat:TMatrix);{Display specified matrix}varX,Y:integer;varS:string;beginS:='';forY:=0toHigh(Mat[0])dobeginS:=S+'[';forX:=0toHigh(Mat)doS:=S+Format('%4.0f',[Mat[X,Y]]);S:=S+']'+#$0D#$0A;end;Memo.Lines.Add(S);end;procedureMakeSpiralMatrix(varMat:TMatrix;SizeX,SizeY:integer);{Create a spiral matrix of specified size}varInx:integer;varR:TRect;procedureDoRect(R:TRect;varInx:integer);{Create on turn of the spiral base on the rectangle}varX,Y:integer;begin{Do top part of rectangle}forX:=R.LefttoR.RightdobeginMat[X,R.Top]:=Inx;Inc(Inx);end;{Do Right part of rectangle}forY:=R.Top+1toR.BottomdobeginMat[R.Right,Y]:=Inx;Inc(Inx);end;{Do bottom part of rectangle}forX:=R.Right-1downtoR.LeftdobeginMat[X,R.Bottom]:=Inx;Inc(Inx);end;{Do left part of rectangle}forY:=R.Bottom-1downtoR.Top+1dobeginMat[R.Left,Y]:=Inx;Inc(Inx);end;end;begin{Set matrix size}SetLength(Mat,SizeX,SizeY);{create matching rectangle}R:=Rect(0,0,SizeX-1,SizeY-1);Inx:=0;{draw and deflate rectangle until spiral is done}while(R.Left<=R.Right)and(R.Top<=R.Bottom)dobeginDoRect(R,Inx);InflateRect(R,-1,-1);end;end;procedureSpiralMatrix(Memo:TMemo);{Display spiral matrix}varMat:TMatrix;beginMemo.Lines.Add('5x5 Matrix');MakeSpiralMatrix(Mat,5,5);DisplayMatrix(Memo,Mat);Memo.Lines.Add('8x8 Matrix');MakeSpiralMatrix(Mat,8,8);DisplayMatrix(Memo,Mat);Memo.Lines.Add('14x8 Matrix');MakeSpiralMatrix(Mat,14,8);DisplayMatrix(Memo,Mat);end;
Output:
5x5 Matrix[   0   1   2   3   4][  15  16  17  18   5][  14  23  24  19   6][  13  22  21  20   7][  12  11  10   9   8]8x8 Matrix[   0   1   2   3   4   5   6   7][  27  28  29  30  31  32  33   8][  26  47  48  49  50  51  34   9][  25  46  59  60  61  52  35  10][  24  45  58  63  62  53  36  11][  23  44  57  56  55  54  37  12][  22  43  42  41  40  39  38  13][  21  20  19  18  17  16  15  14]14x8 Matrix[   0   1   2   3   4   5   6   7   8   9  10  11  12  13][  39  40  41  42  43  44  45  46  47  48  49  50  51  14][  38  71  72  73  74  75  76  77  78  79  80  81  52  15][  37  70  95  96  97  98  99 100 101 102 103  82  53  16][  36  69  94 111 110 109 108 107 106 105 104  83  54  17][  35  68  93  92  91  90  89  88  87  86  85  84  55  18][  34  67  66  65  64  63  62  61  60  59  58  57  56  19][  33  32  31  30  29  28  27  26  25  24  23  22  21  20]Elapsed Time: 11.242 ms.

E

First, some quick data types to unclutter the actual algorithm.

/** Missing scalar multiplication, but we don't need it. */def makeVector2(x, y) {  return def vector {    to x() { return x }    to y() { return y }    to add(other) { return makeVector2(x + other.x(), y + other.y()) }    to clockwise() { return makeVector2(-y, x) }  }}/** Bugs: (1) The printing is specialized. (2) No bounds check on the column. */def makeFlex2DArray(rows, cols) {  def storage := ([null] * (rows * cols)).diverge()  return def flex2DArray {    to __printOn(out) {      for y in 0..!rows {        for x in 0..!cols {          out.print(<import:java.lang.makeString>.format("%3d", [flex2DArray[y, x]]))        }        out.println()      }    }    to get(r, c) { return storage[r * cols + c] }    to put(r, c, v) { storage[r * cols + c] := v }  }}
def spiral(size) {  def array := makeFlex2DArray(size, size)  var i := -1                   # Counter of numbers to fill  var p := makeVector2(0, 0)    # "Position"  var dp := makeVector2(1, 0)   # "Velocity"    # If the cell we were to fill next (even after turning) is full, we're done.  while (array[p.y(), p.x()] == null) {      array[p.y(), p.x()] := (i += 1) # Fill cell    def next := p + dp              # Look forward        # If the cell we were to fill next is already full, then turn clockwise.    # Gimmick: If we hit the edges of the array, by the modulo we wrap around    # and see the already-filled cell on the opposite edge.    if (array[next.y() %% size, next.x() %% size] != null) {      dp := dp.clockwise()    }        # Move forward    p += dp  }    return array}

Example:

? print(spiral(5)) 0  1  2  3  415 16 17 18  514 23 24 19  613 22 21 20  712 11 10  9  8

EasyLang

proc mkspiral n . t[] .   subr side      for i to l         ind += d         t[ind] = cnt         cnt += 1      .   .   len t[] n * n   l = n   while cnt < len t[]      d = 1      side      l -= 1      d = n      side      d = -1      side      l -= 1      d = -n      side   ..n = 5mkspiral n t[]numfmt 0 3for i to n * n   write t[i]   if i mod n = 0      print ""   ..
Output:
  0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

Elixir

Translation of:Ruby
defmoduleRCdodefspiral_matrix(n)dowide=length(to_char_list(n*n-1))fmt=String.duplicate("~#{wide}w ",n)<>"~n"runs=Enum.flat_map(n..1,&[&1,&1])|>tldelta=Stream.cycle([{0,1},{1,0},{0,-1},{-1,0}])running(Enum.zip(runs,delta),0,-1,[])|>Enum.with_index|>Enum.sort|>Enum.chunk(n)|>Enum.each(fnrow->:io.formatfmt,(for{_,i}<-row,do:i)end)enddefprunning([{run,{dx,dy}}|rest],x,y,track)donew_track=Enum.reduce(1..run,track,fni,acc->[{x+i*dx,y+i*dy}|acc]end)running(rest,x+run*dx,y+run*dy,new_track)enddefprunning([],_,_,track),do:track|>Enum.reverseendRC.spiral_matrix(5)

The other way

defmoduleRCdodefspiral_matrix(n)dowide=String.length(to_string(n*n-1))fmt=String.duplicate("~#{wide}w ",n)<>"~n"right(n,n-1,0,[])|>Enum.reverse|>Enum.with_index|>Enum.sort|>Enum.chunk(n)|>Enum.each(fnrow->:io.formatfmt,(for{_,i}<-row,do:i)end)enddefright(n,side,i,coordinates)dodown(n,side,i,Enum.reduce(0..side,coordinates,fnj,acc->[{i,i+j}|acc]end))enddefdown(_,0,_,coordinates),do:coordinatesdefdown(n,side,i,coordinates)doleft(n,side-1,i,Enum.reduce(1..side,coordinates,fnj,acc->[{i+j,n-1-i}|acc]end))enddefleft(n,side,i,coordinates)doup(n,side,i,Enum.reduce(side..0,coordinates,fnj,acc->[{n-1-i,i+j}|acc]end))enddefup(_,0,_,coordinates),do:coordinatesdefup(n,side,i,coordinates)doright(n,side-1,i+1,Enum.reduce(side..1,coordinates,fnj,acc->[{i+j,i}|acc]end))endendRC.spiral_matrix(5)

Another way

defmoduleRCdodefspiral_matrix(n)dofmt=String.duplicate("~#{length(to_char_list(n*n-1))}w ",n)<>"~n"Enum.flat_map(n..1,&[&1,&1])|>tl|>Enum.reduce({{0,-1},{0,1},[]},fnrun,{{x,y},{dx,dy},acc}->side=fori<-1..run,do:{x+i*dx,y+i*dy}{{x+run*dx,y+run*dy},{dy,-dx},acc++side}end)|>elem(2)|>Enum.with_index|>Enum.sort|>Enum.map(fn{_,i}->iend)|>Enum.chunk(n)|>Enum.each(fnrow->:io.formatfmt,rowend)endendRC.spiral_matrix(5)
Output:
 0  1  2  3  415 16 17 18  514 23 24 19  613 22 21 20  712 11 10  9  8

Euphoria

function spiral(integer dimension)    integer side, curr, curr2    sequence s    s = repeat(repeat(0,dimension),dimension)    side = dimension    curr = 0    for i = 0 to floor(dimension/2) do        for j = 1 to side-1 do            s[i+1][i+j] = curr -- top            curr2 = curr + side-1            s[i+j][i+side] = curr2 -- right            curr2 += side-1            s[i+side][i+side-j+1] = curr2 -- bottom            curr2 += side-1            s[i+side-j+1][i+1] = curr2 -- left            curr += 1        end for        curr = curr2 + 1        side -= 2    end for        if remainder(dimension,2) then        s[floor(dimension/2)+1][floor(dimension/2)+1] = curr    end if        return send function? spiral(5)
Output:
{  {0,1,2,3,4},  {15,16,17,18,5},  {14,23,24,19,6},  {13,22,21,20,7},  {12,11,10,9,8}}

F#

No fancy schmancy elegance here, just putting the numbers in the right place (though I commend the elegance)...

letSpiraln=letsq=Array2D.createnn0// Set up an output arrayletnCur=ref-1// Current value being insertedletNextN()=nCur:=(!nCur+1);!nCur// Inc current value and return new valueletFrameinset=// Create the "frame" at an offset from the outsideletrangeF=[inset..(n-inset-2)]// Range we use going forwardletrangeR=[(n-inset-1)..(-1)..(inset+1)]// Range we use going backwardrangeF|>Seq.iter(funi->sq.[inset,i]<-NextN())// Top of framerangeF|>Seq.iter(funi->sq.[i,n-inset-1]<-NextN())// Right side of framerangeR|>Seq.iter(funi->sq.[n-inset-1,i]<-NextN())// Bottom of framerangeR|>Seq.iter(funi->sq.[i,inset]<-NextN())// Left side of frame[0..(n/2-1)]|>Seq.iter(funi->Framei)// Fill in all framesifn&&&1=1thensq.[n/2,n/2]<-n*n-1// If n is odd, fill in the last single valuesq// Return our output array

Factor

This is an implementation of Joey Tuttle's method for computing a spiral directly as a list and then reshaping it into a matrix, as described in theJ entry. To summarize, we construct a list withn*n elements by following some simple rules, then take its cumulative sum, and finally its inverse permutation (or grade in J parlance). This gives us a list which can be reshaped to the final matrix.

USING:arraysgroupingiokernelmathmath.combinatoricsmath.rangesmath.statisticsprettyprintsequencessequences.repeating;IN:rosetta-code.spiral-matrix:counts(n--seq)1[a,b]2repeatrest;:vals(n--seq)[1swap2dup[neg]bi@4array][2*1-cycle]bi;:evJKT2(n--seq)[counts][vals]bi[<array>]2mapconcat;:spiral(n--matrix)[evJKT2cum-suminverse-permutation][group]bi;:spiral-demo(--)5 9[spiralsimple-table.nl]bi@;MAIN:spiral-demo
Output:
0  1  2  3  415 16 17 18 514 23 24 19 613 22 21 20 712 11 10 9  80  1  2  3  4  5  6  7  831 32 33 34 35 36 37 38 930 55 56 57 58 59 60 39 1029 54 71 72 73 74 61 40 1128 53 70 79 80 75 62 41 1227 52 69 78 77 76 63 42 1326 51 68 67 66 65 64 43 1425 50 49 48 47 46 45 44 1524 23 22 21 20 19 18 17 16

Fortran

Works with:Fortran version 90 and later
PROGRAMSPIRALIMPLICIT NONEINTEGER,PARAMETER::size=5INTEGER::i,x=0,y=1,count=size,n=0INTEGER::array(size,size)DOi=1,countx=x+1array(x,y)=nn=n+1END DO  DOcount=count-1DOi=1,county=y+1array(x,y)=nn=n+1END DO      DOi=1,countx=x-1array(x,y)=nn=n+1END DO      IF(n>size*size-1)EXITcount=count-1DOi=1,county=y-1array(x,y)=nn=n+1END DO      DOi=1,countx=x+1array(x,y)=nn=n+1END DO      IF(n>size*size-1)EXIT  END DO  DOy=1,sizeDOx=1,sizeWRITE(*,"(I4)",ADVANCE="NO")array(x,y)END DO    WRITE(*,*)END DOEND PROGRAMSPIRAL

FreeBASIC

' FB 1.05.0 Win64EnumDirectionacrossdownbackupEndEnumDimAsIntegernDoInput"Enter size of matrix ";nLoopUntiln>0Dimspiral(1Ton,1Ton)AsInteger'' all zero by default' enter the numbers 0 to (n^2 - 1) spirally in the matrixDimAsIntegerrow=1,col=1,lowRow=1,highRow=n,lowCol=1,highCol=nDimdAsDirection=acrossForiAsInteger=0To(n*n-1)spiral(row,col)=iSelectCasedCaseacrosscol+=1Ifcol>highColThencol=highColrow+=1d=downEndifCasedownrow+=1Ifrow>highRowThenrow=highRowcol-=1d=backEndifCasebackcol-=1Ifcol<lowColThencol=lowColrow-=1d=uplowRow+=1EndIfCaseuprow-=1Ifrow<lowRowThenrow=lowRowcol+=1d=acrosshighRow-=1lowCol+=1highCol-=1EndIfEndSelectNext' print spiral matrix if n < 20PrintIfn<20ThenForiAsInteger=1TonForjAsInteger=1TonPrintUsing"####";spiral(i,j);NextjPrintNextiElsePrint"Matrix is too big to display on 80 column console"EndIfPrintPrint"Press any key to quit"Sleep
Output:
Enter size of matrix ? 5   0   1   2   3   4  15  16  17  18   5  14  23  24  19   6  13  22  21  20   7  12  11  10   9   8

FutureBasic

void local fn SpiralMatrix( size as int )  int t = 0, b = size - 1, l = 0, r = size - 1  int value = 0, i, j    while ( t <= b && l <= r) {    for i = l to r      mda(t,i) = value++    next    t++        for i = t to b      mda(i,r) = value++    next    r--        if ( t <= b )      for i = r to l step -1        mda(b,i) = value++      next      b--    end if        if ( l <= r )      for i = b to t step -1        mda(i,l) = value++      next      l++    end if  wend    for i = 0 to size -1    for j = 0 to size - 1      printf @"%2d \b",mda_integer(i,j)    next    print  nextend fnfn SpiralMatrix( 5 )HandleEvents
Output:
 0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

GAP

# Spiral matrix with numbers 1 .. n<sup>2</sup>, more natural in GAPSpiralMatrix:=function(n)locali,j,k,di,dj,p,vi,vj,imin,imax,jmin,jmax;a:=NullMat(n,n);vi:=[1,0,-1,0];vj:=[0,1,0,-1];imin:=0;imax:=n;jmin:=1;jmax:=n+1;p:=1;di:=vi[p];dj:=vj[p];i:=1;j:=1;forkin[1..n*n]doa[j][i]:=k;i:=i+di;j:=j+dj;ifi<iminori>imaxorj<jminorj>jmaxtheni:=i-di;j:=j-dj;p:=RemInt(p,4)+1;di:=vi[p];dj:=vj[p];i:=i+di;j:=j+dj;ifp=1thenimax:=imax-1;elifp=2thenjmax:=jmax-1;elifp=3thenimin:=imin+1;elsejmin:=jmin+1;fi;fi;od;returna;end;PrintArray(SpiralMatrix(5));# [ [   1,   2,   3,   4,   5 ],#   [  16,  17,  18,  19,   6 ],#   [  15,  24,  25,  20,   7 ],#   [  14,  23,  22,  21,   8 ],#   [  13,  12,  11,  10,   9 ] ]

Go

packagemainimport("fmt""strconv")varn=5funcmain(){ifn<1{return}top,left,bottom,right:=0,0,n-1,n-1sz:=n*na:=make([]int,sz)i:=0forleft<right{// work right, along topforc:=left;c<=right;c++{a[top*n+c]=ii++}top++// work down right sideforr:=top;r<=bottom;r++{a[r*n+right]=ii++}right--iftop==bottom{break}// work left, along bottomforc:=right;c>=left;c--{a[bottom*n+c]=ii++}bottom--// work up left sideforr:=bottom;r>=top;r--{a[r*n+left]=ii++}left++}// center (last) elementa[top*n+left]=i// printw:=len(strconv.Itoa(n*n-1))fori,e:=rangea{fmt.Printf("%*d ",w,e)ifi%n==n-1{fmt.Println("")}}}

Groovy

Naive "path-walking" solution:

enumDirection{East([0,1]),South([1,0]),West([0,-1]),North([-1,0]);privatestatic_nprivatefinalstepDeltaprivateboundprivateDirection(delta){stepDelta=delta}publicstaticsetN(intn){Direction._n=nNorth.bound=0South.bound=n-1West.bound=0East.bound=n-1}publicListmove(i,j){defdir=thisdefnewIJDir=[[i,j],stepDelta].transpose().collect{it.sum()}+dirif(((North.bound)..(South.bound)).contains(newIJDir[0])&&((West.bound)..(East.bound)).contains(newIJDir[1])){newIJDir}else{(++dir).move(i,j)}}publicObjectnext(){switch(this){caseNorth:West.bound++;returnEast;caseEast:North.bound++;returnSouth;caseSouth:East.bound--;returnWest;caseWest:South.bound--;returnNorth;}}}defspiralMatrix={n->if(n<1)return[]defM=(0..<n).collect{[0]*n}defi=0defj=0Direction.n=ndefdir=Direction.East(0..<(n**2)).each{k->M[i][j]=k(i,j,dir)=(k<(n**2-1))\?dir.move(i,j)\:[i,j,dir]}M}

Test:

(1..10).each{n->spiralMatrix(n).each{row->row.each{printf"%5d",it}println()}println()}
Output:
    0    0    1    3    2    0    1    2    7    8    3    6    5    4    0    1    2    3   11   12   13    4   10   15   14    5    9    8    7    6    0    1    2    3    4   15   16   17   18    5   14   23   24   19    6   13   22   21   20    7   12   11   10    9    8    0    1    2    3    4    5   19   20   21   22   23    6   18   31   32   33   24    7   17   30   35   34   25    8   16   29   28   27   26    9   15   14   13   12   11   10    0    1    2    3    4    5    6   23   24   25   26   27   28    7   22   39   40   41   42   29    8   21   38   47   48   43   30    9   20   37   46   45   44   31   10   19   36   35   34   33   32   11   18   17   16   15   14   13   12    0    1    2    3    4    5    6    7   27   28   29   30   31   32   33    8   26   47   48   49   50   51   34    9   25   46   59   60   61   52   35   10   24   45   58   63   62   53   36   11   23   44   57   56   55   54   37   12   22   43   42   41   40   39   38   13   21   20   19   18   17   16   15   14    0    1    2    3    4    5    6    7    8   31   32   33   34   35   36   37   38    9   30   55   56   57   58   59   60   39   10   29   54   71   72   73   74   61   40   11   28   53   70   79   80   75   62   41   12   27   52   69   78   77   76   63   42   13   26   51   68   67   66   65   64   43   14   25   50   49   48   47   46   45   44   15   24   23   22   21   20   19   18   17   16    0    1    2    3    4    5    6    7    8    9   35   36   37   38   39   40   41   42   43   10   34   63   64   65   66   67   68   69   44   11   33   62   83   84   85   86   87   70   45   12   32   61   82   95   96   97   88   71   46   13   31   60   81   94   99   98   89   72   47   14   30   59   80   93   92   91   90   73   48   15   29   58   79   78   77   76   75   74   49   16   28   57   56   55   54   53   52   51   50   17   27   26   25   24   23   22   21   20   19   18

Haskell

Solution based on theJ hints:

importData.ListimportControl.Monadgradexs=mapsnd.sort$zipxs[0..]valuesn=cycle[1,n,-1,-n]countsn=(n:).concatMap(ap(:)return)$[n-1,n-2..1]reshapen=unfoldr(\xs->ifnullxsthenNothingelseJust(splitAtnxs))spiraln=reshapen.grade.scanl1(+).concat$zipWithreplicate(countsn)(valuesn)displayRow=putStrLn.intercalate" ".mapshowmain=mapMdisplayRow$spiral5

An alternative, point-free solution based on the same J source.

importData.ListimportControl.Applicativecounts=tail.reverse.concat.map(replicate2).enumFromTo1values=cycle.((++)<$>mapid<*>mapnegate).(1:).(:[])grade=mapsnd.sort.flipzip[0..]copies=grade.scanl1(+).concat.map(uncurryreplicate).(zip<$>counts<*>values)parts=(<*>)take$(.)<$>(map.take)<*>(iterate.drop)<*>copiesdisp=(>>return()).mapM(putStrLn.intercalate" ".mapshow).partsmain=disp5

Another alternative:

importData.List(transpose)importText.Printf(printf)-- spiral is the first row plus a smaller spiral rotated 90 degspiral0__=[[]]spiralhws=[s..s+w-1]:rot90(spiralw(h-1)(s+w))whererot90=(mapreverse).transpose-- this is sort of hideous, someone may want to fix itmain=mapM_(\row->mapM_((printf"%4d").toInteger)row>>putStrLn"")(spiral1091)


Or less ambitiously,

Translation of:AppleScript
importData.List(intercalate,transpose)---------------------- SPIRAL MATRIX ---------------------spiral::Int->[[Int]]spiraln=gonn0wheregorowscolsx|0<rows=[x..predcols+x]:fmapreverse(transpose$gocols(predrows)(x+cols))|otherwise=[[]]--------------------------- TEST -------------------------main::IO()main=putStrLn$wikiTable$spiral5--------------------- TABLE FORMATTING -------------------wikiTable::Showa=>[[a]]->StringwikiTable=concat.("{| class=\"wikitable\" style=\"text-align: right;":).("width:12em;height:12em;table-layout:fixed;\"\n|-\n":).return.(<>"\n|}").intercalate"\n|-\n".fmap(('|':).(' ':).intercalate" || ".fmapshow)
Output:
01234
151617185
142324196
132221207
12111098

Icon andUnicon

At first I looked at keeping the filling of the matrix on track using /M[r,c] which fails when out of bounds or if the cell is null, but then I noticed the progression of the row and column increments from corner to corner reminded me of sines and cosines. I'm not sure if the use of a trigonometric function counts as elegance, perversity, or both. The generator could be easily modified to start at an arbitrary corner. Or count down to produce and evolute.

proceduremain(A)# spiral matrixN:=0<integer(\A[1]|5)# N=1... (dfeault 5)WriteMatrix(SpiralMatrix(N))endprocedureWriteMatrix(M)#: write the matrixeveryx:=M[r:=1to*M,c:=1to*M[r]]dowrites(right(\x|"-",3),ifc=*M[r]then"\n"else"")returnendprocedureSpiralMatrix(N)#: create spiral matrixevery(!(M:=list(N))):=list(N)# build empty matrix NxN# setup before starting first turncorner:=0# . corner we're ati:=-1# . cell contentsr:=1;c:=0# . row & colcincr:=integer(sin(0))# . column incruntili>N^2do{rincr:=cincr# row incr follows colcincr:=integer(sin(&pi/2*(corner+:=1)))# col incr at each cornerif(run:=N-corner/2)=0thenbreak# shorten run to 0 at U/R & L/Leveryrunto1by-1doM[r+:=rincr,c+:=cincr]:=i+:=1# move, count, and fill}returnMend
Output:
  0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

IS-BASIC

100 PROGRAM "SpiralMa.bas"110 TEXT 80120 INPUT PROMPT "Enter size of matrix (max. 10): ":N130 NUMERIC A(1 TO N,1 TO N)140 CALL INIT(A)150 CALL WRITE(A)160 DEF INIT(REF T)170   LET BCOL,BROW,COL,ROW=1:LET TCOL,TROW=N:LET DIR=0180   FOR I=0 TO N^2-1190     LET T(COL,ROW)=I200     SELECT CASE DIR210     CASE 0220       IF ROW<TROW THEN230         LET ROW=ROW+1240       ELSE250         LET DIR=1:LET COL=COL+1:LET BCOL=BCOL+1260       END IF270     CASE 1280       IF COL<TCOL THEN290         LET COL=COL+1300       ELSE310         LET DIR=2:LET ROW=ROW-1:LET TROW=TROW-1320       END IF330     CASE 2340       IF ROW>BROW THEN350         LET ROW=ROW-1360       ELSE370         LET DIR=3:LET COL=COL-1:LET TCOL=TCOL-1380       END IF 390     CASE 3400       IF COL>BCOL THEN410         LET COL=COL-1420       ELSE430         LET DIR=0:LET ROW=ROW+1:LET BROW=BROW+1440       END IF450     END SELECT460   NEXT470 END DEF480 DEF WRITE(REF T)490   FOR I=LBOUND(T,1) TO UBOUND(T,1)500     FOR J=LBOUND(T,2) TO UBOUND(T,2)510       PRINT USING " ##":T(I,J);520     NEXT530     PRINT540   NEXT550 END DEF

J

This function is the result of somebeautiful insights:

spiral=:,~$[:/:}.@(2#>:@i.@-)+/\@#<:@+:$(,-)@(1&,)spiral50123415161718514232419613222120712111098

Would you likesome hints that will allow you to reimplement it in another language?

These inward spiralling arrays are known as "involutes"; we can also generate outward-spiraling "evolutes", and we can start or end the spiral at any corner, and go in either direction (clockwise or counterclockwise). See the first link (to JSoftware.com).

Java

Translation of:C++
Works with:Java version 1.5+
publicclassBlah{publicstaticvoidmain(String[]args){print2dArray(getSpiralArray(5));}publicstaticint[][]getSpiralArray(intdimension){int[][]spiralArray=newint[dimension][dimension];intnumConcentricSquares=(int)Math.ceil((dimension)/2.0);intj;intsideLen=dimension;intcurrNum=0;for(inti=0;i<numConcentricSquares;i++){// do top sidefor(j=0;j<sideLen;j++){spiralArray[i][i+j]=currNum++;}// do right sidefor(j=1;j<sideLen;j++){spiralArray[i+j][dimension-1-i]=currNum++;}// do bottom sidefor(j=sideLen-2;j>-1;j--){spiralArray[dimension-1-i][i+j]=currNum++;}// do left sidefor(j=sideLen-2;j>0;j--){spiralArray[i+j][i]=currNum++;}sideLen-=2;}returnspiralArray;}publicstaticvoidprint2dArray(int[][]array){for(int[]row:array){for(intelem:row){System.out.printf("%3d",elem);}System.out.println();}}}
Output:
  0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

JavaScript

Imperative

spiralArray=function(edge){vararr=Array(edge),x=0,y=edge,total=edge*edge--,dx=1,dy=0,i=0,j=0;while(y)arr[--y]=[];while(i<total){arr[y][x]=i++;x+=dx;y+=dy;if(++j==edge){if(dy<0){x++;y++;edge-=2}j=dx;dx=-dy;dy=j;j=0;}}returnarr;}// T E S T:arr=spiralArray(edge=5);for(y=0;y<edge;y++)console.log(arr[y].join(" "));
Output:
0 1 2 3 415 16 17 18 514 23 24 19 613 22 21 20 712 11 10 9 8

Functional

ES5

Translating one of the Haskell versions:

(function(n){// Spiral: the first row plus a smaller spiral rotated 90 degrees clockwisefunctionspiral(lngRows,lngCols,nStart){returnlngRows?[range(nStart,(nStart+lngCols)-1)].concat(transpose(spiral(lngCols,lngRows-1,nStart+lngCols)).map(reverse)):[[]];}// rows and columns transposed (for 90 degree rotation)functiontranspose(lst){returnlst.length>1?lst[0].map(function(_,col){returnlst.map(function(row){returnrow[col];});}):lst;}// elements in reverse order (for 90 degree rotation)functionreverse(lst){returnlst.length>1?lst.reduceRight(function(acc,x){returnacc.concat(x);},[]):lst;}// [m..n]functionrange(m,n){returnArray.apply(null,Array(n-m+1)).map(function(x,i){returnm+i;});}// TESTINGvarlstSpiral=spiral(n,n,0);// OUTPUT FORMATTING - JSON and wikiTablefunctionwikiTable(lstRows,blnHeaderRow,strStyle){return'{| class="wikitable" '+(strStyle?'style="'+strStyle+'"':'')+lstRows.map(function(lstRow,iRow){varstrDelim=((blnHeaderRow&&!iRow)?'!':'|');return'\n|-\n'+strDelim+' '+lstRow.map(function(v){returntypeofv==='undefined'?' ':v;}).join(' '+strDelim+strDelim+' ');}).join('')+'\n|}';}return[wikiTable(lstSpiral,false,'text-align:center;width:12em;height:12em;table-layout:fixed;'),JSON.stringify(lstSpiral)].join('\n\n');})(5);

Output:

01234
151617185
142324196
132221207
12111098
[[0,1,2,3,4],[15,16,17,18,5],[14,23,24,19,6],[13,22,21,20,7],[12,11,10,9,8]]


ES6

Translation of:Haskell
(()=>{"use strict";// ------------------ SPIRAL MATRIX ------------------// spiral :: Int -> [[Int]]constspiral=n=>{constgo=(rows,cols,start)=>Boolean(rows)?[enumFromTo(start)(start+pred(cols)),...transpose(go(cols,pred(rows),start+cols)).map(reverse)]:[[]];returngo(n,n,0);};// ---------------------- TEST -----------------------// main :: () -> Stringconstmain=()=>{constn=5,cellWidth=1+`${pred(n**2)}`.length;returnunlines(spiral(n).map(row=>(row.map(x=>`${x}`.padStart(cellWidth," "))).join("")));};// --------------------- GENERIC ---------------------// enumFromTo :: Int -> Int -> [Int]constenumFromTo=m=>n=>Array.from({length:1+n-m},(_,i)=>m+i);// pred :: Enum a => a -> aconstpred=x=>x-1;// reverse :: [a] -> [a]constreverse=xs=>"string"===typeofxs?(xs.split("").reverse().join("")):xs.slice(0).reverse();// transpose :: [[a]] -> [[a]]consttranspose=rows=>// The columns of the input transposed// into new rows.// Simpler version of transpose, assuming input// rows of even length.Boolean(rows.length)?rows[0].map((_,i)=>rows.flatMap(v=>v[i])):[];// unlines :: [String] -> Stringconstunlines=xs=>// A single string formed by the intercalation// of a list of strings with the newline character.xs.join("\n");// MAIN ---returnmain();})();
Output:
  0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

jq

The strategy employed here is to start at [0,0] and move to the right ([0,1] == same row, next column) until we reach a boundary or a populated cell; then turn right, and proceed as before.

Initially fill the matrix with "false" so we can easily distinguish between unvisited cells (false) and non-existent cells (null).

Infrastructure:

# Create an m x n matrix def matrix(m; n; init):   if m == 0 then []   elif m == 1 then [range(0;n)] | map(init)   elif m > 0 then     matrix(1;n;init) as $row     | [range(0;m)] | map( $row )   else error("matrix\(m);_;_) invalid")   end ;# Print a matrix neatly, each cell occupying n spacesdef neatly(n):  def right: tostring | ( " " * (n-length) + .);  . as $in  | length as $length  | reduce range (0;$length) as $i      (""; . + reduce range(0;$length) as $j      (""; "\(.)\($in[$i][$j] | right )" ) + "\n" ) ;def right:  if   . == [1,  0] then [ 0, -1]  elif . == [0, -1] then [-1,  0]  elif . == [-1, 0] then [ 0,  1]  elif . == [0,  1] then [ 1,  0]  else error("invalid direction: \(.)")  end;

Create a spiral n by n matrix

def spiral(n):  # we just placed m at i,j, and we are moving in the direction d  def _next(i; j; m; d):    if m == (n*n) - 1 then .    elif .[i+d[0]][j+d[1]] == false      then .[i+d[0]][j+d[1]]   = m+1 | _next(i+d[0]; j+d[1]; m+1; d)    else (d|right) as $d       |   .[i+$d[0]][j+$d[1]] = m+1 | _next(i+$d[0]; j+$d[1]; m+1; $d)    end;  matrix(n;n;false) | .[0][0] = 0 | _next(0;0;0; [0,1]) ;# Examplespiral(5) | neatly(3)
Output:
$ jq -n -r -f spiral.jq  0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

Julia

Define an iterator that marches through matrix indices in the spiral pattern, which makes it easy to generate spiral matrices and related objects. Note that Julia uses column major ordering of matrices and that Julia allows multi-dimensional arrays to be addressed by scalar index as well as by subscripts.

Spiral Matrix Iterator

immutableSpiralm::Intn::Intcmax::Intdir::Array{Array{Int,1},1}bdelta::Array{Array{Int,1},1}endfunctionSpiral(m::Int,n::Int)cmax=m*ndir=Array{Int,1}[[0,1],[1,0],[0,-1],[-1,0]]bdelta=Array{Int,1}[[0,0,0,1],[-1,0,0,0],[0,-1,0,0],[0,0,1,0]]Spiral(m,n,cmax,dir,bdelta)endfunctionspiral(m::Int,n::Int)0<m&&0<n||error("The matrix dimensions must be positive.")Spiral(m,n)endspiral(n::Int)=spiral(n,n)typeSpStatecnt::Intdirdex::Intcell::Array{Int,1}bounds::Array{Int,1}endBase.length(sp::Spiral)=sp.cmaxBase.start(sp::Spiral)=SpState(1,1,[1,1],[sp.n,sp.m,1,1])Base.done(sp::Spiral,sps::SpState)=sps.cnt>sp.cmaxfunctionBase.next(sp::Spiral,sps::SpState)s=sub2ind((sp.m,sp.n),sps.cell[1],sps.cell[2])ifsps.cell[rem1(sps.dirdex+1,2)]==sps.bounds[sps.dirdex]sps.bounds+=sp.bdelta[sps.dirdex]sps.dirdex=rem1(sps.dirdex+1,4)endsps.cell+=sp.dir[sps.dirdex]sps.cnt+=1return(s,sps)end

Helper Functions

usingFormattingfunctionwidth{T<:Integer}(n::T)w=ndigits(n)n<0||returnwreturnw+1endfunctionpretty{T<:Integer}(a::Array{T,2},indent::Int=4)lo,hi=extrema(a)w=max(width(lo),width(hi))id=" "^indentfe=FormatExpr(@sprintf(" {:%dd}",w))s=idnrow=size(a)[1]foriin1:nrowforjina[i,:]s*=format(fe,j)endi!=nrow||continues*="\n"*idendreturnsend

Main

n=5println("The n = ",n," spiral matrix:")a=zeros(Int,(n,n))for(i,s)inenumerate(spiral(n))a[s]=i-1endprintln(pretty(a))m=3println()println("Generalize to a non-square matrix (",m,"x",n,"):")a=zeros(Int,(m,n))for(i,s)inenumerate(spiral(m,n))a[s]=i-1endprintln(pretty(a))p=primes(10^3)n=7println()println("An n = ",n," prime spiral matrix:")a=zeros(Int,(n,n))for(i,s)inenumerate(spiral(n))a[s]=p[i]endprintln(pretty(a))
Output:
The n = 5 spiral matrix:      0  1  2  3  4     15 16 17 18  5     14 23 24 19  6     13 22 21 20  7     12 11 10  9  8Generalize to a non-square matrix (3x5):      0  1  2  3  4     11 12 13 14  5     10  9  8  7  6An n = 7 prime spiral matrix:       2   3   5   7  11  13  17      89  97 101 103 107 109  19      83 173 179 181 191 113  23      79 167 223 227 193 127  29      73 163 211 199 197 131  31      71 157 151 149 139 137  37      67  61  59  53  47  43  41

Kotlin

Translation of:C#
// version 1.1.3typealiasVector=IntArraytypealiasMatrix=Array<Vector>funspiralMatrix(n:Int):Matrix{valresult=Matrix(n){Vector(n)}varpos=0varcount=nvarvalue=-nvarsum=-1do{value=-value/nfor(iin0untilcount){sum+=valueresult[sum/n][sum%n]=pos++}value*=ncount--for(iin0untilcount){sum+=valueresult[sum/n][sum%n]=pos++}}while(count>0)returnresult}funprintMatrix(m:Matrix){for(iin0untilm.size){for(jin0untilm.size)print("%2d ".format(m[i][j]))println()}println()}funmain(args:Array<String>){printMatrix(spiralMatrix(5))printMatrix(spiralMatrix(10))}
Output:
 0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8  0  1  2  3  4  5  6  7  8  9 35 36 37 38 39 40 41 42 43 10 34 63 64 65 66 67 68 69 44 11 33 62 83 84 85 86 87 70 45 12 32 61 82 95 96 97 88 71 46 13 31 60 81 94 99 98 89 72 47 14 30 59 80 93 92 91 90 73 48 15 29 58 79 78 77 76 75 74 49 16 28 57 56 55 54 53 52 51 50 17 27 26 25 24 23 22 21 20 19 18

Liberty BASIC

Extended to include automatic scaling of the display scale and font. SeespiralM5

nomainwinUpperLeftX   = 50UpperLeftY   = 50WindowWidth  =900WindowHeight =930statictext #w.st, "", 10, 850, 870, 40open "Spiral matrix" for graphics_nsb_nf as #w#w "trapclose [quit]"#w "backcolor darkblue; color cyan; fill darkblue"for N =2 to 50    #w.st "!font courier_new "; int(  60 /N); " bold"    #w    "down; font arial ";  int( 240 /N); " bold"    g$ ="ruld"                                  '   direction sequence    if N/2 =int( N/2) then pg =2 else pg =0     '   pointer to current direction                                                '   last move is left or right depending on N even/odd    d$ =""    for i =1 to N -1                            '   calculate direction to move        d$ =nChar$( i, mid$( g$, pg +1, 1)) +d$        pg =( pg +1) mod 4        d$ =nChar$( i, mid$( g$, pg +1, 1)) +d$        pg =( pg +1) mod 4    next i    d$ =nChar$( N -1, "r") +d$                  '   first row    #w.st "   N ="; N; "  "; d$    xp =60 +250 /N    yp =80 +250 /N    stp =int( 750 /N)    for i =0 to N^2 -1        dir$ =mid$( d$, i, 1)        select case dir$            case "r"                xp =xp +stp            case "d"                yp =yp +stp            case "l"                xp =xp -stp            case "u"                yp =yp -stp        end select        #w "place "; xp; " "; yp        #w "\"; i    next i    timer 3000, [on]    wait  [on]    timer 0    #w "cls"    scannext Nwaitfunction nChar$( n, i$)    for i =1 to n        nChar$ =nChar$ +i$    next iend function[quit]close #wend

Lua

Original

av,sn=math.abs,function(s)returns~=0ands/av(s)or0endfunctionsindex(y,x)-- returns the value at (x, y) in a spiral that starts at 1 and goes outwardsify==-xandy>=xthenreturn(2*y+1)^2endlocall=math.max(av(y),av(x))return(2*l-1)^2+4*l+2*l*sn(x+y)+sn(y^2-x^2)*(l-(av(y)==landsn(y)*xorsn(x)*y))-- OH GOD WHATendfunctionspiralt(side)localret,start,stop={},math.floor((-side+1)/2),math.floor((side-1)/2)fori=1,sidedoret[i]={}forj=1,sidedoret[i][j]=side^2-sindex(stop-i+1,start+j-1)--moves the coordinates so (0,0) is at the center of the spiralendendreturnretendfori,vinipairs(spiralt(8))doforj,uinipairs(v)doio.write(u.."   ")endprint()end

Alternate

If only the printed output is required, without intermediate array storage, then:

localfunctionprintspiral(n)localfunctionz(x,y)localm=math.min(x,y,n-1-x,n-1-y)returnx<yand(n-2*m-2)^2+(x-m)+(y-m)or(n-2*m)^2-(x-m)-(y-m)endfory=1,ndoforx=1,ndoio.write(string.format("%2d ",n^2-z(x-1,y-1)))endprint()endendprintspiral(9)

If the intermediate array storageis required, then:

localfunctionmakespiral(n)localt,z={},function(x,y)localm=math.min(x,y,n-1-x,n-1-y)returnx<yand(n-2*m-2)^2+(x-m)+(y-m)or(n-2*m)^2-(x-m)-(y-m)endfory=1,ndot[y]={}forx=1,ndot[y][x]=n^2-z(x-1,y-1)endendreturntendlocalfunctionprintspiral(t)fory=1,#tdoforx=1,#t[y]doio.write(string.format("%2d ",t[y][x]))endprint()endendprintspiral(makespiral(9))
Output:

(same for both)

 0  1  2  3  4  5  6  7  831 32 33 34 35 36 37 38  930 55 56 57 58 59 60 39 1029 54 71 72 73 74 61 40 1128 53 70 79 80 75 62 41 1227 52 69 78 77 76 63 42 1326 51 68 67 66 65 64 43 1425 50 49 48 47 46 45 44 1524 23 22 21 20 19 18 17 16

Maple

with(ArrayTools):spiralArray := proc(size::integer) local M, sideLength, count, i, j: M := Matrix(size): count := 0: sideLength := size: for i from 1 to ceil(sideLength / 2) do  for j from 1 to sideLength do   M[i,i + j - 1] := count++:  end:  for j from 1 to sideLength - 1 do   M[i + j, sideLength + i - 1] := count++:  end:  for j from 1 to sideLength - 1 do   M[i + sideLength - 1, sideLength - j + i - 1] := count++:  end:  for j from 1 to sideLength - 2 do   M[sideLength + i - j - 1, i] := count++  end:  sideLength -= 2: end: return M;end proc:spiralArray(5);
Output:
                         [ 0     1     2     3    4]                         [                         ]                         [15    16    17    18    5]                         [                         ]                         [14    23    24    19    6]                         [                         ]                         [13    22    21    20    7]                         [                         ]                         [12    11    10     9    8]

Mathematica /Wolfram Language

We split the task up in 2 functions, one that adds a 'ring' around a present matrix. And a function that adds rings to a 'core':

AddSquareRing[x_List/;Equal@@Dimensions[x]&&Length[Dimensions[x]]==2]:=Module[{new=x,size,smallest},size=Length[x];smallest=x[[1,1]];Do[new[[i]]=Prepend[new[[i]],smallest-i];new[[i]]=Append[new[[i]],smallest-3size+i-3],{i,size}];PrependTo[new,Range[smallest-3size-3-size-1,smallest-3size-3]];AppendTo[new,Range[smallest-size-1,smallest-size-size-2,-1]];new]MakeSquareSpiral[size_Integer/;size>0]:=Module[{largest,start,times},start=size^2+If[Mod[size,2]==0,{{-4,-3},{-1,-2}},{{-1}}];times=If[Mod[size,2]==0,size/2-1,(size-1)/2];Nest[AddSquareRing,start,times]]

Examples:

MakeSquareSpiral[2]//MatrixFormMakeSquareSpiral[7]//MatrixForm

gives back:(0132){\displaystyle {\displaystyle \left({\begin{array}{cc}0&1\\3&2\end{array}}\right)}}

(0123456232425262728722394041422982138474843309203746454431101936353433321118171615141312){\displaystyle {\displaystyle \left({\begin{array}{ccccccc}0&1&2&3&4&5&6\\23&24&25&26&27&28&7\\22&39&40&41&42&29&8\\21&38&47&48&43&30&9\\20&37&46&45&44&31&10\\19&36&35&34&33&32&11\\18&17&16&15&14&13&12\end{array}}\right)}}

MATLAB

There already exists a command to generate a spiral matrix in MATLAB. But, it creates a matrix that spirals outward, not inward like the task specification requires. It turns out that these matrices can be transformed into each other using some pretty simple transformations.

We start with a simple linear transformation:(spiral(n))+n2{\displaystyle {\displaystyle (-spiral(n))+n^{2}}}Then depending on if n is odd or even we use either an up/down or left/right mirror transformation.

functionmatrix=reverseSpiral(n)matrix=(-spiral(n))+n^2;ifmod(n,2)==0matrix=flipud(matrix);elsematrix=fliplr(matrix);endend%reverseSpiral

Sample Usage:

>>reverseSpiral(5)ans=0123415161718514232419613222120712111098

Maxima

spiral(n):=block([a,i,j,k,p,di,dj,vi,vj,imin,imax,jmin,jmax],a:zeromatrix(n,n),vi:[1,0,-1,0],vj:[0,1,0,-1],imin:0,imax:n,jmin:1,jmax:n+1,p:1,di:vi[p],dj:vj[p],i:1,j:1,forkfrom1thrun*ndo(a[j,i]:k,i:i+di,j:j+dj,ifi<iminori>imaxorj<jminorj>jmaxthen(i:i-di,j:j-dj,p:mod(p,4)+1,di:vi[p],dj:vj[p],i:i+di,j:j+dj,ifp=1thenimax:imax-1elseifp=2thenjmax:jmax-1elseifp=3thenimin:imin+1elsejmin:jmin+1)),a)$spiral(5);/* matrix([ 1,  2,  3,  4,  5],          [16, 17, 18, 19,  6],          [15, 24, 25, 20,  7],          [14, 23, 22, 21,  8],          [13, 12, 11, 10,  9]) */

MiniZinc

%Spiral Matrix. Nigel Galloway, February 3rd., 2020int: Size;array [1..Size,1..Size] of var 1..Size*Size: spiral;constraint spiral[1,1..]=1..Size;constraint forall(n in 2..(Size+1) div 2)(forall(g in n..Size+1-n)(spiral[n,g]=spiral[n,g-1]+1));constraint forall(n in 1..(Size+1) div 2)(forall(g in n+1..Size+1-n)(spiral[g,Size-n+1]=spiral[g-1,Size-n+1]+1));constraint forall(n in 1..Size div 2)(forall(g in n..Size-n)(spiral[Size-n+1,g]=spiral[Size-n+1,g+1]+1)) /\ forall(n in 1..Size div 2)(forall(g in n+1..Size-n)(spiral[g,n]=spiral[g+1,n]+1));output [show2d(spiral)];
Output:
minizinc -DSize= spiral.mzn[|  1,  2,  3,  4 |   12, 13, 14,  5 |   11, 16, 15,  6 |   10,  9,  8,  7 |]----------minizinc -DSize=5 zigzag.mzn[|  1,  2,  3,  4,  5 |   16, 17, 18, 19,  6 |   15, 24, 25, 20,  7 |   14, 23, 22, 21,  8 |   13, 12, 11, 10,  9 |]----------minizinc -DSize=6 zigzag.mzn[|  1,  2,  3,  4,  5,  6 |   20, 21, 22, 23, 24,  7 |   19, 32, 33, 34, 25,  8 |   18, 31, 36, 35, 26,  9 |   17, 30, 29, 28, 27, 10 |   16, 15, 14, 13, 12, 11 |]----------

NetRexx

Translation of:ooRexx
/* NetRexx */optionsreplaceformatcommentsjavacrossrefsymbolsbinaryparseargsize.if\size.datatype('W')thendoprintArray(generateArray(3))sayprintArray(generateArray(4))sayprintArray(generateArray(5))sayendelsedoprintArray(generateArray(size))sayendreturn-------------------------------------------------------------------------------methodgenerateArray(dimension=int)privatestaticreturnsint[,]--theoutputarrayarray=int[dimension,dimension]--getthenumberofsquares,includingthecenteroneif--thedimensionisoddsquares=dimension%2+dimension//2--lengthofasideforthecurrentsquaresidelength=dimensioncurrent=0loopi_=0tosquares-1--doeachsideofthecurrentsquare--topsideloopj_=0tosidelength-1array[i_,i_+j_]=currentcurrent=current+1endj_--downtherightsideloopj_=1tosidelength-1array[i_+j_,dimension-1-i_]=currentcurrent=current+1endj_--acrossthebottomloopj_=sidelength-2to0by-1array[dimension-1-i_,i_+j_]=currentcurrent=current+1endj_--anduptheleftsideloopj_=sidelength-2to1by-1array[i_+j_,i_]=currentcurrent=current+1endj_--reducethelengthofthesidebytworowssidelength=sidelength-2endi_returnarray-------------------------------------------------------------------------------methodprintArray(array=int[,])privatestaticdimension=array[1].lengthrl=formatSize(array)loopi_=0todimension-1line=Rexx("|")loopj_=0todimension-1line=lineRexx(array[i_,j_]).right(rl)endj_line=line"|"saylineendi_return-------------------------------------------------------------------------------methodformatSize(array=int[,])privatestaticreturnsRexxdim=array[1].lengthmaxNum=Rexx(dim*dim-1).length()returnmaxNum
Output:
|  0  1  2 ||  7  8  3 ||  6  5  4 ||  0  1  2  3 || 11 12 13  4 || 10 15 14  5 ||  9  8  7  6 ||  0  1  2  3  4 || 15 16 17 18  5 || 14 23 24 19  6 || 13 22 21 20  7 || 12 11 10  9  8 |

Nim

importsequtils,strutilsproc`$`(m:seq[seq[int]]):string=forrinm:letlg=result.lenforcinr:result.addSep(" ",lg)result.addalign($c,2)result.add'\n'procspiral(n:Positive):seq[seq[int]]=result=newSeqWith(n,repeat(-1,n))vardx=1vardy,x,y=0foriin0..<(n*n):result[y][x]=ilet(nx,ny)=(x+dx,y+dy)ifnxin0..<nandnyin0..<nandresult[ny][nx]==-1:x=nxy=nyelse:swapdx,dydx=-dxx+=dxy+=dyechospiral(5)
Output:
 0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

OCaml

letnext_dir=function|1,0->0,-1|0,1->1,0|-1,0->0,1|0,-1->-1,0|_->assertfalseletnext_pos~pos:(x,y)~dir:(nx,ny)=(x+nx,y+ny)letnext_cellar~pos:(x,y)~dir:(nx,ny)=tryar.(x+nx).(y+ny)with_->-2letfor_loopninitfn=letrecauxiv=ifi<nthenaux(i+1)(fniv)inaux0initletspiral~n=letar=Array.make_matrixnn(-1)inletpos=0,0inletdir=0,1inletset(x,y)i=ar.(x).(y)<-iinletstep(pos,dir)=matchnext_cellarposdirwith|-1->(next_posposdir,dir)|_->letdir=next_dirdirin(next_posposdir,dir)infor_loop(n*n)(pos,dir)(funi(pos,dir)->setposi;step(pos,dir));(ar)letprint=Array.iter(funline->Array.iter(Printf.printf" %2d")line;print_newline())let()=print(spiral5)

Another implementation:

letspiraln=letar=Array.make_matrixnn(-1)inletouti=i<0||i>=ninlettoo_far(x,y)=outx||outy||ar.(x).(y)>=0inletstepxy(dx,dy)=(x+dx,y+dy)inletturn(i,j)=(j,-i)inletreciter(x,y)di=ar.(x).(y)<-i;ifi<n*n-1thenletd'=iftoo_far(stepxyd)thenturndelsediniter(stepxyd')d'(i+1)in(iter(0,0)(0,1)0;ar)letshow=Array.iter(funv->Array.iter(Printf.printf" %2d")v;print_newline())let_=show(spiral5)

Octave

Translation of:Stata
functiona=spiral(n)a=ones(n*n,1);u=-(i=n)*(v=ones(n,1));fork=n-1:-1:1j=1:k;a(j+i)=u(j)=-u(j);a(j+(i+k))=v(j)=-v(j);i+=2*k;endfora(cumsum(a))=1:n*n;a=reshape(a,n,n)'-1;endfunction>>spiral(5)ans=0123415161718514232419613222120712111098

ooRexx

callprintArraygenerateArray(3)saycallprintArraygenerateArray(4)saycallprintArraygenerateArray(5)::routinegenerateArrayuseargdimension--theoutputarrayarray=.array~new(dimension,dimension)--getthenumberofsquares,includingthecenteroneif--thedimensionisoddsquares=dimension%2+dimension//2--lengthofasideforthecurrentsquaresidelength=dimensioncurrent=0loopi=1tosquares--doeachsideofthecurrentsquare--topsideloopj=0tosidelength-1array[i,i+j]=currentcurrent+=1end--downtherightsideloopj=1tosidelength-1array[i+j,dimension-i+1]=currentcurrent+=1end--acrossthebottomloopj=sidelength-2to0by-1array[dimension-i+1,i+j]=currentcurrent+=1end--anduptheleftsideloopj=sidelength-2to1by-1array[i+j,i]=currentcurrent+=1end--reducethelengthofthesidebytworowssidelength-=2endreturnarray::routineprintArrayuseargarraydimension=array~dimension(1)loopi=1todimensionline="|"loopj=1todimensionline=linearray[i,j]~right(2)endline=line"|"saylineend
Output:
|  0  1  2 ||  7  8  3 ||  6  5  4 ||  0  1  2  3 || 11 12 13  4 || 10 15 14  5 ||  9  8  7  6 ||  0  1  2  3  4 || 15 16 17 18  5 || 14 23 24 19  6 || 13 22 21 20  7 || 12 11 10  9  8 |

Oz

Simple, recursive solution:

declare  fun {Spiral N}     %% create nested array     Arr = {Array.new 1 N unit}     for Y in 1..N do Arr.Y := {Array.new 1 N 0} end     %% fill it recursively with increasing numbers     C = {Counter 0}  in     {Fill Arr 1 N C}     Arr  end  proc {Fill Arr S E C}     %% go right     for X in S..E do        Arr.S.X := {C}     end     %% go down     for Y in S+1..E do        Arr.Y.E := {C}     end     %% go left     for X in E-1..S;~1 do        Arr.E.X := {C}     end     %% go up     for Y in E-1..S+1;~1 do        Arr.Y.S := {C}     end     %% fill the inner rectangle     if E - S > 1 then {Fill Arr S+1 E-1 C} end  end  fun {Counter N}     C = {NewCell N}  in     fun {$}        C := @C + 1     end  endin  {Inspect {Spiral 5}}

PARI/GP

spiral(dim) = {  my (M = matrix(dim, dim), p = s = 1, q = i = 0);  for (n=1, dim,    for (b=1, dim-n+1, M[p,q+=s] = i; i++);    for (b=1, dim-n, M[p+=s,q] = i; i++);    s = -s;  );  M}

Output:

spiral(7)[ 0  1  2  3  4  5  6][23 24 25 26 27 28  7][22 39 40 41 42 29  8][21 38 47 48 43 30  9][20 37 46 45 44 31 10][19 36 35 34 33 32 11][18 17 16 15 14 13 12]

Pascal

programSpiralmat;typetDir=(left,down,right,up);tdxy=recorddx,dy:longint;end;tdeltaDir=array[tDir]oftdxy;constNextdir:array[tDir]oftDir=(down,right,up,left);cDir:tDeltaDir=((dx:1;dy:0),(dx:0;dy:1),(dx:-1;dy:0),(dx:0;dy:-1));cMaxN=32;typetSpiral=array[0..cMaxN,0..cMaxN]ofLongInt;functionFillSpiral(n:longint):tSpiral;varb,i,k,dn,x,y:longInt;dir:tDir;tmpSp:tSpiral;BEGINb:=0;x:=0;y:=0;//only for the first linek:=-1;dn:=n-1;tmpSp[x,y]:=b;dir:=left;repeati:=0;whilei<dndobegininc(b);tmpSp[x,y]:=b;inc(x,cDir[dir].dx);inc(y,cDir[dir].dy);inc(i);end;Dir:=NextDir[dir];inc(k);IFk>1thenbegink:=0;//shorten the line every second direction changedn:=dn-1;ifdn<=0thenBREAK;end;untilfalse;//the lasttmpSp[x,y]:=b+1;FillSpiral:=tmpSp;end;vara:tSpiral;x,y,n:LongInt;BEGINForn:=1to5{cMaxN}dobeginA:=FillSpiral(n);Fory:=0ton-1dobeginForx:=0ton-1dowrite(A[x,y]:4);writeln;end;writeln;end;END.
Output:
   1   1   2   4   3....   1   2   3   4   5  16  17  18  19   6  15  24  25  20   7  14  23  22  21   8  13  12  11  10   9

Perl

subspiral{my($n,$x,$y,$dx,$dy,@a)=(shift,0,0,1,0);foreach(0..$n**2-1){$a[$y][$x]=$_;my($nx,$ny)=($x+$dx,$y+$dy);($dx,$dy)=$dx==1&&($nx==$n||defined$a[$ny][$nx])?(0,1):$dy==1&&($ny==$n||defined$a[$ny][$nx])?(-1,0):$dx==-1&&($nx<0||defined$a[$ny][$nx])?(0,-1):$dy==-1&&($ny<0||defined$a[$ny][$nx])?(1,0):($dx,$dy);($x,$y)=($x+$dx,$y+$dy);}return@a;}foreach(spiral5){printf"%3d",$_foreach@$_;print"\n";}

Phix

Translation of:Python

Simple is better.

withjavascript_semanticsintegern=6,x=1,y=0,counter=0,len=n,dx=0,dy=1stringfmt=sprintf("%%%dd",length(sprintf("%d",n*n)))sequencem=repeat(repeat("??",n),n)fori=1to2*ndo-- 2n runs..forj=1tolendo-- of a length...x+=dxy+=dym[x][y]=sprintf(fmt,counter)counter+=1endforlen-=odd(i)-- ..-1 every other{dx,dy}={dy,-dx}-- in new directionendforprintf(1,"%s\n",{join(apply(m,join),"\n")})
Output:
 0  1  2  3  4  519 20 21 22 23  618 31 32 33 24  717 30 35 34 25  816 29 28 27 26  915 14 13 12 11 10

PicoLisp

This example uses 'grid' from "lib/simul.l", which maintains a two-dimensional structure and is normally used for simulations and board games.

(load "@lib/simul.l")(de spiral (N)   (prog1 (grid N N)      (let (Dir '(north east south west .)  This 'a1)         (for Val (* N N)            (=: val Val)            (setq This               (or                  (with ((car Dir) This)                     (unless (: val) This) )                  (with ((car (setq Dir (cdr Dir))) This)                     (unless (: val) This) ) ) ) ) ) ) )(mapc   '((L)      (for This L (prin (align 3 (: val))))      (prinl) )   (spiral 5) )
Output:
  1  2  3  4  5 16 17 18 19  6 15 24 25 20  7 14 23 22 21  8 13 12 11 10  9

PL/I

/* Generates a square matrix containing the integers from 0 to N**2-1, *//* where N is the length of one side of the square.                    *//* Written 22 February 2010.                                           */   declare n fixed binary;put skip list ('Please type the size of the square:');get list (n);begin;   declare A(n,n) fixed binary;   declare (i, j, iinc, jinc, q) fixed binary;   A = -1;   i, j = 1; iinc = 0; jinc = 1;   do q = 0 to n**2-1;      if a(i,j) < 0 then         a(i,j) = q;      else         do;             /* back up */             j = j -jinc; i = i - iinc;             /* change direction */             if iinc = 0 & jinc = 1 then do; iinc = 1; jinc = 0; end;             else if iinc =  1 & jinc =  0 then do; iinc =  0; jinc = -1; end;             else if iinc =  0 & jinc = -1 then do; iinc = -1; jinc =  0; end;             else if iinc = -1 & jinc =  0 then do; iinc =  0; jinc =  1; end;            /* Take one step in the new direction */             i = i + iinc; j = j + jinc;             a(i,j) = q;         end;      if i+iinc > n | i+iinc < 1 then         do;            iinc = 0; jinc = 1;            if j+1 > n then jinc = -1; else if j-1 < 1 then jinc = 1;            if a(i+iinc,j+jinc) >= 0 then jinc = -jinc;            /* j = j + jinc; /* to move on from the present (filled) position */         end;      else i = i + iinc;      if j+jinc > n | j+jinc < 1 then         do;            jinc = 0; iinc = 1;            if i+1 > n then iinc = -1; else if i-1 < 1 then iinc = 1;            if a(i+iinc,j+jinc) >= 0 then iinc = -iinc;            i = i + iinc; /* to move on from the present (filled) position */         end;      else j = j + jinc;   end;   /* Display the square. */   do i = 1 to n;      put skip edit (A(i,*)) (F(4));   end;end;

PowerShell

functionSpiral-Matrix([int]$N){#  Initialize variables$X=0$Y=-1$i=0$Sign=1#  Intialize array$A=New-Object'int[,]'$N,$N#  Set top row1..$N|ForEach{$Y+=$Sign;$A[$X,$Y]=++$i}#  For each remaining half spiral...ForEach($Min($N-1)..1){#  Set the vertical quarter spiral1..$M|ForEach{$X+=$Sign;$A[$X,$Y]=++$i}#  Curve the spiral$Sign=-$Sign#  Set the horizontal quarter spiral1..$M|ForEach{$Y+=$Sign;$A[$X,$Y]=++$i}}#  Convert the array to text output$Spiral=ForEach($Xin1..$N){(1..$N|ForEach{$A[($X-1),($_-1)]})-join"`t"}return$Spiral}Spiral-Matrix5""Spiral-Matrix7
Output:
1234516171819615242520714232221813121110912345672425262728298234041424330922394849443110213847464532112037363534331219181716151413

Prolog

%  Prolog implementation: SWI-Prolog 7.2.3replace([_|T],0,E,[E|T]):-!.replace([H|T],N,E,Xs):-succ(N1,N),replace(T,N1,E,Xs1),Xs=[H|Xs1].% True if Xs is the Original grid with the element at (X, Y) replaces by E.replace_in([H|T],(0,Y),E,Xs):-replace(H,Y,E,NH),Xs=[NH|T],!.replace_in([H|T],(X,Y),E,Xs):-succ(X1,X),replace_in(T,(X1,Y),E,Xs1),Xs=[H|Xs1].% True, if E is the value at (X, Y) in Xsget_in(Xs,(X,Y),E):-nth0(X,Xs,L),nth0(Y,L,E).create(N,Mx):-% NxN grid full of nilsnumlist(1,N,Ns),findall(X,(member(_,Ns),X=nil),Ls),findall(X,(member(_,Ns),X=Ls),Mx).% Depending of the direction, returns two possible coordinates and directions% (C,D) that will be used in case of a turn, and (A,B) otherwise.ops(right,(X,Y),(A,B),(C,D),D1,D2):-AisX,BisY+1,D1=right,CisX+1,DisY,D2=down.ops(left,(X,Y),(A,B),(C,D),D1,D2):-AisX,BisY-1,D1=left,CisX-1,DisY,D2=up.ops(up,(X,Y),(A,B),(C,D),D1,D2):-AisX-1,BisY,D1=up,CisX,DisY+1,D2=right.ops(down,(X,Y),(A,B),(C,D),D1,D2):-AisX+1,BisY,D1=down,CisX,DisY-1,D2=left.% True if NCoor is the right coor in spiral shape. Returns a new direction also.next(Dir,Mx,Coor,NCoor,NDir):-ops(Dir,Coor,C1,C2,D1,D2),(get_in(Mx,C1,nil)->NCoor=C1,NDir=D1;NCoor=C2,NDir=D2).% Returns an spiral with [H|Vs] elements called R, only work if the length of% [H|Vs], is the square of the size of the grid.spiralH(Dir,Mx,Coor,[H|Vs],R):-replace_in(Mx,Coor,H,NMx),(Vs=[]->R=NMx;next(Dir,Mx,Coor,NCoor,NDir),spiralH(NDir,NMx,NCoor,Vs,R)).% True if Mx is the grid in spiral shape of the numbers from 0 to N*N-1.spiral(N,Mx):-SqisN*N-1,numlist(0,Sq,Ns),create(N,EMx),spiralH(right,EMx,(0,0),Ns,Mx).
Output:
?- spiral(6,Mx), forall(member(X,Mx), writeln(X)).[0,1,2,3,4,5][19,20,21,22,23,6][18,31,32,33,24,7][17,30,35,34,25,8][16,29,28,27,26,9][15,14,13,12,11,10]

PureBasic

Translation of:Fortran
ProcedurespiralMatrix(size=1)Protectedi,x=-1,y,count=size,nDima(size-1,size-1)Fori=1Tocountx+1a(x,y)=nn+1NextRepeatcount-1Fori=1Tocounty+1a(x,y)=nn+1NextFori=1Tocountx-1a(x,y)=nn+1Nextcount-1Fori=1Tocounty-1a(x,y)=nn+1NextFori=1Tocountx+1a(x,y)=nn+1NextUntilcount<1PrintN("Spiral: "+Str(Size)+#CRLF$)ProtectedcolWidth=Len(Str(size*size-1))+1Fory=0Tosize-1Forx=0Tosize-1Print(""+LSet(Str(a(x,y)),colWidth," ")+"")NextPrintN("")NextPrintN("")EndProcedureIfOpenConsole()spiralMatrix(2)PrintN("")spiralMatrix(5)Print(#CRLF$+#CRLF$+"Press ENTER to exit")Input()CloseConsole()EndIf
Output:
Spiral: 20 13 2Spiral: 50  1  2  3  415 16 17 18 514 23 24 19 613 22 21 20 712 11 10 9  8

Python

defspiral(n):dx,dy=1,0# Starting incrementsx,y=0,0# Starting locationmyarray=[[None]*nforjinrange(n)]foriinxrange(n**2):myarray[x][y]=inx,ny=x+dx,y+dyif0<=nx<nand0<=ny<nandmyarray[nx][ny]==None:x,y=nx,nyelse:dx,dy=-dy,dxx,y=x+dx,y+dyreturnmyarraydefprintspiral(myarray):n=range(len(myarray))foryinn:forxinn:print"%2i"%myarray[x][y],printprintspiral(spiral(5))
Output:
 0  1  2  3  415 16 17 18  514 23 24 19  613 22 21 20  712 11 10  9  8

Recursive Solution

defspiral(n):defspiral_part(x,y,n):ifx==-1andy==0:return-1ify==(x+1)andx<(n//2):returnspiral_part(x-1,y-1,n-1)+4*(n-y)ifx<(n-y)andy<=x:returnspiral_part(y-1,y,n)+(x-y)+1ifx>=(n-y)andy<=x:returnspiral_part(x,y-1,n)+1ifx>=(n-y)andy>x:returnspiral_part(x+1,y,n)+1ifx<(n-y)andy>x:returnspiral_part(x,y-1,n)-1array=[[0]*nforjinxrange(n)]forxinxrange(n):foryinxrange(n):array[x][y]=spiral_part(y,x,n)returnarrayforrowinspiral(5):print" ".join("%2s"%xforxinrow)

Adding a cache for thespiral_part function it could be quite efficient.


Recursion by rotating the solution for rest of the square except the first row,

defrot_right(a):returnzip(*a[::-1])defsp(m,n,start=0):""" Generate number range spiral of dimensions m x n    """ifn==0:yield()else:yieldtuple(range(start,m+start))forrowinrot_right(list(sp(n-1,m,m+start))):yieldrowdefspiral(m):returnsp(m,m)forrowinspiral(5):print(''.join('%3i'%iforiinrow))


Another way, based on preparing lists ahead

defspiral(n):dat=[[None]*nforiinrange(n)]le=[[i+1,i+1]foriinreversed(range(n))]le=sum(le,[])[1:]# for n = 5 le will be [5, 4, 4, 3, 3, 2, 2, 1, 1]dxdy=[[1,0],[0,1],[-1,0],[0,-1]]*((len(le)+4)/4)# long enoughx,y,val=-1,0,-1forsteps,(dx,dy)inzip(le,dxdy):x,y,val=x+dx,y+dy,val+1forjinrange(steps):dat[y][x]=valifj!=steps-1:x,y,val=x+dx,y+dy,val+1returndatforrowinspiral(5):# calc spiral and print itprint' '.join('%3s'%xforxinrow)

Functional Solutions

Works with:Python version 2.6, 3.0
importitertoolsconcat=itertools.chain.from_iterabledefpartial_sums(items):s=0forxinitems:s+=xyieldsgrade=lambdaxs:sorted(range(len(xs)),key=xs.__getitem__)values=lambdan:itertools.cycle([1,n,-1,-n])counts=lambdan:concat([i,i-1]foriinrange(n,0,-1))reshape=lambdan,xs:zip(*([iter(xs)]*n))spiral=lambdan:reshape(n,grade(list(partial_sums(concat([v]*cforc,vinzip(counts(n),values(n)))))))forrowinspiral(5):print(' '.join('%3s'%xforxinrow))


Or, as an alternative to generative mutation:

Works with:Python version 3.7
Translation of:Haskell
'''Spiral Matrix'''# spiral :: Int -> [[Int]]defspiral(n):'''The rows of a spiral matrix of order N.    '''defgo(rows,cols,x):return[range(x,x+cols)]+[reversed(x)forxinzip(*go(cols,rows-1,x+cols))]if0<rowselse[[]]returngo(n,n,0)# ------------------------- TEST -------------------------# main :: IO ()defmain():'''Spiral matrix of order 5, in wiki table markup.    '''print(wikiTable(spiral(5)))# ---------------------- FORMATTING ----------------------# wikiTable :: [[a]] -> StringdefwikiTable(rows):'''Wiki markup for a no-frills tabulation of rows.'''return'{| class="wikitable" style="'+('width:12em;height:12em;table-layout:fixed;"|-\n')+'\n|-\n'.join('| '+' || '.join(str(cell)forcellinrow)forrowinrows)+'\n|}'# MAIN ---if__name__=='__main__':main()
01234
151617185
142324196
132221207
12111098

Simple solution

defspiral_matrix(n):m=[[0]*nforiinrange(n)]dx,dy=[0,1,0,-1],[1,0,-1,0]x,y,c=0,-1,1foriinrange(n+n-1):forjinrange((n+n-i)//2):x+=dx[i%4]y+=dy[i%4]m[x][y]=cc+=1returnmforiinspiral_matrix(5):print(*i)
Output:
1 2 3 4 516 17 18 19 615 24 25 20 714 23 22 21 813 12 11 10 9

Quackery

This task really lends itself to a turtle graphics metaphor.

  [ stack ]                  is stepcount (     --> s )  [ stack ]                  is position  (     --> s )  [ stack ]                  is heading   (     --> s )    [ heading take     behead join     heading put ]            is right     (     -->   )    [ heading share 0 peek    unrot times      [ position share        stepcount share         unrot poke        over position tally        1 stepcount tally ]     nip ]                   is walk      ( [ n --> [ )  [ dip [ temp put [] ]    temp share times       [ temp share split         dip            [ nested join ] ]    drop temp release ]      is matrixify ( n [ --> [ )  [ 0 stepcount put      ( set up... )    0 position put    ' [ 1 ] over join    -1 join over negate join    heading put    0 over dup * of     over 1 - walk right  ( turtle draws spiral )    over 1 - times      [ i 1+ walk right        i 1+ walk right ]    1 walk     matrixify            ( ...tidy up )    heading release    position release    stepcount release ]      is spiral    (   n --> [ )  9 spiral  witheach    [ witheach        [ dup 10 < if sp echo sp ]      cr ]
Output:
 0  1  2  3  4  5  6  7  8 31 32 33 34 35 36 37 38  9 30 55 56 57 58 59 60 39 10 29 54 71 72 73 74 61 40 11 28 53 70 79 80 75 62 41 12 27 52 69 78 77 76 63 42 13 26 51 68 67 66 65 64 43 14 25 50 49 48 47 46 45 44 15 24 23 22 21 20 19 18 17 16

R

Sequence Solution

spiral<-function(n)matrix(order(cumsum(rep(rep_len(c(1,n,-1,-n),2*n-1),n-seq(2*n-1)%/%2))),n,byrow=T)-1spiral(5)
Output:
     [,1] [,2] [,3] [,4] [,5][1,]    0    1    2    3    4[2,]   15   16   17   18    5[3,]   14   23   24   19    6[4,]   13   22   21   20    7[5,]   12   11   10    9    8

Recursive Solution

spiral_matrix<-function(n){spiralv<-function(v){n<-sqrt(length(v))if(n!=floor(n))stop("length of v should be a square of an integer")if(n==0)stop("v should be of positive length")if(n==1)m<-matrix(v,1,1)elsem<-rbind(v[1:n],cbind(spiralv(v[(2*n):(n^2)])[(n-1):1,(n-1):1],v[(n+1):(2*n-1)]))m}spiralv(1:(n^2))}

Iterative Solution

Not the most elegant, but certainly distinct from the other R solutions. The key is the observation that we need to produce n elements from left to right, then n-1 elements down, then n-1 left, then n-2 right, then n-2 down, ... . This gives us two patterns. One in the direction that we need to write and another in the number of elements to write. After this, all that is left is battling R's indexing system.

spiralMatrix<-function(n){spiral<-matrix(0,nrow=n,ncol=n)firstNumToWrite<-0neededLength<-nstartPt<-cbind(1,0)#(1, 0) is needed for the first call to writeRight to work. We need to start in row 1.writingDirectionIndex<-0#These two functions select a collection of adjacent elements and replaces them with the needed sequence.#This heavily uses R's vector recycling rules.writeDown<-function(seq)spiral[startPt[1]+seq,startPt[2]]<<-seq_len(neededLength)-1+firstNumToWritewriteRight<-function(seq)spiral[startPt[1],startPt[2]+seq]<<-seq_len(neededLength)-1+firstNumToWritewhile(firstNumToWrite!=n^2){writingDirectionIndex<-writingDirectionIndex%%4+1seq<-seq_len(neededLength)switch(writingDirectionIndex,writeRight(seq),writeDown(seq),writeRight(-seq),writeDown(-seq))if(writingDirectionIndex%%2)neededLength<-neededLength-1max<-max(spiral)firstNumToWrite<-max+1startPt<-which(max==spiral,arr.ind=TRUE)}spiral}

Racket

#langracket(requiremath)(define(spiralrowscolumns)(define(indexxy)(+(*xcolumns)y))(do((N(*rowscolumns))(spiral(make-vector(*rowscolumns)#f))(dx1)(dy0)(x0)(y0)(i0(+i1)))((=iN)spiral)(vector-set!spiral(indexyx)i)(let((nx(+xdx))(ny(+ydy)))(cond((and(<-1nxcolumns)(<-1nyrows)(not(vector-refspiral(indexnynx))))(set!xnx)(set!yny))(else(set!-values(dxdy)(values(-dy)dx))(set!x(+xdx))(set!y(+ydy)))))))(vector->matrix44(spiral44))
Output:
(mutable-array#[#[0123]#[1112134]#[1015145]#[9876]])

Raku

(formerly Perl 6)

Object-oriented Solution

Suppose we set up a Turtle class like this:

classTurtle {my@dv =  [0,-1], [1,-1], [1,0], [1,1], [0,1], [-1,1], [-1,0], [-1,-1];my$points =8;# 'compass' points of neighbors on grid: north=0, northeast=1, east=2, etc.has@.loc =0,0;has$.dir =0;has%.world;has$.maxegg;has$.range-x;has$.range-y;methodturn-left ($angle =90) {$!dir -=$angle /45;$!dir %=$points; }methodturn-right($angle =90) {$!dir +=$angle /45;$!dir %=$points; }methodlay-egg($egg) {%!world{~@!loc} =$egg;$!maxeggmax=$egg;$!range-xminmax=@!loc[0];$!range-yminmax=@!loc[1];    }methodlook($ahead =1) {my$there =@!loc »+« @dv[$!dir] »*»$ahead;%!world{~$there};    }methodforward($ahead =1) {my$there =@!loc »+« @dv[$!dir] »*»$ahead;@!loc = @($there);    }methodshowmap() {my$form ="%{$!maxegg.chars}s";my$endx =$!range-x.max;for$!range-y.listX$!range-x.list -> ($y,$x) {print (%!world{"$x $y"} //'').fmt($form);print$x ==$endx ??"\n" !!' ';    }    }}# Now we can build the spiral in the normal way from outside-in like this:subMAIN(Int$size =5) {my$t =Turtle.new(dir =>2);my$counter =0;$t.forward(-1);for0..^$size -> $ {$t.forward;$t.lay-egg($counter++);}for$size-1 ...1 ->$run {$t.turn-right;$t.forward,$t.lay-egg($counter++)for0..^$run;$t.turn-right;$t.forward,$t.lay-egg($counter++)for0..^$run;}$t.showmap;}

Or we can build the spiral from inside-out like this:

subMAIN(Int$size =5) {my$t =Turtle.new(dir => ($size %%2 ??4 !!0));my$counter =$size *$size;while$counter {$t.lay-egg(--$counter);$t.turn-left;$t.turn-rightif$t.look;$t.forward;}$t.showmap;}

Note that with these "turtle graphics" we don't actually have to care about the coordinate system, since theshowmap method can show whatever rectangle was modified by the turtle. So unlike the standard inside-out algorithm, we don't have to find the center of the matrix first.

Procedural Solution

subspiral_matrix ($n ) {my@sm;my$len =$n;my$pos =0;for ^($n/2).ceiling ->$i {my$j =$i +1;my$e =$n -$j;@sm[$i     ][$i +$_] =$pos++for         ^($len);# Top@sm[$j +$_][$e     ] =$pos++for         ^(--$len);# Right@sm[$e     ][$i +$_] =$pos++forreverse ^($len);# Bottom@sm[$j +$_][$i     ] =$pos++forreverse ^(--$len);# Left    }return@sm;}say .fmt('%3d')forspiral_matrix(5);
Output:
 0   1   2   3   415  16  17  18   514  23  24  19   613  22  21  20   712  11  10   9   8

REXX

Original logic borrowed (mostly) from theFortran example.

static column width

/*REXX program displays a spiral in a  square array  (of any size)  starting at  START. */parseargsizestart./*obtain optional arguments from the CL*/ifsize==''|size==","thensize=5/*Not specified?  Then use the default.*/ifstart==''|start==","thenstart=0/*Not specified?  Then use the default.*/tot=size**2;L=length(tot+start)/*total number of elements in spiral.  */k=size/*K:   is the counter for the spiral.  */row=1;col=0/*start spiral at    row 1,  column 0. *//* [↓]  construct the numbered spiral. */don=0fork;col=col+1;@.col.row=n+start;end;ifk==0thenexit/* [↑]  build the first row of spiral. */dountiln>=tot/*spiral matrix.*/doone=1to-1by-2untiln>=tot;k=k-1/*perform twice.*/don=nfork;row=row+one;@.col.row=n+start;end/*for the row···*/don=nfork;col=col-one;@.col.row=n+start;end/* "   "  col···*/end/*one*//* ↑↓ direction.*/end/*until n≥tot*//* [↑]   done with the matrix spiral.  *//* [↓]   display spiral to the screen. */dor=1forsize;_=right(@.1.r,L)/*construct display   row   by    row. */doc=2forsize-1;_=_right(@.c.r,L)/*construct a line  for the display.   */end/*col*//* [↑]  line has an extra leading blank*/say_/*display a line (row) of the spiral.  */end/*row*//*stick a fork in it,  we're all done. */
output  using the default array size of:  5
 0  1  2  3  415 16 17 18  514 23 24 19  613 22 21 20  712 11 10  9  8
output  using an array size   and   start value of:  10  -70000
-70000 -69999 -69998 -69997 -69996 -69995 -69994 -69993 -69992 -69991-69965 -69964 -69963 -69962 -69961 -69960 -69959 -69958 -69957 -69990-69966 -69937 -69936 -69935 -69934 -69933 -69932 -69931 -69956 -69989-69967 -69938 -69917 -69916 -69915 -69914 -69913 -69930 -69955 -69988-69968 -69939 -69918 -69905 -69904 -69903 -69912 -69929 -69954 -69987-69969 -69940 -69919 -69906 -69901 -69902 -69911 -69928 -69953 -69986-69970 -69941 -69920 -69907 -69908 -69909 -69910 -69927 -69952 -69985-69971 -69942 -69921 -69922 -69923 -69924 -69925 -69926 -69951 -69984-69972 -69943 -69944 -69945 -69946 -69947 -69948 -69949 -69950 -69983-69973 -69974 -69975 -69976 -69977 -69978 -69979 -69980 -69981 -69982

{{out|output|text=  (shown at3/4 size)   using an array size of:  36

   0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35 139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173   36 138  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  174   37 137  270  395  396  397  398  399  400  401  402  403  404  405  406  407  408  409  410  411  412  413  414  415  416  417  418  419  420  421  422  423  424  425  304  175   38 136  269  394  511  512  513  514  515  516  517  518  519  520  521  522  523  524  525  526  527  528  529  530  531  532  533  534  535  536  537  538  539  426  305  176   39 135  268  393  510  619  620  621  622  623  624  625  626  627  628  629  630  631  632  633  634  635  636  637  638  639  640  641  642  643  644  645  540  427  306  177   40 134  267  392  509  618  719  720  721  722  723  724  725  726  727  728  729  730  731  732  733  734  735  736  737  738  739  740  741  742  743  646  541  428  307  178   41 133  266  391  508  617  718  811  812  813  814  815  816  817  818  819  820  821  822  823  824  825  826  827  828  829  830  831  832  833  744  647  542  429  308  179   42 132  265  390  507  616  717  810  895  896  897  898  899  900  901  902  903  904  905  906  907  908  909  910  911  912  913  914  915  834  745  648  543  430  309  180   43 131  264  389  506  615  716  809  894  971  972  973  974  975  976  977  978  979  980  981  982  983  984  985  986  987  988  989  916  835  746  649  544  431  310  181   44 130  263  388  505  614  715  808  893  970 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055  990  917  836  747  650  545  432  311  182   45 129  262  387  504  613  714  807  892  969 1038 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1056  991  918  837  748  651  546  433  312  183   46 128  261  386  503  612  713  806  891  968 1037 1098 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1114 1057  992  919  838  749  652  547  434  313  184   47 127  260  385  502  611  712  805  890  967 1036 1097 1150 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1164 1115 1058  993  920  839  750  653  548  435  314  185   48 126  259  384  501  610  711  804  889  966 1035 1096 1149 1194 1231 1232 1233 1234 1235 1236 1237 1238 1239 1206 1165 1116 1059  994  921  840  751  654  549  436  315  186   49 125  258  383  500  609  710  803  888  965 1034 1095 1148 1193 1230 1259 1260 1261 1262 1263 1264 1265 1240 1207 1166 1117 1060  995  922  841  752  655  550  437  316  187   50 124  257  382  499  608  709  802  887  964 1033 1094 1147 1192 1229 1258 1279 1280 1281 1282 1283 1266 1241 1208 1167 1118 1061  996  923  842  753  656  551  438  317  188   51 123  256  381  498  607  708  801  886  963 1032 1093 1146 1191 1228 1257 1278 1291 1292 1293 1284 1267 1242 1209 1168 1119 1062  997  924  843  754  657  552  439  318  189   52 122  255  380  497  606  707  800  885  962 1031 1092 1145 1190 1227 1256 1277 1290 1295 1294 1285 1268 1243 1210 1169 1120 1063  998  925  844  755  658  553  440  319  190   53 121  254  379  496  605  706  799  884  961 1030 1091 1144 1189 1226 1255 1276 1289 1288 1287 1286 1269 1244 1211 1170 1121 1064  999  926  845  756  659  554  441  320  191   54 120  253  378  495  604  705  798  883  960 1029 1090 1143 1188 1225 1254 1275 1274 1273 1272 1271 1270 1245 1212 1171 1122 1065 1000  927  846  757  660  555  442  321  192   55 119  252  377  494  603  704  797  882  959 1028 1089 1142 1187 1224 1253 1252 1251 1250 1249 1248 1247 1246 1213 1172 1123 1066 1001  928  847  758  661  556  443  322  193   56 118  251  376  493  602  703  796  881  958 1027 1088 1141 1186 1223 1222 1221 1220 1219 1218 1217 1216 1215 1214 1173 1124 1067 1002  929  848  759  662  557  444  323  194   57 117  250  375  492  601  702  795  880  957 1026 1087 1140 1185 1184 1183 1182 1181 1180 1179 1178 1177 1176 1175 1174 1125 1068 1003  930  849  760  663  558  445  324  195   58 116  249  374  491  600  701  794  879  956 1025 1086 1139 1138 1137 1136 1135 1134 1133 1132 1131 1130 1129 1128 1127 1126 1069 1004  931  850  761  664  559  446  325  196   59 115  248  373  490  599  700  793  878  955 1024 1085 1084 1083 1082 1081 1080 1079 1078 1077 1076 1075 1074 1073 1072 1071 1070 1005  932  851  762  665  560  447  326  197   60 114  247  372  489  598  699  792  877  954 1023 1022 1021 1020 1019 1018 1017 1016 1015 1014 1013 1012 1011 1010 1009 1008 1007 1006  933  852  763  666  561  448  327  198   61 113  246  371  488  597  698  791  876  953  952  951  950  949  948  947  946  945  944  943  942  941  940  939  938  937  936  935  934  853  764  667  562  449  328  199   62 112  245  370  487  596  697  790  875  874  873  872  871  870  869  868  867  866  865  864  863  862  861  860  859  858  857  856  855  854  765  668  563  450  329  200   63 111  244  369  486  595  696  789  788  787  786  785  784  783  782  781  780  779  778  777  776  775  774  773  772  771  770  769  768  767  766  669  564  451  330  201   64 110  243  368  485  594  695  694  693  692  691  690  689  688  687  686  685  684  683  682  681  680  679  678  677  676  675  674  673  672  671  670  565  452  331  202   65 109  242  367  484  593  592  591  590  589  588  587  586  585  584  583  582  581  580  579  578  577  576  575  574  573  572  571  570  569  568  567  566  453  332  203   66 108  241  366  483  482  481  480  479  478  477  476  475  474  473  472  471  470  469  468  467  466  465  464  463  462  461  460  459  458  457  456  455  454  333  204   67 107  240  365  364  363  362  361  360  359  358  357  356  355  354  353  352  351  350  349  348  347  346  345  344  343  342  341  340  339  338  337  336  335  334  205   68 106  239  238  237  236  235  234  233  232  231  230  229  228  227  226  225  224  223  222  221  220  219  218  217  216  215  214  213  212  211  210  209  208  207  206   69 105  104  103  102  101  100   99   98   97   96   95   94   93   92   91   90   89   88   87   86   85   84   83   82   81   80   79   78   77   76   75   74   73   72   71   70

minimum column width

This REXX version automatically adjusts the width of the spiral matrix columns to minimize the area of the matrix display (so more elements may be shown on a display screen).

/*REXX program displays a spiral in a  square array  (of any size)  starting at  START. */parseargsizestart./*obtain optional arguments from the CL*/ifsize==''|size==","thensize=5/*Not specified?  Then use the default.*/ifstart==''|start==","thenstart=0/*Not specified?  Then use the default.*/tot=size**2;L=length(tot+start)/*total number of elements in spiral.  */k=size/*K:   is the counter for the spiral.  */row=1;col=0/*start spiral at    row 1,  column 0. *//* [↓]  construct the numbered spiral. */don=0fork;col=col+1;@.col.row=n+start;end;ifk==0thenexit/* [↑]  build the first row of spiral. */dountiln>=tot/*spiral matrix.*/doone=1to-1by-2untiln>=tot;k=k-1/*perform twice.*/don=nfork;row=row+one;@.col.row=n+start;end/*for the row···*/don=nfork;col=col-one;@.col.row=n+start;end/* "   "  col···*/end/*one*//* ↑↓ direction.*/end/*until n≥tot*//* [↑]   done with the matrix spiral.  */!.=0/* [↓]   display spiral to the screen. */dotwo=0for2/*1st time?  Find max column and width.*/dor=1forsize;_=/*construct display   row  by   row.   */doc=1forsize;x=@.c.r/*construct a line  column by column.  */iftwothen_=_right(x,!.c)/*construct a line  for the display.   */else!.c=max(!.c,length(x))/*find the maximum width of the column.*/end/*c*//* [↓]  line has an extra leading blank*/iftwothensaysubstr(_,2)/*this SUBSTR ignores the first blank. */end/*r*/end/*two*//*stick a fork in it,  we're all done. */

{{out|output|text=  (shown at3/4 size)   using an array size of:  36

  0   1   2   3   4   5   6   7   8    9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26  27  28  29  30  31  32  33  34 35139 140 141 142 143 144 145 146 147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165 166 167 168 169 170 171 172 173 36138 271 272 273 274 275 276 277 278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296 297 298 299 300 301 302 303 174 37137 270 395 396 397 398 399 400 401  402  403  404  405  406  407  408  409  410  411  412  413  414  415  416  417  418  419 420 421 422 423 424 425 304 175 38136 269 394 511 512 513 514 515 516  517  518  519  520  521  522  523  524  525  526  527  528  529  530  531  532  533  534 535 536 537 538 539 426 305 176 39135 268 393 510 619 620 621 622 623  624  625  626  627  628  629  630  631  632  633  634  635  636  637  638  639  640  641 642 643 644 645 540 427 306 177 40134 267 392 509 618 719 720 721 722  723  724  725  726  727  728  729  730  731  732  733  734  735  736  737  738  739  740 741 742 743 646 541 428 307 178 41133 266 391 508 617 718 811 812 813  814  815  816  817  818  819  820  821  822  823  824  825  826  827  828  829  830  831 832 833 744 647 542 429 308 179 42132 265 390 507 616 717 810 895 896  897  898  899  900  901  902  903  904  905  906  907  908  909  910  911  912  913  914 915 834 745 648 543 430 309 180 43131 264 389 506 615 716 809 894 971  972  973  974  975  976  977  978  979  980  981  982  983  984  985  986  987  988  989 916 835 746 649 544 431 310 181 44130 263 388 505 614 715 808 893 970 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055  990 917 836 747 650 545 432 311 182 45129 262 387 504 613 714 807 892 969 1038 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1056  991 918 837 748 651 546 433 312 183 46128 261 386 503 612 713 806 891 968 1037 1098 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1114 1057  992 919 838 749 652 547 434 313 184 47127 260 385 502 611 712 805 890 967 1036 1097 1150 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1164 1115 1058  993 920 839 750 653 548 435 314 185 48126 259 384 501 610 711 804 889 966 1035 1096 1149 1194 1231 1232 1233 1234 1235 1236 1237 1238 1239 1206 1165 1116 1059  994 921 840 751 654 549 436 315 186 49125 258 383 500 609 710 803 888 965 1034 1095 1148 1193 1230 1259 1260 1261 1262 1263 1264 1265 1240 1207 1166 1117 1060  995 922 841 752 655 550 437 316 187 50124 257 382 499 608 709 802 887 964 1033 1094 1147 1192 1229 1258 1279 1280 1281 1282 1283 1266 1241 1208 1167 1118 1061  996 923 842 753 656 551 438 317 188 51123 256 381 498 607 708 801 886 963 1032 1093 1146 1191 1228 1257 1278 1291 1292 1293 1284 1267 1242 1209 1168 1119 1062  997 924 843 754 657 552 439 318 189 52122 255 380 497 606 707 800 885 962 1031 1092 1145 1190 1227 1256 1277 1290 1295 1294 1285 1268 1243 1210 1169 1120 1063  998 925 844 755 658 553 440 319 190 53121 254 379 496 605 706 799 884 961 1030 1091 1144 1189 1226 1255 1276 1289 1288 1287 1286 1269 1244 1211 1170 1121 1064  999 926 845 756 659 554 441 320 191 54120 253 378 495 604 705 798 883 960 1029 1090 1143 1188 1225 1254 1275 1274 1273 1272 1271 1270 1245 1212 1171 1122 1065 1000 927 846 757 660 555 442 321 192 55119 252 377 494 603 704 797 882 959 1028 1089 1142 1187 1224 1253 1252 1251 1250 1249 1248 1247 1246 1213 1172 1123 1066 1001 928 847 758 661 556 443 322 193 56118 251 376 493 602 703 796 881 958 1027 1088 1141 1186 1223 1222 1221 1220 1219 1218 1217 1216 1215 1214 1173 1124 1067 1002 929 848 759 662 557 444 323 194 57117 250 375 492 601 702 795 880 957 1026 1087 1140 1185 1184 1183 1182 1181 1180 1179 1178 1177 1176 1175 1174 1125 1068 1003 930 849 760 663 558 445 324 195 58116 249 374 491 600 701 794 879 956 1025 1086 1139 1138 1137 1136 1135 1134 1133 1132 1131 1130 1129 1128 1127 1126 1069 1004 931 850 761 664 559 446 325 196 59115 248 373 490 599 700 793 878 955 1024 1085 1084 1083 1082 1081 1080 1079 1078 1077 1076 1075 1074 1073 1072 1071 1070 1005 932 851 762 665 560 447 326 197 60114 247 372 489 598 699 792 877 954 1023 1022 1021 1020 1019 1018 1017 1016 1015 1014 1013 1012 1011 1010 1009 1008 1007 1006 933 852 763 666 561 448 327 198 61113 246 371 488 597 698 791 876 953  952  951  950  949  948  947  946  945  944  943  942  941  940  939  938  937  936  935 934 853 764 667 562 449 328 199 62112 245 370 487 596 697 790 875 874  873  872  871  870  869  868  867  866  865  864  863  862  861  860  859  858  857  856 855 854 765 668 563 450 329 200 63111 244 369 486 595 696 789 788 787  786  785  784  783  782  781  780  779  778  777  776  775  774  773  772  771  770  769 768 767 766 669 564 451 330 201 64110 243 368 485 594 695 694 693 692  691  690  689  688  687  686  685  684  683  682  681  680  679  678  677  676  675  674 673 672 671 670 565 452 331 202 65109 242 367 484 593 592 591 590 589  588  587  586  585  584  583  582  581  580  579  578  577  576  575  574  573  572  571 570 569 568 567 566 453 332 203 66108 241 366 483 482 481 480 479 478  477  476  475  474  473  472  471  470  469  468  467  466  465  464  463  462  461  460 459 458 457 456 455 454 333 204 67107 240 365 364 363 362 361 360 359  358  357  356  355  354  353  352  351  350  349  348  347  346  345  344  343  342  341 340 339 338 337 336 335 334 205 68106 239 238 237 236 235 234 233 232  231  230  229  228  227  226  225  224  223  222  221  220  219  218  217  216  215  214 213 212 211 210 209 208 207 206 69105 104 103 102 101 100  99  98  97   96   95   94   93   92   91   90   89   88   87   86   85   84   83   82   81   80   79  78  77  76  75  74  73  72  71 70

Ring

# Project : Spiral matrixload "guilib.ring"load "stdlib.ring"new qapp         {        win1 = new qwidget() {                   setwindowtitle("Spiral matrix")                   setgeometry(100,100,600,400)                   n = 5                   result = newlist(n,n)                   spiral = newlist(n,n)                   k = 1                    top = 1                   bottom = n                   left = 1                   right = n                   while (k <= n*n)                           for  i= left to right                                result[top][i] = k                                k = k + 1                           next                               top = top + 1                            for i = top to bottom                                result[i][right] = k                                k = k + 1                           next                           right = right - 1                            for i = right to left step -1                                result[bottom][i] = k                                k = k + 1                           next                           bottom = bottom - 1                            for i = bottom to top step -1                                result[i][left] = k                                k = k + 1                           next                           left = left + 1                   end                   for m = 1 to n                        for p = 1 to n                             spiral[p][m] = new qpushbutton(win1) {                                                  x = 150+m*40                                                  y = 30 + p*40                                                  setgeometry(x,y,40,40)                                                  settext(string(result[m][p]))                                                  }                        next                   next                   show()                   }                   exec()                   }

Output:

Spiral matrix

RPL

Works with:RPL version HP48-R
« { 0 1 } → n step  « { 1 1 } n DUP 2 →LIST -1 CON@ empty cell = -1    1 n SQFOR j       OVER j PUT       DUP2 SWAP step ADDIF IFERR GETTHEN DROP2 1ELSE -1 ≠END@ if next step is out of border or an already written cellTHEN step REVLIST { 1 -1 } * 'step' STOEND@ then turn right       SWAP step ADD SWAPNEXT               » » 'SPIRAL' STO
5SPIRAL
Output:
1: [[1 2 3 4 5]    [16 17 18 19 6]    [15 24 25 20 7]    [14 23 22 21 8]    [13 12 11 10 9]]

Ruby

Translation of:Python
defspiral(n)spiral=Array.new(n){Array.new(n,nil)}# n x n array of nilsruns=n.downto(0).each_cons(2).to_a.flatten# n==5; [5,4,4,3,3,2,2,1,1,0]delta=[[1,0],[0,1],[-1,0],[0,-1]].cyclex,y,value=-1,0,-1forruninrunsdx,dy=delta.nextrun.times{spiral[y+=dy][x+=dx]=(value+=1)}endspiralenddefprint_matrix(m)width=m.flatten.map{|x|x.to_s.size}.maxm.each{|row|putsrow.map{|x|"%#{width}s "%x}.join}endprint_matrixspiral(5)
Output:
 0  1  2  3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10  9 8

The other way

Translation of:D
n=5m=Array.new(n){Array.new(n)}pos,side=-1,nforiin0..(n-1)/2(0...side).each{|j|m[i][i+j]=(pos+=1)}(1...side).each{|j|m[i+j][n-1-i]=(pos+=1)}side-=2side.downto(0){|j|m[n-1-i][i+j]=(pos+=1)}side.downto(1){|j|m[i+j][i]=(pos+=1)}endfmt="%#{(n*n-1).to_s.size}d "*nputsm.map{|row|fmt%row}

Output as above.


It processes the Array which is for work without creating it.

defspiral_matrix(n)x,y,dx,dy=-1,0,0,-1fmt="%#{(n*n-1).to_s.size}d "*nn.downto(1).flat_map{|x|[x,x-1]}.flat_map{|run|dx,dy=-dy,dx# turn 90run.times.map{[y+=dy,x+=dx]}}.each_with_index.sort.map(&:last).each_slice(n){|row|putsfmt%row}endspiral_matrix(5)

Rust

constVECTORS:[(isize,isize);4]=[(1,0),(0,1),(-1,0),(0,-1)];pubfnspiral_matrix(size:usize)->Vec<Vec<u32>>{letmutmatrix=vec![vec![0;size];size];letmutmovement=VECTORS.iter().cycle();let(mutx,muty,mutn)=(-1,0,1..);for(move_x,move_y)instd::iter::once(size).chain((1..size).rev().flat_map(|n|std::iter::repeat(n).take(2))).flat_map(|steps|std::iter::repeat(movement.next().unwrap()).take(steps)){x+=move_x;y+=move_y;matrix[yasusize][xasusize]=n.next().unwrap();}matrix}fnmain(){foriinspiral_matrix(4).iter(){forjini.iter(){print!("{:>2} ",j);}println!();}}
Output:
 0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

Scala

classFolder(){vardir=(1,0)varpos=(-1,0)defapply(l:List[Int],a:Array[Array[Int]])={var(x,y)=pos//start positionvar(dx,dy)=dir//directionl.foreach{e=>x=x+dx;y=y+dy;a(y)(x)=e}//copy l elements to array using current directionpos=(x,y)dir=(-dy,dx)//turn}}defspiral(n:Int)={defdup(n:Int)=(1ton).flatMap(i=>List(i,i)).toListvalfolds=n::dup(n-1).reverse//define fold part lengthsvararray=newArray[Array[Int]](n,n)valfold=newFolder()varseq=(0untiln*n).toList//sequence to foldfolds.foreach{len=>fold(seq.take(len),array);seq=seq.drop(len)}array}

Explanation: if you see the sequence of numbers to spiral around as a tape to fold around, you can see this pattern on the lenght of tape segment to fold in each step:

N, N1, N1, , 1, 1{\displaystyle {\displaystyle N,\ N-1,\ N-1,\ \ldots ,\ 1,\ 1}}

Using this the solution becomes very simple,

  1. make the list of lengths to fold
  2. create the sequence to fold
  3. for each segment call a fold function that keeps track of where it is and knows how to turn around.

It's simple to make this generic, changing start position, initial direction, etc.The code could be more compact, but I'm leaving it like this for clarity.

Scilab

Translation of:Octave
function a = spiral(n)  a = ones(n*n, 1)  v = ones(n, 1)  u = -n*v;  i = n  for k = n-1:-1:1    j = 1:k    u(j) = -u(j)    a(j+i) = u(j)    v(j) = -v(j)    a(j+(i+k)) = v(j)    i = i+2*k  end  a(cumsum(a)) = (1:n*n)'  a = matrix(a, n, n)'-1endfunction-->spiral(5) ans  =     0.     1.     2.     3.     4.      15.    16.    17.    18.    5.      14.    23.    24.    19.    6.      13.    22.    21.    20.    7.      12.    11.    10.    9.     8.

Seed7

$ include "seed7_05.s7i";const type: matrix is array array integer;const func matrix: spiral (in integer: n) is func  result    var matrix: myArray is matrix.value;  local    var integer: i is 0;    var integer: dx is 1;    var integer: dy is 0;    var integer: x is 1;    var integer: y is 1;    var integer: nx is 0;    var integer: ny is 0;    var integer: swap is 0;  begin    myArray := n times n times 0;    for i range 1 to n**2 do      myArray[x][y] := i;      nx := x + dx;      ny := y + dy;      if nx >= 1 and nx <= n and ny >= 1 and ny <= n and myArray[nx][ny] = 0 then        x := nx;        y := ny;      else        swap := dx;        dx := -dy;        dy := swap;        x +:= dx;        y +:= dy;      end if;    end for;  end func;const proc: writeMatrix (in matrix: myArray) is func  local    var integer: x is 0;    var integer: y is 0;  begin    for key y range myArray do      for key x range myArray[y] do        write(myArray[x][y] lpad 4);      end for;      writeln;    end for;  end func;const proc: main is func  begin    writeMatrix(spiral(5));  end func;
Output:
   1   2   3   4   5  16  17  18  19   6  15  24  25  20   7  14  23  22  21   8  13  12  11  10   9

Sidef

Translation of:Perl
funcspiral(n){var(x,y,dx,dy,a)=(0,0,1,0,[]){|i|a[y][x]=ivar(nx,ny)=(x+dx,y+dy)(if(dx==1&&(nx==n||a[ny][nx]!=nil)){[0,1]}elsif(dy==1&&(ny==n||a[ny][nx]!=nil)){[-1,0]}elsif(dx==-1&&(nx<0||a[ny][nx]!=nil)){[0,-1]}elsif(dy==-1&&(ny<0||a[ny][nx]!=nil)){[1,0]}else{[dx,dy]}) »(\dx,\dy)x=x+dxy=y+dy}<<(1..n**2)returna} spiral(5).each{|row|row.map{"%3d"%_}.join(' ').say}
Output:
  1   2   3   4   5 16  17  18  19   6 15  24  25  20   7 14  23  22  21   8 13  12  11  10   9

Stata

function spiral_mat(n) {a =J(n*n,1,1)u =J(n,1,-n)v =J(n,1,1)for (k=(i=n)-1; k>=1; i=i+2*k--) {j =1..ka[j:+i] = u[j] =-u[j]a[j:+(i+k)] = v[j] =-v[j]}return(rowshape(invorder(runningsum(a)),n):-1)}spiral_mat(5)12345+--------------------------+1 |01234  |2 |151617185  |3 |142324196  |4 |132221207  |5 |12111098  |+--------------------------+

Tcl

Usingprint_matrix fromMatrix Transpose#Tcl

packagerequireTcl8.5namespacepath{::tcl::mathop}procspiralsize{setm[lrepeat$size[lrepeat$size.]]setx0;setdx0sety-1;setdy1seti-1while{$i<$size**2-1}{if{$dy==0}{incrx$dxif{0<=$x&&$x<$size&&[lindex$m$x$y]eq"."}{lsetm$x$y[incri]}else{# back up and change directionincrx[-$dx]setdy[-$dx]setdx0}}else{incry$dyif{0<=$y&&$y<$size&&[lindex$m$x$y]eq"."}{lsetm$x$y[incri]}else{# back up and  change directionincry[-$dy]setdx$dysetdy0}}}return$m}print_matrix[spiral5]
 0  1  2  3 4 15 16 17 18 5 14 23 24 19 6 13 22 21 20 7 12 11 10  9 8

TI-83 BASIC

Translation of:BBC Basic
5->NDelVar [F]{N,N}→dim([F])1→A: N→B1→C: N→D0→E: E→G 1→I: 1→J For(K,1,N*N)K-1→[F](I,J)If E=0: Then If J<D: ThenJ+1→JElse: 1→GI+1→I: A+1→AEndEndIf E=1: Then If I<B: ThenI+1→IElse: 2→GJ-1→J: D-1→DEndEndIf E=2: ThenIf J>C: ThenJ-1→JElse: 3→GI-1→I: B-1→BEndEndIf E=3: Then If I>A: ThenI-1→IElse: 0→GJ+1→J: C+1→CEndEndG→EEnd[F]
Output:
[[0  1  2  3  4] [15 16 17 18 5] [14 23 24 19 6] [13 22 21 20 7] [12 11 10 9  8]]

TSE SAL

// library: math: create: array: spiral: inwards <description></description> <version control></version control> <version>1.0.0.0.15</version> (filenamemacro=creamasi.s) [<Program>] [<Research>] [kn, ri, mo, 31-12-2012 01:15:43]PROC PROCMathCreateArraySpiralInwards( INTEGER nI ) // e.g. PROC Main() // e.g. STRING s1[255] = "5" // e.g. IF ( NOT ( Ask( "math: create: array: spiral: inwards: nI = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF // e.g.  PROCMathCreateArraySpiralInwards( Val( s1 ) ) // e.g. END // e.g. // e.g. <F12> Main() // INTEGER columnEndI = 0 // INTEGER columnBeginI = nI - 1 // INTEGER rowEndI = 0 // INTEGER rowBeginI = nI - 1 // INTEGER columnI = 0 // INTEGER rowI = 0 // INTEGER minI = 0 INTEGER maxI = nI * nI - 1 INTEGER I = 0 // INTEGER columnWidthI = Length( Str( nI * nI - 1 ) ) + 1 // INTEGER directionRightI = 0 INTEGER directionLeftI = 1 INTEGER directionDownI = 2 INTEGER directionUpI = 3 // INTEGER directionI = directionRightI // FOR I = minI TO maxI  //  SetGlobalInt( Format( "MatrixS", columnI, ",", rowI ), I )  // SetGlobalInt( Format( "MatrixS", columnI, ",", rowI ), I )  //  PutStrXY( ( Query( ScreenCols ) / 8 ) + columnI * columnWidthI, ( Query( ScreenRows ) / 8 ) + rowI, Str( I ), Color( BRIGHT RED ON WHITE ) )  // PutStrXY( ( Query( ScreenCols ) / 8 ) + columnI * columnWidthI, ( Query( ScreenRows ) / 8 ) + rowI, Str( I + 1 ), Color( BRIGHT RED ON WHITE ) )  //  CASE directionI   //   WHEN directionRightI    //    IF ( columnI < columnBeginI )     //     columnI = columnI + 1     //    ELSE     //     directionI = directionDownI     //     rowI = rowI + 1     //     rowEndI = rowEndI + 1     //    ENDIF    //   WHEN directionDownI    //    IF ( rowI < rowBeginI )     //     rowI = rowI + 1     //    ELSE     //     directionI = directionLeftI     //     columnI = columnI - 1     //     columnBeginI = columnBeginI - 1     //    ENDIF    //   WHEN directionLeftI    //    IF ( columnI > columnEndI )     //     columnI = columnI - 1     //    ELSE     //     directionI = directionUpI     //     rowI = rowI - 1     //     rowBeginI = rowBeginI - 1     //    ENDIF    //   WHEN directionUpI    //    IF ( rowI > rowEndI )     //     rowI = rowI - 1     //    ELSE     //     directionI = directionRightI     //     columnI = columnI + 1     //     columnEndI = columnEndI + 1     //    ENDIF    //   OTHERWISE    //    Warn( Format( "PROCMathCreateArraySpiralInwards(", " ", "case", " ", ":", " ", Str( directionI ), ": not known" ) )    //    RETURN()    //  ENDCASE  // ENDFOR //ENDPROC Main()STRING s1[255] = "5"IF ( NOT ( Ask( "math: create: array: spiral: inwards: nI = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF PROCMathCreateArraySpiralInwards( Val( s1 ) )END

uBasic/4tH

Translation of:C

This recursive version is quite compact.

Input "Width:  ";wInput "Height: ";hPrintFor i = 0 To h-1  For j = 0 To w-1    Print Using "__#"; FUNC(_Spiral(w,h,j,i));  Next  PrintNextEnd_Spiral Param(4)If d@ Then  Return (a@ + FUNC(_Spiral(b@-1, a@, d@ - 1, a@ - c@ - 1)))Else  Return (c@)EndIf

Unison

Translation of:Haskell
spiralMatrix.spiralMatrix : Nat -> [[Nat]]spiralMatrix.spiralMatrix = cases  0 -> []  n ->     go h w s = match h with      0  -> []      h' -> Nat.range s (s + w) +: (List.reverse >> List.transpose) (go w (h' - 1) (w + s))    go n n 1

Ursala

Helpful hints from theJ example are gratefully acknowledged. The spiral function works for any n, and results are shown for n equal to 5, 6, and 7. The results are represented as lists of lists rather than arrays.

#import std#import nat#import intspiral =^H/block nleq-<lS&r+ -+   num@NiC+ sum:-0*yK33x+ (|\LL negation**)+ rlc ~&lh==1,   ~&rNNXNXSPlrDlSPK32^lrtxiiNCCSLhiC5D/~& iota*+ iota+-#cast %nLLLexamples = spiral* <5,6,7>
Output:
<   <      <0,1,2,3,4>,      <15,16,17,18,5>,      <14,23,24,19,6>,      <13,22,21,20,7>,      <12,11,10,9,8>>,   <      <0,1,2,3,4,5>,      <19,20,21,22,23,6>,      <18,31,32,33,24,7>,      <17,30,35,34,25,8>,      <16,29,28,27,26,9>,      <15,14,13,12,11,10>>,   <      <0,1,2,3,4,5,6>,      <23,24,25,26,27,28,7>,      <22,39,40,41,42,29,8>,      <21,38,47,48,43,30,9>,      <20,37,46,45,44,31,10>,      <19,36,35,34,33,32,11>,      <18,17,16,15,14,13,12>>>

VBScript

Translation of:BBC BASIC
Function build_spiral(n)botcol = 0 : topcol = n - 1botrow = 0 : toprow = n - 1'declare a two dimensional arrayDim matrix()ReDim matrix(topcol,toprow)dir = 0 : col = 0 : row = 0'populate the arrayFor i = 0 To n*n-1matrix(col,row) = iSelect Case dirCase 0If col < topcol Thencol = col + 1Elsedir = 1 : row = row + 1 : botrow = botrow + 1End IfCase 1If row < toprow Thenrow = row + 1Elsedir = 2 : col = col - 1 : topcol = topcol - 1End IfCase 2If col > botcol Thencol = col - 1Elsedir = 3 : row = row - 1 : toprow = toprow - 1End IfCase 3If row > botrow Thenrow = row - 1Elsedir = 0 : col = col + 1 : botcol = botcol + 1End IfEnd SelectNext'print the arrayFor y = 0 To n-1For x = 0 To n-1WScript.StdOut.Write matrix(x,y) & vbTabNextWScript.StdOut.WriteLineNextEnd Functionbuild_spiral(CInt(WScript.Arguments(0)))
Output:
F:\>cscript /nologo build_spiral.vbs 50       1       2       3       415      16      17      18      514      23      24      19      613      22      21      20      712      11      10      9       8F:\>cscript /nologo build_spiral.vbs 70       1       2       3       4       5       623      24      25      26      27      28      722      39      40      41      42      29      821      38      47      48      43      30      920      37      46      45      44      31      1019      36      35      34      33      32      1118      17      16      15      14      13      12

Visual Basic

VB6

Translation of:Java

This requires VB6.

Option ExplicitSub Main()    print2dArray getSpiralArray(5)End SubFunction getSpiralArray(dimension As Integer) As Integer()    ReDim spiralArray(dimension - 1, dimension - 1) As Integer    Dim numConcentricSquares As Integer    numConcentricSquares = dimension \ 2    If (dimension Mod 2) Then numConcentricSquares = numConcentricSquares + 1    Dim j As Integer, sideLen As Integer, currNum As Integer    sideLen = dimension    Dim i As Integer    For i = 0 To numConcentricSquares - 1        ' do top side        For j = 0 To sideLen - 1            spiralArray(i, i + j) = currNum            currNum = currNum + 1        Next        ' do right side        For j = 1 To sideLen - 1            spiralArray(i + j, dimension - 1 - i) = currNum            currNum = currNum + 1        Next        ' do bottom side        For j = sideLen - 2 To 0 Step -1            spiralArray(dimension - 1 - i, i + j) = currNum            currNum = currNum + 1        Next        ' do left side        For j = sideLen - 2 To 1 Step -1            spiralArray(i + j, i) = currNum            currNum = currNum + 1        Next        sideLen = sideLen - 2    Next    getSpiralArray = spiralArray()End FunctionSub print2dArray(arr() As Integer)    Dim row As Integer, col As Integer    For row = 0 To UBound(arr, 1)        For col = 0 To UBound(arr, 2) - 1            Debug.Print arr(row, col),        Next        Debug.Print arr(row, UBound(arr, 2))    NextEnd Sub

VBA

Solution 1

Translation of:Java
Works with:VBA/Excel
Sub spiral()    Dim n As Integer, a As Integer, b As Integer    Dim numCsquares As Integer, sideLen As Integer, currNum As Integer    Dim j As Integer, i As Integer    Dim j1 As Integer, j2 As Integer, j3 As Integer    n = 5    Dim spiralArr(9, 9) As Integer    numCsquares = CInt(Application.WorksheetFunction.Ceiling(n / 2, 1))    sideLen = n    currNum = 0    For i = 0 To numCsquares - 1        'do top side        For j = 0 To sideLen - 1            currNum = currNum + 1            spiralArr(i, i + j) = currNum        Next j        'do right side        For j1 = 1 To sideLen - 1            currNum = currNum + 1            spiralArr(i + j1, n - 1 - i) = currNum        Next j1        'do bottom side        j2 = sideLen - 2        Do While j2 > -1            currNum = currNum + 1            spiralArr(n - 1 - i, i + j2) = currNum            j2 = j2 - 1        Loop        'do left side        j3 = sideLen - 2        Do While j3 > 0            currNum = currNum + 1            spiralArr(i + j3, i) = currNum            j3 = j3 - 1        Loop        sideLen = sideLen - 2    Next i    For a = 0 To n - 1        For b = 0 To n - 1        Cells(a + 1, b + 1).Select            ActiveCell.Value = spiralArr(a, b)        Next b    Next aEnd Sub

Solution 2

Sub spiral(n As Integer)  Const FREE = -9        'negative number indicates unoccupied cell  Dim A() As Integer  Dim rowdelta(3) As Integer  Dim coldelta(3) As Integer    'initialize A to a matrix with an extra "border" of occupied cells  'this avoids having to test if we've reached the edge of the matrix    ReDim A(0 To n + 1, 0 To n + 1)    'Since A is initialized with zeros, setting A(1 to n,1 to n) to "FREE"  'leaves a "border" around it occupied with zeroes    For i = 1 To n: For j = 1 To n: A(i, j) = FREE: Next: Next    'set amount to move in directions "right", "down", "left", "up"    rowdelta(0) = 0: coldelta(0) = 1  rowdelta(1) = 1: coldelta(1) = 0  rowdelta(2) = 0: coldelta(2) = -1  rowdelta(3) = -1: coldelta(3) = 0    curnum = 0    'set current cell position  col = 1  row = 1    'set current direction  theDir = 0  'theDir = 1 will fill the matrix counterclockwise    'ok will be true as long as there is a free cell left  ok = True    Do While ok      'occupy current FREE cell and increase curnum      A(row, col) = curnum      curnum = curnum + 1      'check if next cell in current direction is free      'if not, try another direction in clockwise fashion      'if all directions lead to occupied cells then we are finished!      ok = False      For i = 0 To 3        newdir = (theDir + i) Mod 4        If A(row + rowdelta(newdir), col + coldelta(newdir)) = FREE Then          'yes, move to it and change direction if necessary          theDir = newdir          row = row + rowdelta(theDir)          col = col + coldelta(theDir)          ok = True          Exit For        End If      Next i  Loop    'print result  For i = 1 To n    For j = 1 To n      Debug.Print A(i, j),    Next    Debug.Print  Next  End Sub
Output:
spiral 5 0             1             2             3             4             15            16            17            18            5             14            23            24            19            6             13            22            21            20            7             12            11            10            9             8            spiral 6 0             1             2             3             4             5             19            20            21            22            23            6             18            31            32            33            24            7             17            30            35            34            25            8             16            29            28            27            26            9             15            14            13            12            11            10

Visual Basic .NET

Platform:.NET
From VB6. This requires Visual Basic .Net.

Module modSpiralArray    Sub Main()        print2dArray(getSpiralArray(5))    End Sub    Function getSpiralArray(dimension As Integer) As Object        Dim spiralArray(,) As Integer        Dim numConcentricSquares As Integer        ReDim spiralArray(dimension - 1, dimension - 1)        numConcentricSquares = dimension \ 2        If (dimension Mod 2) Then numConcentricSquares = numConcentricSquares + 1        Dim j As Integer, sideLen As Integer, currNum As Integer        sideLen = dimension        Dim i As Integer        For i = 0 To numConcentricSquares - 1            ' do top side            For j = 0 To sideLen - 1                spiralArray(i, i + j) = currNum                currNum = currNum + 1            Next            ' do right side            For j = 1 To sideLen - 1                spiralArray(i + j, dimension - 1 - i) = currNum                currNum = currNum + 1            Next            ' do bottom side            For j = sideLen - 2 To 0 Step -1                spiralArray(dimension - 1 - i, i + j) = currNum                currNum = currNum + 1            Next            ' do left side            For j = sideLen - 2 To 1 Step -1                spiralArray(i + j, i) = currNum                currNum = currNum + 1            Next            sideLen = sideLen - 2        Next        getSpiralArray = spiralArray    End Function    Sub print2dArray(arr)        Dim row As Integer, col As Integer, s As String        For row = 0 To UBound(arr, 1)            s = ""            For col = 0 To UBound(arr, 2)                s = s & " " & Right("  " & arr(row, col), 3)            Next            Debug.Print(s)        Next    End SubEnd Module

Wren

Translation of:Go
Library:Wren-fmt
import "./fmt" for Conv, Fmtvar n = 5var top = 0var left = 0var bottom = n - 1var right = n - 1var sz = n * nvar a = List.filled(sz, 0)var i = 0while (left < right) {    // work right, along top    var c = left    while (c <= right) {        a[top*n+c] = i        i = i + 1        c = c + 1    }    top = top + 1    // work down right side    var r = top    while (r <= bottom) {        a[r*n+right] = i        i = i + 1        r = r + 1    }    right = right - 1    if (top == bottom) break    // work left, along bottom    c = right    while (c >= left) {        a[bottom*n+c] = i        i = i + 1        c = c - 1    }    bottom = bottom - 1    r = bottom    // work up left side    while (r >= top) {        a[r*n+left] = i        i = i + 1        r = r - 1    }    left = left + 1}// center (last) elementa[top*n+left] = i// printvar w = Conv.itoa(n*n - 1).counti = 0for (e in a) {    Fmt.write("$*d ", w, e)    if (i%n == n - 1) System.print()    i = i + 1}
Output:
 0  1  2  3  4 15 16 17 18  5 14 23 24 19  6 13 22 21 20  7 12 11 10  9  8

XPL0

def N=5;int A(N,N);int I, J, X, Y, Steps, Dir;include c:\cxpl\codes;[Clear;I:= 0;  X:= -1;  Y:= 0;  Steps:= N;  Dir:= 0;repeat  for J:= 1 to Steps do                [case Dir&3 of                  0: X:= X+1;                  1: Y:= Y+1;                  2: X:= X-1;                  3: Y:= Y-1                other [];                A(X,Y):= I;                Cursor(X*3,Y);  IntOut(0,I);                I:= I+1;                ];        Dir:= Dir+1;        if Dir&1 then Steps:= Steps-1;until   Steps = 0;Cursor(0,N);]
Output:
0  1  2  3  415 16 17 18 514 23 24 19 613 22 21 20 712 11 10 9  8

Z80 Assembly

N is set at beginning of code (valid range 1..150-ish, then you soon run out of memory), sjasmplus syntax, CP/M executable:

; Spiral matrix in Z80 assembly (for CP/M OS - you can use `tnylpo` or `z88dk-ticks` on PC)    OPT --syntax=abf : OUTPUT "spiralmt.com"    ; asm syntax for z00m's variant of sjasmplus    ORG $100spiral_matrix:    ld a,5              ; N matrix size (argument for the code) (valid range: 1..150)    ; setup phase    push af    ld l,a    ld h,0    add hl,hl    ld (delta_d),hl     ; down-direction address delta = +N*2    neg    ld l,a    ld h,$FF    add hl,hl    ld (delta_u),hl     ; up-direction address delta = -N*2    neg    ld hl,matrix    ld de,2             ; delta_r value to move right in matrix    ld bc,0             ; starting value    dec a               ; first sequences will be N-1 long    jr z,.finish        ; 1x1 doesn't need any sequence, just set last element    call set_sequence   ; initial entry sequence has N-1 elements (same as two more)    ; main loop - do twice same length sequence, then decrement length, until zero.loop:    call set_sequence_twice    dec a    jr nz,.loop.finish:                ; whole spiral is set except last element, set it now    ld (hl),c    inc hl    ld (hl),b    ; print matrix - reading it by POP HL (destructive, plus some memory ahead of matrix too)    pop de              ; d = N    ld (.oldsp+1),sp    ld sp,matrix        ; set stack to beginning of matrix (call/push does damage memory ahead)    ld c,d              ; c = N (lines counter).print_rows:    ld b,d              ; b = N (value per row counter).print_row:    pop hl    push de    push bc    call print_hl    pop bc    pop de    djnz .print_row    push de    call print_crlf    pop de    dec c    jr nz,.print_rows.oldsp:    ld sp,0    rst 0               ; return to CP/Mprint_crlf:    ld e,10    call print_char    ld e,13    jr print_charprint_hl:    ld b,' '    ld e,b    call print_char    ld de,-10000    call extract_digit    ld de,-1000    call extract_digit    ld de,-100    call extract_digit    ld de,-10    call extract_digit    ld a,lprint_digit:    ld b,'0'    add a,b    ld e,aprint_char:    push bc    push hl    ld c,2    call 5    pop hl    pop bc    retextract_digit:    ld a,-1.digit_loop:    inc a    add hl,de    jr c,.digit_loop    sbc hl,de    or a    jr nz,print_digit    ld e,b    jr print_charset_sequence_twice:    call set_sequenceset_sequence:    ; A = length, HL = next_to_matrix, DE = delta to advance hl, BC = next_value    push af.set_loop:    ld (hl),c    inc hl    ld (hl),b    dec hl              ; [HL] = BC    add hl,de           ; HL += DE    inc bc              ; ++BC    dec a    jr nz,.set_loop    push hl             ; change DE for next direction (right->down->left->up->right->...).d: ld hl,delta_d       ; self-modify-code: pointer to next delta    ld e,(hl)    inc hl    ld d,(hl)           ; de = address delta for next sequence    inc hl    ld a,low delta_u+2  ; if hl == delta_u+2 => reset it back to delta_r    cp l    jr nz,.next_delta    ld hl,delta_r.next_delta:    ld (.d+1),hl        ; self modify code pointer for next delta value    pop hl    pop af    retdelta_r:    dw      +2  ; value to add to move right in matrixdelta_d:    dw      0   ; value to add to move down in matrix (set to +N*2)delta_l:    dw      -2  ; value to add to move left in matrixdelta_u:    dw      0   ; value to add to move up in matrix (set to -N*2)matrix:    ; following memory is used for NxN matrix of uint16_t values (150x150 needs 45000 bytes)
Output:
$ tnylpo spiralmt.com      0     1     2     3     4    15    16    17    18     5    14    23    24    19     6    13    22    21    20     7    12    11    10     9     8

zkl

Translation of:C

which turns out to be the same as Ruby

fcn spiralMatrix(n){   sm:=(0).pump(n,List,(0).pump(n,List,False).copy); //L(L(False,False..), L(F,F,..) ...)   drc:=Walker.cycle(T(0,1,0), T(1,0,1), T(0,-1,0), T(-1,0,1)); // deltas   len:=n; r:=0; c:=-1; z:=-1; while(len>0){ //or do(2*n-1){      dr,dc,dl:=drc.next();      do(len-=dl){ sm[r+=dr][c+=dc]=(z+=1); }   }   sm}
foreach n in (T(5,-1,0,1,2)){   spiralMatrix(n).pump(Console.println,fcn(r){ r.apply("%4d".fmt).concat() });   println("---");}
Output:
   0   1   2   3   4  15  16  17  18   5  14  23  24  19   6  13  22  21  20   7  12  11  10   9   8---------   0---   0   1   3   2---
Retrieved from "https://rosettacode.org/wiki/Spiral_matrix?oldid=374195"
Categories:
Hidden category:
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

[8]ページ先頭

©2009-2025 Movatter.jp