Movatterモバイル変換


[0]ホーム

URL:


Jump to content
Rosetta Code
Search

Pascal's triangle

From Rosetta Code
Task
Pascal's triangle
You are encouraged tosolve this task according to the task description, using any language you may know.

Pascal's triangle is an arithmetic and geometric figure often associated with the name ofBlaise Pascal, but also studied centuries earlier in India, Persia, China and elsewhere.

Its first few rows look like this:

    1   1 1  1 2 1 1 3 3 1

where each element of each row is either 1 or the sum of the two elements right above it.

For example, the next row of the triangle would be:

 1   (since the first element of each row doesn't have two elements above it)
 4   (1 + 3)
 6   (3 + 3)
 4   (3 + 1)
 1   (since the last element of each row doesn't have two elements above it)

So the triangle now looks like this:

    1   1 1  1 2 1 1 3 3 11 4 6 4 1

Each row   n   (starting with row   0   at the top) shows the coefficients of the binomial expansion of   (x + y)n.


Task

Write a function that prints out the first   n   rows of the triangle   (with   f(1)   yielding the row consisting of only the element1).

This can be done either by summing elements from the previous rows or using a binary coefficient or combination function.

Behavior for   n ≤ 0   does not need to be uniform, but should be noted.


See also



11l

Translation of:Python
F pascal(n)   V row = [1]   V k = [0]   L 0 .< max(n, 0)      print(row.join(‘ ’).center(16))      row = zip(row [+] k, k [+] row).map((l, r) -> l + r)pascal(7)
Output:
       1      1 1     1 2 1    1 3 3 1   1 4 6 4 1 1 5 10 10 5 11 6 15 20 15 6 1

360 Assembly

Translation of:PL/I
*        Pascal's triangle         25/10/2015PASCAL   CSECT         USING  PASCAL,R15         set base register         LA     R7,1               n=1LOOPN    C      R7,=A(M)           do n=1 to m         BH     ELOOPN             if n>m then goto          MVC    U,=F'1'            u(1)=1         LA     R8,PG              pgi=@pg         LA     R6,1               i=1LOOPI    CR     R6,R7              do i=1 to n         BH     ELOOPI             if i>n then goto          LR     R1,R6              i         SLA    R1,2               i*4         L      R3,T-4(R1)         t(i)         L      R4,T(R1)           t(i+1)         AR     R3,R4              t(i)+t(i+1)         ST     R3,U(R1)           u(i+1)=t(i)+t(i+1)         LR     R1,R6              i         SLA    R1,2               i*4         L      R2,U-4(R1)         u(i)         XDECO  R2,XD              edit u(i)         MVC    0(4,R8),XD+8       output u(i):4         LA     R8,4(R8)           pgi=pgi+4         LA     R6,1(R6)           i=i+1         B      LOOPI              end iELOOPI   MVC    T((M+1)*(L'T)),U   t=u         XPRNT  PG,80              print         LA     R7,1(R7)           n=n+1         B      LOOPN              end nELOOPN   XR     R15,R15            set return code         BR     R14                return to callerM        EQU    11                 <== inputT        DC     (M+1)F'0'          t(m+1) init 0U        DC     (M+1)F'0'          u(m+1) init 0PG       DC     CL80' '            pg     init ' 'XD       DS     CL12               temp         YREGS         END    PASCAL
Output:
   1   1   1   1   2   1   1   3   3   1   1   4   6   4   1   1   5  10  10   5   1   1   6  15  20  15   6   1   1   7  21  35  35  21   7   1   1   8  28  56  70  56  28   8   1   1   9  36  84 126 126  84  36   9   1   1  10  45 120 210 252 210 120  45  10   1

8th

One way, using array operations:

\ print the array:.arr\ a -- a( . space )a:each;:pasc\ a --\ print the row.arrcrdup\ create two rows from the first, one with a leading the other with a trailing 0[0]0a:insertswap0a:push\ add the arrays together to make the new one'n:+a:op;\ print the first 16 rows:[1]'pasc16times

Another way, using the relation between element 'n' and element 'n-1' in a row:

:ratio\ m n -- num denomtuckn:-n:1+swap;\ one item in the row: n m:pascitem\ n m -- nr@swapration:*/n:roundintdup.space;\ One row of Pascal's triangle:pascline\ n -->r1intdup.space'pascitem1r@looprdropdropcr;\ Calculate the first 'n' rows of Pascal's triangle::pasc\ n'pascline0rotloopcr;15pasc

Action!

PROC Main()  BYTE count=[10],row,item  CHAR ARRAY s(5)  INT v  FOR row=0 TO count-1  DO    v=1    FOR item=0 TO row    DO      StrI(v,s)      Position(2*(count-row)+4*item-s(0),row+1)      Print(s)      v=v*(row-item)/(item+1)    OD    PutE()  ODRETURN
Output:

Screenshot from Atari 8-bit computer

                  1                1   1              1   2   1            1   3   3   1          1   4   6   4   1        1   5  10  10   5   1      1   6  15  20  15   6   1    1   7  21  35  35  21   7   1  1   8  28  56  70  56  28   8   11   9  36  84 126 126  84  36   9   1

Ada

The specification of auxiliary package "Pascal". "First_Row" outputs a row with a single "1", "Next_Row" computes the next row from a given row, and "Length" gives the number of entries in a row. The package is also used for the Catalan numbers solution [[1]]

packagePascalistypeRowisarray(Naturalrange<>)ofNatural;functionLength(R:Row)returnPositive;functionFirst_Row(Max_Length:Positive)returnRow;functionNext_Row(R:Row)returnRow;endPascal;

The implementation of that auxiliary package "Pascal":

packagebodyPascalisfunctionFirst_Row(Max_Length:Positive)returnRowisR:Row(0..Max_Length):=(0|1=>1,others=>0);beginreturnR;endFirst_Row;functionNext_Row(R:Row)returnRowisS:Row(R'Range);beginS(0):=Length(R)+1;S(Length(S)):=1;forJinreverse2..Length(R)loopS(J):=R(J)+R(J-1);endloop;S(1):=1;returnS;endNext_Row;functionLength(R:Row)returnPositiveisbeginreturnR(0);endLength;endPascal;

The main program, using "Pascal". It prints the desired number of rows. The number is read from the command line.

withAda.Text_IO,Ada.Integer_Text_IO,Ada.Command_Line,Pascal;usePascal;procedureTriangleisNumber_Of_Rows:Positive:=Integer'Value(Ada.Command_Line.Argument(1));Row:Pascal.Row:=First_Row(Number_Of_Rows);beginloop-- print one rowforJin1..Length(Row)loopAda.Integer_Text_IO.Put(Row(J),5);endloop;Ada.Text_IO.New_Line;exitwhenLength(Row)>=Number_Of_Rows;Row:=Next_Row(Row);endloop;endTriangle;
Output:
>./triangle 12    1    1    1    1    2    1    1    3    3    1    1    4    6    4    1    1    5   10   10    5    1    1    6   15   20   15    6    1    1    7   21   35   35   21    7    1    1    8   28   56   70   56   28    8    1    1    9   36   84  126  126   84   36    9    1    1   10   45  120  210  252  210  120   45   10    1    1   11   55  165  330  462  462  330  165   55   11    1

ALGOL 68

PRIO MINLWB = 8, MAXUPB = 8;OP MINLWB = ([]INT a,b)INT: (LWB a<LWB b|LWB a|LWB b),   MAXUPB = ([]INT a,b)INT: (UPB a>UPB b|UPB a|UPB b);OP + = ([]INT a,b)[]INT:(  [a MINLWB b:a MAXUPB b]INT out; FOR i FROM LWB out TO UPB out DO out[i]:= 0 OD;  out[LWB a:UPB a] := a; FOR i FROM LWB b TO UPB b DO out[i]+:= b[i] OD;  out);INT width = 4, stop = 9;FORMAT centre = $n((stop-UPB row+1)*width OVER 2)(q)$;FLEX[1]INT row := 1; # example of rowing #FOR i WHILE  printf((centre, $g(-width)$, row, $l$));# WHILE # i < stop DO  row := row[AT 1] + row[AT 2]OD
Output:
                     1                   1   1                 1   2   1               1   3   3   1             1   4   6   4   1           1   5  10  10   5   1         1   6  15  20  15   6   1       1   7  21  35  35  21   7   1     1   8  28  56  70  56  28   8   1

ALGOL W

begin    % prints the first n lines of Pascal's triangle lines %    % if n is <= 0, no output is produced                 %    procedure printPascalTriangle( integer value n ) ;        if n > 0 then begin            integer array pascalLine ( 1 :: n );            pascalLine( 1 ) := 1;            for line := 1 until n do begin                for i := line - 1 step - 1 until 2 do pascalLine( i ) := pascalLine( i - 1 ) + pascalLine( i );                pascalLine( line ) := 1;                write( s_w := 0, " " );                for i := line until n do writeon( s_w := 0, "   " );                for i := 1 until line do writeon( i_w := 6, s_w := 0, pascalLine( i ) )            end for_line ;        end printPascalTriangle ;    printPascalTriangle( 8 )end.
Output:
                              1                           1     1                        1     2     1                     1     3     3     1                  1     4     6     4     1               1     5    10    10     5     1            1     6    15    20    15     6     1         1     7    21    35    35    21     7     1

Amazing Hopper

#include <jambo.h>#define Mulbyandmoveto(_X_)   Mul by '_X_', Move to '_X_'Main   filas=0, Get arg numeric '2', Move to 'filas'   i=0, r=""   Loop if( var 'i' Is less than 'filas' )      c=1, j=0      Set 'c' To str, Move to 'r'      Loop if ( var 'j' Is less than 'i' )         Set 'i' Minus 'j', Plus one 'j', Div it; Mul by and move to 'c'         Multi cat ' r, "\t", Str(c) '; Move to 'r'         ++j      Back      Printnl 'r'      ++i   BackEnd
Output:
$ hopper jm/pascal.jambo 141  111211331146411510105116152015611721353521711828567056288119368412612684369111045120210252210120451011115516533046246233016555111112662204957929247924952206612111378286715128717161716128771528678131

APL

Pascal' s triangle of order ⍵

Dyalog APL

{0~¨⍨(-⌽A)⌽↑,/0,¨A∘.!A0,⍳}

example

{0~¨⍨(-⌽A)⌽↑,/0,¨A∘.!A0,⍳}5
                   1                                1      1                          1      2      1                   1     3      3      1             1     4      6      4     1       1     5     10     10     5     1

GNU APL

GNU APL doesn't allow multiple statements within lambdas so the solution is phrased differently:

{{∘.!}0,⍳}

example

{{∘.!}0,⍳}3
1 0 0 01 1 0 01 2 1 01 3 3 1

AppleScript

Drawing n rows from a generator:

-------------------- PASCAL'S TRIANGLE --------------------- pascal :: Generator [[Int]]onpascal()scriptnextRowon|λ|(row)zipWith(myplus,{0}&row,row&{0})end|λ|endscriptiterate(nextRow,{1})endpascal--------------------------- TEST -------------------------onrunshowPascal(take(7,pascal()))endrun------------------------ FORMATTING ------------------------ showPascal :: [[Int]] -> StringonshowPascal(xs)setwtolengthofintercalate("   ",item-1ofxs)scriptalignon|λ|(x)|center|(w,space,intercalate("   ",x))end|λ|endscriptunlines(map(align,xs))endshowPascal------------------------- GENERIC -------------------------- center :: Int -> Char -> String -> Stringon|center|(n,cFiller,strText)setlngFillton-(lengthofstrText)iflngFill>0thensetstrPadtoreplicate(lngFilldiv2,cFiller)astextsetstrCentertostrPad&strText&strPadiflngFillmod2>0thencFiller&strCenterelsestrCenterendifelsestrTextendifend|center|-- intercalate :: String -> [String] -> Stringonintercalate(sep,xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,sep}setstoxsastextsetmytext item delimiterstodlmreturnsendintercalate-- iterate :: (a -> a) -> a -> Generator [a]oniterate(f,x)scriptpropertyv:missing valuepropertyg:mReturn(f)'s|λ|on|λ|()ifmissing valueisvthensetvtoxelsesetvtog(v)endifreturnvend|λ|endscriptenditerate-- length :: [a] -> Inton|length|(xs)setctoclassofxsiflistiscorstringiscthenlengthofxselse2^30-- (simple proxy for non-finite)endifend|length|-- map :: (a -> b) -> [a] -> [b]onmap(f,xs)tellmReturn(f)setlngtolengthofxssetlstto{}repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,i,xs)endrepeatreturnlstendtellendmap-- min :: Ord a => a -> a -> aonmin(x,y)ify<xthenyelsexendifendmin-- mReturn :: First-class m => (a -> b) -> m (a -> b)onmReturn(f)-- 2nd class handler function lifted into 1st class script wrapper.ifscriptisclassoffthenfelsescriptproperty|λ|:fendscriptendifendmReturn-- plus :: Num -> Num -> Numonplus(a,b)a+bendplus-- Egyptian multiplication - progressively doubling a list, appending-- stages of doubling to an accumulator where needed for binary-- assembly of a target length-- replicate :: Int -> a -> [a]onreplicate(n,a)setoutto{}ifn<1thenreturnoutsetdblto{a}repeatwhile(n>1)if(nmod2)>0thensetouttoout&dblsetnto(ndiv2)setdblto(dbl&dbl)endrepeatreturnout&dblendreplicate-- take :: Int -> [a] -> [a]-- take :: Int -> String -> Stringontake(n,xs)setctoclassofxsiflistiscthenif0<nthenitems1thrumin(n,lengthofxs)ofxselse{}endifelseifstringiscthenif0<nthentext1thrumin(n,lengthofxs)ofxselse""endifelseifscriptiscthensetysto{}repeatwithifrom1tonsetendofystoxs's|λ|()endrepeatreturnyselsemissing valueendifendtake-- unlines :: [String] -> Stringonunlines(xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,linefeed}setstrtoxsastextsetmytext item delimiterstodlmstrendunlines-- unwords :: [String] -> Stringonunwords(xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,space}setstoxsastextsetmytext item delimiterstodlmreturnsendunwords-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]onzipWith(f,xs,ys)setlngtomin(|length|(xs),|length|(ys))if1>lngthenreturn{}setxs_totake(lng,xs)-- Allow for non-finitesetys_totake(lng,ys)-- generators like cycle etcsetlstto{}tellmReturn(f)repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs_,itemiofys_)endrepeatreturnlstendtellendzipWith
Output:
              1                         1   1                     1   2   1                 1   3   3   1             1   4   6   4   1        1   5   10   10   5   1  1   6   15   20   15   6   1

Arturo

Translation of:Nim
pascalTriangle:function[n][triangle:new[[1]]loop1..decn'x['triangle++@[mapcouple(last triangle)++[0][0]++(last triangle)'x->x\[0]+x\[1]]]returntriangle]looppascalTriangle10'row[printpad.centerjoin.with:" "mapto[:string]row'x->pad.centerx560]
Output:
                             1                                                        1     1                                                  1     2     1                                            1     3     3     1                                      1     4     6     4     1                                1     5    10    10     5     1                          1     6    15    20    15     6     1                    1     7    21    35    35    21     7     1              1     8    28    56    70    56    28     8     1        1     9    36    84    126   126   84    36     9     1

AutoHotkey

ahk forum:discussion

n:=8,p0:="1"        ; 1+n rows of Pascal's triangleLoop%n%{p:="p"A_Index,%p%:=v:=1,q:="p"A_Index-1LoopParse,%q%,%A_Space%If(A_Index>1)%p%.=" "v+A_LoopField,v:=A_LoopField%p%.=" 1"}                         ; Triangular Formatted outputVarSetCapacity(tabs,n,Asc("`t"))t.=tabs"`t1"Loop%n%{t.="`n"SubStr(tabs,A_Index)LoopParse,p%A_Index%,%A_Space%t.=A_LoopField"`t`t"}GuiAdd,Text,,%t%      ; Show result in a GUIGuiShowReturnGuiClose:ExitApp

Alternate

Works with:AutoHotkey L
Msgbox%format(pascalstriangle())Returnformat(o) ; converts object to string{Fork,vinos.=IsObject(v)?format(v)"`n":v" "Returns}pascalstriangle(n=7) ; n rows of Pascal's triangle{p:=Object(),z:=Object()Loop,%nLoop,%row:=A_Indexcol:=A_Index,p[row,col]:=row=1andcol=1?1:(p[row-1,col-1]="" ; math operations on blanks return blanks; I want to assume zero?0:p[row-1,col-1])+(p[row-1,col]=""?0:p[row-1,col])Returnp}

n <= 0 returns empty

AWK

$awk'BEGIN{for(i=0;i<6;i++){c=1;r=c;for(j=0;j<i;j++){c*=(i-j)/(j+1);r=r" "c};print r}}'
Output:

11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1


Bait

// Create a Pascal's triangle with a given number of rows.// Returns an empty array for row_nr <= 0.fun pascals_triangle(row_nr i32) [][]i32 {mut rows := [][]i32// Iterate over all rowsfor r := 0; r < row_nr; r += 1 {// Store the row above the current onemut above := rows[r - 1]// Fill the current row. It contains r + 1 numbersfor i := 0; i <= r; i += 1 {// First number is always 1if i == 0 {rows.push([1]) // Push new row}// Last number is always 1else if i == r {rows[r].push(1)}// Other numbers are the sum of the two numbers above themelse {rows[r].push(above[i - 1] + above[i])}}}return rows}// Helper function to pretty print triangles.// It still get's ugly once numbers have >= 2 digits.fun print_triangle(triangle [][]i32) {for i, row in triangle {// Create string with leading spacesmut s := ' '.repeat(triangle.length - i - 1)// Add each number to the stringfor n in row {s += n.str() + ' '}// Print and trim the extra trailing spaceprintln(s.trim_right(' '))}}fun main() {print_triangle(pascals_triangle(7))}
Output:
      1     1 1    1 2 1   1 3 3 1  1 4 6 4 1 1 5 10 10 5 11 6 15 20 15 6 1


BASIC

Summing from Previous Rows

Works with:FreeBASIC
Works with:QBasic
Works with:QB64

This implementation uses an array to store one row of the triangle.DIM initializes the array values to zero. For first row, "1" is then stored in the array.To calculate values for next row, the value in cell (i-1) is added to each cell (i).This summing is done from right to left so that it can be done on-place, without using a tmp buffer.Because of symmetry, the values can be displayed from left to right.

Space for max 5 digit numbers is reserved when formatting the display.The maximum size of triangle is 100 rows, but in practice it is limited by screen space.If the user enters value less than 1, the first row is still always displayed.

DIMiASIntegerDIMrowASIntegerDIMnrowsASIntegerDIMvalues(100)ASIntegerINPUT"Number of rows: ";nrowsvalues(1)=1PRINTTAB((nrows)*3);"  1"FORrow=2TOnrowsPRINTTAB((nrows-row)*3+1);FORi=rowTO1STEP-1values(i)=values(i)+values(i-1)PRINTUSING"##### ";values(i);NEXTiPRINTNEXTrow

Chipmunk Basic

Works with:Chipmunk Basic version 3.6.4
10letrow=1220fori=0torow30letc=140printtab(37-i*3);50fork=0toi60printusing" #### ";c;70letc=c*(i-k)/(k+1)80next90print100next

MSX Basic

Works with:MSX BASIC version any
Works with:GW-BASIC
10INPUT"Number of rows? ";R20FORI=0TOR-130LETC=140FORK=0TOI50PRINTUSING"####";C;60LETC=C*(I-K)/(K+1)70NEXTK80PRINT90NEXTI

QBasic

Same code asBASIC

QB64

Same code asBASIC

Yabasic

input"Number of rows? "rfori=0tor-1c=1fork=0toiprintcusing"####";c=c*(i-k)/(k+1)nextprintnext

Batch File

Based from the Fortran Code.

@echo offsetlocal enabledelayedexpansion::The Main Thing...clsecho.setrow=15call:pascalecho.pauseexit /b 0::/The Main Thing.::The Functions...:pascalset/aprev=%row%-1for/l%%Iin(0,1,%prev%)do(setc=1&setr=for/l%%Kin(0,1,%row%)do(ifnot!c!==0(call:numstr!c!setr=!r!!space!!c!)set/ac=!c!*^(%%I-%%K^)/^(%%K+1^))echo!r!)goto:EOF:numstr::This function returns the number of whitespaces to be applied on each numbers.setcnt=0&setproc=%1&setspace=:loopsetcurrchar=!proc:~%cnt%,1!ifnot"!currchar!"==""set/acnt+=1&gotoloopset/anumspaces=5-!cnt!for/l%%Ain(1,1,%numspaces%)doset"space=!space! "goto:EOF::/The Functions.
Output:
    1    1    1    1    2    1    1    3    3    1    1    4    6    4    1    1    5   10   10    5    1    1    6   15   20   15    6    1    1    7   21   35   35   21    7    1    1    8   28   56   70   56   28    8    1    1    9   36   84  126  126   84   36    9    1    1   10   45  120  210  252  210  120   45   10    1    1   11   55  165  330  462  462  330  165   55   11    1    1   12   66  220  495  792  924  792  495  220   66   12    1    1   13   78  286  715 1287 1716 1716 1287  715  286   78   13    1    1   14   91  364 1001 2002 3003 3432 3003 2002 1001  364   91   14    1Press any key to continue . . .

BBC BASIC

nrows%=10colwidth%=4@%=colwidth%:REM Set column widthFORrow%=1TOnrows%PRINTSPC(colwidth%*(nrows%-row%)/2);acc%=1FORelement%=1TOrow%PRINTacc%;acc%=acc%*(row%-element%)/element%+0.5NEXTPRINTNEXTrow%
Output:
                     1                   1   1                 1   2   1               1   3   3   1             1   4   6   4   1           1   5  10  10   5   1         1   6  15  20  15   6   1       1   7  21  35  35  21   7   1     1   8  28  56  70  56  28   8   1   1   9  36  84 126 126  84  36   9   1

BCPL

get "libhdr"let pascal(n) be    for i=0 to n-1    $(  let c = 1        for j=1 to 2*(n-1-i) do wrch(' ')        for k=0 to i        $(  writef("%I3 ",c)            c := c*(i-k)/(k+1)        $)        wrch('*N')    $)    let start() be pascal(8)
Output:
                1              1   1            1   2   1          1   3   3   1        1   4   6   4   1      1   5  10  10   5   1    1   6  15  20  15   6   1  1   7  21  35  35  21   7   1

Befunge

0" :swor fo rebmuN">:#,_&>55+,vv01*p00-1:g00.:<1p011p00:\-1_v#:<>g:1+10p/48*,:#^_$55+,1+\:^>$$@
Output:
Number of rows: 101  1  1  1  2  1  1  3  3  1  1  4  6  4  1  1  5  10  10  5  1  1  6  15  20  15  6  1  1  7  21  35  35  21  7  1  1  8  28  56  70  56  28  8  1  1  9  36  84  126  126  84  36  9  1

BQN

Displays n rows.

Pascal{(0∾+∾0)(𝕩)1}•Show¨Pascal6
⟨ 1 ⟩⟨ 1 1 ⟩⟨ 1 2 1 ⟩⟨ 1 3 3 1 ⟩⟨ 1 4 6 4 1 ⟩⟨ 1 5 10 10 5 1 ⟩

Bracmat

( out$"Number of rows? "& get':?R& -1:?I&   whl  ' ( 1+!I:<!R:?I    & 1:?C    & -1:?K    & !R+-1*!I:?tabs    & whl'(!tabs+-1:>0:?tabs&put$\t)    &   whl      ' ( 1+!K:~>!I:?K        & put$(!C \t\t)        & !C*(!I+-1*!K)*(!K+1)^-1:?C        )    & put$\n    )&)
Output:
Number of rows?7                                                1                                        1               1                                1               2               1                        1               3               3               1                1               4               6               4               1        1               5               10              10              5               11               6               15              20              15              6               1

Burlesque

blsq ) {1}{1 1}{^^2CO{p^?+}m[1+]1[+}15E!#s<-spbx#S11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 11 8 28 56 70 56 28 8 11 9 36 84 126 126 84 36 9 11 10 45 120 210 252 210 120 45 10 11 11 55 165 330 462 462 330 165 55 11 11 12 66 220 495 792 924 792 495 220 66 12 11 13 78 286 715 1287 1716 1716 1287 715 286 78 13 11 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 11 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 11 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

C

Translation of:Fortran
#include<stdio.h>voidpascaltriangle(unsignedintn){unsignedintc,i,j,k;for(i=0;i<n;i++){c=1;for(j=1;j<=2*(n-1-i);j++)printf(" ");for(k=0;k<=i;k++){printf("%3d ",c);c=c*(i-k)/(k+1);}printf("\n");}}intmain(){pascaltriangle(8);return0;}

Recursive

#include<stdio.h>#define D 32intpascals(int*x,int*y,intd){inti;for(i=1;i<d;i++)printf("%d%c",y[i]=x[i-1]+x[i],i<d-1?' ':'\n');returnD>d?pascals(y,x,d+1):0;}intmain(){intx[D]={0,1,0},y[D]={0};returnpascals(x,y,0);}

Adding previous row values

voidtriangleC(intnRows){if(nRows<=0)return;int*prevRow=NULL;for(intr=1;r<=nRows;r++){int*currRow=malloc(r*sizeof(int));for(inti=0;i<r;i++){intval=i==0||i==r-1?1:prevRow[i-1]+prevRow[i];currRow[i]=val;printf(" %4d",val);}printf("\n");free(prevRow);prevRow=currRow;}free(prevRow);}

C#

Translation of:Fortran

Produces no output when n is less than or equal to zero.

usingSystem;namespaceRosettaCode{classPascalsTriangle{publicstaticvoidCreateTriangle(intn){if(n>0){for(inti=0;i<n;i++){intc=1;Console.Write(" ".PadLeft(2*(n-1-i)));for(intk=0;k<=i;k++){Console.Write("{0}",c.ToString().PadLeft(3));c=c*(i-k)/(k+1);}Console.WriteLine();}}}publicstaticvoidMain(){CreateTriangle(8);}}}

Arbitrarily large numbers (BigInteger), arbitrary row selection

usingSystem;usingSystem.Linq;usingSystem.Numerics;usingSystem.Collections.Generic;namespaceRosettaCode{publicstaticclassPascalsTriangle{publicstaticIEnumerable<BigInteger[]>GetTriangle(intquantityOfRows){IEnumerable<BigInteger>range=Enumerable.Range(0,quantityOfRows).Select(num=>newBigInteger(num));returnrange.Select(num=>GetRow(num).ToArray());}publicstaticIEnumerable<BigInteger>GetRow(BigIntegerrowNumber){BigIntegerdenominator=1;BigIntegernumerator=rowNumber;BigIntegercurrentValue=1;for(BigIntegercounter=0;counter<=rowNumber;counter++){yieldreturncurrentValue;currentValue=BigInteger.Multiply(currentValue,numerator--);currentValue=BigInteger.Divide(currentValue,denominator++);}yieldbreak;}publicstaticstringFormatTriangleString(IEnumerable<BigInteger[]>triangle){intmaxDigitWidth=triangle.Last().Max().ToString().Length;IEnumerable<string>rows=triangle.Select(arr=>string.Join(" ",arr.Select(array=>CenterString(array.ToString(),maxDigitWidth))));intmaxRowWidth=rows.Last().Length;returnstring.Join(Environment.NewLine,rows.Select(row=>CenterString(row,maxRowWidth)));}privatestaticstringCenterString(stringtext,intwidth){intspaces=width-text.Length;intpadLeft=(spaces/2)+text.Length;returntext.PadLeft(padLeft).PadRight(width);}}}

Example:

staticvoidMain(){IEnumerable<BigInteger[]>triangle=PascalsTriangle.GetTriangle(20);stringoutput=PascalsTriangle.FormatTriangleString(triangle)Console.WriteLine(output);}
Output:
                                                           1                                                                                                                   1     1                                                                                                             1     2     1                                                                                                       1     3     3     1                                                                                                 1     4     6     4     1                                                                                           1     5    10    10     5     1                                                                                     1     6    15    20    15     6     1                                                                               1     7    21    35    35    21     7     1                                                                         1     8    28    56    70    56    28     8     1                                                                   1     9    36    84    126   126   84    36     9     1                                                             1    10    45    120   210   252   210   120   45    10     1                                                       1    11    55    165   330   462   462   330   165   55    11     1                                                 1    12    66    220   495   792   924   792   495   220   66    12     1                                           1    13    78    286   715  1287  1716  1716  1287   715   286   78    13     1                                     1    14    91    364  1001  2002  3003  3432  3003  2002  1001   364   91    14     1                               1    15    105   455  1365  3003  5005  6435  6435  5005  3003  1365   455   105   15     1                         1    16    120   560  1820  4368  8008  11440 12870 11440 8008  4368  1820   560   120   16     1                   1    17    136   680  2380  6188  12376 19448 24310 24310 19448 12376 6188  2380   680   136   17     1             1    18    153   816  3060  8568  18564 31824 43758 48620 43758 31824 18564 8568  3060   816   153   18     1       1    19    171   969  3876  11628 27132 50388 75582 92378 92378 75582 50388 27132 11628 3876   969   171   19     1

C++

#include<iostream>#include<algorithm>#include<cstdio>usingnamespacestd;voidPascal_Triangle(intsize){inta[100][100];inti,j;//first row and first coloumn has the same value=1for(i=1;i<=size;i++){a[i][1]=a[1][i]=1;}//Generate the full Trianglefor(i=2;i<=size;i++){for(j=2;j<=size-i;j++){if(a[i-1][j]==0||a[i][j-1]==0){break;}a[i][j]=a[i-1][j]+a[i][j-1];}}/*  1 1 1 1  1 2 3  1 3  1first print as above format-->for (i = 1; i < size; i++) {for (j = 1; j < size; j++) {if (a[i][j] == 0) {break;}printf("%8d",a[i][j]);}cout<<"\n\n";}*/// standard Pascal Triangle Formatintrow,space;for(i=1;i<size;i++){space=row=i;j=1;while(space<=size+(size-i)+1){cout<<" ";space++;}while(j<=i){if(a[row][j]==0){break;}if(j==1){printf("%d",a[row--][j++]);}elseprintf("%6d",a[row--][j++]);}cout<<"\n\n";}}intmain(){//freopen("out.txt","w",stdout);intsize;cin>>size;Pascal_Triangle(size);}}

C++11 (with dynamic and semi-static vectors)

Constructs the whole triangle in memory before printing it. Uses vector of vectors as a 2D array with variable column size. Theoretically, semi-static version should work a little faster.

// Compile with -std=c++11#include<iostream>#include<vector>usingnamespacestd;voidprint_vector(vector<int>dummy){for(vector<int>::iteratori=dummy.begin();i!=dummy.end();++i)cout<<*i<<" ";cout<<endl;}voidprint_vector_of_vectors(vector<vector<int>>dummy){for(vector<vector<int>>::iteratori=dummy.begin();i!=dummy.end();++i)print_vector(*i);cout<<endl;}vector<vector<int>>dynamic_triangle(intdummy){vector<vector<int>>result;if(dummy>0){// if the argument is 0 or negative exit immediatelyvector<int>row;// The first rowrow.push_back(1);result.push_back(row);// The second rowif(dummy>1){row.clear();row.push_back(1);row.push_back(1);result.push_back(row);}// The other rowsif(dummy>2){for(inti=2;i<dummy;i++){row.clear();row.push_back(1);for(intj=1;j<i;j++)row.push_back(result.back().at(j-1)+result.back().at(j));row.push_back(1);result.push_back(row);}}}returnresult;}vector<vector<int>>static_triangle(intdummy){vector<vector<int>>result;if(dummy>0){// if the argument is 0 or negative exit immediatelyvector<int>row;result.resize(dummy);// This should work faster than consecutive push_back()s// The first rowrow.resize(1);row.at(0)=1;result.at(0)=row;// The second rowif(result.size()>1){row.resize(2);row.at(0)=1;row.at(1)=1;result.at(1)=row;}// The other rowsif(result.size()>2){for(inti=2;i<result.size();i++){row.resize(i+1);// This should work faster than consecutive push_back()srow.front()=1;for(intj=1;j<row.size()-1;j++)row.at(j)=result.at(i-1).at(j-1)+result.at(i-1).at(j);row.back()=1;result.at(i)=row;}}}returnresult;}intmain(){vector<vector<int>>triangle;intn;cout<<endl<<"The Pascal's Triangle"<<endl<<"Enter the number of rows: ";cin>>n;// Call the dynamic functiontriangle=dynamic_triangle(n);cout<<endl<<"Calculated using dynamic vectors:"<<endl<<endl;print_vector_of_vectors(triangle);// Call the static functiontriangle=static_triangle(n);cout<<endl<<"Calculated using static vectors:"<<endl<<endl;print_vector_of_vectors(triangle);return0;}

C++11 (with a class)

A full fledged example with a class definition and methods to retrieve data, worthy of the title object-oriented.

// Compile with -std=c++11#include<iostream>#include<vector>usingnamespacestd;classpascal_triangle{vector<vector<int>>data;// This is the actual datavoidprint_row(vector<int>dummy){for(vector<int>::iteratori=dummy.begin();i!=dummy.end();++i)cout<<*i<<" ";cout<<endl;}public:pascal_triangle(intdummy){// Everything is done on the construction phaseif(dummy>0){// if the argument is 0 or negative exit immediatelyvector<int>row;data.resize(dummy);// Theoretically this should work faster than consecutive push_back()s// The first rowrow.resize(1);row.at(0)=1;data.at(0)=row;// The second rowif(data.size()>1){row.resize(2);row.at(0)=1;row.at(1)=1;data.at(1)=row;}// The other rowsif(data.size()>2){for(inti=2;i<data.size();i++){row.resize(i+1);// Theoretically this should work faster than consecutive push_back()srow.front()=1;for(intj=1;j<row.size()-1;j++)row.at(j)=data.at(i-1).at(j-1)+data.at(i-1).at(j);row.back()=1;data.at(i)=row;}}}}~pascal_triangle(){for(vector<vector<int>>::iteratori=data.begin();i!=data.end();++i)i->clear();// I'm not sure about the necessity of this loop!data.clear();}voidprint_row(intdummy){if(dummy<data.size())for(vector<int>::iteratori=data.at(dummy).begin();i!=data.at(dummy).end();++i)cout<<*i<<" ";cout<<endl;}voidprint(){for(inti=0;i<data.size();i++)print_row(i);}intget_coeff(intdummy1,intdummy2){intresult=0;if((dummy1<data.size())&&(dummy2<data.at(dummy1).size()))result=data.at(dummy1).at(dummy2);returnresult;}vector<int>get_row(intdummy){vector<int>result;if(dummy<data.size())result=data.at(dummy);returnresult;}};intmain(){intn;cout<<endl<<"The Pascal's Triangle with a class!"<<endl<<endl<<"Enter the number of rows: ";cin>>n;pascal_trianglemyptri(n);cout<<endl<<"The whole triangle:"<<endl;myptri.print();cout<<endl<<"Just one row:"<<endl;myptri.print_row(n/2);cout<<endl<<"Just one coefficient:"<<endl;cout<<myptri.get_coeff(n/2,n/4)<<endl<<endl;return0;}

Clojure

For n < 1, prints nothing, always returns nil. Copied from the Common Lisp implementation below, but with local functions and explicit tail-call-optimized recursion (recur).

(defnpascal[n](let[newrow(fnnewrow[lstret](iflst(recur(restlst)(conjret(+(firstlst)(or(secondlst)0))))ret))genrow(fngenrow[nlst](when(<0n)(do(printlnlst)(recur(decn)(conj(newrowlst[])1)))))](genrown[1])))(pascal4)

And here's another version, using thepartition function to produce the sequence of pairs in a row, which are summed and placed between two ones to produce the next row:

(defnnextrow[row](vec(concat[1](map#(apply+%)(partition21row))[1])))(defnpascal[n](assert(and(integer?n)(pos?n)))(let[triangle(taken(iteratenextrow[1]))](doseq[rowtriangle](printlnrow))))

Theassert form causes thepascal function to throw an exception unless the argument is (integral and) positive.

Here's a third version using theiterate function

(defpascal(iterate(fn[prev-row](->>(concat[[(firstprev-row)]](partition21prev-row)[[(lastprev-row)]])(map(partialapply+),,,)))[1]))

Another short version which returns an infinite pascal triangle as a list, using the iterate function.

(defpascal(iterate#(concat[1](map+%(rest%))[1])[1]))

One can then get the first n rows using the take function

(take10pascal); returns a list of the first 10 pascal rows

Also, one can retrieve the nth row using the nth function

(nthpascal10);returns the nth row

CoffeeScript

This version assumes n is an integer and n >= 1. It efficiently computes binomial coefficients.

pascal=(n) ->width=6forrin[1..n]s=ws(width/2)*(n-r)# center rowoutput=(n) ->s+=padwidth,ncell=1outputcell# Compute binomial coefficients as you go# across the row.forcin[1...r]cell*=(r-c)/coutputcellconsole.logsws=(n) ->s=''s+=' 'foriin[0...n]spad=(cnt, n) ->s=n.toString()# There is probably a better way to do this.cnt-=s.lengthright=Math.floor(cnt/2)left=cnt-rightws(left)+s+ws(right)pascal(7)
Output:
> coffee pascal.coffee                      1                    1     1                 1     2     1              1     3     3     1           1     4     6     4     1        1     5    10    10     5     1     1     6    15    20    15     6     1

Commodore BASIC

10INPUT"HOW MANY";N20IFN<1THENEND30DIMC(N)40DIMD(N)50LETC(1)=160LETD(1)=170FORJ=1TON80FORI=1TON-J+190PRINT"  ";100NEXTI110FORI=1TOJ120PRINTC(I)" ";130NEXTI140PRINT150IFJ=NTHENEND160C(J+1)=1170D(J+1)=1180FORI=1TOJ-1190D(I+1)=C(I)+C(I+1)200NEXTI210FORI=1TOJ220C(I)=D(I)230NEXTI240NEXTJ

Output:

RUNHOW MANY? 8                   1                 1   1               1   2   1             1   3   3   1           1   4   6   4   1         1   5   10   10   5   1        1   6   15   20   15   6   1     1   7   21   35   35   21   7   1   1   8   28   56   70   56   28   8    1READY.

Common Lisp

To evaluate, call (pascal n). For n < 1, it simply returns nil.

(defunpascal(n)(genrown'(1)))(defungenrow(nl)(when(pluspn)(printl)(genrow(1-n)(cons1(newrowl)))))(defunnewrow(l)(if(null(restl))'(1)(cons(+(firstl)(secondl))(newrow(restl)))))

An iterative solution withloop, usingnconc instead ofcollect to keep track of the lastcons. Otherwise, it would be necessary to traverse the list to do a(rplacd (last a) (list 1)).

(defunpascal-next-row(a)(loop:forq:ina:andp=0:thenq:ass=(list(+pq)):nconcs:intoa:finally(rplacds(list1))(returna)))(defunpascal(n)(loop:fora=(list1):then(pascal-next-rowa):repeatn:collecta))

Another iterative solution, this time using pretty-printing to automatically print the triangle in the shape of a triangle in the terminal. The print-pascal-triangle function computes and uses the length of the printed last row to decide how wide the triangle should be.

(defunnext-pascal-triangle-row(list)`(1,.(mapcar#'+list(restlist))1))(defunpascal-triangle(number-of-rows)(looprepeatnumber-of-rowsforrow='(1)then(next-pascal-triangle-rowrow)collectrow))(defunprint-pascal-triangle(number-of-rows)(let*((triangle(pascal-trianglenumber-of-rows))(max-row-length(length(write-to-string(first(lasttriangle))))))(formatt(formatnil"~~{~~~D:@<~~{~~A ~~}~~>~~%~~}"max-row-length)triangle)))

For example:

(print-pascal-triangle4)
   1       1 1     1 2 1   1 3 3 1
(print-pascal-triangle8)
         1                   1 1                 1 2 1               1 3 3 1             1 4 6 4 1          1 5 10 10 5 1       1 6 15 20 15 6 1   1 7 21 35 35 21 7 1

Component Pascal

Works with:BlackBox Component Builder
MODULEPascalTriangle;IMPORTStdLog,DevCommanders,TextMappers;TYPEExpansion*=POINTERTOARRAYOFLONGINT;PROCEDUREShow*(e:Expansion);VARi:INTEGER;BEGINi:=0;WHILE(i<LEN(e))&(e[i]#0)DOStdLog.Int(e[i]);INC(i)END;StdLog.LnENDShow;PROCEDUREGenFor*(p:LONGINT):Expansion;VARexpA,expB:Expansion;i,j:LONGINT;PROCEDURESwap(VARx,y:Expansion);VARswap:Expansion;BEGINswap:=x;x:=y;y:=swapENDSwap;BEGINASSERT(p>=0);NEW(expA,p+2);NEW(expB,p+2);FORi:=0TOpDOIFi=0THENexpA[0]:=1ELSEFORj:=0TOiDOIFj=0THENexpB[j]:=expA[j]ELSEexpB[j]:=expA[j-1]+expA[j]ENDEND;Swap(expA,expB)END;END;expB:=NIL;(* for the GC *)RETURNexpAENDGenFor;PROCEDUREDo*;VARs:TextMappers.Scanner;exp:Expansion;BEGINs.ConnectTo(DevCommanders.par.text);s.SetPos(DevCommanders.par.beg);s.Scan;WHILE(~s.rider.eot)DOIF(s.type=TextMappers.char)&(s.char='~')THENRETURNELSIF(s.type=TextMappers.int)THENexp:=GenFor(s.int);Show(exp)END;s.ScanENDENDDo;ENDPascalTriangle.
Execute: ^Q PascalTriangle.Do 0 1 2 3 4 5 6 7 8 9 10 11 12~
Output:
 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 45 10 1 1 11 55 165 330 462 462 330 165 55 11 1 1 12 66 220 495 792 924 792 495 220 66 12 1

D

Less functional Version

int[][]pascalsTriangle(inintrows)purenothrow{autotri=newint[][rows];foreach(r;0..rows){intv=1;foreach(c;0..r+1){tri[r]~=v;v=(v*(r-c))/(c+1);}}returntri;}voidmain(){immutablet=pascalsTriangle(10);assert(t==[[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1],[1,5,10,10,5,1],[1,6,15,20,15,6,1],[1,7,21,35,35,21,7,1],[1,8,28,56,70,56,28,8,1],[1,9,36,84,126,126,84,36,9,1]]);}

More functional Version

importstd.stdio,std.algorithm,std.range;autopascal()purenothrow{return[1].recurrence!q{zip(a[n-1]~0,0~a[n-1]).map!q{a[0]+a[1]}.array};}voidmain(){pascal.take(5).writeln;}
Output:
[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

Alternative Version

There is similarity between Pascal's triangle andSierpinski triangle. Their difference are the initial line and the operation that act on the line element to produce next line. The following is a generic pascal's triangle implementation for positive number of lines output (n).

importstd.stdio,std.string,std.array,std.format;stringPascal(aliasdg,T,TinitValue)(intn){stringoutput;voidappend(inT[]l){output~=" ".replicate((n-l.length+1)*2);foreach(e;l)output~=format("%4s",format("%4s",e));output~="\n";}if(n>0){T[][]lines=[[initValue]];append(lines[0]);foreach(i;1..n){lines~=lines[i-1]~initValue;// length + 1foreach(intj;1..lines[i-1].length)lines[i][j]=dg(lines[i-1][j],lines[i-1][j-1]);append(lines[i]);}}returnoutput;}stringdelegate(intn)genericPascal(aliasdg,T,TinitValue)(){mixinPascal!(dg,T,initValue);return&Pascal;}voidmain(){autopascal=genericPascal!((inta,intb)=>a+b,int,1)();staticcharxor(chara,charb){returna==b?'_':'*';}autosierpinski=genericPascal!(xor,char,'*')();foreach(i;[1,5,9])writef(pascal(i));// an order 4 sierpinski triangle is a 2^4 lines generic// Pascal triangle with xor operationforeach(i;[16])writef(sierpinski(i));}
Output:
     1             1           1   1         1   2   1       1   3   3   1     1   4   6   4   1                     1                   1   1                 1   2   1               1   3   3   1             1   4   6   4   1           1   5  10  10   5   1         1   6  15  20  15   6   1       1   7  21  35  35  21   7   1     1   8  28  56  70  56  28   8   1                                   *                                 *   *                               *   _   *                             *   *   *   *                           *   _   _   _   *                         *   *   _   _   *   *                       *   _   *   _   *   _   *                     *   *   *   *   *   *   *   *                   *   _   _   _   _   _   _   _   *                 *   *   _   _   _   _   _   _   *   *               *   _   *   _   _   _   _   _   *   _   *             *   *   *   *   _   _   _   _   *   *   *   *           *   _   _   _   *   _   _   _   *   _   _   _   *         *   *   _   _   *   *   _   _   *   *   _   _   *   *       *   _   *   _   *   _   *   _   *   _   *   _   *   _   *     *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *

Dart

import'dart:io';pascal(n){if(n<=0)print("Not defined");elseif(n==1)print(1);else{List<List<int>>matrix=newList<List<int>>();matrix.add(newList<int>());matrix.add(newList<int>());matrix[0].add(1);matrix[1].add(1);matrix[1].add(1);for(vari=2;i<n;i++){List<int>list=newList<int>();list.add(1);for(varj=1;j<i;j++){list.add(matrix[i-1][j-1]+matrix[i-1][j]);}list.add(1);matrix.add(list);}for(vari=0;i<n;i++){for(varj=0;j<=i;j++){stdout.write(matrix[i][j]);stdout.write(' ');}stdout.write('\n');}}}voidmain(){pascal(0);pascal(1);pascal(3);pascal(6);}

Delphi

programPascalsTriangle;procedurePascal(r:Integer);vari,c,k:Integer;beginfori:=0tor-1dobeginc:=1;fork:=0toidobeginWrite(c:3);c:=c*(i-k)div(k+1);end;Writeln;end;end;beginPascal(9);end.

DuckDB

Works with:DuckDB version V1.0
createorreplacefunctionpascal_triangle(n)astable(withrecursivecteas(SELECT0asi,[1]::BIGINT[]asrow,UNIONALLSELECTi+1asi,([1]||list_transform(row,(x,ix)->x+(coalesce(row[ix+1],0))))asrowFROMcteWHEREi<n)selectrowas"pascal_triangle"FROMcteorderbyi);.printTheresultsforalln<=0arethesame:select*as"pascal_triangle(0)"frompascal_triangle(0);frompascal_triangle(4)_("pascal_triangle(4)");
Output:
The results for all n<=0 are the same:┌────────────────────┐│ pascal_triangle(0) ││      int64[]       │├────────────────────┤│ [1]                │└────────────────────┘┌────────────────────┐│ pascal_triangle(4) ││      int64[]       │├────────────────────┤│ [1]                ││ [1, 1]             ││ [1, 2, 1]          ││ [1, 3, 3, 1]       ││ [1, 4, 6, 4, 1]    │└────────────────────┘

DWScript

Doesn't print anything for negative or null values.

procedurePascal(r:Integer);vari,c,k:Integer;beginfori:=0tor-1dobeginc:=1;fork:=0toidobeginPrint(Format('%4d',[c]));c:=(c*(i-k))div(k+1);end;PrintLn('');end;end;Pascal(9);
Output:
   1   1   1   1   2   1   1   3   3   1   1   4   6   4   1   1   5  10  10   5   1   1   6  15  20  15   6   1   1   7  21  35  35  21   7   1   1   8  28  56  70  56  28   8   1

E

So as not to bother with text layout, this implementation generates a HTML fragment. It uses a single mutable array, appending one 1 and adding to each value the preceding value.

def pascalsTriangle(n, out) {    def row := [].diverge(int)    out.print("<table style='text-align: center; border: 0; border-collapse: collapse;'>")    for y in 1..n {        out.print("<tr>")        row.push(1)        def skip := n - y        if (skip > 0) {            out.print(`<td colspan="$skip"></td>`)        }        for x => v in row {            out.print(`<td>$v</td><td></td>`)        }        for i in (1..!y).descending() {            row[i] += row[i - 1]        }        out.println("</tr>")    }    out.print("</table>")}
def out := <file:triangle.html>.textWriter()try {    pascalsTriangle(15, out)} finally {    out.close()}makeCommand("yourFavoriteWebBrowser")("triangle.html")

EasyLang

numfmt 0 4proc pascal n . .   r[] = [ 1 ]   for i to n      rn[] = [ ]      l = 0      for j to n - len r[]         write "  "      .      for r in r[]         write r         rn[] &= l + r         l = r      .      print ""      rn[] &= l      swap r[] rn[]   ..pascal 13

Eiffel

notedescription:"Prints pascal's triangle"output:"[       Per requirements of the RosettaCode example, execution will print the first n rows of pascal's triangle      ]"date:"19 December 2013"authors:"Sandro Meier","Roman Brunner"revision:"1.0"libraries:"Relies on HASH_TABLE from EIFFEL_BASE library"implementation:"[   Recursive implementation to calculate the n'th row. ]"warning:"[Will not work for large n's (INTEGER_32)         ]"classAPPLICATIONinheritARGUMENTScreatemakefeature{NONE}-- Initializationmakelocaln:INTEGERdocreate{HASH_TABLE[ARRAY[INTEGER],INTEGER]}pascal_lines.make(n)--create the hash_table objectio.new_linen:=25draw(n)endfeatureline(n:INTEGER):ARRAY[INTEGER]--Calculates the n'th linelocalupper_line:ARRAY[INTEGER]i:INTEGERdoifn=1then--trivial case first linecreateResult.make_filled(0,1,n+2)Result.put(0,1)Result.put(1,2)Result.put(0,3)elseifpascal_lines.has(n)then--checks if the result was already calculatedResult:=pascal_lines.at(n)else--calculates the n'th line recursivelycreateResult.make_filled(0,1,n+2)--for caluclation purposes add a 0 at the beginning of each lineResult.put(0,1)upper_line:=line(n-1)fromi:=1untili>upper_line.count-1loopResult.put(upper_line[i]+upper_line[i+1],i+1)i:=i+1endResult.put(0,n+2)--for caluclation purposes add a 0 at the end of each linepascal_lines.put(Result,n)endenddraw(n:INTEGER)--draw n lines of pascal's trianglelocalspace_string:STRINGwidth,i:INTEGERdospace_string:=" "--question of design: add space_string at the beginning of each linewidth:=line(n).countspace_string.multiply(width)fromi:=1untili>nloopspace_string.remove_tail(1)io.put_string(space_string)acrossline(i)ascloopifc.item/=0thenio.put_string(c.item.out+" ")endendio.new_linei:=i+1endendfeature--Accesspascal_lines:HASH_TABLE[ARRAY[INTEGER],INTEGER]--Contains all already calculated linesend

Elixir

defmodulePascaldodeftriangle(n),do:triangle(n,[1])deftriangle(0,list),do:listdeftriangle(n,list)doIO.inspectlistnew_list=Enum.zip([0]++list,list++[0])|>Enum.map(fn{a,b}->a+bend)triangle(n-1,new_list)endendPascal.triangle(8)
Output:
[1][1, 1][1, 2, 1][1, 3, 3, 1][1, 4, 6, 4, 1][1, 5, 10, 10, 5, 1][1, 6, 15, 20, 15, 6, 1][1, 7, 21, 35, 35, 21, 7, 1]

Emacs Lisp

Using mapcar and append, returing a list of rows

(require'cl-lib)(defunnext-row(row)(cl-mapcar#'+(cons0row)(appendrow'(0))))(defuntriangle(rowrows)(if(=rows0)'()(consrow(triangle(next-rowrow)(-rows1)))))
Output:

Call the function from the REPL, IELM:

ELISP> (triangle (list 1) 6)((1) (1 1) (1 2 1) (1 3 3 1) (1 4 6 4 1) (1 5 10 10 5 1))

Translation from Pascal

(defunpascal(r)(dotimes(ir)(let((c1))(dotimes(k(+i1))(princ(format"%d "c))(setqc(/(*c(-ik))(+k1))))(terpri))))
Output:

From the REPL:

ELISP> (princ (pascal 6))1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1

Returning a string

Same as the translation from Pascal, but now returning a string.

(defunpascal(r)(let((out""))(dotimes(ir)(let((c1))(dotimes(k(+i1))(setqout(concatout(format"%d "c)))(setqc(/(*c(-ik))(+k1))))(setqout(concatout"\n"))))out))
Output:

Now, since this one returns a string, it is possible to insert the result in the current buffer:

(insert (pascal 6))1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1

Erlang

-import(lists).-export([pascal/1]).pascal(1)->[[1]];pascal(N)->L=pascal(N-1),[H|_]=L,[lists:zipwith(fun(X,Y)->X+Yend,[0]++H,H++[0])|L].
Output:
  Eshell V5.5.5  (abort with ^G)  1> pascal:pascal(5).  [[1,4,6,4,1],[1,3,3,1],[1,2,1],[1,1],[1]]

ERRE

PROGRAM PASCAL_TRIANGLEPROCEDURE PASCAL(R%)  LOCAL I%,C%,K%    FOR I%=0 TO R%-1 DO      C%=1      FOR K%=0 TO I% DO        WRITE("###";C%;)        C%=(C%*(I%-K%)) DIV (K%+1)      END FOR      PRINT   END FOREND PROCEDUREBEGIN  PASCAL(9)END PROGRAM

Output:

  1  1  1  1  2  1  1  3  3  1  1  4  6  4  1  1  5 10 10  5  1  1  6 15 20 15  6  1  1  7 21 35 35 21  7  1  1  8 28 56 70 56 28  8  1

Euphoria

Summing from Previous Rows

sequence rowrow = {}for m = 1 to 10 do    row = row & 1    for n = length(row)-1 to 2 by -1 do        row[n] += row[n-1]    end for    print(1,row)    puts(1,'\n')end for
Output:
 {1} {1,1} {1,2,1} {1,3,3,1} {1,4,6,4,1} {1,5,10,10,5,1} {1,6,15,20,15,6,1} {1,7,21,35,35,21,7,1} {1,8,28,56,70,56,28,8,1} {1,9,36,84,126,126,84,36,9,1}

Excel

LAMBDA

Binding the names PASCAL and BINCOEFF to the following lambda expressions in the Name Manager of the Excel WorkBook, to define Pascal's triangle in terms of binomial coefficients:

(SeeLAMBDA: The ultimate Excel worksheet function)

Works with:Office 365 betas 2021
PASCAL=LAMBDA(n,BINCOEFF(n-1)(SEQUENCE(1,n,0,1)))BINCOEFF=LAMBDA(n,LAMBDA(k,QUOTIENT(FACT(n),FACT(k)*FACT(n-k))))
Output:
fx=PASCAL(A2)
ABCDEFGHIJK
1Row numberPASCAL's TRIANGLE
211
3211
43121
541331
6514641
7615101051
871615201561
98172135352171
10918285670562881
1110193684126126843691

Or defining the whole triangle as a single grid, by binding the name TRIANGLE to an additional lambda:

TRIANGLE=LAMBDA(n,LET(ixs,SEQUENCE(n,n,0,1),x,MOD(ixs,n),y,QUOTIENT(ixs,n),IF(x<=y,BINCOEFF(y)(x),"")))
Output:
fx=TRIANGLE(10)
ABCDEFGHIJK
1PASCAL's TRIANGLE
21
311
4121
51331
614641
715101051
81615201561
9172135352171
1018285670562881
11193684126126843691

F#

letrecnextrowl=matchlwith|[]->[]|h::[]->[1]|h::t->h+t.Head::nextrowtletpascalTrin=List.scan(funli->1::nextrowl)[1][1..n]forrowinpascalTri(10)doforiinrowdoprintf"%s"(i.ToString()+", ")printfn"%s""\n"

Factor

This implementation works by summing the previous line content. Result for n < 1 is the same as for n == 1.

USING:groupingkernelmathsequences;:(pascal)(seq--newseq)duplast0prefix0suffix2<clumps>[sum]mapsuffix;:pascal(n--seq)1-{{1}}swap[(pascal)]times;

It works as:

5pascal.{{1}{1 1}{1 2 1}{1 3 3 1}{1 4 6 4 1}}

Fantom

class Main{  Int[] next_row (Int[] row)  {    new_row := [1]    (row.size-1).times |i|    {      new_row.add (row[i] + row[i+1])    }    new_row.add (1)    return new_row  }  Void print_pascal (Int n)  // no output for n <= 0  {    current_row := [1]    n.times     {      echo (current_row.join(" "))      current_row = next_row (current_row)    }  }  Void main ()  {    print_pascal (10)  }}

FOCAL

1.1 S OLD(1)=1; T %4.0, 1, !1.2 F N=1,10; D 21.3 Q2.1 S NEW(1)=12.2 F X=1,N; S NEW(X+1)=OLD(X)+OLD(X+1)2.3 F X=1,N+1; D 32.4 T !3.1 S OLD(X)=NEW(X)3.2 T %4.0, OLD(X)
Output:
=    1=    1=    1=    1=    2=    1=    1=    3=    3=    1=    1=    4=    6=    4=    1=    1=    5=   10=   10=    5=    1=    1=    6=   15=   20=   15=    6=    1=    1=    7=   21=   35=   35=   21=    7=    1=    1=    8=   28=   56=   70=   56=   28=    8=    1=    1=    9=   36=   84=  126=  126=   84=   36=    9=    1=    1=   10=   45=  120=  210=  252=  210=  120=   45=   10=    1

Forth

:init( n -- )hereswapcellserase1here!;:.line( n -- )crhereswap0dodup@.cell+loopdrop;:next( n -- )hereswap1-cellshere+doi@icell++!-1cells+loop;:pascal( n -- )dupinit1.line1?doinexti1+.lineloop;

This is a bit more efficient.

Translation of:C
:PascTrianglecrdup0?do1over1-i-2*spacesi1+0?dodup4.rji-*i1+/loopcrdroploopdrop;13PascTriangle

Fortran

Works with:Fortran version 90 and later

Prints nothing for n<=0. Output formatting breaks down for n>20

PROGRAMPascals_TriangleCALLPrint_Triangle(8)END PROGRAMPascals_TriangleSUBROUTINEPrint_Triangle(n)IMPLICIT NONEINTEGER,INTENT(IN)::nINTEGER::c,i,j,k,spacesDOi=0,n-1c=1spaces=3*(n-1-i)DOj=1,spacesWRITE(*,"(A)",ADVANCE="NO")" "END DO     DOk=0,iWRITE(*,"(I6)",ADVANCE="NO")cc=c*(i-k)/(k+1)END DO     WRITE(*,*)END DOEND SUBROUTINEPrint_Triangle

FreeBASIC

' FB 1.05.0 Win64SubpascalTriangle(nAsUInteger)Ifn=0ThenReturnDimprevRow(1Ton)AsUIntegerDimcurrRow(1Ton)AsUIntegerDimstart(1Ton)AsUInteger''stores starting column for each rowstart(n)=1ForiAsInteger=n-1To1Step-1start(i)=start(i+1)+3NextprevRow(1)=1PrintTab(start(1));Print1UForiAsUInteger=2TonForjAsUInteger=1ToiIfj=1ThenPrintTab(start(i));"1";currRow(1)=1ElseIfj=iThenPrint"     1"currRow(i)=1ElsecurrRow(j)=prevRow(j-1)+prevRow(j)PrintUsing"######";currRow(j);"    ";EndIfNextjForjAsUInteger=1ToiprevRow(j)=currRow(j)NextjNextiEndSubpascalTriangle(14)PrintPrint"Press any key to quit"Sleep
Output:
                                       1                                    1     1                                 1     2     1                              1     3     3     1                           1     4     6     4     1                        1     5    10    10     5     1                     1     6    15    20    15     6     1                  1     7    21    35    35    21     7     1               1     8    28    56    70    56    28     8     1            1     9    36    84   126   126    84    36     9     1         1    10    45   120   210   252   210   120    45    10     1      1    11    55   165   330   462   462   330   165    55    11     1   1    12    66   220   495   792   924   792   495   220    66    12     11    13    78   286   715  1287  1716  1716  1287   715   286    78    13     1

Frink

This version takes a little effort to automatically format the tree based upon the width of the largest numbers in the bottom row. It automatically calculates this easily using Frink's builtin function for efficiently calculating (even large) binomial coefficients with cached factorials and binary splitting.

pascal[rows] :={   widest = length[toString[binomial[rows-1, (rows-1) div 2]]]      for row = 0 to rows-1   {      line = repeat[" ", round[(rows-row)* (widest+1)/2]]      for col = 0 to row         line = line + padRight[binomial[row, col], widest+1, " "]      println[line]   }}pascal[10]
Output:
                    1                     1   1                   1   2   1                 1   3   3   1               1   4   6   4   1             1   5   10  10  5   1           1   6   15  20  15  6   1         1   7   21  35  35  21  7   1       1   8   28  56  70  56  28  8   1     1   9   36  84  126 126 84  36  9   1

FunL

Summing from Previous Rows

Translation of:Scala
import lists.zipdef  pascal( 1 ) = [1]  pascal( n ) = [1] + map( (a, b) -> a + b, zip(pascal(n-1), pascal(n-1).tail()) ) + [1]

Combinations

Translation of:Haskell
import integers.choosedef pascal( n ) = [choose( n - 1, k ) | k <- 0..n-1]

Pascal's Triangle

def triangle( height ) =  width = max( map(a -> a.toString().length(), pascal(height)) )  if 2|width    width++  for n <- 1..height    print( ' '*((width + 1)\2)*(height - n) )    println( map(a -> format('%' + width + 'd ', a), pascal(n)).mkString() )triangle( 10 )
Output:
                    1                  1   1                1   2   1              1   3   3   1            1   4   6   4   1          1   5  10  10   5   1        1   6  15  20  15   6   1      1   7  21  35  35  21   7   1    1   8  28  56  70  56  28   8   1  1   9  36  84 126 126  84  36   9   1

FutureBasic

include "NSLog.incl"NSLogSetTitle( @"Pascal's Triangle" )NSLogSetTextAlignment( NSTextAlignmentCenter )clear local fn pyramid( n as int )  int v( 20, 20 )  v( 0, 1 ) = 1  nslog( @"\n   1 " )  for int y = 1 to n -1    for int x = 1 to y + 1      v( y, x ) = v( y - 1, x - 1 ) + v( y - 1, x )      nslog( @"%4d \b", v( y, x ) )    next    nslog( @"" )  nextend fnfn pyramid( 15 )handleevents
Output:

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in itswebsite.

Inthis page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

Test case

GAP

Pascal:=function(n)locali,v;v:=[1];foriin[1..n]doDisplay(v);v:=Concatenation([0],v)+Concatenation(v,[0]);od;end;Pascal(9);# [ 1 ]# [ 1, 1 ]# [ 1, 2, 1 ]# [ 1, 3, 3, 1 ]# [ 1, 4, 6, 4, 1 ]# [ 1, 5, 10, 10, 5, 1 ]# [ 1, 6, 15, 20, 15, 6, 1 ]# [ 1, 7, 21, 35, 35, 21, 7, 1 ]# [ 1, 8, 28, 56, 70, 56, 28, 8, 1 ]

Go

No output for n < 1. Otherwise, output formatted left justified.

packagemainimport"fmt"funcprintTriangle(nint){// degenerate casesifn<=0{return}fmt.Println(1)ifn==1{return}// iterate over rows, zero baseda:=make([]int,(n+1)/2)a[0]=1forrow,middle:=1,0;row<n;row++{// generate new roweven:=row&1==0ifeven{a[middle+1]=a[middle]*2}fori:=middle;i>0;i--{a[i]+=a[i-1]}// print rowfori:=0;i<=middle;i++{fmt.Print(a[i]," ")}ifeven{middle++}fori:=middle;i>=0;i--{fmt.Print(a[i]," ")}fmt.Println("")}}funcmain(){printTriangle(4)}

Output:

11 11 2 11 3 3 1

Golfscript

{[1]\{.p.(;[\\]zip);{~+}%1\+1+}*}:pas;5 pas;
Output:
[1][1 1][1 2 1][1 3 3 1][1 4 6 4 1]

Groovy

Recursive

In the spirit of the Haskell "think in whole lists" solution here is a list-driven, minimalist solution:

defpascalpascal={n->(n<=1)?[1]:[[0]+pascal(n-1),pascal(n-1)+[0]].transpose().collect{it.sum()}}

However, this solution is horribly inefficient (O(n**2)). It slowly grinds to a halt on a reasonably powerful PC after about line 25 of the triangle.

Test program:

defcount=15(1..count).each{n->printf("%2d:",n);(0..(count-n)).each{print"    "};pascal(n).each{printf("%6d  ",it)};println""}
Output:
 1:                                                                 1   2:                                                             1       1   3:                                                         1       2       1   4:                                                     1       3       3       1   5:                                                 1       4       6       4       1   6:                                             1       5      10      10       5       1   7:                                         1       6      15      20      15       6       1   8:                                     1       7      21      35      35      21       7       1   9:                                 1       8      28      56      70      56      28       8       1  10:                             1       9      36      84     126     126      84      36       9       1  11:                         1      10      45     120     210     252     210     120      45      10       1  12:                     1      11      55     165     330     462     462     330     165      55      11       1  13:                 1      12      66     220     495     792     924     792     495     220      66      12       1  14:             1      13      78     286     715    1287    1716    1716    1287     715     286      78      13       1  15:         1      14      91     364    1001    2002    3003    3432    3003    2002    1001     364      91      14       1

GW-BASIC

10INPUT"Number of rows? ",R20FORI=0TOR-130C=140FORK=0TOI50PRINTUSING"####";C;60C=C*(I-K)/(K+1)70NEXT80PRINT90NEXT

Output:

Number of rows? 7   1   1   1   1   2   1   1   3   3   1   1   4   6   4   1   1   5  10  10   5   1   1   6  15  20  15   6   1

Haskell

An approach using the "think in whole lists" principle: Each row inthe triangle can be calculated from the previous row by adding ashifted version of itself to it, keeping the ones at the ends. ThePrelude functionzipWith can be used to add two lists, but itwon't keep the old values when one list is shorter. So we need asimilar function

zapWith::(a->a->a)->[a]->[a]->[a]zapWithfxs[]=xszapWithf[]ys=yszapWithf(x:xs)(y:ys)=fxy:zapWithfxsys

Now we can shift a list and add it to itself, extending it by keepingthe ends:

extendWithf[]=[]extendWithfxs@(x:ys)=x:zapWithfxsys

And for the whole (infinite) triangle, we just iterate this operation,starting with the first row:

pascal=iterate(extendWith(+))[1]

For the firstn rows, we just take the firstn elements from thislist, as in

*Main>take6pascal[[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1],[1,5,10,10,5,1]]

A shorter approach, plagiarized from[2]

-- generate next row from current rownextRowrow=zipWith(+)([0]++row)(row++[0])-- returns the first n rowspascal=iteratenextRow[1]

Or rewriting nextRow applicatively, and avoiding (++) where we can use (:)

nextRow=(zipWith(+).(0:))<*>(<>[0])

Which we can also express in terms of reverse:

nextRow=(zipWith(+)<*>reverse).(0:)


Alternatively, using list comprehensions:

pascal::[[Integer]]pascal=(1:[0|_<-headpascal]):[zipWith(+)(0:row)row|row<-pascal]
*Pascal>take5<$>(take5$triangle)[[1,0,0,0,0],[1,1,0,0,0],[1,2,1,0,0],[1,3,3,1,0],[1,4,6,4,1]]

With binomial coefficients:

fac=product.enumFromTo1binCoefnk=facn`div`(fack*fac(n-k))pascal=((fmap.binCoef)<*>enumFromTo0).pred

Example:

*Main>putStr$unlines$mapunwords$map(mapshow)$pascal1011112113311464115101051161520156117213535217118285670562881193684126126843691

HicEst

   CALL Pascal(30)SUBROUTINE Pascal(rows)   CHARACTER fmt*6   WRITE(Text=fmt, Format='"i", i5.5') 1+rows/4   DO row = 0, rows-1     n = 1     DO k = 0, row       col = rows*(rows-row+2*k)/4       WRITE(Row=row+1, Column=col, F=fmt) n       n = n * (row - k) / (k + 1)     ENDDO   ENDDOEND

Icon andUnicon

The code below is slightly modified from the library version of pascal which prints 0's to the full width of the carpet. It also presents the data as an isoceles triangle.

linkmathproceduremain(A)everyn:=!Ado{# for each command line argumentn:=integer(\n)|&nullpascal(n)}endprocedurepascal(n)#: Pascal triangle/n:=16write("width=",n," height=",n)# carpet headerfw:=*(2^n)+1everyi:=0ton-1do{writes(repl(" ",fw*(n-i)/2))everyj:=0ton-1dowrites(center(binocoef(i,j),fw)|break)write()}end
Library:Icon Programming Library

math provides binocoefmath provides the original version of pascal

Sample output:

->pascal 1 4 8width=1 height=1 1 width=4 height=4       1      1  1     1  2  1   1  3  3  1 width=8 height=8                 1                 1   1               1   2   1             1   3   3   1           1   4   6   4   1         1   5   10  10  5   1       1   6   15  20  15  6   1     1   7   21  35  35  21  7   1  ->

IDL

ProPascal,n;n is the number of lines of the triangle to be displayedr=[1]print,rfori=0,(n-2)dobeginpascalrow,rendforEndProPascalRow,rfori=0,(n_elements(r)-2)dobeginr[i]=r[i]+r[i+1]endforr=[1,r]print,rEnd

IS-BASIC

100 PROGRAM "PascalTr.bas"110 TEXT 80120 LET ROW=12130 FOR I=0 TO ROW140   LET C=1150   PRINT TAB(37-I*3);160   FOR K=0 TO I170     PRINT USING " #### ":C;180     LET C=C*(I-K)/(K+1)190   NEXT200   PRINT210 NEXT
Output:
                                         1                                       1     1                                    1     2     1                                 1     3     3     1                              1     4     6     4     1                           1     5    10    10     5     1                        1     6    15    20    15     6     1                     1     7    21    35    35    21     7     1                  1     8    28    56    70    56    28     8     1               1     9    36    84   126   126    84    36     9     1            1    10    45   120   210   252   210   120    45    10     1         1    11    55   165   330   462   462   330   165    55    11     1      1    12    66   220   495   792   924   792   495   220    66    12     1

ivy

op pascal N = transp (0 , iota N) o.! -1 , iota Npascal 5 1  0  0  0  0  0 1  1  0  0  0  0 1  2  1  0  0  0 1  3  3  1  0  0 1  4  6  4  1  0 1  5 10 10  5  1

J

!~/~i.51000011000121001331014641
([:":@-.&0"1!~/~)@i.5111121133114641
(-@|.|."_1[:":@-.&0"1!~/~)@i.5111121133114641

However, multi-digit numbers take up additional space, which looks slightly odd. But we can work around that by adding additional padding and shifting the lines a bit more:

(|."_1~0-3*i.@-@#);@((<'%6d')sprintfeach-.&0)"1!~/~i.1011112113311464115101051161520156117213535217118285670562881193684126126843691

Also... when we mix positive and negative numbers it stops being a triangle:

i:5_5_4_3_2_1012345!~/~i:5100001_515_3570_126_410001_410_2035_566_31001_36_1015_21_43_2101_23_45_61_11_111_11_11_100000100000000001100000000012100000000133100000001464100000015101051!/~i:51_46_4100000001_33_1000000001_210000000001_10000000000100000011111111111_5_4_3_2_101234515106310013610_35_20_10_4_1000141070351551000015_126_56_21_6_1000001


See thetalk page for explanation of earlier version

See alsoPascal matrix generation andSierpinski triangle.

Java

Summing from Previous Rows

Works with:Java version 1.5+
importjava.util.ArrayList;...//class definition, etc.publicstaticvoidgenPyrN(introws){if(rows<0)return;//save the last row hereArrayList<Integer>last=newArrayList<Integer>();last.add(1);System.out.println(last);for(inti=1;i<=rows;++i){//work on the next rowArrayList<Integer>thisRow=newArrayList<Integer>();thisRow.add(last.get(0));//beginningfor(intj=1;j<i;++j){//loop the number of elements in this row//sum from the last rowthisRow.add(last.get(j-1)+last.get(j));}thisRow.add(last.get(0));//endlast=thisRow;//save this rowSystem.out.println(thisRow);}}

Combinations

This method is limited to 21 rows because of the limits oflong. Callingpas with an argument of 22 or above will cause intermediate math to wrap around and give false answers.

publicclassPas{publicstaticvoidmain(String[]args){//usagepas(20);}publicstaticvoidpas(introws){for(inti=0;i<rows;i++){for(intj=0;j<=i;j++){System.out.print(ncr(i,j)+" ");}System.out.println();}}publicstaticlongncr(intn,intr){returnfact(n)/(fact(r)*fact(n-r));}publicstaticlongfact(intn){longans=1;for(inti=2;i<=n;i++){ans*=i;}returnans;}}

Using arithmetic calculation of each row element

This method is limited to 30 rows because of the limits of integer calculations (probably when calculating the multiplication). If m is declared as long then 62 rows can be printed.

publicclassPascal{privatestaticvoidprintPascalLine(intn){if(n<1)return;intm=1;System.out.print("1 ");for(intj=1;j<n;j++){m=m*(n-j)/j;System.out.print(m);System.out.print(" ");}System.out.println();}publicstaticvoidprintPascal(intnRows){for(inti=1;i<=nRows;i++)printPascalLine(i);}}

JavaScript

ES5

Imperative

Works with:SpiderMonkey
Works with:V8
// Pascal's triangle objectfunctionpascalTriangle(rows){// Number of rows the triangle containsthis.rows=rows;// The 2D array holding the rows of the trianglethis.triangle=newArray();for(varr=0;r<rows;r++){this.triangle[r]=newArray();for(vari=0;i<=r;i++){if(i==0||i==r)this.triangle[r][i]=1;elsethis.triangle[r][i]=this.triangle[r-1][i-1]+this.triangle[r-1][i];}}// Method to print the trianglethis.print=function(base){if(!base)base=10;// Private method to calculate digits in numbervardigits=function(n,b){vard=0;while(n>=1){d++;n/=b;}returnd;}// Calculate max spaces neededvarspacing=digits(this.triangle[this.rows-1][Math.round(this.rows/2)],base);// Private method to add spacing between numbersvarinsertSpaces=function(s){varbuf="";while(s>0){s--;buf+=" ";}returnbuf;}// Print the triangle line by linefor(varr=0;r<this.triangle.length;r++){varl="";for(vars=0;s<Math.round(this.rows-1-r);s++){l+=insertSpaces(spacing);}for(vari=0;i<this.triangle[r].length;i++){if(i!=0)l+=insertSpaces(spacing-Math.ceil(digits(this.triangle[r][i],base)/2));l+=this.triangle[r][i].toString(base);if(i<this.triangle[r].length-1)l+=insertSpaces(spacing-Math.floor(digits(this.triangle[r][i],base)/2));}print(l);}}}// Display 4 row triangle in base 10vartri=newpascalTriangle(4);tri.print();// Display 8 row triangle in base 16tri=newpascalTriangle(8);tri.print(16);

Output:

$ d8 pascal.js    1  1 1 1 2 11 3 3 1              1            1   1          1   2   1        1   3   3   1      1   4   6   4   1    1   5   a   a   5   1  1   6   f   14  f   6   11   7   15  23  23  15  7   1

Functional

Translation of:Haskell
(function (n) {    'use strict';    // PASCAL TRIANGLE --------------------------------------------------------    // pascal :: Int -> [[Int]]    function pascal(n) {        return foldl(function (a) {            var xs = a.slice(-1)[0]; // Previous row            return append(a, [zipWith(                function (a, b) {                    return a + b;                },                append([0], xs),                append(xs, [0])            )]);        }, [            [1] // Initial seed row        ], enumFromTo(1, n - 1));    };    // GENERIC FUNCTIONS ------------------------------------------------------    // (++) :: [a] -> [a] -> [a]    function append(xs, ys) {        return xs.concat(ys);    };    // enumFromTo :: Int -> Int -> [Int]    function enumFromTo(m, n) {        return Array.from({            length: Math.floor(n - m) + 1        }, function (_, i) {            return m + i;        });    };    // foldl :: (b -> a -> b) -> b -> [a] -> b    function foldl(f, a, xs) {        return xs.reduce(f, a);    };    // foldr (a -> b -> b) -> b -> [a] -> b    function foldr(f, a, xs) {        return xs.reduceRight(f, a);    };    // map :: (a -> b) -> [a] -> [b]    function map(f, xs) {        return xs.map(f);    };    // min :: Ord a => a -> a -> a    function min(a, b) {        return b < a ? b : a;    };    // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]    function zipWith(f, xs, ys) {        return Array.from({            length: min(xs.length, ys.length)        }, function (_, i) {            return f(xs[i], ys[i]);        });    };    // TEST and FORMAT --------------------------------------------------------    var lstTriangle = pascal(n);    // [[a]] -> bool -> s -> s    function wikiTable(lstRows, blnHeaderRow, strStyle) {        return '{| ' + (strStyle ? 'style="' + strStyle +                '"' : '') + lstRows.map(function (lstRow, iRow) {                var strDelim = blnHeaderRow && !iRow ? '!' : '|';                return '\n|-\n' + strDelim + ' ' + lstRow.map(function (v) {                        return typeof v === 'undefined' ? ' ' : v;                    })                    .join(' ' + strDelim + strDelim + ' ');            })            .join('') + '\n|}';    }    var lstLastLine = lstTriangle.slice(-1)[0],        lngBase = lstLastLine.length * 2 - 1,        nWidth = lstLastLine.reduce(function (a, x) {            var d = x.toString()                .length;            return d > a ? d : a;        }, 1) * lngBase;    return [wikiTable(lstTriangle.map(function (lst) {            return lst.join(';;')                .split(';');        })        .map(function (line, i) {            var lstPad = Array((lngBase - line.length) / 2);            return lstPad.concat(line)                .concat(lstPad);        }), false, 'text-align:center;width:' + nWidth + 'em;height:' + nWidth +        'em;table-layout:fixed;'), JSON.stringify(lstTriangle)].join('\n\n');})(7);
Output:
1
11
121
1331
14641
15101051
1615201561
[[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1],[1,5,10,10,5,1],[1,6,15,20,15,6,1]]

ES6

(() => {    "use strict";    // ---------------- PASCAL'S TRIANGLE ----------------    // pascal :: Generator [[Int]]    const pascal = () =>        iterate(            xs => zipWith(                a => b => a + b            )(                [0, ...xs]            )(                [...xs, 0]            )        )([1]);    // ---------------------- TEST -----------------------    // main :: IO ()    const main = () =>        showPascal(            take(10)(                pascal()            )        );    // showPascal :: [[Int]] -> String    const showPascal = xs => {        const w = last(xs).join("   ").length;        return xs.map(            ys => center(w)(" ")(ys.join("   "))        )        .join("\n");    };    // ---------------- GENERIC FUNCTIONS ----------------    // center :: Int -> Char -> String -> String    const center = n =>        // Size of space -> filler Char ->        // String -> Centered String        c => s => {            const gap = n - s.length;            return 0 < gap ? (() => {                const                    margin = c.repeat(Math.floor(gap / 2)),                    dust = c.repeat(gap % 2);                return `${margin}${s}${margin}${dust}`;            })() : s;        };    // iterate :: (a -> a) -> a -> Gen [a]    const iterate = f =>        // An infinite list of repeated        // applications of f to x.        function* (x) {            let v = x;            while (true) {                yield v;                v = f(v);            }        };    // last :: [a] -> a    const last = xs =>        0 < xs.length ? xs.slice(-1)[0] : undefined;    // take :: Int -> [a] -> [a]    // take :: Int -> String -> String    const take = n =>        // The first n elements of a list,        // string of characters, or stream.        xs => "GeneratorFunction" !== xs        .constructor.constructor.name ? (            xs.slice(0, n)        ) : Array.from({            length: n        }, () => {            const x = xs.next();            return x.done ? [] : [x.value];        }).flat();    // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]    const zipWith = f =>        // A list constructed by zipping with a        // custom function, rather than with the        // default tuple constructor.        xs => ys => xs.map(            (x, i) => f(x)(ys[i])        ).slice(            0, Math.min(xs.length, ys.length)        );    // MAIN ---    return main();})();
Output:
                      1                                          1   1                                      1   2   1                                  1   3   3   1                              1   4   6   4   1                         1   5   10   10   5   1                   1   6   15   20   15   6   1               1   7   21   35   35   21   7   1         1   8   28   56   70   56   28   8   1    1   9   36   84   126   126   84   36   9   1

Recursive

const aux = n => {  if(n <= 1) return [1]  const prevLayer = aux(n - 1)  const shifted = [0, ...prevLayer]  return shifted.map((x, i) => (prevLayer[i] || 0) + x)}const pascal = n => {  for(let i = 1; i <= n; i++) {    console.log(aux(i).join(' '))  }}pascal(8)
Output:
11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 1

Recursive - memoized

const aux = (() => {  const layers = [[1], [1]]  return n => {    if(layers[n]) return layers[n]    const prevLayer = aux(n - 1)    const shifted = [0, ...prevLayer]    layers[n] = shifted.map((x, i) => (prevLayer[i] || 0) + x)    return layers[n]  }})()const pascal = n => {  for(let i = 1; i <= n; i++) {    console.log(aux(i).join(' '))  }}pascal(8)

jq

Works with:jq version 1.4

pascal(n) as defined here produces a stream of n arrays,each corresponding to a row of the Pascal triangle.The implementation avoids any arithmetic except addition.

# pascal(n) for n>=0; pascal(0) emits an empty stream.def pascal(n):  def _pascal:  # input: the previous row    . as $in    | .,      if length >= n then empty      else        reduce range(0;length-1) as $i          ([1]; . + [ $in[$i] + $in[$i + 1] ]) + [1] | _pascal      end;  if n <= 0 then empty else [1] | _pascal end ;

Example:

pascal(5)
Output:
$ jq -c -n -f pascal_triangle.jq[1][1,1][1,2,1][1,3,3,1][1,4,6,4,1]

Using recurse/1

Here is an equivalent implementation that uses the built-in filter, recurse/1, instead of the inner function.

def pascal(n):  if n <= 0 then empty  else [1]  | recurse( if length >= n then empty             else . as $in              | reduce range(0;length-1) as $i                 ([1]; . + [ $in[$i] + $in[$i + 1] ]) + [1]             end)  end;

Julia

function pascal(n)  if n<=0   print("n has to have a positive value")  end  x=0  while x<=n   for a=0:x    print(binomial(x,a)," ")   end   println("")   x+=1  endend
pascal(5)1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1

Another solution using matrix exponentiation.

iround(x) = round(Int64, x)triangle(n) = iround.(exp(diagm(-1=> 1:n)))function pascal(n)   t=triangle(n)   println.(join.([filter(!iszero, t[i,:]) for i in 1:(n+1)], " "))end
Output:
pascal(5)11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1

Yet another solution using a static vector

function pascal(n)   (n<=0) && error("Pascal trinalge can not have zero or negative rows")   r=Vector{Int}(undef,n)   pr=Vector{Int}(undef,n)   pr[1]=r[1]=1   println(@view pr[1])   for i=2:n      r[1]=r[i]=1      for j=2:i-1         r[j]=pr[j-1]+pr[j]      end      println(join(view(r,1:i), " "))      r,pr=pr,r   endend
Output:
pascal(8)11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 1

K

pascal:{(x-1){+':x,0}\1}pascal 6(1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1)

Kotlin

fun pas(rows: Int) {    for (i in 0..rows - 1) {        for (j in 0..i)            print(ncr(i, j).toString() + " ")        println()    }}fun ncr(n: Int, r: Int) = fact(n) / (fact(r) * fact(n - r))fun fact(n: Int) : Long {    var ans = 1.toLong()    for (i in 2..n)        ans *= i    return ans}fun main(args: Array<String>) = pas(args[0].toInt())

Lambdatalk

1) Based on this expression of pascalian binomial:      Cnp = [n*(n-1)...(n-p+1)]/[p*(p-1)...2*1]2) we define the following function:{def C {lambda {:n :p}  {/ {* {S.serie :n {- :n :p -1} -1}}     {* {S.serie :p 1 -1}}}}}{C 16 8}-> 128703) Writing1{S.map {lambda {:n} {br}1  {S.map {C :n} {S.serie 1 {- :n 1}}} 1}               {S.serie 2 16}}displays:11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 11 8 28 56 70 56 28 8 11 9 36 84 126 126 84 36 9 11 10 45 120 210 252 210 120 45 10 11 11 55 165 330 462 462 330 165 55 11 11 12 66 220 495 792 924 792 495 220 66 12 11 13 78 286 715 1287 1716 1716 1287 715 286 78 13 11 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 11 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 11 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

Liberty BASIC

input "How much rows would you like? "; ndim a$(n)for i=  0 to n       c = 1       o$ =""       for k =0 to i             o$ =o$ ; c; " "             c =c *(i-k)/(k+1)       next k       a$(i)=o$next imaxLen = len(a$(n))for i=  0 to n    print space$((maxLen-len(a$(i)))/2);a$(i)next iend

Locomotive Basic

10 CLS20 INPUT "Number of rows? ", rows:GOSUB 4030 END40 FOR i=0 TO rows-150 c=160 FOR k=0 TO i70 PRINT USING "####";c;80 c=c*(i-k)/(k+1)90 NEXT100 PRINT110 NEXT120 RETURN

Output:

Number of rows? 7   1   1   1   1   2   1   1   3   3   1   1   4   6   4   1   1   5  10  10   5   1   1   6  15  20  15   6   1

Logo

to pascal :n  if :n = 1 [output [1]]  localmake "a pascal :n-1  output (sentence first :a (map "sum butfirst :a butlast :a) last :a)endfor [i 1 10] [print pascal :i]

Logtalk

Our implementation will have an objectpascals with work done in the methodtriangle/2. We will be caching results for time efficiency at the cost of space efficiency,and thereset/0 method will flush that cache should it grow to be a problem. The resulting object looks like this:

:- object(pascals).    :- uses(integer, [plus/3, succ/2]).    :- public(reset/0).    reset :-        retractall(triangle_(_,_,_)).        :- private(triangle_/3).    :- dynamic(triangle_/3).    :- public(triangle/2).    triangle(N, Lines) :-        triangle(N, _, DiffLines),        difflist::as_list(DiffLines, Lines).    % Shortcut with cached value if it exists.    triangle(N, Line, DiffLines) :- triangle_(N, Line, DiffLines), !.    triangle(N, Line, DiffLines) :-        succ(N0, N),        triangle(N0, Line0, DiffLines0),        ZL = [0|Line0],        list::append(Line0, [0], ZR),        meta::map(plus, ZL, ZR, Line),        difflist::add(Line, DiffLines0, DiffLines),        asserta(triangle_(N, Line, DiffLines)).    triangle(1, [1], [[1]|X]-X).:- end_object.
Output:

Using the SWI-Prolog back-end:

?- logtalk_load([meta(loader), types(loader), pascals], [optimize(on)]).% messages elidedtrue.?- pascals::triangle(17, Ls), logtalk::print_message(information, user, Ls).% - [1]% - [1,1]% - [1,2,1]% - [1,3,3,1]% - [1,4,6,4,1]% - [1,5,10,10,5,1]% - [1,6,15,20,15,6,1]% - [1,7,21,35,35,21,7,1]% - [1,8,28,56,70,56,28,8,1]% - [1,9,36,84,126,126,84,36,9,1]% - [1,10,45,120,210,252,210,120,45,10,1]% - [1,11,55,165,330,462,462,330,165,55,11,1]% - [1,12,66,220,495,792,924,792,495,220,66,12,1]% - [1,13,78,286,715,1287,1716,1716,1287,715,286,78,13,1]% - [1,14,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,14,1]% - [1,15,105,455,1365,3003,5005,6435,6435,5005,3003,1365,455,105,15,1]% - [1,16,120,560,1820,4368,8008,11440,12870,11440,8008,4368,1820,560,120,16,1]Ls = [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4|...], [1, 5, 10|...], [1, 6|...], [1|...], [...|...]|...].?-

Lua

function nextrow(t)  local ret = {}  t[0], t[#t+1] = 0, 0  for i = 1, #t do ret[i] = t[i-1] + t[i] end  return retendfunction triangle(n)  t = {1}  for i = 1, n do    print(unpack(t))    t = nextrow(t)  endend

Maple

f:=n->seq(print(seq(binomial(i,k),k=0..i)),i=0..n-1);f(3);
   1  1 1 1 2 1

Mathematica /Wolfram Language

n=7;Column[StringReplace[ToString /@ Replace[MatrixExp[SparseArray[{Band[{2,1}] -> Range[n-1]},{n,n}]],{x__,0..}->{x},2] ,{"{"|"}"|","->" "}], Center]

A more graphical output with arrows would involve the plotting functionality with Graph[]:

nmax := 10;pascal[nmax_] := Module[   {vals = Table[Binomial[n, k], {n, 0, nmax}, {k, 0, n}],    ids = Table[{n, k}, {n, 0, nmax}, {k, 0, n}],    labels, left, right, leftright, edgeLabels   },   labels = Flatten[Thread /@ (Thread[ids -> vals]), 1];   left = DeleteCases[Flatten[Flatten[ids, 1] /. {n_, k_} /; (n >= k + 1) :> {{n, k + 1} -> {n + 1, k + 1}}, 1], _?NumberQ];   right = DeleteCases[Flatten[Flatten[ids, 1] /. {n_, k_} /; (n > k) :> {{n, k} -> {n + 1, k + 1}}, 1], _?NumberQ];   leftright = DeleteCases[left \[Union] right, _ -> {b_, _} /; b > nmax];   edgeLabels = (# -> Style["+", Medium] & /@ leftright);   Graph[Flatten[ids, 1], leftright    , VertexLabels -> MapAt[Placed[#, Center] &, labels, {All, 2}]    , GraphLayout -> "SpringEmbedding"    , VertexSize -> 0.8, EdgeLabels -> edgeLabels     , PlotLabel -> "Pascal's Triangle"   ]  ];pascal[nmax]

MATLAB /Octave

A matrix containing the pascal triangle can be obtained this way:

pascal(n);
>> pascal(6)ans =     1     1     1     1     1     1     1     2     3     4     5     6     1     3     6    10    15    21     1     4    10    20    35    56     1     5    15    35    70   126     1     6    21    56   126   252

The binomial coefficients can be extracted from the Pascal triangle in this way:

  binomCoeff = diag(rot90(pascal(n)))',
>> for k=1:6,diag(rot90(pascal(k)))', endans =  1ans =   1   1ans =   1   2   1ans =   1   3   3   1ans =   1   4   6   4   1ans =    1    5   10   10    5    1

Another way to get a formated pascals triangle is to use the convolution method:

>>x = [1  1] ;      y = 1;                   for k=8:-1:1    fprintf(['%', num2str(k), 'c'], zeros(1,3)),     fprintf('%6d', y), fprintf('\n')                y = conv(y,x);                                                                 end

The result is:

>>                          1                       1     1                    1     2     1                 1     3     3     1              1     4     6     4     1           1     5    10    10     5     1        1     6    15    20    15     6     1     1     7    21    35    35    21     7     1

Maxima

sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$display_pascal_triangle(n) := for i from 0 thru 6 do disp(sjoin(makelist(binomial(i, j), j, 0, i), " "));display_pascal_triangle(6);/* "1"   "1 1"   "1 2 1"   "1 3 3 1"   "1 4 6 4 1"   "1 5 10 10 5 1"   "1 6 15 20 15 6 1" */

Metafont

(The formatting starts to be less clear when numbers start to have more than two digits)

vardef bincoeff(expr n, k) =save ?;? := (1 for i=(max(k,n-k)+1) upto n: * i endfor )     / (1 for i=2 upto min(k, n-k): * i endfor); ?enddef;def pascaltr expr c =  string s_;  for i := 0 upto (c-1):    s_ := "" for k=0 upto (c-i): & "  " endfor;    s_ := s_ for k=0 upto i: & decimal(bincoeff(i,k))             & "  " if bincoeff(i,k)<9: & " " fi endfor;    message s_;  endforenddef;pascaltr(4);end

Microsoft Small Basic

Translation of:GW-BASIC
TextWindow.Write("Number of rows? ")r = TextWindow.ReadNumber()For i = 0 To r - 1  c = 1  For k = 0 To i    TextWindow.CursorLeft = (k + 1) * 4 - Text.GetLength(c)    TextWindow.Write(c)        c = c * (i - k) / (k + 1)  EndFor  TextWindow.WriteLine("")EndFor

Output:

Number of rows? 7   1   1   1   1   2   1   1   3   3   1   1   4   6   4   1   1   5  10  10   5   1   1   6  15  20  15   6   1

Modula-2

MODULE Pascal;FROM FormatString IMPORT FormatString;FROM Terminal IMPORT WriteString,WriteLn,ReadChar;PROCEDURE PrintLine(n : INTEGER);VAR    buf : ARRAY[0..63] OF CHAR;    m,j : INTEGER;BEGIN    IF n<1 THEN RETURN END;    m := 1;    WriteString("1 ");    FOR j:=1 TO n-1 DO        m := m * (n - j) DIV j;        FormatString("%i ", buf, m);        WriteString(buf)    END;    WriteLnEND PrintLine;PROCEDURE Print(n : INTEGER);VAR i : INTEGER;BEGIN    FOR i:=1 TO n DO        PrintLine(i)    ENDEND Print;BEGIN    Print(10);    ReadCharEND Pascal.

NetRexx

/* NetRexx */options replace format comments java crossref symbols nobinarynumeric digits 1000 -- allow very large numbersparse arg rows .if rows = '' then rows = 11 -- default to 11 rowsprintPascalTriangle(rows)return-- -----------------------------------------------------------------------------method printPascalTriangle(rows = 11) public static  lines = ''  mx = (factorial(rows - 1) / factorial(rows % 2) / factorial(rows - 1 - rows % 2)).length() -- width of widest number  loop row = 1 to rows    n1 = 1.center(mx)    line = n1    loop col = 2 to row      n2 = col - 1      n1 = n1 * (row - n2) / n2      line = line n1.center(mx)      end col    lines[row] = line.strip()    end row  -- display triangle  ml = lines[rows].length() -- length of longest line  loop row = 1 to rows    say lines[row].centre(ml)    end row  return-- -----------------------------------------------------------------------------method factorial(n) public static  fac = 1  loop n_ = 2 to n    fac = fac * n_    end n_  return fac /*calc. factorial*/
Output:
                    1                  1   1                1   2   1              1   3   3   1            1   4   6   4   1          1   5  10  10   5   1        1   6  15  20  15   6   1      1   7  21  35  35  21   7   1    1   8  28  56  70  56  28   8   1  1   9  36  84  126 126 84  36   9   11  10  45  120 210 252 210 120 45  10   1

Nial

Like J

(pascal.nial)

factorial is recur [ 0 =, 1 first, pass, product, -1 +]combination is fork [ > [first, second], 0 first,    / [factorial second, * [factorial - [second, first], factorial first] ]]pascal is transpose each combination cart [pass, pass] tell

Using it

|loaddefs 'pascal.nial'|pascal 5

Nim

import sequtils, strutilsproc printPascalTriangle(n: int) =  ## Print a Pascal triangle.  # Build the triangle.  var triangle: seq[seq[int]]  triangle.add @[1]  for _ in 1..<n:    triangle.add zip(triangle[^1] & @[0], @[0] & triangle[^1]).mapIt(it[0] + it[1])  # Build the lines to display.  let length = len($max(triangle[^1]))  # Maximum length of number.  var lines: seq[string]  for row in triangle:    lines.add row.mapIt(($it).center(length)).join(" ")  # Display the lines.  let lineLength = lines[^1].len    # Length of largest line (the last one).  for line in lines:    echo line.center(lineLength)printPascalTriangle(10)
Output:
                   1                                    1   1                                1   2   1                            1   3   3   1                        1   4   6   4   1                    1   5  10  10   5   1                1   6  15  20  15   6   1            1   7  21  35  35  21   7   1        1   8  28  56  70  56  28   8   1    1   9  36  84  126 126 84  36   9   1

A more optimized solution that doesn't require importing, but produces, naturally, uglier output, would look like this:

const ROWS = 10const TRILEN = toInt(ROWS * (ROWS + 1) / 2) # Sum of arth progressionvar triangle = newSeqOfCap[Natural](TRILEN) # Avoid reallocationsproc printPascalTri(row: Natural, result: var seq[Natural]) =  add(result, 1)  for i in 2..row-1: add(result, result[^row] + result[^(row-1)])  add(result, 1)  echo result[^row..^1]  if row + 1 <= ROWS: printPascalTri(row + 1, result)printPascalTri(1, triangle)
Output:
@[1]@[1, 1]@[1, 2, 1]@[1, 3, 3, 1]@[1, 4, 6, 4, 1]@[1, 5, 10, 10, 5, 1]@[1, 6, 15, 20, 15, 6, 1]@[1, 7, 21, 35, 35, 21, 7, 1]@[1, 8, 28, 56, 70, 56, 28, 8, 1]@[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

OCaml

(* generate next row from current row *)let next_row row =  List.map2 (+) ([0] @ row) (row @ [0])(* returns the first n rows *)let pascal n =  let rec loop i row =    if i = n then []    else row :: loop (i+1) (next_row row)  in loop 0 [1]

Octave

function pascaltriangle(h)  for i = 0:h-1    for k = 0:h-i      printf("  ");    endfor    for j = 0:i      printf("%3d ", bincoeff(i, j));    endfor    printf("\n");  endforendfunctionpascaltriangle(4);

Oforth

No result if n <= 0

: pascal(n)  [ 1 ] #[ dup println dup 0 + 0 rot + zipWith(#+) ] times(n) drop ;
Output:
10 pascal[1][1, 1][1, 2, 1][1, 3, 3, 1][1, 4, 6, 4, 1][1, 5, 10, 10, 5, 1][1, 6, 15, 20, 15, 6, 1][1, 7, 21, 35, 35, 21, 7, 1][1, 8, 28, 56, 70, 56, 28, 8, 1][1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

Oz

declare  fun {NextLine Xs}     {List.zip 0|Xs {Append Xs [0]}      fun {$ Left Right}         Left + Right      end}  end  fun {Triangle N}     {List.take {Iterate [1] NextLine} N}  end  fun lazy {Iterate I F}     I|{Iterate {F I} F}  end  %% Only works nicely for N =< 5.  proc {PrintTriangle T}     N = {Length T}  in     for        Line in T        Indent in N-1..0;~1     do        for _ in 1..Indent do {System.printInfo " "} end        for L in Line do {System.printInfo L#" "} end        {System.printInfo "\n"}     end  endin  {PrintTriangle {Triangle 5}}

For n = 0, prints nothing. For negative n, throws an exception.

PARI/GP

pascals_triangle(N)= {my(row=[],prevrow=[]);for(x=1,N,    if(x>5,break(1));         row=eval(Vec(Str(11^(x-1))));         print(row));prevrow=row;for(y=6,N,   for(p=2,#prevrow,         row[p]=prevrow[p-1]+prevrow[p]);         row=concat(row,1);         prevrow=row;         print(row);     );}

Pascal

Program PascalsTriangle(output);procedure Pascal(r : Integer);  var    i, c, k : Integer;  begin    for i := 0 to r-1 do    begin      c := 1;      for k := 0 to i do      begin        write(c:3);        c := (c * (i-k)) div (k+1);      end;      writeln;   end;end; begin  Pascal(9)end.

Output:

% ./PascalsTriangle   1  1  1  1  2  1  1  3  3  1  1  4  6  4  1  1  5 10 10  5  1  1  6 15 20 15  6  1  1  7 21 35 35 21  7  1  1  8 28 56 70 56 28  8  1

PascalABC.NET

SeePascal.

Perl

These functions perform as requested in the task: they print out the firstn lines. Ifn <= 0, they print nothing. The output is simple (no fancy formatting).

sub pascal {  my $rows = shift;  my @next = (1);  for my $n (1 .. $rows) {    print "@next\n";    @next = (1, (map $next[$_]+$next[$_+1], 0 .. $n-2), 1);  }}

If you want more than 68 rows, then use either "use bigint" or "use Math::GMP qw/:constant/" inside the function to enable bigints. We can also use a binomial function which will expand to bigints if many rows are requested:

Library:ntheory
use ntheory qw/binomial/;sub pascal {  my $rows = shift;  for my $n (0 .. $rows-1) {    print join(" ", map { binomial($n,$_) } 0 .. $n), "\n";  }}

Here is a non-obvious version using bignum, which is limited to the first 23 rows because of the algorithm used:

use bignum;sub pascal_line { $_[0] ? unpack "A(A6)*", 1000001**$_[0] : 1 }sub pascal { print "@{[map -+-$_, pascal_line $_]}\n" for 0..$_[0]-1 }

This triangle is build using the 'sock' or 'hockey stick' pattern property. Here I use the word tartaglia and not pascal because in my country it's called after the Niccolò Fontana, known also as Tartaglia. A full graphical implementation of 16 properties that can be found in the triangle can be found at mineTartaglia's triangle

#!/usr/bin/perluse strict;use warnings; {  my @tartaglia ;    sub tartaglia {      my ($x,$y) = @_;      if ($x == 0 or $y == 0)  { $tartaglia[$x][$y]=1 ; return 1};      my $ret ;      foreach my $yps (0..$y){        $ret += ( $tartaglia[$x-1][$yps] || tartaglia($x-1,$yps) );      }      $tartaglia[$x][$y] = $ret;      return $ret;  }}sub tartaglia_row {    my $y = shift;    my $x = 0;    my @row;    $row[0] = &tartaglia($x,$y+1);    foreach my $pos (0..$y-1) {push @row, tartaglia(++$x,--$y)}    return @row;}for (0..5) {print join ' ', tartaglia_row($_),"\n"}print "\n\n";print tartaglia(3,3),"\n";my @third = tartaglia_row(5);print "@third\n";

which output

11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1201 5 10 10 5 1

Phix

Four different ways to do it:

withjavascript_semanticssequencerow,rows={}functioncheck(integeri,stringname)-- helper routinestrings=join(row,fmt:="%d")ifs!=rows[i+1]thenprintf(1,"%s: goes wrong on line %d\n",{name,i+1})returnfalseendifreturntrueendfunctionproceduresum_prior()-- First methodrow={}-- (using just one row)fori=0to119dorow&=1forn=length(row)-1to2by-1dorow[n]+=row[n-1]endforifnotcheck(i,"sum_prior")thenexitendifendforendprocedureprocedurealgebraic()-- Second methodfori=0to119doatomc=1row={1}forj=0toi-1do--          c *= (i-j)/(j+1)    -- NO: precedence differs, and eg 5*(1/5) inexactc=c*(i-j)/(j+1)-- ..whereas (5*1)/5 is exactrow&=cendforifnotcheck(i,"algebraic")thenexitendifendforendprocedure-- Aside: error with c was self-evident and more relevant when it was an integer, ---       but I made it an atom to get past the 33/63 limits that imposed.procedurebuiltin()-- Third methodfori=0to119dorow={}forj=0toidorow&=choose(i,j)endforifnotcheck(i,"builtin")thenexitendifendforendprocedureincludempfr.eprocedurearbitrary_precision()-- Fourth method, but run first    -- perfectly accurate until you     -- run out of memory or patience.mpzz=mpz_init()fori=0to119dorow={}forj=0toidompz_bin_uiui(z,i,j)row=append(row,mpz_get_str(z))endforstrings=join(row)ifi<=19thenprintf(1,"%=96s\n",s)endif-- to check the others against:rows=append(rows,s)endforprintf(1,"\n")endprocedurearbitrary_precision()sum_prior()algebraic()builtin()
Output:
                                               1                                              1 1                                             1 2 1                                            1 3 3 1                                           1 4 6 4 1                                         1 5 10 10 5 1                                        1 6 15 20 15 6 1                                      1 7 21 35 35 21 7 1                                     1 8 28 56 70 56 28 8 1                                  1 9 36 84 126 126 84 36 9 1                              1 10 45 120 210 252 210 120 45 10 1                            1 11 55 165 330 462 462 330 165 55 11 1                          1 12 66 220 495 792 924 792 495 220 66 12 1                      1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1                   1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1               1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1           1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1       1 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1    1 18 153 816 3060 8568 18564 31824 43758 48620 43758 31824 18564 8568 3060 816 153 18 11 19 171 969 3876 11628 27132 50388 75582 92378 92378 75582 50388 27132 11628 3876 969 171 19 1sum_prior: goes wrong on line 70algebraic: goes wrong on line 68builtin: goes wrong on line 68

Above results from 64-bit, on 32-bit the last 3 lines are 58/56/56.

PHP

"Reflected" Pascal's triangle, it uses symmetry property to "mirror" second part. It determines even and odd strings. automatically.

<?php //Author Ivan Gavryshin @dcc0function tre($n) {  $ck=1;  $kn=$n+1;     if($kn%2==0) { $kn=$kn/2; $i=0;  } else  {  $kn+=1;  $kn=$kn/2;  $i= 1;} for ($k = 1; $k <= $kn-1; $k++) {    $ck = $ck/$k*($n-$k+1);   $arr[] = $ck;   echo  "+" . $ck ;   } if ($kn>1) {  echo $arr[i];  $arr=array_reverse($arr); for ($i; $i<= $kn-1; $i++) { echo  "+" . $arr[$i]  ;     }    }  } //set amount of strings here while ($n<=20) { ++$n; echo tre($n); echo "<br/>";}  ?>

==PHP ==

function pascalsTriangle($num){$c = 1;$triangle = Array();for($i=0;$i<=$num;$i++){$triangle[$i] = Array();if(!isset($triangle[$i-1])){$triangle[$i][] = $c;}else{for($j=0;$j<count($triangle[$i-1])+1;$j++){$triangle[$i][] = (isset($triangle[$i-1][$j-1]) && isset($triangle[$i-1][$j])) ? $triangle[$i-1][$j-1] + $triangle[$i-1][$j] : $c;}}}return $triangle;}$tria = pascalsTriangle(8);foreach($tria as $val){foreach($val as $value){echo $value . ' ';}echo '<br>';}
                                       1                                     1   1                                   1   2   1                                 1   3   3   1                               1   4   6   4   1                             1   5  10  10   5   1                           1   6  15  20  15   6   1                         1   7  21  35  35  21   7   1                       1   8  28  56  70  56  28   8   1

Picat

%Author: Petar Kabashkispatr([]) = [].spatr([_|T]) = A, T = [] => A = [].spatr([H|T]) = A, T = [TH|_] => A = [H+TH] ++ spatr(T).tablepatr(0) = [1].patr(1) = [1, 1].patr(N) = A, N > 1 => Apre = patr(N-1), A = [1] ++ spatr(Apre) ++ [1].foreach(I in 0 .. 10) println(patr(I)) end.
                    [1][1,1][1,2,1][1,3,3,1][1,4,6,4,1][1,5,10,10,5,1][1,6,15,20,15,6,1][1,7,21,35,35,21,7,1][1,8,28,56,70,56,28,8,1][1,9,36,84,126,126,84,36,9,1][1,10,45,120,210,252,210,120,45,10,1]

PicoLisp

Translation of:C
(de pascalTriangle (N)   (for I N      (space (* 2 (- N I)))      (let C 1         (for K I            (prin (align 3 C) " ")            (setq C (*/ C (- I K) K)) ) )      (prinl) ) )

PL/I

declare (t, u)(40) fixed binary;declare (i, n) fixed binary;t,u = 0;get (n);if n <= 0 then return;do n = 1 to n;   u(1) = 1;   do i = 1 to n;      u(i+1) = t(i) + t(i+1);   end;   put skip edit ((u(i) do i = 1 to n)) (col(40-2*n), (n+1) f(4));   t = u;end;
                                        1                                      1   1                                    1   2   1                                  1   3   3   1                                1   4   6   4   1                              1   5  10  10   5   1                            1   6  15  20  15   6   1                          1   7  21  35  35  21   7   1                        1   8  28  56  70  56  28   8   1                      1   9  36  84 126 126  84  36   9   1                    1  10  45 120 210 252 210 120  45  10   1

Potion

printpascal = (n) :   if (n < 1) :      1 print      (1)   . else :      prev = printpascal(n - 1)      prev append(0)      curr = (1)      n times (i):         curr append(prev(i) + prev(i + 1))      .      "\n" print      curr join(", ") print      curr   ..printpascal(read number integer)

PowerShell

$Infinity = 1$NewNumbers = $null$Numbers = $null$Result = $null$Number = $null$Power = $args[0]Write-Host $PowerFor(   $i=0;   $i -lt $Infinity;   $i++   )   {    $Numbers = New-Object Object[] 1    $Numbers[0] = $Power   For(      $k=0;      $k -lt $NewNumbers.Length;      $k++      )      {       $Numbers = $Numbers + $NewNumbers[$k]      }   If(     $i -eq 0     )     {      $Numbers = $Numbers + $Power     }    $NewNumbers = New-Object Object[] 0   Try   {   For(      $j=0;      $j -lt $Numbers.Length;      $j++      )      {       $Result = $Numbers[$j] + $Numbers[$j+1]       $NewNumbers = $NewNumbers + $Result      }   }   Catch [System.Management.Automation.RuntimeException]   {    Write-Warning "Value was too large for a Decimal. Script aborted."    Break;   }   Foreach(          $Number in $Numbers          )          {          If(            $Number.ToString() -eq "+unendlich"            )            {             Write-Warning "Value was too large for a Decimal. Script aborted."             Exit            }          }    Write-Host $Numbers    $Infinity++   }

Save the above code to a .ps1 script file and start it by calling its name and providing N.

PS C:\> & '.\Pascals Triangle.ps1' 1----11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 11 8 28 56 70 56 28 8 11 9 36 84 126 126 84 36 9 11 10 45 120 210 252 210 120 45 10 11 11 55 165 330 462 462 330 165 55 11 11 12 66 220 495 792 924 792 495 220 66 12 11 13 78 286 715 1287 1716 1716 1287 715 286 78 13 11 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 11 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

Prolog

Difference-lists are used to make quick append.

pascal(N) :-pascal(1, N, [1], [[1]|X]-X, L),maplist(my_format, L).pascal(Max, Max, L, LC, LF) :-!,make_new_line(L, NL),append_dl(LC, [NL|X]-X, LF-[]).pascal(N, Max, L, NC, LF) :-build_new_line(L, NL),append_dl(NC, [NL|X]-X, NC1),N1 is N+1,pascal(N1, Max, NL, NC1, LF).build_new_line(L, R) :-build(L, 0, X-X, R).build([], V, RC, RF) :-append_dl(RC, [V|Y]-Y, RF-[]).build([H|T], V, RC, R) :-V1 is V+H,append_dl(RC, [V1|Y]-Y, RC1),build(T, H, RC1, R).append_dl(X1-X2, X2-X3, X1-X3).% to have a correct output !my_format([H|T]) :-write(H),maplist(my_writef, T),nl.my_writef(X) :-writef(' %5r', [X]).

Output :

 ?- pascal(15).11     11     2     11     3     3     11     4     6     4     11     5    10    10     5     11     6    15    20    15     6     11     7    21    35    35    21     7     11     8    28    56    70    56    28     8     11     9    36    84   126   126    84    36     9     11    10    45   120   210   252   210   120    45    10     11    11    55   165   330   462   462   330   165    55    11     11    12    66   220   495   792   924   792   495   220    66    12     11    13    78   286   715  1287  1716  1716  1287   715   286    78    13     11    14    91   364  1001  2002  3003  3432  3003  2002  1001   364    91    14     11    15   105   455  1365  3003  5005  6435  6435  5005  3003  1365   455   105    15     1true.

An alternative

The above use of difference lists is a really innovative example of late binding. Here's an alternative source which, while possibly not as efficient (or as short) as the previous example, may be a little easier to read and understand.

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% Produce a pascal's triangle of depth N%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%  Prolog is declarative.  The predicate pascal/3 below says that to produce%  a row of depth N, we can do so by first producing the row at depth(N-1),%  and then adding the paired values in that row.  The triangle is produced%  by prepending the row at N-1 to the preceding rows as recursion unwinds.%  The triangle produced by pascal/3 is upside down and lacks the last row,%  so pascal/2 prepends the last row to the triangle and reverses it.%  Finally, pascal/1 produces the triangle, iterates each row and prints it.%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pascal_row([V], [V]).                           % No more value pairs to addpascal_row([V0, V1|T], [V|Rest]) :-             % Add values from preceding row    V is V0 + V1, !, pascal_row([V1|T], Rest).  % Drops initial value (1).pascal(1, [1], []).    % at depth 1, this row is [1] and no preceding rows.pascal(N, [1|ThisRow], [Last|Preceding]) :- % Produce a row of depth N    succ(N0, N),                            % N is the successor to N0    pascal(N0, Last, Preceding),            % Get the previous row    !, pascal_row(Last, ThisRow).           % Calculate this row from the previouspascal(N, Triangle) :-   pascal(N, Last, Rows),             % Retrieve row at depth N and preceding rows   !, reverse([Last|Rows], Triangle). % Add last row to triangle and reverse orderpascal(N) :-  pascal(N, Triangle), member(Row, Triangle), % Iterate and write each row  write(Row), nl, fail.pascal(_).
  • Output*:
?- pascal(5).[1][1,1][1,2,1][1,3,3,1][1,4,6,4,1]

PureBasic

Procedure pascaltriangle( n.i)   For i=  0 To  n       c = 1       For k=0 To i             Print(Str( c)+" ")         c = c * (i-k)/(k+1);        Next ;k    PrintN(" "); nächste zeile  Next ;iEndProcedure OpenConsole()Parameter.i = Val(ProgramParameter(0))pascaltriangle(Parameter);Input()

Python

Procedural

def pascal(n):   """Prints out n rows of Pascal's triangle.   It returns False for failure and True for success."""   row = [1]   k = [0]   for x in range(max(n,0)):      print row      row=[l+r for l,r in zip(row+k,k+row)]   return n>=1

or by creating a scan function:

def scan(op, seq, it):  a = []  result = it  a.append(it)  for x in seq:    result = op(result, x)    a.append(result)  return adef pascal(n):    def nextrow(row, x):        return [l+r for l,r in zip(row+[0,],[0,]+row)]    return scan(nextrow, range(n-1), [1,])for row in pascal(4):    print(row)

Functional

Deriving finite and non-finite lists of pascal rows from a simplenextPascal step function:

Works with:Python version 3.7
'''Pascal's triangle'''from itertools import (accumulate, chain, islice)from operator import (add)# nextPascal :: [Int] -> [Int]def nextPascal(xs):    '''A row of Pascal's triangle       derived from a preceding row.'''    return list(        map(add, [0] + xs, xs + [0])    )# pascalTriangle :: Generator [[Int]]def pascalTriangle():    '''A non-finite stream of       Pascal's triangle rows.'''    return iterate(nextPascal)([1])# finitePascalRows :: Int -> [[Int]]def finitePascalRows(n):    '''The first n rows of Pascal's triangle.'''    return accumulate(        chain(            [[1]], range(1, n)        ),        lambda a, _: nextPascal(a)    )# ------------------------ TESTS -------------------------# main :: IO ()def main():    '''Test of two different approaches:        - taking from a non-finite stream of rows,        - or constructing a finite list of rows.'''    print('\n'.join(map(        showPascal,        [            islice(                pascalTriangle(),       # Non finite,                7            ),            finitePascalRows(7)         # finite.        ]    )))# showPascal :: [[Int]] -> Stringdef showPascal(xs):    '''Stringification of a list of       Pascal triangle rows.'''    ys = list(xs)    def align(w):        return lambda ns: center(w)(            ' '        )('   '.join(map(str, ns)))    w = len('   '.join((map(str, ys[-1]))))    return '\n'.join(map(align(w), ys))# ----------------------- GENERIC ------------------------# center :: Int -> Char -> String -> Stringdef center(n):    '''String s padded with c to approximate centre,       fitting in but not truncated to width n.'''    def go(c, s):        qr = divmod(n - len(s), 2)        q = qr[0]        return (q * c) + s + ((q + qr[1]) * c)    return lambda c: lambda s: go(c, s)# iterate :: (a -> a) -> a -> Gen [a]def iterate(f):    '''An infinite list of repeated       applications of f to x.    '''    def go(x):        v = x        while True:            yield v            v = f(v)    return go# MAIN ---if __name__ == '__main__':    main()
Output:
             1                         1   1                     1   2   1                 1   3   3   1             1   4   6   4   1        1   5   10   10   5   1   1   6   15   20   15   6   1             1                         1   1                     1   2   1                 1   3   3   1             1   4   6   4   1        1   5   10   10   5   1   1   6   15   20   15   6   1

q

pascal:{(x-1){0+':x,0}\1}pascal 511 11 2 11 3 3 11 4 6 4 1

Qi

Translation of:Haskell
(define iterate  _ _ 0 -> []  F V N -> [V|(iterate F (F V) (1- N))])(define next-row  R -> (MAPCAR + [0|R] (append R [0])))(define pascal  N -> (iterate next-row [1] N))

Quackery

The behaviour ofpascal for values less than 1 is the same as its behaviour for 1.

  [ over size -     space swap of    swap join ]           is justify  ( $ n -->   )  [ witheach      [ number$         5 justify echo$ ]    cr ]                  is echoline (   [ -->   )    [ [] 0 rot 0 join    witheach     [ tuck +       rot join swap ]     drop ]                is nextline (   [ --> [ )   [ ' [ 1 ] swap    1 - times      [ dup echoline        nextline ]    echoline ]            is pascal   (   n -->   )   16 pascal
Output:
    1    1    1    1    2    1    1    3    3    1    1    4    6    4    1    1    5   10   10    5    1    1    6   15   20   15    6    1    1    7   21   35   35   21    7    1    1    8   28   56   70   56   28    8    1    1    9   36   84  126  126   84   36    9    1    1   10   45  120  210  252  210  120   45   10    1    1   11   55  165  330  462  462  330  165   55   11    1    1   12   66  220  495  792  924  792  495  220   66   12    1    1   13   78  286  715 1287 1716 1716 1287  715  286   78   13    1    1   14   91  364 1001 2002 3003 3432 3003 2002 1001  364   91   14    1    1   15  105  455 1365 3003 5005 6435 6435 5005 3003 1365  455  105   15    1

R

Translation of:Octave
pascalTriangle <- function(h) {  for(i in 0:(h-1)) {    s <- ""    for(k in 0:(h-i)) s <- paste(s, "  ", sep="")    for(j in 0:i) {      s <- paste(s, sprintf("%3d ", choose(i, j)), sep="")    }    print(s)  }}

Here's an R version:

pascalTriangle <- function(h) {  lapply(0:h, function(i) choose(i, 0:i))}

Racket

Iterative version by summing rows up ton{\displaystyle {\displaystyle n}}.

#lang racket(define (pascal n)  (define (next-row current-row)    (map + (cons 0 current-row)           (append current-row '(0))))  (reverse   (for/fold ([triangle '((1))])             ([row (in-range 1 n)])     (cons (next-row (first triangle)) triangle))))

Raku

(formerly Perl 6)

Works with:rakudo version 2015-10-03

using a lazy sequence generator

The following routine returns a lazy list of lines using the sequence operator (...). With a lazy result you need not tell the routine how many you want; you can just use a slice subscript to get the first N lines:

sub pascal {    [1], { [0, |$_ Z+ |$_, 0] } ... *} .say for pascal[^10];

One problem with the routine above is that it might recalculate the sequence each time you call it. Slightly more idiomatic would be to define the sequence as a lazy constant. Here we use the@ sigil to indicate that the sequence should cache its values for reuse, and use an explicit parameter$prev for variety:

constant @pascal = [1], -> $prev { [0, |$prev Z+ |$prev, 0] } ... *; .say for @pascal[^10];

Since we use ordinary subscripting, non-positive inputs throw an index-out-of-bounds error.

recursive

Translation of:Haskell
multi sub pascal (1) { $[1] }multi sub pascal (Int $n where 2..*) {    my @rows = pascal $n - 1;    |@rows, [0, |@rows[*-1] Z+ |@rows[*-1], 0 ];} .say for pascal 10;

Non-positive inputs throw a multiple-dispatch error.

iterative

Translation of:Perl
sub pascal ($n where $n >= 1) {   say my @last = 1;   for 1 .. $n - 1 -> $row {       @last = 1, |map({ @last[$_] + @last[$_ + 1] }, 0 .. $row - 2), 1;       say @last;   }} pascal 10;

Non-positive inputs throw a type check error.

Output:
[1][1 1][1 2 1][1 3 3 1][1 4 6 4 1][1 5 10 10 5 1][1 6 15 20 15 6 1][1 7 21 35 35 21 7 1][1 8 28 56 70 56 28 8 1][1 9 36 84 126 126 84 36 9 1]

RapidQ

Summing from Previous Rows

Translation of:BASIC

The main difference to BASIC implementation is the output formatting.RapidQ does not support PRINT USING. Instead, function FORMAT$() is used.TAB() is not supported, so SPACE$() was used instead.

Another difference is that in RapidQ, DIM does not clear array values to zero.But if dimensioning is done with DEF..., you can give the initial values in curly braces.If less values are given than there are elements in the array, the remaining positions are initialized to zero.RapidQ does not require simple variables to be declared before use.

DEFINT values(100) = {0,1}INPUT "Number of rows: "; nrowsPRINT SPACE$((nrows)*3);"  1"FOR row = 2 TO nrows    PRINT SPACE$((nrows-row)*3+1);    FOR i = row TO 1 STEP -1        values(i) = values(i) + values(i-1)        PRINT FORMAT$("%5d ", values(i));    NEXT i    PRINTNEXT row

Using binary coefficients

Translation of:BASIC
INPUT "Number of rows: "; nrowsFOR row = 0 TO nrows-1    c = 1    PRINT SPACE$((nrows-row)*3);    FOR i = 0 TO row        PRINT FORMAT$("%5d ", c);        c = c * (row - i) / (i+1)    NEXT i    PRINTNEXT row

Red

Red[]pascal-triangle: function [    n [ integer! ] "number of rows" ][    row: make vector! [ 1 ]    loop n [        print row        left: copy row        right: copy row        insert left 0        append right 0        row: left + right    ]]

Output:

pascal-triangle 711 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1

Retro

2 elements i j: pascalTriangle  cr dup  [ dup !j 1 swap 1+ [ !i dup putn space @j @i - * @i 1+ / ] iter cr drop ] iter drop;13 pascalTriangle

REXX

There is no practical limit for this REXX version, triangles up to 46 rows have beengenerated (without wrapping) in a screen window with a width of 620 characters.

If the number (of rows) specified is negative,   the output is written to a (disk) fileinstead.   Triangles with over a   1,000   rows have been easily created.
The output file created (that is written to disk) is named    PASCALS.n    where  n   is the absolute value of the number entered.


Note:   Pascal's triangle is also known as:

  •   Khayyam's triangle
  •   Khayyam─Pascal's triangle
  •   Tartaglia's triangle
  •   Yang Hui's triangle
/*REXX program displays (or writes to a file)   Pascal's triangle  (centered/formatted).*/numeric digits 3000                              /*be able to handle gihugeic triangles.*/parse arg nn .                                   /*obtain the optional argument from CL.*/if nn=='' | nn==","  then nn= 10                 /*Not specified?  Then use the default.*/n= abs(nn)                                       /*N  is the number of rows in triangle.*/w= length( !(n-1)  %  !(n%2)  %  !(n - 1 - n%2)) /*W:  the width of biggest integer.    */ww= (n-1) * (W + 1)   +   1                      /*WW:  "    "    " triangle's last row.*/@.= 1;      $.= @.;          unity= right(1, w)  /*defaults rows & lines; aligned unity.*/                                                 /* [↓]  build rows of Pascals' triangle*/        do    r=1  for n;              rm= r-1   /*Note:  the first column is always  1.*/           do c=2  to rm;              cm= c-1   /*build the rest of the columns in row.*/           @.r.c= @.rm.cm  +  @.rm.c             /*assign value to a specific row & col.*/           $.r  = $.r   right(@.r.c, w)          /*and construct a line for output (row)*/           end   /*c*/                           /* [↑]    C  is the column being built.*/        if r\==1  then $.r= $.r  unity           /*for  rows≥2,  append a trailing  "1".*/        end      /*r*/                           /* [↑]    R  is the  row   being built.*/                                                 /* [↑]  WIDTH: for nicely looking line.*/     do r=1  for n;     $$= center($.r, ww)      /*center this particular Pascals' row. */     if nn>0  then say                       $$  /*SAY    if   NN    is positive,  else */              else call lineout 'PASCALS.'n, $$  /*write this Pascal's row ───►  a file.*/     end   /*r*/exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/!: procedure; !=1;  do j=2  to arg(1); != !*j; end /*j*/;  return !  /*compute factorial*/
output  when using the input of:     11
                    1                  1   1                1   2   1              1   3   3   1            1   4   6   4   1          1   5  10  10   5   1        1   6  15  20  15   6   1      1   7  21  35  35  21   7   1    1   8  28  56  70  56  28   8   1  1   9  36  84 126 126  84  36   9   11  10  45 120 210 252 210 120  45  10   1
output  when using the input of:     22

(Output shown at  4/5   size.)

                                                                         1                                                                      1      1                                                                  1      2      1                                                               1      3      3      1                                                           1      4      6      4      1                                                        1      5     10     10      5      1                                                    1      6     15     20     15      6      1                                                 1      7     21     35     35     21      7      1                                             1      8     28     56     70     56     28      8      1                                          1      9     36     84    126    126     84     36      9      1                                      1     10     45    120    210    252    210    120     45     10      1                                   1     11     55    165    330    462    462    330    165     55     11      1                               1     12     66    220    495    792    924    792    495    220     66     12      1                            1     13     78    286    715   1287   1716   1716   1287    715    286     78     13      1                        1     14     91    364   1001   2002   3003   3432   3003   2002   1001    364     91     14      1                     1     15    105    455   1365   3003   5005   6435   6435   5005   3003   1365    455    105     15      1                 1     16    120    560   1820   4368   8008  11440  12870  11440   8008   4368   1820    560    120     16      1              1     17    136    680   2380   6188  12376  19448  24310  24310  19448  12376   6188   2380    680    136     17      1          1     18    153    816   3060   8568  18564  31824  43758  48620  43758  31824  18564   8568   3060    816    153     18      1       1     19    171    969   3876  11628  27132  50388  75582  92378  92378  75582  50388  27132  11628   3876    969    171     19      1   1     20    190   1140   4845  15504  38760  77520 125970 167960 184756 167960 125970  77520  38760  15504   4845   1140    190     20      11     21    210   1330   5985  20349  54264 116280 203490 293930 352716 352716 293930 203490 116280  54264  20349   5985   1330    210     21      1

Ring

row = 5for i = 0 to row - 1    col = 1    see left("     ",row-i)    for k = 0 to i        see "" + col + " "        col = col*(i-k)/(k+1)    next    see nlnext

Output:

     1    1 1   1 2 1  1 3 3 1 1 4 6 4 1

RPL

« 0 SWAPFOR n     "" 0 nFOR p        n p COMB + " " +NEXT     n 1 + DISPNEXT   7 FREEZE» 'PASCAL' STO
8PASCAL
Output:
1 1 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 11 8 28 56 70 56 28 8 …

RPL screens are limited to 22 characters.

Ruby

def pascal(n)  raise ArgumentError, "must be positive." if n < 1  yield ar = [1]  (n-1).times do    ar.unshift(0).push(0) # tack a zero on both ends    yield ar = ar.each_cons(2).map(&:sum)  endend pascal(8){|row| puts row.join(" ").center(20)}
Output:
         1                  1 1                1 2 1              1 3 3 1            1 4 6 4 1         1 5 10 10 5 1      1 6 15 20 15 6 1  1 7 21 35 35 21 7 1

Or for more or less a translation of the two line Haskell version (with inject being abused a bit I know):

def next_row(row) ([0] + row).zip(row + [0]).collect {|l,r| l + r } enddef pascal(n) n.times.inject([1]) {|x,_| next_row x } end8.times{|i| p pascal(i)}
Output:
[1][1, 1][1, 2, 1][1, 3, 3, 1][1, 4, 6, 4, 1][1, 5, 10, 10, 5, 1][1, 6, 15, 20, 15, 6, 1][1, 7, 21, 35, 35, 21, 7, 1]

Run BASIC

input "number of rows? ";rfor i = 0 to r - 1  c = 1  print left$("                          ",(r*2)-(i*2));  for k = 0 to i    print using("####",c);    c = c*(i-k)/(k+1)  next  printnext

Output:

Number of rows? ?5             1           1   1         1   2   1       1   3   3   1     1   4   6   4   1

Rust

Translation of:C
fn pascal_triangle(n: u64){  for i in 0..n {    let mut c = 1;    for _j in 1..2*(n-1-i)+1 {      print!(" ");    }    for k in 0..i+1 {      print!("{:2} ", c);      c = c * (i-k)/(k+1);    }    println!();  }}

Scala

Functional solutions

Summing: Recursive row definition

  def tri(row: Int): List[Int] =     row match {      case 1 => List(1)      case n: Int => 1 +: ((tri(n - 1) zip tri(n - 1).tail) map { case (a, b) => a + b }) :+ 1    }

Function to pretty print n rows:

def prettyTri(n:Int) = (1 to n) foreach {i => print(" "*(n-i)); tri(i) map (c => print(c + " ")); println}prettyTri(5)
Output:
    1   1 1  1 2 1 1 3 3 11 4 6 4 1

Summing: Scala Stream (Recursive & Memoization)

object Blaise extends App {  def pascalTriangle(): Stream[Vector[Int]] =    Vector(1) #:: Stream.iterate(Vector(1, 1))(1 +: _.sliding(2).map(_.sum).toVector :+ 1)  val output = pascalTriangle().take(15).map(_.mkString(" "))  val longest = output.last.length  println("Pascal's Triangle")  output.foreach(line => println(s"${" " * ((longest - line.length) / 2)}$line"))}
Output:

See it in running in your browser byScalaFiddle (JavaScript) or byScastie (JVM).

Scheme

Works with:Scheme version R5{\displaystyle {\displaystyle ^{5}}}RS
(define (next-row row)  (map + (cons 0 row) (append row '(0)))) (define (triangle row rows)  (if (= rows 0)      '()      (cons row (triangle (next-row row) (- rows 1)))))(triangle (list 1) 5)

Output:

((1) (1 1) (1 2 1) (1 3 3 1) (1 4 6 4 1))

Seed7

$ include "seed7_05.s7i";const proc: main is func  local    var integer: numRows is 0;    var array integer: values is [] (0, 1);    var integer: row is 0;    var integer: index is 0;  begin    write("Number of rows: ");    readln(numRows);    writeln("1" lpad succ(numRows) * 3);    for row range 2 to numRows do      write("" lpad (numRows - row) * 3);      values &:= [] 0;      for index range succ(row) downto 2 do        values[index] +:= values[pred(index)];        write(" " <& values[index] lpad 5);      end for;      writeln;    end for;  end func;

Sidef

func pascal(rows) {    var row = [1]    { | n|        say row.join(' ')        row = [1, {|i| row[i] + row[i+1] }.map(0 .. n-2)..., 1]    } << 1..rows} pascal(10)

Stata

First, a few ways to compute a "Pascal matrix". With the first, the upper triangle is made of missing values (zeros with the other two).

function pascal1(n) {return(comb(J(1,n,0::n-1),J(n,1,0..n-1)))}function pascal2(n) {a = I(n)a[.,1] = J(n,1,1)for (i=3; i<=n; i++) {a[i,2..i-1] = a[i-1,2..i-1]+a[i-1,1..i-2]}return(a)}function pascal3(n) {a = J(n,n,0)for (i=1; i<n; i++) {a[i+1,i] = i}s = p = I(n)k = 1for (i=0; i<n; i++) {p = p*a/k++s = s+p}return(s)}

Now print the Pascal triangle.

function print_pascal_triangle(n) {a = pascal1(n)for (i=1; i<=n; i++) {for (j=1; j<=i; j++) {printf("%10.0f",a[i,j])}printf("\n")}}print_pascal_triangle(5)         1         1         1         1         2         1         1         3         3         1         1         4         6         4         1

Swift

func pascal(n:Int)->[Int]{    if n==1{        let a=[1]        print(a)        return a    }    else{        var a=pascal(n:n-1)        var temp=a        for i in 0..<a.count{            if i+1==a.count{                temp.append(1)                break            }            temp[i+1] = a[i]+a[i+1]        }        a=temp        print(a)        return a    }}let waste = pascal(n:10)

Tcl

Summing from Previous Rows

proc pascal_iterative n {    if {$n < 1} {error "undefined behaviour for n < 1"}    set row [list 1]    lappend rows $row        set i 1    while {[incr i] <= $n} {        set prev $row        set row [list 1]        for {set j 1} {$j < [llength $prev]} {incr j} {            lappend row [expr {[lindex $prev [expr {$j - 1}]] + [lindex $prev $j]}]        }        lappend row 1        lappend rows $row    }    return $rows}puts [join [pascal_iterative 6] \n]
11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1

Using binary coefficients

Translation of:BASIC
proc pascal_coefficients n {    if {$n < 1} {error "undefined behaviour for n < 1"}    for {set i 0} {$i < $n} {incr i} {        set c 1        set row [list $c]        for {set j 0} {$j < $i} {incr j} {            set c [expr {$c * ($i - $j) / ($j + 1)}]            lappend row $c        }        lappend rows $row    }    return $rows}puts [join [pascal_coefficients 6] \n]

Combinations

Translation of:Java

Thanks to Tcl 8.5's arbitrary precision integer arithmetic, this solution is not limited to a couple of dozen rows. Uses a caching factorial calculator to improve performance.

package require Tcl 8.5proc pascal_combinations n {    if {$n < 1} {error "undefined behaviour for n < 1"}    for {set i 0} {$i < $n} {incr i} {        set row [list]        for {set j 0} {$j <= $i} {incr j} {            lappend row [C $i $j]        }        lappend rows $row    }    return $rows}proc C {n k} {    expr {[ifact $n] / ([ifact $k] * [ifact [expr {$n - $k}]])}}set fact_cache {1 1}proc ifact n {    global fact_cache    if {$n < [llength $fact_cache]} {        return [lindex $fact_cache $n]    }    set i [expr {[llength $fact_cache] - 1}]    set sum [lindex $fact_cache $i]    while {$i < $n} {        incr i        set sum [expr {$sum * $i}]        lappend fact_cache $sum    }    return $sum}puts [join [pascal_combinations 6] \n]

Comparing Performance

set n 100puts "calculate $n rows:"foreach proc {pascal_iterative pascal_coefficients pascal_combinations} {    puts "$proc: [time [list $proc $n] 100]"}
Output:
calculate 100 rows:pascal_iterative: 2800.14 microseconds per iterationpascal_coefficients: 8760.98 microseconds per iterationpascal_combinations: 38176.66 microseconds per iteration

TI-83 BASIC

Using Addition of Previous Rows

PROGRAM:PASCALTR:Lbl IN:ClrHome:Disp "NUMBER OF ROWS":Input N:If N < 1:Goto IN:{N,N}→dim([A]):"CHEATING TO MAKE IT FASTER":For(I,1,N):1→[A](1,1):End:For(I,2,N):For(J,2,I):[A](I-1,J-1)+[A](I-1,J)→[A](I,J):End:End:[A]

Using nCr Function

PROGRAM:PASCALTR:Lbl IN:ClrHome:Disp "NUMBER OF ROWS":Input N:If N < 1:Goto IN:{N,N}→dim([A]):For(I,2,N):For(J,2,I):(I-1) nCr (J-1)→[A](I,J):End:End:[A]

Turing

proc pascal (n : int)    for i : 0 .. n        var c := 1        for k : 0 .. i            put c : 4 ..            c := c * (i - k) div (k + 1)        end for        put ""    end forend pascalpascal(5)

Output:

  1  1   1  1   2   1  1   3   3   1  1   4   6   4   1  1   5  10  10   5   1

TypeScript

Translation of:XPL0
// Pascal's trianglefunction pascal(n: number): void {  // Display the first n rows of Pascal's triangle  // if n<=0 then nothing is displayed  var ld: number[] = new Array(40); // Old  var nw: number[] = new Array(40); // New  for (var row = 0; row < n; row++) {    nw[0] = 1;    for (var i = 1; i <= row; i++)       nw[i] = ld[i - 1] + ld[i];    process.stdout.write(" ".repeat((n - row - 1) * 2));    for (var i = 0; i <= row; i++) {      if (nw[i] < 100)         process.stdout.write(" ");      process.stdout.write(nw[i].toString());      if (nw[i] < 10)         process.stdout.write(" ");      process.stdout.write(" ");    }    nw[row + 1] = 0;    // We do not copy data from nw to ld    // but we work with references.    var tmp = ld;    ld = nw;     nw = tmp;    console.log();  }}  pascal(13);
Output:
                         1                         1   1                       1   2   1                     1   3   3   1                   1   4   6   4   1                 1   5   10  10  5   1               1   6   15  20  15  6   1             1   7   21  35  35  21  7   1           1   8   28  56  70  56  28  8   1         1   9   36  84 126 126  84  36  9   1       1   10  45 120 210 252 210 120  45  10  1     1   11  55 165 330 462 462 330 165  55  11  1   1   12  66 220 495 792 924 792 495 220  66  12  1

uBasic/4tH

Input "Number Of Rows: "; N@(1) = 1Print Tab((N+1)*3);"1"For R = 2 To N    Print Tab((N-R)*3+1);    For I = R To 1 Step -1        @(I) = @(I) + @(I-1)        Print Using "______";@(i);    NextNextPrintEnd

Output:

Number Of Rows: 10                                 1                              1     1                           1     2     1                        1     3     3     1                     1     4     6     4     1                  1     5    10    10     5     1               1     6    15    20    15     6     1            1     7    21    35    35    21     7     1         1     8    28    56    70    56    28     8     1      1     9    36    84   126   126    84    36     9     10 OK, 0:380

UNIX Shell

Works with:Bourne Again SHell

Any n <= 1 will print the "1" row.

#! /bin/bashpascal() {    local -i n=${1:-1}    if (( n <= 1 )); then        echo 1    else        local output=$( $FUNCNAME $((n - 1)) )        set -- $( tail -n 1 <<<"$output" )   # previous row        echo "$output"        printf "1 "        while [[ -n $1 ]]; do            printf "%d " $(( $1 + ${2:-0} ))            shift        done        echo    fi}pascal "$1"

Ursala

Zero maps to the empty list. Negatives are inexpressible.This solution uses a library function for binomial coefficients.

#import std#import natpascal = choose**ziDS+ iota*t+ iota+ successor

This solution uses direct summation. The algorithm is toinsert zero at the head of a list (initially the unit list <1>), zip it with its reversal,map the sum over the list of pairs, iterate n times, and return the trace.

#import std#import natpascal "n" = (next"n" sum*NiCixp) <1>

test program:

#cast %nLLexample = pascal 10
Output:
<   <1>,   <1,1>,   <1,2,1>,   <1,3,3,1>,   <1,4,6,4,1>,   <1,5,10,10,5,1>,   <1,6,15,20,15,6,1>,   <1,7,21,35,35,21,7,1>,   <1,8,28,56,70,56,28,8,1>,   <1,9,36,84,126,126,84,36,9,1>>

VBA

Option Base 1Private Sub pascal_triangle(n As Integer)    Dim odd() As String    Dim eve() As String    ReDim odd(1)    ReDim eve(2)    odd(1) = "  1"    For i = 1 To n        If i Mod 2 = 1 Then            Debug.Print String$(2 * n - 2 * i, " ") & Join(odd, " ")            eve(1) = "  1"            ReDim Preserve eve(i + 1)            For j = 2 To i                eve(j) = Format(CStr(Val(odd(j - 1)) + Val(odd(j))), "@@@")            Next j            eve(i + 1) = "  1"        Else            Debug.Print String$(2 * n - 2 * i, " ") & Join(eve, " ")            odd(1) = "  1"            ReDim Preserve odd(i + 1)            For j = 2 To i                odd(j) = Format(CStr(Val(eve(j - 1)) + Val(eve(j))), "@@@")            Next j            odd(i + 1) = "  1"        End If    Next iEnd SubPublic Sub main()    pascal_triangle 13End Sub
Output:
                          1                        1   1                      1   2   1                    1   3   3   1                  1   4   6   4   1                1   5  10  10   5   1              1   6  15  20  15   6   1            1   7  21  35  35  21   7   1          1   8  28  56  70  56  28   8   1        1   9  36  84 126 126  84  36   9   1      1  10  45 120 210 252 210 120  45  10   1    1  11  55 165 330 462 462 330 165  55  11   1  1  12  66 220 495 792 924 792 495 220  66  12   1

VBScript

Derived from the BASIC version.

Pascal_Triangle(WScript.Arguments(0))Function Pascal_Triangle(n)Dim values(100)values(1) = 1WScript.StdOut.Write values(1)WScript.StdOut.WriteLineFor row = 2 To nFor i = row To 1 Step -1values(i) = values(i) + values(i-1)WScript.StdOut.Write values(i) & " "NextWScript.StdOut.WriteLineNextEnd Function
Output:

Invoke from a command line.

F:\VBScript>cscript /nologo rosettacode-pascals_triangle.vbs 611 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1

Vedit macro language

Summing from Previous Rows

Translation of:BASIC

Vedit macro language does not have actual arrays (edit buffers are normally used for storing larger amounts of data).However, a numeric register can be used as index to access another numeric register.For example, if #99 contains value 2, then #@99 accesses contents of numeric register #2.

#100 = Get_Num("Number of rows: ", STATLINE)#0=0; #1=1Ins_Char(' ', COUNT, #100*3-2) Num_Ins(1)for (#99 = 2; #99 <= #100; #99++) {    Ins_Char(' ', COUNT, (#100-#99)*3)    #@99 = 0    for (#98 = #99; #98 > 0; #98--) {#97 = #98-1#@98 += #@97Num_Ins(#@98, COUNT, 6)    }    Ins_Newline}

Using binary coefficients

Translation of:BASIC
#1 = Get_Num("Number of rows: ", STATLINE)for (#2 = 0; #2 < #1; #2++) {    #3 = 1    Ins_Char(' ', COUNT, (#1-#2-1)*3)    for (#4 = 0; #4 <= #2; #4++) {Num_Ins(#3, COUNT, 6)#3 = #3 * (#2-#4) / (#4+1)    }    Ins_Newline}

Visual Basic

Works with:Visual Basic version VB6 Standard
Sub pascaltriangle()    'Pascal's triangle    Const m = 11    Dim t(40) As Integer, u(40) As Integer    Dim i As Integer, n As Integer, s As String, ss As String    ss = ""    For n = 1 To m        u(1) = 1        s = ""        For i = 1 To n            u(i + 1) = t(i) + t(i + 1)            s = s & u(i) & " "            t(i) = u(i)        Next i        ss = ss & s & vbCrLf    Next n    MsgBox ss, , "Pascal's triangle"End Sub 'pascaltriangle
Output:
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 45 10 1

Visual Basic .NET

Translation of:C#
Imports System.NumericsModule Module1    Iterator Function GetRow(rowNumber As BigInteger) As IEnumerable(Of BigInteger)        Dim denominator As BigInteger = 1        Dim numerator = rowNumber        Dim currentValue As BigInteger = 1        For counter = 0 To rowNumber            Yield currentValue            currentValue = currentValue * numerator            numerator = numerator - 1            currentValue = currentValue / denominator            denominator = denominator + 1        Next    End Function    Function GetTriangle(quantityOfRows As Integer) As IEnumerable(Of BigInteger())        Dim range = Enumerable.Range(0, quantityOfRows).Select(Function(num) New BigInteger(num))        Return range.Select(Function(num) GetRow(num).ToArray())    End Function    Function CenterString(text As String, width As Integer)        Dim spaces = width - text.Length        Dim padLeft = (spaces / 2) + text.Length        Return text.PadLeft(padLeft).PadRight(width)    End Function    Function FormatTriangleString(triangle As IEnumerable(Of BigInteger())) As String        Dim maxDigitWidth = triangle.Last().Max().ToString().Length        Dim rows = triangle.Select(Function(arr) String.Join(" ", arr.Select(Function(array) CenterString(array.ToString(), maxDigitWidth))))        Dim maxRowWidth = rows.Last().Length        Return String.Join(Environment.NewLine, rows.Select(Function(row) CenterString(row, maxRowWidth)))    End Function    Sub Main()        Dim triangle = GetTriangle(20)        Dim output = FormatTriangleString(triangle)        Console.WriteLine(output)    End SubEnd Module
Output:
                                                           1                                                                            1     1                                                                      1     2     1                                                                1     3     3     1                                                          1     4     6     4     1                                                    1     5     10    10    5     1                                              1     6     15    20    15    6     1                                        1     7     21    35    35    21    7     1                                   1     8     28    56    70    56    28    8     1                                1     9     36    84   126   126    84    36    9     1                             1     10    45   120   210   252   210   120    45    10    1                          1     11    55   165   330   462   462   330   165    55    11    1                       1     12    66   220   495   792   924   792   495   220    66    12    1                    1     13    78   286   715  1287  1716  1716  1287   715   286    78    13    1                 1     14    91   364  1001  2002  3003  3432  3003  2002  1001   364    91    14    1              1     15   105   455  1365  3003  5005  6435  6435  5005  3003  1365   455   105    15    1           1     16   120   560  1820  4368  8008  11440 12870 11440 8008  4368  1820   560   120    16    1        1     17   136   680  2380  6188  12376 19448 24310 24310 19448 12376 6188  2380   680   136    17    1     1     18   153   816  3060  8568  18564 31824 43758 48620 43758 31824 18564 8568  3060   816   153    18    1  1     19   171   969  3876  11628 27132 50388 75582 92378 92378 75582 50388 27132 11628 3876   969   171    19    1

V (Vlang)

fn main() {rows(5)}fn rows(height int) [][]int {mut ret := [][]int{}mut cnum := 0for level := 1; level <= height; level++ {ret << []int{}cnum = 1for i := 1; i <= level; i++ {ret[level - 1] << cnumcnum = (cnum * (level - i)) / i}println(ret[level - 1])}return ret}
Output:
[1][1, 1][1, 2, 1][1, 3, 3, 1][1, 4, 6, 4, 1]

Wren

Library:Wren-fmt
Library:Wren-math
import "./fmt" for Fmtimport "./math" for Intvar pascalTriangle = Fn.new { |n|    if (n <= 0) return    for (i in 0...n) {        System.write("   " * (n-i-1))        for (j in 0..i) {            Fmt.write("$3d   ", Int.binomial(i, j))        }        System.print()    }}pascalTriangle.call(13)
Output:
                                      1                                      1     1                                   1     2     1                                1     3     3     1                             1     4     6     4     1                          1     5    10    10     5     1                       1     6    15    20    15     6     1                    1     7    21    35    35    21     7     1                 1     8    28    56    70    56    28     8     1              1     9    36    84   126   126    84    36     9     1           1    10    45   120   210   252   210   120    45    10     1        1    11    55   165   330   462   462   330   165    55    11     1     1    12    66   220   495   792   924   792   495   220    66    12     1

X86 Assembly

Works with:NASM
Works with:Windows

uses: io.inc - Macro library from SASM

%include "io.inc"section .textglobal CMAINCMAIN:mov ebx, 7 ;sizecall mloopretmloop:mov edx, 0 ;edx stands for the nth linelooping:push ebxpush edxcall linepop edxpop ebxinc edxcmp edx, ebxjl loopingxor eax, eaxretline:mov ecx, 0 ;ecx stands for the nth character in each linemlp:push ecx                push edxcall nCk                pop edxpop ecxPRINT_DEC 4, eax ;print returned number                PRINT_STRING " "inc ecxcmp ecx, edx ;ifjle mlpNEWLINEretnCk:;ecx : j;edx : imov esi, edxcall fac ;i!push eax ;save i!mov esi, ecxcall fac ;j!push eax ;save j!mov ebx, edxsub ebx, ecx ;(i-j)mov esi, ebxcall fac ;(i-j)!pop ebx ;(i-j)! is in eaxmul ebx ;(i-j)! * j!mov ecx, eaxpop eax ; get i!div ecx ; ; last step : i! divided by (i-j)! * j!retfac:push ecx        push edxmov eax, 1mov ecx, esicmp ecx, 0 ; 0! returns 1je faczlp:mul ecx ;multiplies eax by ecx and then decrements ecx until ecx is 0dec ecxcmp ecx, 0jg lpjmp endfacz:mov eax, 1end:                pop edxpop ecxret
Output:
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1

XBasic

Translation of:GW-BASIC
Works with:Windows XBasic
PROGRAM "pascal"VERSION "0.0001"DECLARE FUNCTION Entry()FUNCTION Entry()  r@@ = UBYTE(INLINE$("Number of rows? "))  FOR i@@ = 0 TO r@@ - 1    c%% = 1    FOR k@@ = 0 TO i@@      PRINT FORMAT$("####", c%%);      c%% = c%% * (i@@ - k@@) / (k@@ + 1)    NEXT k@@    PRINT  NEXT i@@END FUNCTIONEND PROGRAM
Output:
Number of rows? 7   1   1   1   1   2   1   1   3   3   1   1   4   6   4   1   1   5  10  10   5   1   1   6  15  20  15   6   1

XPL0

include c:\cxpl\codes;proc Pascal(N);         \Display the first N rows of Pascal's triangleint  N;                 \if N<=0 then nothing is displayedint  Row, I, Old(40), New(40);[for Row:= 0 to N-1 do        [New(0):= 1;        for I:= 1 to Row do New(I):= Old(I-1) + Old(I);        for I:= 1 to (N-Row-1)*2 do ChOut(0, ^ );        for I:= 0 to Row do                [if New(I)<100 then ChOut(0, ^ );                IntOut(0, New(I));                if New(I)<10 then ChOut(0, ^ );                ChOut(0, ^ );                ];        New(Row+1):= 0;        I:= Old;  Old:= New;  New:= I;        CrLf(0);        ];];Pascal(13)
Output:
                         1                         1   1                       1   2   1                     1   3   3   1                   1   4   6   4   1                 1   5   10  10  5   1               1   6   15  20  15  6   1             1   7   21  35  35  21  7   1           1   8   28  56  70  56  28  8   1         1   9   36  84 126 126  84  36  9   1       1   10  45 120 210 252 210 120  45  10  1     1   11  55 165 330 462 462 330 165  55  11  1   1   12  66 220 495 792 924 792 495 220  66  12  1

zkl

Translation of:C
fcn pascalTriangle(n){ // n<=0-->""   foreach i in (n){      c := 1;      print(" "*(2*(n-1-i)));      foreach k in (i+1){         print("%3d ".fmt(c));         c = c * (i-k)/(k+1);      }      println();   }} pascalTriangle(8);
Output:
                1               1   1             1   2   1           1   3   3   1         1   4   6   4   1       1   5  10  10   5   1     1   6  15  20  15   6   1   1   7  21  35  35  21   7   1

ZX Spectrum Basic

In edit mode insert:

 10 INPUT "How many rows? ";n 15 IF n<1 THEN GO TO 210 20 DIM c(n) 25 DIM d(n) 30 LET c(1)=1 35 LET d(1)=1 40 FOR r=1 TO n 50 FOR i=1 TO (n-r) 60 PRINT " "; 70 NEXT i 80 FOR i=1 TO r 90 PRINT c(i);" ";100 NEXT i110 PRINT120 IF r>=n THEN GO TO 140130 LET d(r+1)=1140 FOR i=2 TO r150 LET d(i)=c(i-1)+c(i)160 NEXT i 165 IF r>=n THEN GO TO 200170 FOR i=1 TO r+1180 LET c(i)=d(i)190 NEXT i200 NEXT r

Then in command mode (basically don't put a number in front):

RUN
Output:
        1        1 1       1 2 1      1 3 3 1     1 4 6 4 1    1 5 10 10 5 1   1 6 15 20 15 6 1  1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1
Retrieved from "https://rosettacode.org/wiki/Pascal%27s_triangle?oldid=376979"
Categories:
Hidden category:
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

[8]ページ先頭

©2009-2025 Movatter.jp