Movatterモバイル変換


[0]ホーム

URL:


Jump to content
Rosetta Code
Search

Least common multiple

From Rosetta Code


Task
Least common multiple
You are encouraged tosolve this task according to the task description, using any language you may know.
Task

Compute the   least common multiple   (LCM)   of two integers.

Given  m   and  n,   the least common multiple is the smallest positive integer that has both  m   and  n   as factors.


Example

The least common multiple of  12   and  18   is  36,       because:

  •  12   is a factor     (12 ×3 =36),     and
  •  18   is a factor     (18 ×2 =36),     and
  •   there is no positive integer less than  36   that has both factors.


As a special case,   if either  m   or  n   is zero,   then the least common multiple is zero.


One way to calculate the least common multiple is to iterate all the multiples of  m,   until you find one that is also a multiple of  n.

If you already have  gcd   forgreatest common divisor,   then this formula calculates  lcm.

lcm(m,n)=|m×n|gcd(m,n){\displaystyle {\displaystyle \operatorname {lcm} (m,n)={\frac {|m\times n|}{\operatorname {gcd} (m,n)}}}}

One can also find  lcm   by merging theprime decompositions of both  m   and  n.


Related task


See also



11l

F gcd(=a, =b)   L b != 0      (a, b) = (b, a % b)   R aF lcm(m, n)   R m I/ gcd(m, n) * nprint(lcm(12, 18))
Output:
36

360 Assembly

Translation of:PASCAL

For maximum compatibility, this program uses only the basic instruction set (S/360) with 2 ASSIST macros (XDECO,XPRNT).

LCM      CSECT         USING  LCM,R15            use calling register         L      R6,A               a         L      R7,B               b         LR     R8,R6              c=aLOOPW    LR     R4,R8                c         SRDA   R4,32                shift to next reg         DR     R4,R7                c/b         LTR    R4,R4              while c mod b<>0          BZ     ELOOPW               leave while         AR     R8,R6                c+=a         B      LOOPW              end whileELOOPW   LPR    R9,R6              c=abs(u)         L      R1,A               a             XDECO  R1,XDEC            edit a         MVC    PG+4(5),XDEC+7     move a to buffer         L      R1,B               b         XDECO  R1,XDEC            edit b         MVC    PG+10(5),XDEC+7    move b to buffer         XDECO  R8,XDEC            edit c         MVC    PG+17(10),XDEC+2   move c to buffer         XPRNT  PG,80              print buffer         XR     R15,R15            return code =0         BR     R14                return to callerA        DC     F'1764'            aB        DC     F'3920'            bPG       DC     CL80'lcm(00000,00000)=0000000000'  buffer XDEC     DS     CL12               temp for edit         YREGS         END    LCM
Output:
lcm( 1764, 3920)=     35280

8th

:gcd\ a b -- gcddup0n:=ifdrop;;thentuck\ b a bn:mod\ b a-mod-brecurse;:lcm\ m n2dup\ m n m nn:*\ m n m*nn:abs\ m n abs(m*n)-rot\ abs(m*n) m ngcd\ abs(m*n) gcd(m.n)n:/mod\ abs / gcdnip\ abs div gcd;:demo\ n m --2dup"LCMof".."and".."=".lcm.;1218democr-614democr350democrbye
Output:
LCM of 18 and 12 = 36LCM of 14 and -6 = 42LCM of 0 and 35 = 0

Action!

CARD FUNC Lcm(CARD a,b)  CARD tmp,c  IF a=0 OR b=0 THEN   RETURN (0)  FI  IF a<b THEN    tmp=a a=b b=tmp  FI  c=0  DO    c==+1  UNTIL a*c MOD b=0  ODRETURN(a*c)PROC Test(CARD a,b)  CARD res  res=Lcm(a,b)  PrintF("LCM of %I and %I is %I%E",a,b,res)RETURNPROC Main()  Test(4,6)  Test(120,77)  Test(24,8)  Test(1,56)  Test(12,0)RETURN
Output:

Screenshot from Atari 8-bit computer

LCM of 4 and 6 is 12LCM of 120 and 77 is 9240LCM of 24 and 8 is 24LCM of 1 and 56 is 56LCM of 12 and 0 is 0

Ada

lcm_test.adb:

withAda.Text_IO;useAda.Text_IO;procedureLcm_TestisfunctionGcd(A,B:Integer)returnIntegerisM:Integer:=A;N:Integer:=B;T:Integer;beginwhileN/=0loopT:=M;M:=N;N:=TmodN;endloop;returnM;endGcd;functionLcm(A,B:Integer)returnIntegerisbeginifA=0orB=0thenreturn0;endif;returnabs(A)*(abs(B)/Gcd(A,B));endLcm;beginPut_Line("LCM of 12, 18 is"&Integer'Image(Lcm(12,18)));Put_Line("LCM of -6, 14 is"&Integer'Image(Lcm(-6,14)));Put_Line("LCM of 35, 0 is"&Integer'Image(Lcm(35,0)));endLcm_Test;

Output:

LCM of 12, 18 is 36LCM of -6, 14 is 42LCM of 35, 0 is 0

ALGOL 68

BEGIN   PROC gcd = (INT m, n) INT :   BEGIN      INT a := ABS m, b := ABS n;      IF a=0 OR b=0 THEN 0 ELSE WHILE b /= 0 DO INT t = b; b := a MOD b; a := t OD; a      FI   END;   PROC lcm = (INT m, n) INT : ( m*n = 0 | 0 | ABS (m*n) % gcd (m, n));   INT m=12, n=18;   printf (($gxg(0)3(xgxg(0))l$,    "The least common multiple of", m, "and", n, "is", lcm(m,n),    "and their greatest common divisor is", gcd(m,n)))END
Output:
The least common multiple of 12 and 18 is 36 and their greatest common divisor is 6

Note that either or both PROCs could just as easily be implemented as OPs but then the operator priorities would also have to be declared.

ALGOL W

begin    integer procedure gcd ( integer value a, b ) ;        if b = 0 then a else gcd( b, a rem abs(b) );    integer procedure lcm( integer value a, b ) ;        abs( a * b ) div gcd( a, b );    write( lcm( 15, 20  ) );end.

APL

APL provides this function.

12^1836

If for any reason we wanted to reimplement it, we could do so in terms of the greatest common divisor by transcribing the formula set out in the task specification into APL notation:

LCM{(|×)÷}12LCM1836

AppleScript

------------------ LEAST COMMON MULTIPLE ------------------- lcm :: Integral a => a -> a -> aonlcm(x,y)if0=xor0=ythen0elseabs(xdiv(gcd(x,y))*y)endifendlcm--------------------------- TEST -------------------------onrunlcm(12,18)--> 36endrun-------------------- GENERIC FUNCTIONS --------------------- abs :: Num a => a -> aonabs(x)if0>xthen-xelsexendifendabs-- gcd :: Integral a => a -> a -> aongcd(x,y)scripton|λ|(a,b)if0=bthenaelse|λ|(b,amodb)endifend|λ|endscriptresult's|λ|(abs(x),abs(y))endgcd
Output:
36

Arendelle

For GCD function check outhere

< a , b >( return ,         abs ( @a * @b ) /        !gcd( @a , @b ))

Arturo

lcm:function[x,y][x*y/gcd@[xy]]printlcm1218
Output:
36

Assembly

x86 Assembly

; lcm.asm: calculates the least common multiple; of two positive integers;; nasm x86_64 assembly (linux) with libc; assemble: nasm -felf64 lcm.asm; gcc lcm.o; usage: ./a.out [number1] [number2]globalmainexternprintf; c function: prints formatted outputexternstrtol; c function: converts strings to longssection.textmain:pushrbp; set up stack frame; rdi contains argc; if less than 3, exitcmprdi,3jlincorrect_usage; push first argument as numberpushrsimovrdi,[rsi+8]movrsi,0movrdx,10; base 10callstrtolpoprsipushrax; push second argument as numberpushrsimovrdi,[rsi+16]movrsi,0movrdx,10; base 10callstrtolpoprsipushrax; pop arguments and call get_gcdpoprdipoprsicallget_gcd; print valuemovrdi,print_numbermovrsi,raxcallprintf; exitmovrax,0; 0--exit successpoprbpretincorrect_usage:movrdi,bad_use_string; rsi already contains argvmovrsi,[rsi]callprintfmovrax,0; 0--exit successpoprbpretbad_use_string:db"Usage:%s[number1][number2]",10,0print_number:db"%d",10,0get_gcd:pushrbp; set up stack framemovrax,0jmplooploop:; keep adding the first argument; to itself until a multiple; is found. then, returnaddrax,rdipushraxmovrdx,0divrsicmprdx,0popraxjegcd_foundjmploopgcd_found:poprbpret

ATS

Compile with ‘patscc -o lcm lcm.dats’

#define ATS_DYNLOADFLAG 0       (* No initialization is needed. *)#include "share/atspre_define.hats"#include "share/atspre_staload.hats"(********************************************************************)(*                                                                  *)(* Declarations.                                                    *)(*                                                                  *)(* (These could be ported to a .sats file.)                         *)(*                                                                  *)(* lcm for unsigned integer types without constraints. *)extern fun {tk : tkind}g0uint_lcm (u : g0uint tk,            v : g0uint tk) :<>    g0uint tk(* The gcd template function to be expanded when g0uint_lcm is   expanded. Set it to your favorite gcd function. *)extern fun {tk : tkind}g0uint_lcm$gcd (u : g0uint tk,                v : g0uint tk) :<>    g0uint tk(* lcm for signed integer types, giving unsigned results. *)extern fun {tk_signed, tk_unsigned : tkind}g0int_lcm (u : g0int tk_signed,           v : g0int tk_signed) :<>    g0uint tk_unsignedoverload lcm with g0uint_lcmoverload lcm with g0int_lcm(********************************************************************)(*                                                                  *)(* The implementations.                                             *)(*                                                                  *)implement {tk}g0uint_lcm (u, v) =  let    val d = g0uint_lcm$gcd<tk> (u, v)  in    (* There is no need to take the absolute value, because this       implementation is strictly for unsigned integers. *)    (u * v) / d  endimplement {tk_signed, tk_unsigned}g0int_lcm (u, v) =  let    extern castfn    unsigned :      g0int tk_signed -<> g0uint tk_unsigned  in    g0uint_lcm (unsigned (abs u), unsigned (abs v))  end(********************************************************************)(*                                                                  *)(* A test that it actually works.                                   *)(*                                                                  *)implementmain0 () =  let    implement {tk}    g0uint_lcm$gcd (u, v) =      (* An ugly gcd for the sake of demonstrating that it can be done         this way: Euclid’s algorithm written an the ‘Algol’ style,         which is not a natural style in ATS. Almost always you want         to write a tail-recursive function, instead. I did, however         find the ‘Algol’ style very useful when I was migrating         matrix routines from Fortran.         In reality, you would implement g0uint_lcm$gcd by having it         simply call whatever gcd template function you are using in         your program. *)      $effmask_all        begin          let            var x : g0uint tk = u            var y : g0uint tk = v          in            while (y <> 0)              let                val z = y              in                y := x mod z;                x := z              end;            x          end        end  in    assertloc (lcm (~6, 14) = 42U);    assertloc (lcm (2L, 0L) = 0ULL);    assertloc (lcm (12UL, 18UL) = 36UL);    assertloc (lcm (12, 22) = 132ULL);    assertloc (lcm (7ULL, 31ULL) = 217ULL)  end

AutoHotkey

LCM(Number1,Number2){If(Number1=0||Number2=0)ReturnVar:=Number1*Number2While,Number2Num:=Number2,Number2:=Mod(Number1,Number2),Number1:=NumReturn,Var//Number1}Num1=12Num2=18MsgBox%LCM(Num1,Num2)

AutoIt

Func_LCM($a,$b)Local$c,$f,$m=$a,$n=$b$c=1While$c<>0$f=Int($a/$b)$c=$a-$b*$fIf$c<>0Then$a=$b$b=$cEndIfWEndReturn$m*$n/$bEndFunc;==>_LCM

Example

ConsoleWrite(_LCM(12,18)&@LF)ConsoleWrite(_LCM(-5,12)&@LF)ConsoleWrite(_LCM(13,0)&@LF)
36600

--BugFix (talk) 14:32, 15 November 2013 (UTC)

AWK

# greatest common divisorfunctiongcd(m,n,t){# Euclid's methodwhile(n!=0){t=mm=nn=t%n}returnm}# least common multiplefunctionlcm(m,n,r){if(m==0||n==0)return0r=m*n/gcd(m,n)returnr<0?-r:r}# Read two integers from each line of input.# Print their least common multiple.{printlcm($1,$2)}

Example input and output:

$ awk -f lcd.awk12 1836-6 144235 00

BASIC

Applesoft BASIC

ported from BBC BASIC

10 DEF FN MOD(A) = INT((A / B - INT(A / B)) * B + .05) * SGN(A / B)20 INPUT"M=";M%30 INPUT"N=";N%40 GOSUB 10050 PRINT R60 END100 REM LEAST COMMON MULTIPLE M% N%110 R = 0120 IF M% = 0 OR N% = 0 THEN RETURN130 A% = M% : B% = N% : GOSUB 200"GCD140 R = ABS(M%*N%)/R150 RETURN200 REM GCD ITERATIVE EUCLID A% B%210 FOR B = B% TO 0 STEP 0220     C% = A%230     A% = B240     B = FN MOD(C%)250 NEXT B260 R = ABS(A%)270 RETURN

BBC BASIC

Works with:BBC BASIC for Windows
      DEF FN_LCM(M%,N%)      IF M%=0 OR N%=0 THEN =0 ELSE =ABS(M%*N%)/FN_GCD_Iterative_Euclid(M%, N%)            DEF FN_GCD_Iterative_Euclid(A%, B%)      LOCAL C%      WHILE B%        C% = A%        A% = B%        B% = C% MOD B%      ENDWHILE      = ABS(A%)

IS-BASIC

100 DEF LCM(A,B)=(A*B)/GCD(A,B)110 DEF GCD(A,B)120   DO WHILE B>0130     LET T=B:LET B=MOD(A,B):LET A=T140   LOOP 150   LET GCD=A160 END DEF 170 PRINT LCM(12,18)

Tiny BASIC

Works with:TinyBasic
10PRINT"First number"20INPUTA30PRINT"Second number"40INPUTB42LETQ=A44LETR=B50IFQ<0THENLETQ=-Q60IFR<0THENLETR=-R70IFQ>RTHENGOTO13080LETR=R-Q90IFQ=0THENGOTO110100GOTO50110LETU=(A*B)/R111IFU<0THENLETU=-U112PRINTU120END130LETC=Q140LETQ=R150LETR=C160GOTO70

BASIC256

Iterative solution

function mcm (m, n)if m = 0 or n = 0 then return 0if m < n thent = m : m = n : n = tend ifcont = 0docont += 1until (m * cont) mod n  = 0return m * contend functionprint "lcm( 12,  18) = "; mcm( 12, -18)print "lcm( 15,  12) = "; mcm( 15,  12)print "lcm(-10, -14) = "; mcm(-10, -14)print "lcm(  0,   1) = "; mcm(  0,   1)
Output:
lcm( 12,  18) = 36lcm( 15,  12) = 60lcm(-10, -14) = -70lcm(  0,   1) = 0


Recursive solution

Reuses code from Greatest_common_divisor#Recursive_solution and correctly handles negative arguments

function gcdp(a, b)if b = 0 then return areturn gcdp(b, a mod b)end functionfunction gcd(a, b)return gcdp(abs(a), abs(b))end functionfunction lcm(a, b)return abs(a * b) / gcd(a, b)end functionprint "lcm( 12, -18) = "; lcm( 12, -18)print "lcm( 15,  12) = "; lcm( 15,  12)print "lcm(-10, -14) = "; lcm(-10, -14)print "lcm(  0,   1) = "; lcm(  0,   1)
Output:
lcm( 12, -18) = 36.0lcm( 15,  12) = 60.0lcm(-10, -14) = 70.0lcm(  0,   1) = 0.0

Batch File

@echo offsetlocal enabledelayedexpansionsetnum1=12setnum2=18call:lcm%num1%%num2%exit /b:lcm <input1> <input2>if%2equ 0(set/alcm=%num1%*%num2%/%1echo LCM =!lcm!pause>nulgoto:EOF)set/ares=%1%%%2call:lcm%2%res%goto:EOF
Output:
LCM = 36

bc

Translation of:AWK
/* greatest common divisor */define g(m, n){auto t/* Euclid's method */while(n!=0){t= mm= nn= t% n}return(m)}/* least common multiple */define l(m, n){auto rif(m==0|| n==0)return(0)r= m* n/ g(m, n)if(r<0)return(-r)return(r)}

BCPL

get "libhdr"let lcm(m,n) =     m=0 -> 0,    n=0 -> 0,    abs(m*n) / gcd(m,n)and gcd(m,n) =    n=0 -> m,    gcd(n, m rem n)let start() be writef("%N*N", lcm(12, 18))
Output:
36

Befunge

Inputs are limited to signed 16-bit integers.

&>:0`2*1-*:&>:#@!#._:0`2*1v>28*:*:**+:28*>:*:*/\:vv*-<|<:%/*:*:*82\%*:*:*82<<>28v>$/28*:*:*/*.@^82::+**:*:*<
Input:
12345-23044
Output:
345660

BQN

Lcm×÷{𝕨(|𝕊(>0))𝕩}

Example:

12Lcm18
36

Bracmat

We utilize the fact that Bracmat simplifies fractions (using Euclid's algorithm). The functionden$number returns the denominator of a number.

(gcd=  a b.   !arg:(?a.?b)  &   den$(!a*!b^-1)    * (!a:<0&-1|1)    * !a);out$(gcd$(12.18) gcd$(-6.14) gcd$(35.0) gcd$(117.18))

Output:

36 42 35 234

Brat

gcd = { a, b |  true? { a == 0 }    { b }     { gcd(b % a, a) }}lcm = { a, b |   a * b / gcd(a, b)}p lcm(12, 18) # 36p lcm(14, 21) # 42

Bruijn

Translation of:Haskell
:import std/Math .lcm [[=?1 1 (=?0 0 |(1 / (gcd 1 0) ⋅ 0))]]:test ((lcm (+12) (+18)) =? (+36)) ([[1]]):test ((lcm (+42) (+25)) =? (+1050)) ([[1]])

C

#include<stdio.h>intgcd(intm,intn){inttmp;while(m){tmp=m;m=n%m;n=tmp;}returnn;}intlcm(intm,intn){returnm/gcd(m,n)*n;}intmain(){printf("lcm(35, 21) = %d\n",lcm(21,35));return0;}

C#

UsingSystem;classProgram{staticintgcd(intm,intn){returnn==0?Math.Abs(m):gcd(n,n%m);}staticintlcm(intm,intn){returnMath.Abs(m*n)/gcd(m,n);}staticvoidMain(){Console.WriteLine("lcm(12,18)="+lcm(12,18));}}
Output:
lcm(12,18)=36

C++

Library:Boost
#include<boost/math/common_factor.hpp>#include<iostream>intmain(){std::cout<<"The least common multiple of 12 and 18 is "<<boost::math::lcm(12,18)<<" ,\n"<<"and the greatest common divisor "<<boost::math::gcd(12,18)<<" !"<<std::endl;return0;}
Output:
The least common multiple of 12 and 18 is 36 ,and the greatest common divisor 6 !

Alternate solution

Works with:C++11
#include<cstdlib>#include<iostream>#include<tuple>intgcd(inta,intb){a=abs(a);b=abs(b);while(b!=0){std::tie(a,b)=std::make_tuple(b,a%b);}returna;}intlcm(inta,intb){intc=gcd(a,b);returnc==0?0:a/c*b;}intmain(){std::cout<<"The least common multiple of 12 and 18 is "<<lcm(12,18)<<",\n"<<"and their greatest common divisor is "<<gcd(12,18)<<"!"<<std::endl;return0;}

Clojure

(defngcd[ab](if(zero?b)a(recurb,(modab))))(defnlcm[ab](/(*ab)(gcdab)));; to calculate the lcm for a variable number of arguments(defnlcmv[&v](reducelcmv))

CLU

gcd = proc (m, n: int) returns (int)    m, n := int$abs(m), int$abs(n)    while n ~= 0 do m, n := n, m // n end    return(m)end gcdlcm = proc (m, n: int) returns (int)    if m=0 cor n=0         then return(0)        else return(int$abs(m*n) / gcd(m,n))    endend lcmstart_up = proc ()    po: stream := stream$primary_output()    stream$putl(po, int$unparse(lcm(12, 18)))end start_up
Output:
36

COBOL

IDENTIFICATIONDIVISION.PROGRAM-ID.show-lcm.ENVIRONMENTDIVISION.CONFIGURATIONSECTION.REPOSITORY.FUNCTIONlcm.PROCEDUREDIVISION.DISPLAY"lcm(35, 21) = "FUNCTIONlcm(35,21)GOBACK.ENDPROGRAMshow-lcm.IDENTIFICATIONDIVISION.FUNCTION-ID.lcm.ENVIRONMENTDIVISION.CONFIGURATIONSECTION.REPOSITORY.FUNCTIONgcd.DATADIVISION.LINKAGESECTION.01mPIC S9(8).01nPIC S9(8).01retPIC S9(8).PROCEDUREDIVISIONUSINGVALUEm,nRETURNINGret.COMPUTEret=FUNCTIONABS(m*n)/FUNCTIONgcd(m,n)GOBACK.ENDFUNCTIONlcm.IDENTIFICATIONDIVISION.FUNCTION-ID.gcd.DATADIVISION.LOCAL-STORAGESECTION.01tempPIC S9(8).01xPIC S9(8).01yPIC S9(8).LINKAGESECTION.01mPIC S9(8).01nPIC S9(8).01retPIC S9(8).PROCEDUREDIVISIONUSINGVALUEm,nRETURNINGret.MOVEmtoxMOVEntoyPERFORMUNTILy=0MOVExTOtempMOVEyTOxMOVEFUNCTIONMOD(temp,y)TOYEND-PERFORMMOVEFUNCTIONABS(x)TOretGOBACK.ENDFUNCTIONgcd.

Common Lisp

Common Lisp provides thelcm function. It can accept two or more (or less) parameters.

CL-USER>(lcm1218)36CL-USER>(lcm121822)396

Here is one way to reimplement it.

CL-USER>(defunmy-lcm(&restargs)(reduce(lambda(mn)(cond((or(=m0)(=n0))0)(t(abs(/(*mn)(gcdmn))))))args:initial-value1))MY-LCMCL-USER>(my-lcm1218)36CL-USER>(my-lcm121822)396

In this code, thelambda finds the least common multiple of two integers, and thereduce transforms it to accept any number of parameters. Thereduce operation exploits howlcm is associative,(lcm a b c) == (lcm (lcm a b) c); and how 1 is an identity,(lcm 1 a) == a.

Cowgol

include "cowgol.coh";sub gcd(m: uint32, n: uint32): (r: uint32) is    while n != 0 loop        var t := m;        m := n;        n := t % n;    end loop;    r := m;end sub;sub lcm(m: uint32, n: uint32): (r: uint32) is    if m==0 or n==0 then        r := 0;    else        r := m*n / gcd(m,n);    end if;end sub;print_i32(lcm(12, 18));print_nl();
Output:
36

D

importstd.stdio,std.bigint,std.math;Tgcd(T)(Ta,Tb)purenothrow{while(b){immutablet=b;b=a%b;a=t;}returna;}Tlcm(T)(Tm,Tn)purenothrow{if(m==0)returnm;if(n==0)returnn;returnabs((m*n)/gcd(m,n));}voidmain(){lcm(12,18).writeln;lcm("2562047788015215500854906332309589561".BigInt,"6795454494268282920431565661684282819".BigInt).writeln;}
Output:
3615669251240038298262232125175172002594731206081193527869

Dart

main(){intx=8;inty=12;intz=gcd(x,y);varlcm=(x*y)/z;print('$lcm');}intgcd(inta,intb){if(b==0)returna;if(b!=0)returngcd(b,a%b);}

Delphi

SeePascal.

DWScript

PrintLn(Lcm(12,18));

Output:

36

Draco

proc gcd(word m, n) word:    word t;    while n /= 0 do        t := m;        m := n;        n := t % n    od;    mcorpproc lcm(word m, n) word:    if m=0 or n=0         then 0         else m*n / gcd(m,n)     ficorpproc main() void:    writeln(lcm(12, 18))corp
Output:
36

DuckDB

Works with:DuckDB version V1.1
Works with:DuckDB version V1.0

lcm()

DuckDB has a scalar function, lcm(), which is an alias for least_common_multiple().In the following typescript, "D " is the DuckDB prompt. Notice thatgcd() has several signatures. In fact, there are currently two: onefor BIGINT and the other for HUGEINT.

D select lcm(12345, 9876) as lcm;┌───────┐│  lcm  ││ int64 │├───────┤│ 49380 │└───────┘D select lcm(0,1),  lcm(1,0),  lcm(0,0);┌───────────┬───────────┬───────────┐│ lcm(0, 1) │ lcm(1, 0) │ lcm(0, 0) ││   int64   │   int64   │   int64   │├───────────┼───────────┼───────────┤│         0 │         0 │         0 │└───────────┴───────────┴───────────┘D select lcm(123456789123456789123456789123456789, 23);┌───────────────────────────────────────────────┐│ lcm(123456789123456789123456789123456789, 23) ││                    int128                     │├───────────────────────────────────────────────┤│         2839506149839506149839506149839506147 │└───────────────────────────────────────────────┘


EasyLang

func gcd a b .   while b <> 0      h = b      b = a mod b      a = h   .   return a.func lcm a b .   return a / gcd a b * b.print lcm 12 18
Output:
36

EchoLisp

(lcm a b) is already here as a two arguments function. Use foldl to find the lcm of a list of numbers.

(lcm09)0(lcm444888)888(lcm888999)7992(define(lcm*list)(foldllcm(firstlist)list))lcm*(lcm*'(444888999))7992

Elena

Translation of:C#

ELENA 6.x :

import extensions;import system'math; gcd = (m,n => (n == 0) ? (m.Absolute) : (gcd(n,n.mod(m)))); lcm = (m,n => (m * n).Absolute / gcd(m,n)); public program(){    console.printLine("lcm(12,18)=",lcm(12,18))}
Output:
lcm(12,18)=36

Elixir

defmoduleRCdodefgcd(a,0),do:abs(a)defgcd(a,b),do:gcd(b,rem(a,b))deflcm(a,b),do:div(abs(a*b),gcd(a,b))endIO.putsRC.lcm(-12,15)
Output:
60

Erlang

% Implemented by Arjun Sunel-module(lcm).-export([main/0]).main()->lcm(-3,4).gcd(A,0)->A;gcd(A,B)->gcd(B,AremB).lcm(A,B)->abs(A*Bdivgcd(A,B)).
Output:
12

ERRE

PROGRAM LCMPROCEDURE GCD(A,B->GCD)    LOCAL C    WHILE B DO        C=A        A=B        B=C MOD B    END WHILE    GCD=ABS(A)END PROCEDUREPROCEDURE LCM(M,N->LCM)    IF M=0 OR N=0 THEN         LCM=0        EXIT PROCEDURE      ELSE         GCD(M,N->GCD)        LCM=ABS(M*N)/GCD    END IFEND PROCEDUREBEGIN    LCM(18,12->LCM)    PRINT("LCM of 18 AND 12 =";LCM)    LCM(14,-6->LCM)    PRINT("LCM of 14 AND -6 =";LCM)    LCM(0,35->LCM)    PRINT("LCM of 0 AND 35 =";LCM)END PROGRAM
Output:
LCM of 18 and 12 = 36LCM of 14 and -6 = 42LCM of 0 and 35 = 0

Euler

Note % is integer division in Euler, not the mod operator.

beginnew gcd;new lcm;    gcd <- `formal a;formal b;if b = 0then aelse gcd( b, amodabs b )           '         ;    lcm <- `formal a;formal b;abs [ a * b ] % gcd( a, b )           '         ;out lcm( 15, 20 )end $

Euphoria

function gcd(integer m, integer n)    integer tmp    while m do        tmp = m        m = remainder(n,m)        n = tmp    end while    return nend functionfunction lcm(integer m, integer n)    return m / gcd(m, n) * nend function

Excel

Excel's LCM can handle multiple values. Type in a cell:

=LCM(A1:J1)

This will get the LCM on the first 10 cells in the first row. Thus :

1235231367159423605940

Ezhil

## இந்த நிரல் இரு எண்களுக்கு இடையிலான மீச்சிறு பொது மடங்கு (LCM), மீப்பெரு பொது வகுத்தி (GCD) என்ன என்று கணக்கிடும்நிரல்பாகம் மீபொம(எண்1, எண்2)@(எண்1 == எண்2) ஆனால்  ## இரு எண்களும் சமம் என்பதால், மீபொம அந்த எண்ணேதான்பின்கொடு எண்1@(எண்1 > எண்2) இல்லைஆனால்சிறியது = எண்2பெரியது = எண்1இல்லைசிறியது = எண்1பெரியது = எண்2முடிமீதம் = பெரியது % சிறியது@(மீதம் == 0) ஆனால்    ## பெரிய எண்ணில் சிறிய எண் மீதமின்றி வகுபடுவதால், பெரிய எண்தான் மீபொமபின்கொடு பெரியதுஇல்லைதொடக்கம் = பெரியது + 1நிறைவு = சிறியது * பெரியது@(எண் = தொடக்கம், எண் <= நிறைவு, எண் = எண் + 1) ஆக    ## ஒவ்வோர் எண்ணாக எடுத்துக்கொண்டு தரப்பட்ட இரு எண்களாலும் வகுத்துப் பார்க்கின்றோம். முதலாவதாக இரண்டாலும் மீதமின்றி வகுபடும் எண்தான் மீபொமமீதம்1 = எண் % சிறியதுமீதம்2 = எண் % பெரியது@((மீதம்1 == 0) && (மீதம்2 == 0)) ஆனால்பின்கொடு எண்முடிமுடிமுடிமுடிஅ = int(உள்ளீடு("ஓர் எண்ணைத் தாருங்கள் "))ஆ = int(உள்ளீடு("இன்னோர் எண்ணைத் தாருங்கள் "))பதிப்பி "நீங்கள் தந்த இரு எண்களின் மீபொம (மீச்சிறு பொது மடங்கு, LCM) = ", மீபொம(அ, ஆ)

F#

letrecgcdxy=ify=0thenabsxelsegcdy(x%y)letlcmxy=x*y/(gcdxy)

Factor

The vocabularymath.functions already provideslcm.

USING:math.functionsprettyprint;26 28lcm.

This program outputs364.

One can also reimplementlcm.

USING:kernelmathprettyprint;IN:script:gcd(ab--c)[abs][[nip][mod]2bigcd]if-zero;:lcm(ab--c)[*abs][gcd]2bi/;26 28lcm.

Fermat

Func Lecm(a,b)=|a|*|b|/GCD(a,b).

Forth

:gcd( a b -- n )begindupwhiletuckmodrepeatdrop;:lcm( a b -- n )over0=over0=orif2drop0exitthen2dupgcdabs*/;

Fortran

This solution is written as a combination of 2 functions, but a subroutine implementation would work great as well.

integerfunctionlcm(a,b)integer::a,blcm=a*b/gcd(a,b)end functionlcmintegerfunctiongcd(a,b)integer::a,b,tdo while(b/=0)t=bb=mod(a,b)a=tend dogcd=abs(a)end functiongcd

FreeBASIC

Iterative solution

' FB 1.05.0 Win64Functionlcm(mAsInteger,nAsInteger)AsIntegerIfm=0OrElsen=0ThenReturn0Ifm<nThenSwapm,n'' to minimize iterations neededVarcount=0Docount+=1LoopUntil(m*count)Modn=0Returnm*countEndFunctionPrint"lcm(12, 18) =";lcm(12,18)Print"lcm(15, 12) =";lcm(15,12)Print"lcm(10, 14) =";lcm(10,14)PrintPrint"Press any key to quit"Sleep
Output:
lcm(12, 18) = 36lcm(15, 12) = 60lcm(10, 14) = 70

Recursive solution

Reuses code fromGreatest_common_divisor#Recursive_solution and correctly handles negative arguments

functiongcdp(aasuinteger,basuinteger)asuintegerifb=0thenreturnareturngcdp(b,amodb)endfunctionfunctiongcd(aasinteger,basinteger)asuintegerreturngcdp(abs(a),abs(b))endfunctionfunctionlcm(aasinteger,basinteger)asuintegerreturnabs(a*b)/gcd(a,b)endfunctionprint"lcm( 12, -18) = ";lcm(12,-18)print"lcm( 15,  12) = ";lcm(15,12)print"lcm(-10, -14) = ";lcm(-10,-14)print"lcm(  0,   1) = ";lcm(0,1)
Output:
lcm( 12, -18) = 36lcm( 15,  12) = 60lcm(-10, -14) = 70lcm(  0,   1) = 0

Frink

Frink has a built-in LCM function that handles arbitrarily-large integers.

println[lcm[2562047788015215500854906332309589561, 6795454494268282920431565661684282819]]

FunL

FunL has functionlcm in moduleintegers with the following definition:

def  lcm( _, 0 ) =  0  lcm( 0, _ ) =  0  lcm( x, y ) =  abs( (x\gcd(x, y)) y )

FutureBasic

int local fn gcd_rec( a as int, b as int )  if ( b == 0 ) then return aend fn = fn gcd_rec(b, a % b)int def fn lcm( a as int, b as int ) = abs(a * b) / fn gcd_rec(a, b)print fn lcm(12,18)HandleEvents
Output:
36

GAP

# Built-inLcmInt(12,18);# 36

Go

packagemainimport("fmt""math/big")varm,n,zbig.Intfuncinit(){m.SetString("2562047788015215500854906332309589561",10)n.SetString("6795454494268282920431565661684282819",10)}funcmain(){fmt.Println(z.Mul(z.Div(&m,z.GCD(nil,nil,&m,&n)),&n))}
Output:
15669251240038298262232125175172002594731206081193527869

Golfscript

{{.@\%.}do;}:gcd;{.@.@gcd@@*\/}:lcm;2706 410 lcm print
Output:
13530

Groovy

defgcdgcd={m,n->m=m.abs();n=n.abs();n==0?m:m%n==0?n:gcd(n,m%n)}deflcd={m,n->Math.abs(m*n)/gcd(m,n)}[[m:12,n:18,l:36],[m:-6,n:14,l:42],[m:35,n:0,l:0]].each{t->println"LCD of $t.m, $t.n is $t.l"assertlcd(t.m,t.n)==t.l}
Output:
LCD of 12, 18 is 36LCD of -6, 14 is 42LCD of 35, 0 is 0

GW-BASIC

Translation of:C
Works with:PC-BASIC version any
10PRINT"LCM(35, 21) = ";20LETMLCM=3530LETNLCM=2140GOSUB200:' Calculate LCM50PRINTLCM60END195' Calculate LCM200LETMGCD=MLCM210LETNGCD=NLCM220GOSUB400:' Calculate GCD230LETLCM=MLCM/GCD*NLCM240RETURN395' Calculate GCD400WHILEMGCD<>0410LETTMP=MGCD420LETMGCD=NGCDMODMGCD430LETNGCD=TMP440WEND450LETGCD=NGCD460RETURN

Haskell

That is already available as the functionlcm in the Prelude. Here's the implementation:

lcm::(Integrala)=>a->a->alcm_0=0lcm0_=0lcmxy=abs((x`quot`(gcdxy))*y)

Icon andUnicon

The lcm routine from the Icon Programming Library uses gcd. The routine is

linknumbersproceduremain()write("lcm of 18, 36 = ",lcm(18,36))write("lcm of 0, 9 = ",lcm(0,9))end
Library:Icon Programming Library

numbers provides lcm and gcd and looks like this:

procedurelcm(i,j)#: least common multipleif(i=0)|(j=0)thenreturn0returnabs(i*j)/gcd(i,j)end

J

J provides the dyadic verb*. which returns the least common multiple of its left and right arguments.

12*.183612*.182236132*./1218223960101*.0011NB. for truth valued arguments (0 and 1) it is equivalent to "and"0001*./~010001

Note: least common multiple is the original boolean multiplication. Constraining the universe of values to 0 and 1 allows us to additionally define logical negation (and boolean algebra was redefined to include this constraint in the early 1900s - the original concept of boolean algebra is now known as a boolean ring (though, talking to some people: there's been some linguistic drift even there)).

Java

importjava.util.Scanner;publicclassLCM{publicstaticvoidmain(String[]args){ScanneraScanner=newScanner(System.in);//prompts user for values to find the LCM for, then saves them to m and nSystem.out.print("Enter the value of m:");intm=aScanner.nextInt();System.out.print("Enter the value of n:");intn=aScanner.nextInt();intlcm=(n==m||n==1)?m:(m==1?n:0);/* this section increases the value of mm until it is greater      / than or equal to nn, then does it again when the lesser      / becomes the greater--if they aren't equal. If either value is 1,      / no need to calculate*/if(lcm==0){intmm=m,nn=n;while(mm!=nn){while(mm<nn){mm+=m;}while(nn<mm){nn+=n;}}lcm=mm;}System.out.println("lcm("+m+", "+n+") = "+lcm);}}

JavaScript

ES5

Computing the least common multiple of an integer array, using the associative law:

lcm(a,b,c)=lcm(lcm(a,b),c),{\displaystyle {\displaystyle \operatorname {lcm} (a,b,c)=\operatorname {lcm} (\operatorname {lcm} (a,b),c),}}

lcm(a1,a2,,an)=lcm(lcm(a1,a2,,an1),an).{\displaystyle {\displaystyle \operatorname {lcm} (a_{1},a_{2},\ldots ,a_{n})=\operatorname {lcm} (\operatorname {lcm} (a_{1},a_{2},\ldots ,a_{n-1}),a_{n}).}}

functionLCM(A)// A is an integer array (e.g. [-50,25,-45,-18,90,447]){varn=A.length,a=Math.abs(A[0]);for(vari=1;i<n;i++){varb=Math.abs(A[i]),c=a;while(a&&b){a>b?a%=b:b%=a;}a=Math.abs(c*A[i])/(a+b);}returna;}/* For example:   LCM([-50,25,-45,-18,90,447]) -> 67050*/


ES6

Translation of:Haskell
(()=>{'use strict';// gcd :: Integral a => a -> a -> aletgcd=(x,y)=>{let_gcd=(a,b)=>(b===0?a:_gcd(b,a%b)),abs=Math.abs;return_gcd(abs(x),abs(y));}// lcm :: Integral a => a -> a -> aletlcm=(x,y)=>x===0||y===0?0:Math.abs(Math.floor(x/gcd(x,y))*y);// TESTreturnlcm(12,18);})();
Output:
36

jq

Direct method

# Define the helper function to take advantage of jq's tail-recursion optimizationdef lcm(m; n):  def _lcm:    # state is [m, n, i]    if (.[2] % .[1]) == 0 then .[2] else (.[0:2] + [.[2] + m]) | _lcm end;  [m, n, m] | _lcm;

Julia

Built-in function:

lcm(m,n)

K

K3

Works with:Kona
gcd:{:[~x;y;_f[y;x!y]]}lcm:{_abs_x*y%gcd[x;y]}lcm.'(1218;-614;350)36420lcm/1+!20232792560

K6

Works with:ngn/k
abs:|/-:\gcd:{$[~x;y;o[x!y;x]]}lcm:{abs[`i$x*y%gcd[x;y]]}lcm.'(1218;-614;350)36420lcm/1+!20232792560

Klingphix

:gcd { u v -- n }    abs int swap abs int swap     [over over mod rot drop]    [dup]    while    drop; :lcm { m n -- n }    over over gcd rot swap div mult; 12 18 lcm print nl  { 36 }"End " input

Kotlin

funmain(args:Array<String>){fungcd(a:Long,b:Long):Long=if(b==0L)aelsegcd(b,a%b)funlcm(a:Long,b:Long):Long=a/gcd(a,b)*bprintln(lcm(15,9))}

LabVIEW

RequiresGCD. This image is aVI Snippet, an executable image ofLabVIEW code. The LabVIEW version is shown on the top-right hand corner. You can download it, then drag-and-drop it onto the LabVIEW block diagram from a file browser, and it will appear as runnable, editable code.

Lasso

definegcd(a,b)=>{while(#b!=0)=>{local(t=#b)#b=#a%#b#a=#t}return#a}definelcm(m,n)=>{#m==0||#n==0?return0local(r=(#m*#n)/decimal(gcd(#m,#n)))returninteger(#r)->abs}lcm(-6,14)lcm(2,0)lcm(12,18)lcm(12,22)lcm(7,31)
Output:
42036132217

Liberty BASIC

print "Least Common Multiple of 12 and 18 is "; LCM(12, 18)endfunction LCM(m, n)    LCM = abs(m * n) / GCD(m, n)end functionfunction GCD(a, b)    while b        c = a        a = b        b = c mod b    wend    GCD = abs(a)end function

Logo

to abs :n  output sqrt product :n :nendto gcd :m :n  output ifelse :n = 0 [ :m ] [ gcd :n modulo :m :n ]endto lcm :m :n  output quotient (abs product :m :n) gcd :m :nend

Demo code:

print lcm 38 46

Output:

874

Lua

functiongcd(m,n)whilen~=0dolocalq=mm=nn=q%nendreturnmendfunctionlcm(m,n)return(m~=0andn~=0)andm*n/gcd(m,n)or0endprint(lcm(12,18))

m4

This should work with any POSIX-compliant m4. I have tested it with OpenBSD m4, GNU m4, and Heirloom Devtools m4.

divert(-1)define(`gcd',  `ifelse(eval(`0 <= (' $1 `)'),`0',`gcd(eval(`-(' $1 `)'),eval(`(' $2 `)'))',          eval(`0 <= (' $2 `)'),`0',`gcd(eval(`(' $1 `)'),eval(`-(' $2 `)'))',          eval(`(' $1 `) == 0'),`0',`gcd(eval(`(' $2 `) % (' $1 `)'),eval(`(' $1 `)'))',          eval(`(' $2 `)'))')define(`lcm',  `ifelse(eval(`0 <= (' $1 `)'),`0',`lcm(eval(`-(' $1 `)'),eval(`(' $2 `)'))',          eval(`0 <= (' $2 `)'),`0',`lcm(eval(`(' $1 `)'),eval(`-(' $2 `)'))',          eval(`(' $1 `) == 0'),`0',`eval(`(' $1 `) * (' $2 `) /' gcd(eval(`(' $1 `)'),eval(`(' $2 `)')))')')divert`'dnldnllcm(-6, 14) = 42lcm(2, 0) = 0lcm(12, 18) = 36lcm(12, 22) = 132lcm(7, 31) = 217
Output:
42 = 420 = 036 = 36132 = 132217 = 217

Maple

The least common multiple of two integers is computed by the built-in procedure ilcm in Maple. This should not be confused with lcm, which computes the least common multiple of polynomials.

> ilcm( 12, 18 );                                   36

Mathematica /Wolfram Language

LCM[18,12]->36

MATLAB /Octave

lcm(a,b)

Maxima

lcm(a,b);/* a and b may be integers or polynomials *//* In Maxima the gcd of two integers is always positive, and a * b = gcd(a, b) * lcm(a, b),so the lcm may be negative. To get a positive lcm, simply do */abs(lcm(a,b))

Microsoft Small Basic

Translation of:C
Textwindow.Write("LCM(35, 21) = ")mlcm = 35nlcm = 21CalculateLCM()TextWindow.WriteLine(lcm)Sub CalculateLCM  mgcd = mlcm  ngcd = nlcm   CalculateGCD()   lcm = mlcm / gcd * nlcmEndSub Sub CalculateGCD  While mgcd <> 0    tmp = mgcd    mgcd = Math.Remainder(ngcd, mgcd)    ngcd = tmp  EndWhile  gcd = ngcdEndSub

MiniScript

gcd=function(a,b)whilebtemp=bb=a%ba=tempendwhilereturnabs(a)endfunctionlcm=function(a,b)ifnotaandnotbthenreturn0returnabs(a*b)/gcd(a,b)endfunctionprintlcm(18,12)
Output:
36

MiniZinc

function var int: lcm(int: a2,int:b2) =  let {    int:a1 = max(a2,b2);    int:b1 = min(a2,b2);    array[0..a1,0..b1] of var int: gcd;    constraint forall(a in 0..a1)(      forall(b in 0..b1)(        gcd[a,b] ==        if (b == 0) then          a        else          gcd[b, a mod b]        endif      )    )  } in (a1*b1) div gcd[a1,b1];   var int: lcm1 = lcm(18,12);solve satisfy;output [show(lcm1),"\n"];
Output:
36

min

Works with:min version 0.19.6
((0 <) (-1 *) when) :abs((dup 0 ==) (pop abs) (swap over mod) () linrec) :gcd(over over gcd '* dip div) :lcm

МК-61/52

ИПAИПB*|x|ПCИПAИПB/[x]П9ИПAИПBПAИП9*-ПBx=005ИПCИПA/С/П

ML

mLite

fungcd(a,0)=a|(0,b)=b|(a,b)where(a<b)=gcd(a,brema)|(a,b)=gcd(b,aremb)funlcm(a,b)=letvald=gcd(a,b)ina*bdivdend

Modula-2

Translation of:C
Works with:ADW Modula-2 version any (Compile with the linker optionConsole Application).
MODULELeastCommonMultiple;FROMSTextIOIMPORTWriteString,WriteLn;FROMSWholeIOIMPORTWriteInt;PROCEDUREGCD(M,N:INTEGER):INTEGER;VARTmp:INTEGER;BEGINWHILEM<>0DOTmp:=M;M:=NMODM;N:=Tmp;END;RETURNN;ENDGCD;PROCEDURELCM(M,N:INTEGER):INTEGER;BEGINRETURNM/GCD(M,N)*N;ENDLCM;BEGINWriteString("LCM(35, 21) = ");WriteInt(LCM(35,21),1);WriteLn;ENDLeastCommonMultiple.

Nanoquery

def gcd(a, b)if (a < 1) or (b < 1)throw new(InvalidNumberException, "gcd cannot be calculated on values < 1")endc = 0while b != 0c = aa = bb = c % bendreturn aenddef lcm(m, n)return (m * n) / gcd(m, n)endprintln lcm(12, 18)println lcm(6, 14)println lcm(1,2) = lcm(2,1)
Output:
3642true

NetRexx

/* NetRexx */optionsreplaceformatcommentsjavacrossrefsymbolsnobinarynumericdigits3000runSample(arg)return--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~methodlcm(m_,n_)publicstaticL_=m_*n_%gcd(m_,n_)returnL_--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--Euclid's algorithm - iterative implementationmethodgcd(m_,n_)publicstaticloopwhilen_>0c_=m_//n_m_=n_n_=c_endreturnm_--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~methodrunSample(arg)privatestaticparseargsamplesifsamples=''|samples='.'thensamples='-6 14 =    42 |'-'3  4 =    12 |'-'18 12 =    36 |'-'2  0 =     0 |'-'0 85 =     0 |'-'12 18 =    36 |'-'5 12 =    60 |'-'12 22 =   132 |'-'7 31 =   217 |'-'117 18 =   234 |'-'38 46 =   874 |'-'18 12 -5 =   180 |'-'-5 18 12 =   180 |'---confirmthatotherpermutationswork'12 -5 18 =   180 |'-'18 12 -5 97 = 17460 |'-'30 42 =   210 |'-'30 42 =     . |'---210;noverificationrequested'18 12'--36loopwhilesamples\=''parsesamplessample'|'samplesloopwhilesample\=''parsesamplemnvals'='chksampleifchk=''thenchk='.'mv=mnvals.word(1)loopw_=2tomnvals.wordsmnvalsnv=mnvals.word(w_)mv=mv.absnv=nv.absmv=lcm(mv,nv)endw_lv=mvselectcasechkwhen'.'thenstate=''whenlvthenstate='(verified)'otherwisestate='(failed)'endmnvals=mnvals.space(1,',').changestr(',',', ')say'lcm of'mnvals.right(15.max(mnvals.length))'is'lv.right(5.max(lv.length))stateendendreturn
Output:
lcm of          -6, 14 is    42 (verified)lcm of            3, 4 is    12 (verified)lcm of          18, 12 is    36 (verified)lcm of            2, 0 is     0 (verified)lcm of           0, 85 is     0 (verified)lcm of          12, 18 is    36 (verified)lcm of           5, 12 is    60 (verified)lcm of          12, 22 is   132 (verified)lcm of           7, 31 is   217 (verified)lcm of         117, 18 is   234 (verified)lcm of          38, 46 is   874 (verified)lcm of      18, 12, -5 is   180 (verified)lcm of      -5, 18, 12 is   180 (verified)lcm of      12, -5, 18 is   180 (verified)lcm of  18, 12, -5, 97 is 17460 (verified)lcm of          30, 42 is   210 (verified)lcm of          30, 42 is   210 lcm of          18, 12 is    36

Nim

The standard module "math" provides a function "lcm" for two integers and for an open array of integers. If we absolutely want to compute the least common multiple with our own procedure, it can be done this way (less efficient than the function in the standard library which avoids the modulo):

procgcd(u,v:int):auto=varu=uv=vwhilev!=0:u=u%%vswapu,vabs(u)proclcm(a,b:int):auto=abs(a*b)divgcd(a,b)echolcm(12,18)echolcm(-6,14)
Output:
3642

Objeck

Translation of:C
class LCM {  function : Main(args : String[]) ~ Nil {    IO.Console->Print("lcm(35, 21) = ")->PrintLine(lcm(21,35));  }    function : lcm(m : Int, n : Int) ~ Int {    return m / gcd(m, n) * n;  }    function : gcd(m : Int, n : Int) ~ Int {    tmp : Int;    while(m <> 0) { tmp := m; m := n % m; n := tmp; };    return n;  }}

OCaml

letrecgcduv=ifv<>0then(gcdv(umodv))else(absu)letlcmmn=matchm,nwith|0,_|_,0->0|m,n->abs(m*n)/(gcdmn)let()=Printf.printf"lcm(35, 21) = %d\n"(lcm2135)

Oforth

lcm is already defined into Integer class :

12 18 lcm

ooRexx

saylcm(18,12)--calculatethegreatestcommondenominatorofanumerator/denominatorpair::routinegcdprivateuseargx,yloopwhiley\=0--checkiftheydivideevenlytemp=x//yx=yy=tempendreturnx--calculatetheleastcommonmultipleofanumerator/denominatorpair::routinelcmprivateuseargx,yreturnx/gcd(x,y)*y

Order

Translation of:bc
#include<order/interpreter.h>#define ORDER_PP_DEF_8gcd ORDER_PP_FN( \8fn(8U, 8V,                            \    8if(8isnt_0(8V), 8gcd(8V, 8remainder(8U, 8V)), 8U)))#define ORDER_PP_DEF_8lcm ORDER_PP_FN( \8fn(8X, 8Y,                            \    8if(8or(8is_0(8X), 8is_0(8Y)),     \        0,                             \        8quotient(8times(8X, 8Y), 8gcd(8X, 8Y)))))// No support for negative numbersORDER_PP(8to_lit(8lcm(12,18)))// 36

PARI/GP

Built-in function:

lcm

Pascal

ProgramLeastCommonMultiple(output);{$IFDEF FPC}{$MODE DELPHI}{$ENDIF}functionlcm(a,b:longint):longint;beginresult:=a;while(resultmodb)<>0doinc(result,a);end;beginwriteln('The least common multiple of 12 and 18 is: ',lcm(12,18));end.

Output:

The least common multiple of 12 and 18 is: 36

PascalABC.NET

functionGCD(a,b:integer):integer;beginwhileb>0do(a,b):=(b,amodb);Result:=a;end;functionLCM(a,b:integer):integer:=a=0?0:adivGCD(a,b)*b;beginPrintln(LCM(12,18));end.
Output:
36

Perl

Using GCD:

subgcd{my($x,$y)=@_;while($x){($x,$y)=($y%$x,$x)}$y}sublcm{my($x,$y)=@_;($x&&$y)and$x/gcd($x,$y)*$yor0}printlcm(1001,221);

Or by repeatedly increasing the smaller of the two until LCM is reached:

sublcm{useinteger;my($x,$y)=@_;my($f,$s)=@_;while($f!=$s){($f,$s,$x,$y)=($s,$f,$y,$x)if$f>$s;$f=$s/$x*$x;$f+=$xif$f<$s;}$f}printlcm(1001,221);

Phix

It is a builtin function, defined in builtins\gcd.e and accepting either two numbers or a single sequence of any length.

withjavascript_semantics?lcm(12,18)?lcm({12,18})
Output:
3636

Phixmonti

def gcd /# u v -- n #/abs int swap abs int swapdupwhileover over mod rot drop dupendwhiledropenddefdef lcm /# m n -- n #/over over gcd rot swap / *enddef12345 50 lcm print

PHP

Translation of:D
echolcm(12,18)==36;functionlcm($m,$n){if($m==0||$n==0)return0;$r=($m*$n)/gcd($m,$n);returnabs($r);}functiongcd($a,$b){while($b!=0){$t=$b;$b=$a%$b;$a=$t;}return$a;}

Picat

Picat has a built-in functiongcd/2.

Function

lcm(X,Y)= abs(X*Y)//gcd(X,Y).

Predicate

lcm(X,Y,LCM) => LCM = abs(X*Y)//gcd(X,Y).

Functional (fold/3)

lcm(List) = fold(lcm,1,List).

Test

go =>  L = [        [12,18],        [-6,14],        [35,0],        [7,10],        [2562047788015215500854906332309589561,6795454494268282920431565661684282819]      ],  foreach([X,Y] in L)     println((X,Y)=lcm(X,Y))  end,  println('1..20'=lcm(1..20)),  println('1..50'=lcm(1..50)),  nl.
Output:
(12,18) = 36(-6,14) = 42(35,0) = 0(7,10) = 70(2562047788015215500854906332309589561,6795454494268282920431565661684282819) = 156692512400382982622321251751720025947312060811935278691..20 = 2327925601..50 = 3099044504245996706400

PicoLisp

Using 'gcd' fromGreatest common divisor#PicoLisp:

(de lcm (A B)   (abs (*/ A B (gcd A B))) )

PL/I

/* Calculate the Least Common Multiple of two integers. */LCM: procedure options (main);          /* 16 October 2013 */   declare (m, n) fixed binary (31);   get (m, n);   put edit ('The LCM of ', m, ' and ', n, ' is', LCM(m, n)) (a, x(1));LCM: procedure (m, n) returns (fixed binary (31));   declare (m, n) fixed binary (31) nonassignable;   if m = 0 | n = 0 then return (0);   return (abs(m*n) / GCD(m, n));end LCM;GCD: procedure (a, b) returns (fixed binary (31)) recursive;   declare (a, b) fixed binary (31);   if b = 0 then return (a);   return (GCD (b, mod(a, b)) );end GCD;end LCM;
The LCM of              14  and              35  is             70

PowerShell

version 1

functiongcd($a,$b){functionpgcd($n,$m){if($n-le$m){if($n-eq0){$m}else{pgcd$n($m-$n)}}else{pgcd$m$n}}$n=[Math]::Abs($a)$m=[Math]::Abs($b)(pgcd$n$m)}functionlcm($a,$b){[Math]::Abs($a*$b)/(gcd$a$b)}lcm1218

version 2

version2 is faster than version1

functiongcd($a,$b){functionpgcd($n,$m){if($n-le$m){if($n-eq0){$m}else{pgcd$n($m%$n)}}else{pgcd$m$n}}$n=[Math]::Abs($a)$m=[Math]::Abs($b)(pgcd$n$m)}functionlcm($a,$b){[Math]::Abs($a*$b)/(gcd$a$b)}lcm1218

Output:

36

Prolog

SWI-Prolog knows gcd.

lcm(X,Y,Z):-Zisabs(X*Y)/gcd(X,Y).

Example:

 ?- lcm(18,12, Z).Z = 36.

PureBasic

ProcedureGCDiv(a,b);EuclideanalgorithmProtectedrWhilebr=bb=a%ba=rWendProcedureReturnaEndProcedureProcedureLCM(m,n)ProtectedtIfmAndnt=m*n/GCDiv(m,n)EndIfProcedureReturnt*Sign(t)EndProcedure

Python

Functional

gcd

Using the fractions librariesgcd function:

>>>importfractions>>>deflcm(a,b):returnabs(a*b)/fractions.gcd(a,b)ifaandbelse0>>>lcm(12,18)36>>>lcm(-6,14)42>>>assertlcm(0,2)==lcm(2,0)==0>>>

Or, for compositional flexibility, a curriedlcm, expressed in terms of our owngcd function:

'''Least common multiple'''frominspectimportsignature# lcm :: Int -> Int -> Intdeflcm(x):'''The smallest positive integer divisible       without remainder by both x and y.    '''returnlambday:0if0in(x,y)elseabs(y*(x//gcd_(x)(y)))# gcd_ :: Int -> Int -> Intdefgcd_(x):'''The greatest common divisor in terms of       the divisibility preordering.    '''defgo(a,b):returngo(b,a%b)if0!=belseareturnlambday:go(abs(x),abs(y))# TEST ----------------------------------------------------# main :: IO ()defmain():'''Tests'''print(fTable(__doc__+'s of 60 and [12..20]:')(repr)(repr)(lcm(60))(enumFromTo(12)(20)))pairs=[(0,2),(2,0),(-6,14),(12,18)]print(fTable('\n\n'+__doc__+'s of '+repr(pairs)+':')(repr)(repr)(uncurry(lcm))(pairs))# GENERIC -------------------------------------------------# enumFromTo :: (Int, Int) -> [Int]defenumFromTo(m):'''Integer enumeration from m to n.'''returnlambdan:list(range(m,1+n))# uncurry :: (a -> b -> c) -> ((a, b) -> c)defuncurry(f):'''A function over a tuple, derived from       a vanilla or curried function.    '''if1<len(signature(f).parameters):returnlambdaxy:f(*xy)else:returnlambdaxy:f(xy[0])(xy[1])# unlines :: [String] -> Stringdefunlines(xs):'''A single string derived by the intercalation       of a list of strings with the newline character.    '''return'\n'.join(xs)# FORMATTING ----------------------------------------------# fTable :: String -> (a -> String) ->#                     (b -> String) -> (a -> b) -> [a] -> StringdeffTable(s):'''Heading -> x display function -> fx display function ->                     f -> xs -> tabular string.    '''defgo(xShow,fxShow,f,xs):ys=[xShow(x)forxinxs]w=max(map(len,ys))returns+'\n'+'\n'.join(map(lambdax,y:y.rjust(w,' ')+' -> '+fxShow(f(x)),xs,ys))returnlambdaxShow:lambdafxShow:lambdaf:lambdaxs:go(xShow,fxShow,f,xs)# MAIN ---if__name__=='__main__':main()
Output:
Least common multiples of 60 and [12..20]:12 -> 6013 -> 78014 -> 42015 -> 6016 -> 24017 -> 102018 -> 18019 -> 114020 -> 60Least common multiples of [(0, 2), (2, 0), (-6, 14), (12, 18)]:  (0, 2) -> 0  (2, 0) -> 0(-6, 14) -> 42(12, 18) -> 36

Procedural

Prime decomposition

This importsPrime decomposition#Python

fromprime_decompositionimportdecomposetry:reduceexceptNameError:fromfunctoolsimportreducedeflcm(a,b):mul=int.__mul__ifaandb:da=list(decompose(abs(a)))db=list(decompose(abs(b)))merge=dafordinda:ifdindb:db.remove(d)merge+=dbreturnreduce(mul,merge,1)return0if__name__=='__main__':print(lcm(12,18))# 36print(lcm(-6,14))# 42assertlcm(0,2)==lcm(2,0)==0

Iteration over multiples

>>>deflcm(*values):values=set([abs(int(v))forvinvalues])ifvaluesand0notinvalues:n=n0=max(values)values.remove(n)whileany(n%mforminvalues):n+=n0returnnreturn0>>>lcm(-6,14)42>>>lcm(2,0)0>>>lcm(12,18)36>>>lcm(12,18,22)396>>>

Repeated modulo

Translation of:Tcl
>>>deflcm(p,q):p,q=abs(p),abs(q)m=p*qifnotm:return0whileTrue:p%=qifnotp:returnm//qq%=pifnotq:returnm//p>>>lcm(-6,14)42>>>lcm(12,18)36>>>lcm(2,0)0>>>

Qi

(define gcd  A 0 -> A  A B -> (gcd B (MOD A B)))(define lcm A B -> (/ (* A B) (gcd A B)))

Quackery

[ [ dup while    tuck mod again ]  drop abs ]         is gcd ( n n --> n )[ 2dup and iff    [ 2dup gcd      / * abs ]  else and ]         is lcm ( n n --> n )

R

"%gcd%"<-function(u,v){ifelse(u%%v!=0,v%gcd%(u%%v),v)}"%lcm%"<-function(u,v){abs(u*v)/(u%gcd%v)}print(50%lcm%75)

Racket

Racket already has defined both lcm and gcd funtions:

#langracket(lcm3456);returns 60(lcm8108);returns 216(gcd8108);returns 4(gcd108216432);returns 108

Raku

(formerly Perl 6)This function is provided as an infix so that it can be used productively with various metaoperators.

say3lcm4;# infixsay [lcm]1..20;# reductionsay ~(1..10Xlcm1..10)# cross
Output:
122327925601 2 3 4 5 6 7 8 9 10 2 2 6 4 10 6 14 8 18 10 3 6 3 12 15 6 21 24 9 30 4 4 12 4 20 12 28 8 36 20 5 10 15 20 5 30 35 40 45 10 6 6 6 12 30 6 42 24 18 30 7 14 21 28 35 42 7 56 63 70 8 8 24 8 40 24 56 8 72 40 9 18 9 36 45 18 63 72 9 90 10 10 30 20 10 30 70 40 90 10

Retro

This is from the math extensions library included with Retro.

: gcd ( ab-n ) [ tuck mod dup ] while drop ;: lcm ( ab-n ) 2over gcd [ * ] dip / ;

REXX

version 1

The  lcm   subroutine can handle any number of integers and/or arguments.

The integers (negative/zero/positive) can be (as per the  numeric digits)   up to ten thousand digits.

Usage note:   the integers can be expressed as a list and/or specified as individual arguments   (or as mixed).

/*REXX program finds the  LCM  (Least Common Multiple)  of any number of integers.      */numericdigits10000/*can handle 10k decimal digit numbers.*/say'the LCM of      19  and   0                   is ───►  'lcm(190)say'the LCM of       0  and  85                   is ───►  'lcm(085)say'the LCM of      14  and  -6                   is ───►  'lcm(14,-6)say'the LCM of      18  and  12                   is ───►  'lcm(1812)say'the LCM of      18  and  12  and  -5          is ───►  'lcm(1812,-5)say'the LCM of      18  and  12  and  -5  and  97 is ───►  'lcm(18,12,-5,97)say'the LCM of 2**19-1  and  2**521-1             is ───►  'lcm(2**19-12**521-1)/* [↑]   7th  &  13th  Mersenne primes.*/exit/*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/lcm:procedure;parsearg$,_;$=$_;doi=3toarg();$=$arg(i);end/*i*/parsevar$x$/*obtain the first value in args. */x=abs(x)/*use the absolute value of  X.   */dowhile$\==''/*process the remainder of args.  */parsevar$!$;if!<0then!=-!/*pick off the next arg (ABS val).*/if!==0thenreturn0/*if zero, then LCM is also zero. */d=x*!/*calculate part of the LCM here. */dountil!==0;parsevaluex//!!with!xend/*until*//* [↑]  this is a short & fast GCD*/x=d%x/*divide the pre─calculated value.*/end/*while*//* [↑]  process subsequent args.  */returnx/*return with the LCM of the args.*/

output   when using the (internal) supplied list:

the LCM of      19  and   0                   is ───►   0the LCM of       0  and  85                   is ───►   0the LCM of      14  and  -6                   is ───►   42the LCM of      18  and  12                   is ───►   36the LCM of      18  and  12  and  -5          is ───►   180the LCM of      18  and  12  and  -5  and  97 is ───►   17460the LCM of 2**19-1  and  2**521-1             is ───►   3599124170836896975638715824247986405702540425206233163175195063626010878994006898599180426323472024265381751210505324617708575722407440034562999570663839968526337

version 2

Translation of:REXX version 0

using different argument handling-

Use as lcm(a,b,c,---)

lcm2:procedurex=abs(arg(1))dok=2toarg()Whilex<>0y=abs(arg(k))x=x*y/gcd2(x,y)endreturnxgcd2:procedurex=abs(arg(1))doj=2toarg()y=abs(arg(j))Ify<>0ThenDodountilz==0z=x//yx=yy=zendendendreturnx

Ring

see lcm(24,36) func lcm m,n     lcm = m*n / gcd(m,n)     return lcmfunc gcd gcd, b     while b           c   = gcd           gcd = b           b   = c % b     end     return gcd

RPL

For unsigned integers

≪ DUP2 < ≪ SWAP ≫ IFTWHILE DUP B→RREPEAT       SWAP OVER / LAST ROT * -END DROP ≫ 'GCD' STO≪ DUP2 * ROT ROTGCD /≫ 'LCM' STO#12d #18dLCM
Output:
1: #36d

For usual integers (floating point without decimal part)

WHILE DUPREPEAT      SWAP OVER MODEND DROP ABS≫ 'GCD' STO≪ DUP2 * ROT ROTGCD /≫ 'LCM' STO

Ruby

Ruby has anInteger#lcm method, which finds the least common multiple of two integers.

irb(main):001:0>12.lcm18=>36

I can also write my ownlcm method. This one takes any number of arguments.

defgcd(m,n)m,n=n,m%nuntiln.zero?m.absenddeflcm(*args)args.inject(1)do|m,n|return0ifn.zero?(m*n).abs/gcd(m,n)endendplcm12,18,22plcm15,14,-6,10,21
Output:
396210

Run BASIC

Works with:Just BASIC
Works with:Liberty BASIC
print "lcm( 12, -18) = "; lcm( 12, -18)print "lcm( 15,  12) = "; lcm( 15,  12)print "lcm(-10, -14) = "; lcm(-10, -14)print "lcm(  0,   1) = "; lcm(  0,   1)endfunction lcm(m, n)    lcm = abs(m * n) / GCD(m, n)end functionfunction GCD(a, b)    while b        c = a        a = b        b = c mod b    wend    GCD = abs(a)end function

Rust

This implementation uses a recursive implementation of Stein's algorithm to calculate the gcd.

usestd::cmp::{max,min};fngcd(a:usize,b:usize)->usize{match((a,b),(a&1,b&1)){((x,y),_)ifx==y=>y,((0,x),_)|((x,0),_)=>x,((x,y),(0,1))|((y,x),(1,0))=>gcd(x>>1,y),((x,y),(0,0))=>gcd(x>>1,y>>1)<<1,((x,y),(1,1))=>{let(x,y)=(min(x,y),max(x,y));gcd((y-x)>>1,x)}_=>unreachable!(),}}fnlcm(a:usize,b:usize)->usize{a*b/gcd(a,b)}fnmain(){println!("{}",lcm(6324,234))}

Scala

defgcd(a:Int,b:Int):Int=if(b==0)a.abselsegcd(b,a%b)deflcm(a:Int,b:Int)=(a*b).abs/gcd(a,b)
lcm(12,18)// 36lcm(2,0)// 0lcm(-6,14)// 42

Scheme

>(definegcd(lambda(ab)(if(zero?b)a(gcdb(remainderab)))))>(definelcm(lambda(ab)(if(or(zero?a)(zero?b))0(abs(*b(floor(/a(gcdab))))))))>(lcm1218)36

Seed7

$ include "seed7_05.s7i";const func integer: gcd (in var integer: a, in var integer: b) is func  result    var integer: gcd is 0;  local    var integer: help is 0;  begin    while a <> 0 do      help := b rem a;      b := a;      a := help;    end while;    gcd := b;  end func;const func integer: lcm (in integer: a, in integer: b) is  return a div gcd(a, b) * b;const proc: main is func  begin    writeln("lcm(35, 21) = " <& lcm(21, 35));  end func;

Original source:[1]

SenseTalk

function gcd m, nrepeat while m is greater than 0put m into tempput n modulo m into mput temp into nend repeatreturn nend gcdfunction lcm m, nreturn m divided by gcd(m, n) times nend lcm

Sidef

Built-in:

sayMath.lcm(1001,221)

Using GCD:

funcgcd(a,b){while(a){(a,b)=(b%a,a)}returnb}funclcm(a,b){(a&&b)?(a/gcd(a,b)*b):0}saylcm(1001,221)
Output:
17017

Smalltalk

Smalltalk has a built-inlcm method onSmallInteger:

12lcm:18

Sparkling

function factors(n) {var f = {};for var i = 2; n > 1; i++ {while n % i == 0 {n /= i;f[i] = f[i] != nil ? f[i] + 1 : 1;}}return f;}function GCD(n, k) {let f1 = factors(n);let f2 = factors(k);let fs = map(f1, function(factor, multiplicity) {let m = f2[factor];return m == nil ? 0 : min(m, multiplicity);});let rfs = {};foreach(fs, function(k, v) {rfs[sizeof rfs] = pow(k, v);});return reduce(rfs, 1, function(x, y) { return x * y; });}function LCM(n, k) {return n * k / GCD(n, k);}

Standard ML

Readable version

fungcd(0,n)=n|gcd(m,n)=gcd(nmodm,m)funlcm(m,n)=abs(x*y)divgcd(m,n)

Alternate version

val rec gcd = fn (x, 0) => abs x | p as (_, y) => gcd (y, Int.rem p)val lcm = fn p as (x, y) => Int.quot (abs (x * y), gcd p)

Swift

Using the Swift GCD function.

func lcm(a:Int, b:Int) -> Int {    return abs(a * b) / gcd_rec(a, b)}

Tcl

proc lcm {p q} {    set m [expr {$p * $q}]    if {!$m} {return 0}    while 1 {set p [expr {$p % $q}]if {!$p} {return [expr {$m / $q}]}set q [expr {$q % $p}]if {!$q} {return [expr {$m / $p}]}    }}

Demonstration

puts [lcm 12 18]

Output:

36

TI-83 BASIC

lcm(12,18               36

TSE SAL

// library: math: get: least: common: multiple <description></description> <version control></version control> <version>1.0.0.0.2</version> <version control></version control> (filenamemacro=getmacmu.s) [<Program>] [<Research>] [kn, ri, su, 20-01-2013 14:36:11]INTEGER PROC FNMathGetLeastCommonMultipleI( INTEGER x1I, INTEGER x2I ) // RETURN( x1I * x2I / FNMathGetGreatestCommonDivisorI( x1I, x2I ) ) //END// library: math: get: greatest: common: divisor <description>greatest common divisor whole numbers. Euclid's algorithm. Recursive version</description> <version control></version control> <version>1.0.0.0.3</version> <version control></version control> (filenamemacro=getmacdi.s) [<Program>] [<Research>] [kn, ri, su, 20-01-2013 14:22:41]INTEGER PROC FNMathGetGreatestCommonDivisorI( INTEGER x1I, INTEGER x2I ) // IF ( x2I == 0 )  //  RETURN( x1I )  // ENDIF // RETURN( FNMathGetGreatestCommonDivisorI( x2I, x1I MOD x2I ) ) //ENDPROC Main() // STRING s1[255] = "10" STRING s2[255] = "20" REPEAT  IF ( NOT ( Ask( "math: get: least: common: multiple: x1I = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF  IF ( NOT ( Ask( "math: get: least: common: multiple: x2I = ", s2, _EDIT_HISTORY_ ) ) AND ( Length( s2 ) > 0 ) ) RETURN() ENDIF  Warn( FNMathGetLeastCommonMultipleI( Val( s1 ), Val( s2 ) ) ) // gives e.g. 10 UNTIL FALSEEND

TXR

$ txr -p '(lcm (expt 2 123) (expt 6 49) 17)'43259338018880832376582582128138484281161556655442781051813888

TypeScript

Translation of:C
// Least common multiplefunction gcd(m: number, n: number): number {  var tmp: number;  while (m != 0) {    tmp = m;    m = n % m;    n = tmp;  }  return n;}function lcm(m: number, n: number): number {    return Math.floor(m / gcd(m, n)) * n;} console.log(`LCM(35, 21) = ${lcm(35, 21)}`);
Output:
LCM(35, 21) = 105

uBasic/4tH

Translation of:BBC BASIC
Print "LCM of 12 : 18 = "; FUNC(_LCM(12,18))End_GCD_Iterative_Euclid Param(2)  Local (1)  Do While b@    c@ = a@    a@ = b@    b@ = c@ % b@  LoopReturn (ABS(a@))_LCM Param(2)If a@*b@  Return (ABS(a@*b@)/FUNC(_GCD_Iterative_Euclid(a@,b@)))Else  Return (0)EndIf
Output:
LCM of 12 : 18 = 360 OK, 0:330

Uiua

# Greatest Common Divisor using Euclidean algorithmGcd ← ⊙◌⍢(⟜◿:|±,)# Least Common MultipleLcm ← ÷⊃(Gcd|⌵×)

UNIX Shell

lcm(m,n)=|m×ngcd(m,n)|{\displaystyle {\displaystyle \operatorname {lcm} (m,n)=\left|{\frac {m\times n}{\operatorname {gcd} (m,n)}}\right|}}

Works with:Bourne Shell
gcd() {# Calculate $1 % $2 until $2 becomes zero.until test 0 -eq "$2"; do# Parallel assignment: set -- 1 2set -- "$2" "`expr "$1" % "$2"`"done# Echo absolute value of $1.test 0 -gt "$1" && set -- "`expr 0 - "$1"`"echo "$1"}lcm() {set -- "$1" "$2" "`gcd "$1" "$2"`"set -- "`expr "$1" \* "$2" / "$3"`"test 0 -gt "$1" && set -- "`expr 0 - "$1"`"echo "$1"}lcm 30 -42# => 210

C Shell

alias gcd eval \''set gcd_args=( \!*:q )\\@ gcd_u=$gcd_args[2]\\@ gcd_v=$gcd_args[3]\\while ( $gcd_v != 0 )\\@ gcd_t = $gcd_u % $gcd_v\\@ gcd_u = $gcd_v\\@ gcd_v = $gcd_t\\end\\if ( $gcd_u < 0 ) @ gcd_u = - $gcd_u\\@ $gcd_args[1]=$gcd_u\\'\'alias lcm eval \''set lcm_args=( \!*:q )\\@ lcm_m = $lcm_args[2]\\@ lcm_n = $lcm_args[3]\\gcd lcm_d $lcm_m $lcm_n\\@ lcm_r = ( $lcm_m * $lcm_n ) / $lcm_d\\if ( $lcm_r < 0 ) @ lcm_r = - $lcm_r\\@ $lcm_args[1] = $lcm_r\\'\'lcm result 30 -42echo $result# => 210

Ursa

import "math"out (lcm 12 18) endl console
Output:
36

Vala

int lcm(int a, int b){    /*Return least common multiple of two ints*/    // check for 0's                                                                if (a == 0 || b == 0)return 0;    // Math.abs(x) only works for doubles, Math.absf(x) for floats                  if (a < 0)        a *= -1;    if (b < 0)b *= -1;    int x = 1;    while (true){        if (a * x % b == 0)            return a*x;        x++;    }}void main(){    inta = 12;    intb = 18;    stdout.printf("lcm(%d, %d) = %d\n",a, b, lcm(a, b));}

VBA

Function gcd(u As Long, v As Long) As Long    Dim t As Long    Do While v        t = u        u = v        v = t Mod v    Loop    gcd = uEnd FunctionFunction lcm(m As Long, n As Long) As Long    lcm = Abs(m * n) / gcd(m, n)End Function

VBScript

Function LCM(a,b)LCM = POS((a * b)/GCD(a,b))End FunctionFunction GCD(a,b)DoIf a Mod b > 0 Thenc = a Mod ba = bb = cElseGCD = bExit DoEnd IfLoopEnd FunctionFunction POS(n)If n < 0 ThenPOS = n * -1ElsePOS = nEnd IfEnd Functioni = WScript.Arguments(0)j = WScript.Arguments(1)WScript.StdOut.Write "The LCM of " & i & " and " & j & " is " & LCM(i,j) & "."WScript.StdOut.WriteLine
Output:
C:\>cscript /nologo lcm.vbs 12 18The LCM of 12 and 18 is 36.C:\>cscript /nologo lcm.vbs 14 -6The LCM of 14 and -6 is 42.C:\>cscript /nologo lcm.vbs 0 35The LCM of 0 and 35 is 0.C:\>

Wortel

Operator

@lcm a b

Number expression

!#~km a b

Function (using gcd)

&[a b] *b /a @gcd a b

Wren

var gcd = Fn.new { |x, y|    while (y != 0) {        var t = y        y = x % y        x = t    }    return x.abs}var lcm = Fn.new { |x, y|    if (x == 0 && y == 0) return 0    return (x*y).abs / gcd.call(x, y)}var xys = [[12, 18], [-6, 14], [35, 0]]for (xy in xys) {    System.print("lcm(%(xy[0]), %(xy[1]))\t%("\b"*5) = %(lcm.call(xy[0], xy[1]))")}
Output:
lcm(12, 18) = 36lcm(-6, 14) = 42lcm(35, 0)  = 0

XBasic

Translation of:C
Works with:Windows XBasic
' Least common multiplePROGRAM "leastcommonmultiple"VERSION "0.0001"DECLARE FUNCTION Entry()INTERNAL FUNCTION Gcd(m&, n&)INTERNAL FUNCTION Lcm(m&, n&)FUNCTION Entry()  PRINT "LCM(35, 21) ="; Lcm(35, 21)END FUNCTIONFUNCTION Gcd(m&, n&)  DO WHILE m& <> 0    tmp& = m&    m& = n& MOD m&    n& = tmp&  LOOP  RETURN n&END FUNCTIONFUNCTION Lcm(m&, n&)  RETURN m& / Gcd(m&, n&) * n&END FUNCTIONEND PROGRAM
Output:
LCM(35, 21) = 105

XPL0

include c:\cxpl\codes;func GCD(M,N);  \Return the greatest common divisor of M and Nint  M, N;int  T;[while N do     \Euclid's method    [T:= M;  M:= N;  N:= rem(T/N)];return M;];func LCM(M,N);  \Return least common multipleint  M, N;return abs(M*N) / GCD(M,N);\Display the LCM of two integers entered on command lineIntOut(0, LCM(IntIn(8), IntIn(8)))

Yabasic

sub gcd(u, v)    local t    u = int(abs(u))    v = int(abs(v))    while(v)        t = u        u = v        v = mod(t, v)    wend    return uend subsub lcm(m, n)    return m / gcd(m, n) * nend subprint "Least common multiple: ", lcm(12345, 23044)

zkl

fcn lcm(m,n){ (m*n).abs()/m.gcd(n) }  // gcd is a number method
Output:
zkl: lcm(12,18)36zkl: lcm(-6,14)42zkl: lcm(35,0)0
Retrieved from "https://rosettacode.org/wiki/Least_common_multiple?oldid=376923"
Categories:
Hidden category:

[8]ページ先頭

©2009-2025 Movatter.jp