Movatterモバイル変換


[0]ホーム

URL:


Jump to content
Rosetta Code
Search

Identity matrix

From Rosetta Code
Task
Identity matrix
You are encouraged tosolve this task according to the task description, using any language you may know.
Task

Build an  identity matrix   of a size known at run-time.


Anidentity matrix is a square matrix of sizen ×n,
where the diagonal elements are all1s (ones),
and all the other elements are all0s (zeroes).


In=[1000010000100001]{\displaystyle {\displaystyle I_{n}={\begin{bmatrix}1&0&0&\cdots &0\\0&1&0&\cdots &0\\0&0&1&\cdots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \\0&0&0&\cdots &1\\\end{bmatrix}}}}


Related tasks



11l

Translation of:Python
F identity_matrix(size)   V matrix = [[0] * size] * size   L(i) 0 .< size      matrix[i][i] = 1   R matrixL(row) identity_matrix(3)   print(row)
Output:
[1, 0, 0][0, 1, 0][0, 0, 1]

360 Assembly

*        Identity matrix           31/03/2017INDENMAT CSECT         USING  INDENMAT,R13       base register         B      72(R15)            skip savearea         DC     17F'0'             savearea         STM    R14,R12,12(R13)    save previous context         ST     R13,4(R15)         link backward         ST     R15,8(R13)         link forward         LR     R13,R15            set addressability         L      R1,N               n         MH     R1,N+2             n*n         SLA    R1,2               *4         ST     R1,LL              amount of storage required         GETMAIN RU,LV=(R1)        allocate storage for matrix         USING  DYNA,R11           make storage addressable         LR     R11,R1             set addressability         LA     R6,1               i=1       DO WHILE=(C,R6,LE,N)        do i=1 to n         LA     R7,1                 j=1       DO WHILE=(C,R7,LE,N)          do j=1 to n       IF CR,R6,EQ,R7 THEN             if i=j then         LA     R2,1                     k=1       ELSE     ,                      else         LA     R2,0                     k=0       ENDIF    ,                      endif         LR     R1,R6                  i         BCTR   R1,0                   -1         MH     R1,N+2                 *n         AR     R1,R7                  (i-1)*n+j         BCTR   R1,0                   -1         SLA    R1,2                   *4         ST     R2,A(R1)               a(i,j)=k         LA     R7,1(R7)               j++       ENDDO    ,                    enddo j         LA     R6,1(R6)             i++       ENDDO    ,                  enddo i         LA     R6,1               i=1       DO WHILE=(C,R6,LE,N)        do i=1 to n         LA     R10,PG               pgi=0         LA     R7,1                 j=1       DO WHILE=(C,R7,LE,N)          do j=1 to n         LR     R1,R6                  i         BCTR   R1,0                   -1         MH     R1,N+2                 *n         AR     R1,R7                  (i-1)*n+j         BCTR   R1,0                   -1         SLA    R1,2                   *4         L      R2,A(R1)               a(i,j)         XDECO  R2,XDEC                edit         MVC    0(1,R10),XDEC+11       output         LA     R10,1(R10)             pgi+=1         LA     R7,1(R7)               j++       ENDDO    ,                    enddo j         XPRNT  PG,L'PG              print         LA     R6,1(R6)             i++       ENDDO    ,                  enddo i         LA     R1,A               address to free         LA     R2,LL              amount of storage to free         FREEMAIN A=(R1),LV=(R2)   free allocated storage         DROP   R11                drop register         L      R13,4(0,R13)       restore previous savearea pointer         LM     R14,R12,12(R13)    restore previous context         XR     R15,R15            rc=0         BR     R14                exitNN       EQU    10                 parameter n  (90=>32K)N        DC     A(NN)              nLL       DS     F                  n*n*4PG       DC     CL(NN)' '          bufferXDEC     DS     CL12               tempDYNA     DSECTA        DS     F                  a(n,n)         YREGS         END    INDENMAT
Output:
1000000000010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001

Action!

PROC CreateIdentityMatrix(BYTE ARRAY mat,BYTE size)  CARD pos  BYTE i,j  pos=0  FOR i=1 TO size  DO    FOR j=1 TO size    DO      IF i=j THEN         mat(pos)=1      ELSE        mat(pos)=0      FI      pos==+1    OD  ODRETURNPROC PrintMatrix(BYTE ARRAY mat,BYTE size)  CARD pos  BYTE i,j,v  pos=0  FOR i=1 TO size  DO    FOR j=1 TO size    DO      v=mat(pos)      IF j=size THEN        PrintF("%I%E",v)      ELSE        PrintF("%I ",v)      FI      pos==+1    OD  ODRETURNPROC Main()  BYTE size  BYTE ARRAY mat(400)  BYTE LMARGIN=$52,old  old=LMARGIN  LMARGIN=0 ;remove left margin on the screen  DO    Print("Get size of matrix [1-20] ")    size=InputB()  UNTIL size>=1 AND size<=20  OD  CreateIdentityMatrix(mat,size)  PrintMatrix(mat,size)  LMARGIN=old ;restore left margin on the screenRETURN
Output:

Screenshot from Atari 8-bit computer

Get size of matrix [1-20] 131 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 1

Ada

When using floating point matrices in Ada 2005+ the function is defined as "Unit_Matrix" in Ada.Numerics.Generic_Real_Arrays. As a generic package it can work with user defined floating point types, or the predefined Short_Real_Arrays, Real_Arrays, and Long_Real_Arrays initializations. As seen below, the first indices of both dimensions can also be set since Ada array indices do not arbitrarily begin with a particular number.

--  As prototyped in the Generic_Real_Arrays specification:--  function Unit_Matrix (Order : Positive; First_1, First_2 : Integer := 1) return Real_Matrix;-- For the task:mat:Real_Matrix:=Unit_Matrix(5);

For prior versions of Ada, or non floating point types its back to basics:

typeMatrixisarray(PositiveRange<>,PositiveRange<>)ofInteger;mat:Matrix(1..5,1..5):=(others=>(others=>0));--  then after the declarative section:foriinmat'Range(1)loopmat(i,i):=1;endloop;

ALGOL 68

Works with:ALGOL 68 version Revision 1 - one extension to language used - PRAGMA READ - a non standard feature similar to C's #include directive.
Works with:ALGOL 68G version Any - tested with releasealgol68g-2.8.

Note: The generic vector and matrix code should be moved to a more generic page.

File: prelude/vector_base.a68

#!/usr/bin/a68g --script ## -*- coding: utf-8 -*- ## Define some generic vector initialisation and printing operations #COMMENT REQUIRES:  MODE SCAL = ~ # a scalar, eg REAL #;  FORMAT scal fmt := ~;END COMMENTINT vec lwb := 1, vec upb := 0;MODE VECNEW = [vec lwb:vec upb]SCAL; MODE VEC = REF VECNEW;FORMAT vec fmt := $"("n(vec upb-vec lwb)(f(scal fmt)", ")f(scal fmt)")"$;PRIO INIT = 1;OP INIT = (VEC self, SCAL scal)VEC: (  FOR col FROM LWB self TO UPB self DO self[col]:= scal OD;  self);# ZEROINIT: defines the additive identity #OP ZEROINIT = (VEC self)VEC:   self INIT SCAL(0);OP REPR = (VEC self)STRING: (  FILE f; STRING s; associate(f,s);  vec lwb := LWB self; vec upb := UPB self;  putf(f, (vec fmt, self)); close(f);  s);SKIP

File: prelude/matrix_base.a68

# -*- coding: utf-8 -*- ## Define some generic matrix initialisation and printing operations #COMMENT REQUIRES:  MODE SCAL = ~ # a scalar, eg REAL #;  MODE VEC = []SCAL;  FORMAT scal fmt := ~;  et al.END COMMENTINT mat lwb := 1, mat upb := 0;MODE MATNEW = [mat lwb:mat upb, vec lwb: vec upb]SCAL; MODE MAT = REF MATNEW;FORMAT mat fmt = $"("n(vec upb-vec lwb)(f(vec fmt)","lx)f(vec fmt)")"l$;PRIO DIAGINIT = 1;OP INIT = (MAT self, SCAL scal)MAT: (  FOR row FROM LWB self TO UPB self DO self[row,] INIT scal OD;  self);# ZEROINIT: defines the additive identity #OP ZEROINIT = (MAT self)MAT:   self INIT SCAL(0);OP REPR = (MATNEW self)STRING: (  FILE f; STRING s; associate(f,s);  vec lwb := 2 LWB self; vec upb := 2 UPB self;  mat lwb :=   LWB self; mat upb :=   UPB self;  putf(f, (mat fmt, self)); close(f);  s);OP DIAGINIT = (MAT self, VEC diag)MAT: (  ZEROINIT self;  FOR d FROM LWB diag TO UPB diag DO self[d,d]:= diag[d] OD;# or alternatively using TORRIX ...  DIAG self := diag;#  self);# ONEINIT: defines the multiplicative identity #OP ONEINIT = (MAT self)MAT: (  ZEROINIT self DIAGINIT (LOC[LWB self:UPB self]SCAL INIT SCAL(1))# or alternatively using TORRIX ...  (DIAG out) VECINIT SCAL(1)#);SKIP

File: prelude/matrix_ident.a68

# -*- coding: utf-8 -*- #PRIO IDENT = 9; # The same as I for COMPLex #OP IDENT = (INT lwb, upb)MATNEW:  ONEINIT LOC [lwb:upb,lwb:upb]SCAL;OP IDENT = (INT upb)MATNEW: # default lwb is 1 #  1 IDENT upb;SKIP

File: prelude/matrix.a68

#!/usr/bin/a68g --script ## -*- coding: utf-8 -*- #PR READ "prelude/vector_base.a68" PR;PR READ "prelude/matrix_base.a68" PR;PR READ "prelude/matrix_ident.a68" PR;SKIP

File: test/matrix_ident.a68

#!/usr/bin/a68g --script ## -*- coding: utf-8 -*- #MODE SCAL = REAL;FORMAT scal fmt := $g(-3,1)$;PR READ "prelude/matrix.a68" PR;print(REPR IDENT 4)
Output:
((1.0, 0.0, 0.0, 0.0), (0.0, 1.0, 0.0, 0.0), (0.0, 0.0, 1.0, 0.0), (0.0, 0.0, 0.0, 1.0))

ALGOL W

begin    % set m to an identity matrix of size s                                  %    procedure makeIdentity( real    array m ( *, * )                          ; integer value s                          ) ;        for i := 1 until s do begin            for j := 1 until s do m( i, j ) := 0.0;            m( i, i ) := 1.0        end makeIdentity ;    % test the makeIdentity procedure                                        %    begin        real array id5( 1 :: 5, 1 :: 5 );        makeIdentity( id5, 5 );        r_format := "A"; r_w := 6; r_d := 1; % set output format for reals   %        for i := 1 until 5 do begin            write();            for j := 1 until 5 do writeon( id5( i, j ) )        end for_i ;    end textend.

Amazing Hopper

#include<jambo.h>MainDim(10,10)aseyes'UMatrix'Printnl'"UNIT MATRIX:\n",UMatrix'/* Classical method */Dim(10,10)aszeros(ZM)i=1Iterator(++i,#(i<=10),#(ZM[i,i]=1))Printnl'"UNIT MATRIX:\n",ZM'/* unit matrix non square*/Dim(5,8)aseyes'rareunitmatrix'Printnl'"RARE UNIT MATRIX:\n",rareunitmatrix'End
Output:
UNIT MATRIX:1,0,0,0,0,0,0,0,0,00,1,0,0,0,0,0,0,0,00,0,1,0,0,0,0,0,0,00,0,0,1,0,0,0,0,0,00,0,0,0,1,0,0,0,0,00,0,0,0,0,1,0,0,0,00,0,0,0,0,0,1,0,0,00,0,0,0,0,0,0,1,0,00,0,0,0,0,0,0,0,1,00,0,0,0,0,0,0,0,0,1UNIT MATRIX:1,0,0,0,0,0,0,0,0,00,1,0,0,0,0,0,0,0,00,0,1,0,0,0,0,0,0,00,0,0,1,0,0,0,0,0,00,0,0,0,1,0,0,0,0,00,0,0,0,0,1,0,0,0,00,0,0,0,0,0,1,0,0,00,0,0,0,0,0,0,1,0,00,0,0,0,0,0,0,0,1,00,0,0,0,0,0,0,0,0,1RARE UNIT MATRIX:1,0,0,0,0,0,0,00,1,0,0,0,0,0,00,0,1,0,0,0,0,00,0,0,1,0,0,0,00,0,0,0,1,0,0,0

APL

Making an identity matrix in APL involves the outer product of the equality function.

For a square matrix of 3:

∘.=3100010001

For a function that makes an identity matrix:

ID{∘.=}ID51000001000001000001000001

An tacit function can be defined with one of the following equivalent lines:

ID∘.=ID∘.=⍳

There is a more idomatic way however:

ID{ρ1,ρ0}

AppleScript

--------------------- IDENTITY MATRIX ------------------------ identityMatrix :: Int -> [(0|1)]onidentityMatrix(n)setxstoenumFromTo(1,n)scriptrowon|λ|(x)scriptcolon|λ|(i)ifi=xthen1else0endifend|λ|endscriptmap(col,xs)end|λ|endscriptmap(row,xs)endidentityMatrix--------------------------- TEST ---------------------------onrununlines(map(showList,¬identityMatrix(5)))endrun-------------------- GENERIC FUNCTIONS ----------------------- enumFromTo :: Int -> Int -> [Int]onenumFromTo(m,n)ifmnthensetlstto{}repeatwithifrommtonsetendoflsttoiendrepeatlstelse{}endifendenumFromTo-- intercalate :: String -> [String] -> Stringonintercalate(delim,xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,delim}setstoxsastextsetmytext item delimiterstodlmsendintercalate-- map :: (a -> b) -> [a] -> [b]onmap(f,xs)tellmReturn(f)setlngtolengthofxssetlstto{}repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,i,xs)endrepeatreturnlstendtellendmap-- Lift 2nd class handler function into 1st class script wrapper-- mReturn :: Handler -> ScriptonmReturn(f)ifclassoffisscriptthenfelsescriptproperty|λ|:fendscriptendifendmReturn-- showList :: [a] -> StringonshowList(xs)"["&intercalate(", ",map(mystr,xs))&"]"endshowList-- str :: a -> Stringonstr(x)xasstringendstr-- unlines :: [String] -> Stringonunlines(xs)-- A single string formed by the intercalation-- of a list of strings with the newline character.set{dlm,mytext item delimiters}to¬{mytext item delimiters,linefeed}setstoxsastextsetmytext item delimiterstodlmsendunlines
Output:
[1, 0, 0, 0, 0][0, 1, 0, 0, 0][0, 0, 1, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 1]

Simple alternative

onindentityMatrix(n)setdigitsto{}setmton-1repeat(n+m)timessetendofdigitsto0endrepeatsetitemnofdigitsto1setmatrixto{}repeatwithifromnto1by-1setendofmatrixtoitemsithru(i+m)ofdigitsendrepeatreturnmatrixendindentityMatrixreturnindentityMatrix(5)
Output:
{{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},{0,0,0,0,1}}

Arturo

identityM:function[n][result:array.of:@[nn]0loop0..decn'i->result\[i]\[i]:1returnresult]loop4..6'sz[printszloopidentityMsz=>printprint""]
Output:
41 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 51 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 61 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

BASIC

Applesoft BASIC

100 INPUT "MATRIX SIZE:"; SIZE%110 GOSUB 200"IDENTITYMATRIX120 FOR R = 0 TO SIZE%130     FOR C = 0 TO SIZE%140         LET S$ = CHR$(13)150         IF C < SIZE% THEN S$ = " "160         PRINT IM(R, C) S$; : NEXT C, R170 END200 REMIDENTITYMATRIX SIZE%210 LET SIZE% = SIZE% - 1220 DIM IM(SIZE%, SIZE%)230 FOR I = 0 TO SIZE%240     LET IM(I, I) = 1 : NEXT I250 RETURN :IM

Commodore BASIC

Translation of:Applesoft BASIC
Works with:Commodore BASIC version 2.0
100INPUT"MATRIX SIZE:";SIZE110GOSUB200:REMIDENTITYMATRIX120FORR=0TOSIZE130FORC=0TOSIZE140S$=CHR$(13)150IFC<SIZETHENS$=""160PRINTMID$(STR$(IM(R,C)),1)S$;:REMMID$STRIPSLEADINGSPACES170NEXTC,R180END190REM *******************************200REM IDENTITYMATRIX SIZE%210SIZE=SIZE-1220DIMIM(SIZE,SIZE)230FORI=0TOSIZE240IM(I,I)=1250NEXTI260RETURN

QBasic

Works with:QBasic version 1.1
Works with:QuickBasic version 4.5
Translation of:IS-BASIC
SUBinicio(identity())FORi=LBOUND(identity,1)TOUBOUND(identity,1)FORj=LBOUND(identity,2)TOUBOUND(identity,2)LETidentity(i,j)=0NEXTjLETidentity(i,i)=1NEXTiENDSUBSUBmostrar(identity())FORi=LBOUND(identity,1)TOUBOUND(identity,1)FORj=LBOUND(identity,2)TOUBOUND(identity,2)PRINTidentity(i,j);NEXTjPRINTNEXTiENDSUBDOINPUT"Enter size of matrix ";nLOOPUNTILn>0DIMidentity(1TOn,1TOn)CALLinicio(identity())CALLmostrar(identity())

BASIC256

Translation of:FreeBASIC
arraybase 1do    input "Enter size of matrix: ", nuntil n > 0dim identity(n, n) fill 0  #we fill everything with 0# enter 1s in diagonal elementsfor i =  1 to n    identity[i, i] = 1next i# print identity matrix if n < 40printif n < 40 then    for i = 1 to n        for j = 1 to n            print identity[i, j];        next j        print    next ielse    print "Matrix is too big to display on 80 column console"end if
Output:
Same as FreeBASIC entry.

XBasic

Works with:Windows XBasic
Translation of:FreeBASIC
PROGRAM"Identity matrix"VERSION"0.0000"DECLAREFUNCTIONEntry()FUNCTIONEntry()DOn=SBYTE(INLINE$("Enter size of matrix: "))LOOPUNTILn>0DIMidentity[n,n]'' all zero by default' enter 1s in diagonal elementsFORi=1TOnidentity[i,i]=1NEXTi' print identity matrix if n < 40PRINTIFn<40THENFORi=1TOnFORj=1TOnPRINTidentity[i,j];NEXTjPRINTNEXTiELSEPRINT"Matrix is too big to display on 80 column console"ENDIFENDFUNCTIONENDPROGRAM
Output:
Same as FreeBASIC entry.

Yabasic

Translation of:FreeBASIC
repeatinput"Enter size of matrix: "nuntiln>0dimidentity(n,n)//allzerobydefault//enter1sindiagonalelementsfori=1tonidentity(i,i)=1nexti//printidentitymatrixifn<40printifn<40thenfori=1tonforj=1tonprintidentity(i,j);nextjprintnextielseprint"Matrix is too big to display on 80 column console"endif
Output:
Same as FreeBASIC entry.

ATS

(* ****** ****** *)//// How to compile://// patscc -DATS_MEMALLOC_LIBC -o idmatrix idmatrix.dats//(* ****** ****** *)//#include"share/atspre_staload.hats"//(* ****** ****** *)externfunidmatrix{n:nat}(n: size_t(n)): matrixref(int, n, n)implementidmatrix(n) =matrixref_tabulate_cloref<int> (n, n, lam(i, j) => bool2int0(i = j))(* ****** ****** *)implementmain0 () ={//val N = 5//val M = idmatrix(i2sz(N))val () = fprint_matrixref_sep (stdout_ref, M, i2sz(N), i2sz(N), " ", "\n")val () = fprint_newline (stdout_ref)//} (* end of [main0] *)

AutoHotkey

msgbox%Clipboard:=I(6)returnI(n){r:="--`n",s:=" "loop%n{k:=A_index,r.="|  "loop%nr.=A_index=k?"1, ":"0, "r:=RTrim(r," ,"),r.="  |`n"}loop%4*ns.=" "returnRtrim(r,"`n")"`n"s"--"}
Output:
--|  1, 0, 0, 0, 0, 0  ||  0, 1, 0, 0, 0, 0  ||  0, 0, 1, 0, 0, 0  ||  0, 0, 0, 1, 0, 0  ||  0, 0, 0, 0, 1, 0  ||  0, 0, 0, 0, 0, 1  |                    --

AWK

# syntax: GAWK -f IDENTITY_MATRIX.AWK sizeBEGIN{size=ARGV[1]if(size!~/^[0-9]+$/){print("size invalid or missing from command line")exit(1)}for(i=1;i<=size;i++){for(j=1;j<=size;j++){x=(i==j)?1:0printf("%2d",x)# printarr[i,j]=x# build}printf("\n")}exit(0)}
Output:

for command

GAWK -f IDENTITY_MATRIX.AWK 5
 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Bash

foriin`seq$1`;doprintf'%*s\n'$1|tr' ''0'|sed"s/0/1/$i";done
Output:

for command

./scriptname 5
 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

BBC BASIC

Works with:BBC BASIC for Windows
INPUT"Enter size of matrix: "size%PROCidentitymatrix(size%,im())FORr%=0TOsize%-1FORc%=0TOsize%-1PRINTim(r%,c%),;NEXTPRINTNEXTr%ENDDEFPROCidentitymatrix(s%,RETURNm())LOCALi%DIMm(s%-1,s%-1)FORi%=0TOs%-1m(i%,i%)=1NEXTENDPROC

Beads

beads 1 program 'Identity matrix'varid : array^2 of numn = 5calc main_initloop from:1 to:n index:iloop from:1 to:n index:jid[i,j] = 1 if i == j else 0
Output:
1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1

Burlesque

Neither very elegant nor short but it'll do

blsq ) 6 -.^^0\/r@\/'0\/.*'1+]\/{\/{rt}\/E!XX}x/+]m[sp1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1

The example above uses strings to generate the identity matrix. If you need a matrix with real numbers (Integers) then use:

6hd0bx#a.*\[#a.*0#a?dr@{(D!)\/1\/^^bx\/[+}m[e!

Shorter alternative:

blsq ) 6 ^^^^10\/**XXcy\/co.+sp

BQN

⍝ Using tableEye ← =⌜˜∘↕•Show Eye 3⍝ Using reshapeEye1 ← {𝕩‿𝕩⥊1∾𝕩⥊0}Eye1 5
┌─       ╵ 1 0 0    0 1 0    0 0 1          ┘┌─           ╵ 1 0 0 0 0    0 1 0 0 0    0 0 1 0 0    0 0 0 1 0    0 0 0 0 1              ┘

Eye generates an identity matrix using a table of equality for [0,n).

Eye1 reshapes a boolean vector to generate the matrix.

Try it here!

C

#include<stdlib.h>#include<stdio.h>intmain(intargc,char**argv){if(argc<2){printf("usage: identitymatrix <number of rows>\n");exit(EXIT_FAILURE);}introwsize=atoi(argv[1]);if(rowsize<0){printf("Dimensions of matrix cannot be negative\n");exit(EXIT_FAILURE);}intnumElements=rowsize*rowsize;if(numElements<rowsize){printf("Squaring %d caused result to overflow to %d.\n",rowsize,numElements);abort();}int**matrix=calloc(numElements,sizeof(int*));if(!matrix){printf("Failed to allocate %d elements of %ld bytes each\n",numElements,sizeof(int*));abort();}for(unsignedintrow=0;row<rowsize;row++){matrix[row]=calloc(numElements,sizeof(int));if(!matrix[row]){printf("Failed to allocate %d elements of %ld bytes each\n",numElements,sizeof(int));abort();}matrix[row][row]=1;}printf("Matrix is:\n");for(unsignedintrow=0;row<rowsize;row++){for(unsignedintcolumn=0;column<rowsize;column++){printf("%d ",matrix[row][column]);}printf("\n");}}

C#

usingSystem;usingSystem.Linq;namespaceIdentityMatrix{classProgram{staticvoidMain(string[]args){if(args.Length!=1){Console.WriteLine("Requires exactly one argument");return;}intn;if(!int.TryParse(args[0],outn)){Console.WriteLine("Requires integer parameter");return;}varidentity=Enumerable.Range(0,n).Select(i=>Enumerable.Repeat(0,n).Select((z,j)=>j==i?1:0).ToList()).ToList();foreach(varrowinidentity){foreach(vareleminrow){Console.Write(" "+elem);}Console.WriteLine();}Console.ReadKey();}}}
Output:
 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

C++

Library:STL
template<classT>classmatrix{public:matrix(unsignedintnSize):m_oData(nSize*nSize,0),m_nSize(nSize){}inlineT&operator()(unsignedintx,unsignedinty){returnm_oData[x+m_nSize*y];}voididentity(){intnCount=0;intnStride=m_nSize+1;std::generate(m_oData.begin(),m_oData.end(),[&](){return!(nCount++%nStride);});}inlineunsignedintsize(){returnm_nSize;}private:std::vector<T>m_oData;unsignedintm_nSize;};intmain(){intnSize;std::cout<<"Enter matrix size (N): ";std::cin>>nSize;matrix<int>oMatrix(nSize);oMatrix.identity();for(unsignedinty=0;y<oMatrix.size();y++){for(unsignedintx=0;x<oMatrix.size();x++){std::cout<<oMatrix(x,y)<<" ";}std::cout<<std::endl;}return0;}
Library:boost
#include<boost/numeric/ublas/matrix.hpp>intmain(){usingnamespaceboost::numeric::ublas;intnSize;std::cout<<"Enter matrix size (N): ";std::cin>>nSize;identity_matrix<int>oMatrix(nSize);for(unsignedinty=0;y<oMatrix.size2();y++){for(unsignedintx=0;x<oMatrix.size1();x++){std::cout<<oMatrix(x,y)<<" ";}std::cout<<std::endl;}return0;}
Output:
Enter matrix size (N): 51 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1

Clio

fn identity-matrix n:  [0:n] -> * fn i:    [0:n] -> * if = i: 1                 else: 05 -> identity-matrix -> * print

Clojure

Translation of:PicoLisp

The (vec ) function in the following solution is with respect to vector matrices. If dealing with normal lists matrices (e.g.

'((01)(23))

, then care to remove the vec function.

(defnidentity-matrix[n](let[row(conj(repeat(decn)0)1)](vec(for[i(range1(incn))](vec(reduce conj(dropirow)(takeirow)))))))
Output:
=>(identity-matrix5)[[10000][01000][00100][00010][00001]]

The following is a more idomatic definition that utilizes infinite lists and cycling.

(defnidentity-matrix[n](taken(partitionn(decn)(cycle(conj(repeat(decn)0)1)))))

Common Lisp

Common Lisp provides multi-dimensional arrays.

(defunmake-identity-matrix(n)(let((array(make-array(listnn):initial-element0)))(loopforibelowndo(setf(arefarrayii)1))array))
Output:
* (make-identity-matrix 5)#2A((1 0 0 0 0) (0 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1))
(defunidentity-matrix(n)(loopforafrom1toncollect(loopforefrom1tonif(=ae)collect1elsecollect0)))
Output:
> (identity-matrix 5)((1 0 0 0 0) (0 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1))

Component Pascal

BlackBox Component Builder

MODULEAlgebras;IMPORTStdLog,Strings;TYPEMatrix=POINTERTOARRAYOFARRAYOFINTEGER;PROCEDURENewIdentityMatrix(n:INTEGER):Matrix;VARm:Matrix;i:INTEGER;BEGINNEW(m,n,n);FORi:=0TOn-1DOm[i,i]:=1;END;RETURNm;ENDNewIdentityMatrix;PROCEDUREShow(m:Matrix);VARi,j:INTEGER;BEGINFORi:=0TOLEN(m,0)-1DOFORj:=0TOLEN(m,1)-1DOStdLog.Int(m[i,j]);END;StdLog.LnENDENDShow;PROCEDUREDo*;BEGINShow(NewIdentityMatrix(5));ENDDo;ENDAlgebras.

Execute: ^Q Algebras.Do

Output:
 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

D

importstd.traits;T[][]matId(T)(insize_tn)purenothrowif(isAssignable!(T,T)){autoId=newT[][](n,n);foreach(r,row;Id){staticif(__traits(compiles,{row[]=0;})){row[]=0;// vector op doesn't work with T = BigIntrow[r]=1;}else{foreach(c;0..n)row[c]=(c==r)?1:0;}}returnId;}voidmain(){importstd.stdio,std.bigint;enumform="[%([%(%s, %)],\n %)]]";immutableid1=matId!real(5);writefln(form~"\n",id1);immutableid2=matId!BigInt(3);writefln(form~"\n",id2);// auto id3 = matId!(const int)(2); // cant't compile}
Output:
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]][[1, 0, 0], [0, 1, 0], [0, 0, 1]]

Delphi

programIdentityMatrix;// Modified from the Pascal version{$APPTYPE CONSOLE}varmatrix:arrayofarrayofinteger;n,i,j:integer;beginwrite('Size of matrix: ');readln(n);setlength(matrix,n,n);fori:=0ton-1domatrix[i,i]:=1;fori:=0ton-1dobeginforj:=0ton-1dowrite(matrix[i,j],' ');writeln;end;end.
Output:
Size of matrix: 51 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

DuckDB

Works with:DuckDB version V1.0

There are several ways in which matrices can be represented in DuckDB.In this entry, we'll focus on the representation by a table withcolumns (i,j,value).

The function defined below, I(m,n,zero) has three parameters:the first two specify the dimensions, and the `zero` allows oneto specify the type of matrix elements, which will be (1+zero)along the diagonal, and zero otherwise. This in effect allowsfor polymorphism: the one function canto be used to generate matrices for any of the many DuckDB numerical types,e.g. decimal(4,3) as in the example.

#Producean(i,j,value)tablerepresentingthematrixI(m,n)#whichistheidentitymatrixifm=ncreateorreplacefunctionI(m,n,zero)astable(withrecursivecte(i,j,ij,value)as(select1,1,(null,null),zerounionallselectif(j=n,i+1,i)asi,if(j=n,1,j+1)asj,(i,j)asij,zero+if(i=j,1,0)asvaluefromctewherei<=m)selectij[1]asi,ij[2]asj,valuefromcteoffset1);#Generatea3x3matrixwithDOUBLE(3,2)values:fromI(3,3,0.000);
Output:
┌───────┬───────┬──────────────┐│   i   │   j   │    value     ││ int32 │ int32 │ decimal(4,3) │├───────┼───────┼──────────────┤│     1 │     1 │        1.000 ││     1 │     2 │        0.000 ││     1 │     3 │        0.000 ││     2 │     1 │        0.000 ││     2 │     2 │        1.000 ││     2 │     3 │        0.000 ││     3 │     1 │        0.000 ││     3 │     2 │        0.000 ││     3 │     3 │        1.000 │└───────┴───────┴──────────────┘

EasyLang

proc idmat lng . mat[][] .   len mat[][] lng   for i to lng      len mat[i][] lng      mat[i][i] = 1   ..idmat 4 m[][]print m[][]

Eiffel

classAPPLICATIONinheritARGUMENTScreatemakefeature{NONE}-- Initializationmake-- Run application.localdim:INTEGER-- Dimension of the identity matrixdofromdim:=1untildim>10loopprint_matrix(identity_matrix(dim))dim:=dim+1io.new_lineendendfeature-- Accessidentity_matrix(dim:INTEGER):ARRAY2[REAL_64]requiredim>0localmatrix:ARRAY2[REAL_64]i:INTEGERdocreatematrix.make_filled(0.0,dim,dim)fromi:=1untili>dimloopmatrix.put(1.0,i,i)i:=i+1endResult:=matrixendprint_matrix(matrix:ARRAY2[REAL_64])locali,j:INTEGERdofromi:=1untili>matrix.heightloopprint("[ ")fromj:=1untilj>matrix.widthloopprint(matrix.item(i,j))print(" ")j:=j+1endprint("]%N")i:=i+1endendend
Output:
[ 1 0 0 0 0 0 0 0 0 0 ][ 0 1 0 0 0 0 0 0 0 0 ][ 0 0 1 0 0 0 0 0 0 0 ][ 0 0 0 1 0 0 0 0 0 0 ][ 0 0 0 0 1 0 0 0 0 0 ][ 0 0 0 0 0 1 0 0 0 0 ][ 0 0 0 0 0 0 1 0 0 0 ][ 0 0 0 0 0 0 0 1 0 0 ][ 0 0 0 0 0 0 0 0 1 0 ][ 0 0 0 0 0 0 0 0 0 1 ]

Elena

ELENA 6.x :

import extensions;import system'routines;import system'collections; public program(){    var n := console.write("Enter the matrix size:").readLine().toInt();     var identity := new Range(0, n).selectBy::(i => new Range(0,n).selectBy::(j => (i == j).iif(1,0) ).summarize(new ArrayList()))                          .summarize(new ArrayList());     identity.forEach::        (row) { console.printLine(row.asEnumerable()) }}
Output:
Enter the matrix size:31,0,00,1,00,0,1

Elixir

defmoduleMatrixdodefidentity(n)doEnum.map(0..n-1,fni->forj<-0..n-1,do:(ifi==j,do:1,else:0)end)endendIO.inspectMatrix.identity(5)
Output:
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]

Erlang

%% Identity Matrix in Erlang for the Rosetta Code Wiki.%% Implemented by Arjun Sunel-module(identity_matrix).-export([square_matrix/2,identity/1]).square_matrix(Size,Elements)->[[Elements(Column,Row)||Column<-lists:seq(1,Size)]||Row<-lists:seq(1,Size)].identity(Size)->square_matrix(Size,fun(Column,Row)->caseColumnofRow->1;_->0endend).

ERRE

PROGRAM IDENTITY!$DYNAMICDIM A[0,0]BEGIN  PRINT(CHR$(12);) ! CLS  INPUT("Matrix size",N%)  !$DIM A[N%,N%]  FOR I%=1 TO N% DO    A[I%,I%]=1  END FOR! print matrix  FOR I%=1 TO N% DO    FOR J%=1 TO N% DO      WRITE("###";A[I%,J%];)    END FOR    PRINT  END FOREND PROGRAM

Euler Math Toolbox

function IdentityMatrix(n)  $  X:=zeros(n,n);  $  for i=1 to n   $    X[i,i]:=1;  $  end;  $  return X;  $endfunction
>function IdentityMatrix (n:index)$  return setdiag(zeros(n,n),0,1);$endfunction
>id(5)

Excel

LAMBDA

Excel can lift functions over scalar values to functions over two-dimensional arrays.

Here we bind the name IDMATRIX to a lambda expression in the Name Manager of the Excel WorkBook:

(SeeLAMBDA: The ultimate Excel worksheet function)

Works with:Office 365 betas 2021
IDMATRIX=LAMBDA(n,LET(ixs,SEQUENCE(n,n,0,1),x,MOD(ixs,n),y,QUOTIENT(ixs,n),IF(x=y,1,0)))
Output:

The formula in cell B2 below populates theB2:F6 grid:

fx=IDMATRIX(A2)
ABCDEF
1NIdentity matrix
2510000
301000
400100
500010
600001
7
83100
9010
10001

F#

Builds a 2D matrix with the given square size.

letidentn=Array2D.initnn(funij->ifi=jthen1else0)
Output:
ident10;;valit:int[,]=[[1;0;0;0;0;0;0;0;0;0][0;1;0;0;0;0;0;0;0;0][0;0;1;0;0;0;0;0;0;0][0;0;0;1;0;0;0;0;0;0][0;0;0;0;1;0;0;0;0;0][0;0;0;0;0;1;0;0;0;0][0;0;0;0;0;0;1;0;0;0][0;0;0;0;0;0;0;1;0;0][0;0;0;0;0;0;0;0;1;0][0;0;0;0;0;0;0;0;0;1]]

Factor

Works with:Factor version 0.99 2020-07-03
USING:math.matricesprettyprint;6<identity-matrix>.
Output:
{    { 1 0 0 0 0 0 }    { 0 1 0 0 0 0 }    { 0 0 1 0 0 0 }    { 0 0 0 1 0 0 }    { 0 0 0 0 1 0 }    { 0 0 0 0 0 1 }}

FBSL

FBSL's BASIC layer can easily manipulate square matrices of arbitrary sizes and data types in ways similar to e.g.BBC BASIC orOxygenBasic as shown elsewhere on this page. But FBSL has also anextremely fast built-in single-precision vector2f/3f/4f, plane4f, quaternion4f, and matrix4f math library totaling 150 functions and targeting primarily 3D rendering tasks:

#APPTYPE CONSOLE

TYPE M4F' Matrix 4F

m11AS SINGLE
m12AS SINGLE
m13AS SINGLE
m14AS SINGLE
m21AS SINGLE
m22AS SINGLE
m23AS SINGLE
m24AS SINGLE
m31AS SINGLE
m32AS SINGLE
m33AS SINGLE
m34AS SINGLE
m41AS SINGLE
m42AS SINGLE
m43AS SINGLE
m44AS SINGLE

END TYPE

DIM mAS M4F' DIM zeros out any variable automatically

PRINT"Matrix 'm' is identity: ",IIF(MATRIXISIDENTITY(@m),"TRUE","FALSE")' is matrix an identity?
MATRIXIDENTITY(@m)' set matrix to identity
PRINT"Matrix 'm' is identity: ",IIF(MATRIXISIDENTITY(@m),"TRUE","FALSE")' is matrix an identity?

PAUSE

Output:

Matrix 'm' is identity: FALSE
Matrix 'm' is identity: TRUE

Press any key to continue...

Fermat

Func Identity(n)=Array id[n,n];[id]:=[1].Identity(7)[id]
Output:
[[  1,  0,  0,  0,  0,  0,  0, `    0,  1,  0,  0,  0,  0,  0, `    0,  0,  1,  0,  0,  0,  0, `    0,  0,  0,  1,  0,  0,  0, `    0,  0,  0,  0,  1,  0,  0, `    0,  0,  0,  0,  0,  1,  0, `    0,  0,  0,  0,  0,  0,  1   ]]

Forth

Library:Forth Scientific Library
Works with:gforth version 0.7.9_20170308
S"fsl-util.fs"REQUIRED:build-identity( 'p n -- 'p )\ make an NxN identity matrix0DOI1+0DOIJ=IF1.0E0DUPIJ}}F!ELSE0.0E0DUPJI}}F!0.0E0DUPIJ}}F!THENLOOPLOOP;66floatmatrixa{{a{{6build-identity66a{{}}fprint

Fortran

Works with:Fortran version 95
programidentitymatrixreal,dimension(:,:),allocatable::Icharacter(len=8)::fmtinteger::ms,jms=10! the desired sizeallocate(I(ms,ms))I=0! Initialize the array.forall(j=1:ms)I(j,j)=1! Set the diagonal.! I is the identity matrix, let's show it:write(fmt,'(A,I2,A)')'(',ms,'F6.2)'! if you consider to have used the (row, col) convention,! the following will print the transposed matrix (col, row)! but I' = I, so it's not important herewrite(*,fmt)I(:,:)deallocate(I)end programidentitymatrix

Notorious trick

The objective is to do the assignment in one fell swoop, rather than separately setting the 0 values and the 1 values. It works because, with integer arithmetic, the only way that both i/j and j/i are one is when they are equal - thus one on the diagonal elements, and zero elsewhere because either i < j so that i/j = 0, or i > j so that j/i = 0. While this means two divides and a multiply per element instead of simply transferring a constant, the constraint on speed is likely to be the limited bandwidth from cpu to memory. The expression's code would surely fit in the cpu's internal memory, and registers would be used for the variables.

ProgramIdentityIntegerNParameter(N=666)RealA(N,N)Integeri,jForAll(i=1:N,j=1:N)A(i,j)=(i/j)*(j/i)END

TheForAll statement is a feature of F90, and carries the implication that the assignments may be done in any order, even "simultaneously" (as with multiple cpus), plus that all RHS values are calculated before any LHS part receives a value - not relevant here since the RHS makes no reference to items altered in the LHS. Earlier Fortran compilers lack this statement and so one must use explicit DO-loops:

DO1I=1,NDO1J=1,N1A(I,J)=(I/J)*(J/I)

Array assignment statements are also a feature of F90 and later.

An alternative might be a simpler logical expression testingi = j except that the numerical values fortrue andfalse on a particular system may well not be 1 and 0 but (for instance, via Compaq F90/95 on Windows XP) 0 and -1 instead. On an IBM 390 mainframe, pl/i and Fortran used different values. The Burroughs 6700 inspected the low-order bit only, with the intriguing result that odd integers would be deemedtrue and evenfalse. Integer arithmetic can't be relied upon across languages either, because in pl/i, integer division doesn't truncate.

FreeBASIC

' FB 1.05.0 Win64DimAsIntegernDoInput"Enter size of matrix ";nLoopUntiln>0Dimidentity(1Ton,1Ton)AsInteger'' all zero by default' enter 1s in diagonal elementsForiAsInteger=1Tonidentity(i,i)=1Next' print identity matrix if n < 40PrintIfn<40ThenForiAsInteger=1TonForjAsInteger=1TonPrintidentity(i,j);NextjPrintNextiElsePrint"Matrix is too big to display on 80 column console"EndIfPrintPrint"Press any key to quit"Sleep

Sample input/output

Output:
Enter size of matrix ? 5 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Frink

This does not use the Matrix.frink library, which has methods to create an identity matrix, but shows how to build a "raw" identity matrix as a two-dimensional array, and shows how to nicely format it using built-in routines.

n = parseInt[input["Enter matrix dimension as an integer: "]]println[formatMatrix[makeArray[[n, n], {|a,b| a==b ? 1 : 0}]]]
Output:
Enter matrix dimension as an integer:  3┌       ┐│1  0  0││       ││0  1  0││       ││0  0  1│└       ┘

FunL

def identity( n ) = vector( n, n, \r, c -> if r == c then 1 else 0 )println( identity(3) )
Output:
((1, 0, 0), (0, 1, 0), (0, 0, 1))

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in itswebsite.

Inthis page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

Test cases

FutureBasic

include "NSLog.incl"local fn IdentityMatrix( n as NSInteger ) as CFStringRefNSInteger i, jCFMutableArrayRef tempArr = fn MutableArrayWithCapacity( n )CFMutableStringRef mutStr = fn MutableStringWithCapacity( 0 )for i = 0 to n - 1MutableArrayRemoveAllObjects( tempArr )for j = 0 to n - 1MutableArrayInsertObjectAtIndex( tempArr, @"0", j )nextMutableArrayReplaceObjectAtIndex( tempArr, @"1", i )MutableStringAppendString( mutStr, fn ArrayComponentsJoinedByString( tempArr, @" " ) )MutableStringAppendString( mutStr, @"\n" )nextend fn = fn StringWithString( mutStr )NSLog( @"3:\n%@", fn IdentityMatrix( 3 ) )NSLog( @"5:\n%@", fn IdentityMatrix( 5 ) )NSLog( @"7:\n%@", fn IdentityMatrix( 7 ) )NSLog( @"9:\n%@", fn IdentityMatrix( 9 ) )HandleEvents
Output:
3:1 0 00 1 00 0 15:1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 17:1 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1 0 0 00 0 0 0 1 0 00 0 0 0 0 1 00 0 0 0 0 0 19:1 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1


GAP

# Built-inIdentityMat(3);# One can also specify the base ringIdentityMat(3,Integersmod10);


Go

Library gonum/mat

packagemainimport("fmt""gonum.org/v1/gonum/mat")funceye(nint)*mat.Dense{m:=mat.NewDense(n,n,nil)fori:=0;i<n;i++{m.Set(i,i,1)}returnm}funcmain(){fmt.Println(mat.Formatted(eye(3)))}
Output:
⎡1  0  0⎤⎢0  1  0⎥⎣0  0  1⎦

Library go.matrix

A somewhat earlier matrix library for Go.

packagemainimport("fmt"mat"github.com/skelterjohn/go.matrix")funcmain(){fmt.Println(mat.Eye(3))}
Output:
{1, 0, 0, 0, 1, 0, 0, 0, 1}

From scratch

Simplest: A matrix as a slice of slices, allocated separately.

packagemainimport"fmt"funcmain(){fmt.Println(I(3))}funcI(nint)[][]float64{m:=make([][]float64,n)fori:=0;i<n;i++{a:=make([]float64,n)a[i]=1m[i]=a}returnm}
Output:

No special formatting method used.

[[1 0 0] [0 1 0] [0 0 1]]

2D, resliced: Representation as a slice of slices still, but with all elements based on single underlying slice. Might save a little memory management, might have a little better locality.

packagemainimport"fmt"funcmain(){fmt.Println(I(3))}funcI(nint)[][]float64{m:=make([][]float64,n)a:=make([]float64,n*n)fori:=0;i<n;i++{a[i]=1m[i]=a[:n]a=a[n:]}returnm}
Output:

Same as previous.

Flat: Representation as a single flat slice. You just have to know to handle it as a square matrix. In many cases that's not a problem and the code is simpler this way. If you want to add a little bit of type checking, you can define a matrix type as shown here.

packagemainimport"fmt"typematrix[]float64funcmain(){n:=3m:=I(n)// dump flat represenationfmt.Println(m)// function x turns a row and column into an index into the// flat representation.x:=func(r,cint)int{returnr*n+c}// access m by row and column.forr:=0;r<n;r++{forc:=0;c<n;c++{fmt.Print(m[x(r,c)]," ")}fmt.Println()}}funcI(nint)matrix{m:=make(matrix,n*n)// a fast way to initialize the flat representationn++fori:=0;i<len(m);i+=n{m[i]=1}returnm}
Output:
[1 0 0 0 1 0 0 0 1]1 0 0 0 1 0 0 0 1

Golfscript

5[ .([0]*1+ \(  {.(+}*] -1% {`}%n*
Output:
[1 0 0 0 0][0 1 0 0 0][0 0 1 0 0][0 0 0 1 0][0 0 0 0 1]

Groovy

Solution:

defmakeIdentityMatrix={n->(0..<n).collect{i->(0..<n).collect{j->(i==j)?1:0}}}

Test:

(2..6).each{order->defiMatrix=makeIdentityMatrix(order)iMatrix.each{printlnit}println()}
Output:
[1, 0][0, 1][1, 0, 0][0, 1, 0][0, 0, 1][1, 0, 0, 0][0, 1, 0, 0][0, 0, 1, 0][0, 0, 0, 1][1, 0, 0, 0, 0][0, 1, 0, 0, 0][0, 0, 1, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 1][1, 0, 0, 0, 0, 0][0, 1, 0, 0, 0, 0][0, 0, 1, 0, 0, 0][0, 0, 0, 1, 0, 0][0, 0, 0, 0, 1, 0][0, 0, 0, 0, 0, 1]

Haskell

matIn=[[fromEnum$i==j|i<-[1..n]]|j<-[1..n]]

And a function to show matrix pretty:

showMat::[[Int]]->StringshowMat=unlines.map(unwords.mapshow)


*Main>putStr$showMat$matId9100000000010000000001000000000100000000010000000001000000000100000000010000000001

We could alternatively bypassing the syntactic sugaring of list comprehension notation, and use a bind function directly:

idMatrix::Int->[[Int]]idMatrixn=letxs=[1..n]inxs>>=\x->[xs>>=\y->[fromEnum(x==y)]]

or reduce the number of terms a little to:

idMatrix::Int->[[Int]]idMatrixn=letxs=[1..n]in(\x->fromEnum.(x==)<$>xs)<$>xsmain::IO()main=(putStr.unlines)$unwords.fmapshow<$>idMatrix5
Output:
1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1

Icon andUnicon

This code works for Icon and Unicon.

linkmatrixproceduremain(argv)ifnot(integer(argv[1])>0)thenstop("Argument must be a positive integer.")matrix1:=identity_matrix(argv[1],argv[1])write_matrix(&output,matrix1)end
Output:
->im 61 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1->

IS-BASIC

100 PROGRAM "Identity.bas"110 INPUT PROMPT "Enter size of matrix: ":N120 NUMERIC A(1 TO N,1 TO N)130 CALL INIT(A)140 CALL WRITE(A)150 DEF INIT(REF T)160   FOR I=LBOUND(T,1) TO UBOUND(T,1)170     FOR J=LBOUND(T,2) TO UBOUND(T,2)180       LET T(I,J)=0190     NEXT200     LET T(I,I)=1210   NEXT220 END DEF230 DEF WRITE(REF T)240   FOR I=LBOUND(T,1) TO UBOUND(T,1)250     FOR J=LBOUND(T,2) TO UBOUND(T,2)260       PRINT T(I,J);270     NEXT280     PRINT290   NEXT300 END DEF

J

=i.4NB. create an Identity matrix of size 41000010000100001Id=:=@i.NB. define as a verb with a user-defined nameId5NB. create an Identity matrix of size 51000001000001000001000001

Java

publicclassPrintIdentityMatrix{publicstaticvoidmain(String[]args){intn=5;int[][]array=newint[n][n];IntStream.range(0,n).forEach(i->array[i][i]=1);Arrays.stream(array).map((int[]a)->Arrays.toString(a)).forEach(System.out::println);}}
Output:
[1, 0, 0, 0, 0][0, 1, 0, 0, 0][0, 0, 1, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 1]

JavaScript

ES5

functionidMatrix(n){returnArray.apply(null,newArray(n)).map(function(x,i,xs){returnxs.map(function(_,k){returni===k?1:0;})});}

ES6

(()=>{// identityMatrix :: Int -> [[Int]]constidentityMatrix=n=>Array.from({length:n},(_,i)=>Array.from({length:n},(_,j)=>i!==j?0:1));// ----------------------- TEST ------------------------returnidentityMatrix(5).map(JSON.stringify).join('\n');})();
Output:
[1,0,0,0,0][0,1,0,0,0][0,0,1,0,0][0,0,0,1,0][0,0,0,0,1]

jq

Construction

def identity(n):  [range(0;n) | 0] as $row  | reduce range(0;n) as $i ([]; . + [ $row | .[$i] = 1 ] );

Example:

identity(4)

produces:

[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]

Using matrix/2

Using the definition of matrix/2 atCreate_a_two-dimensional_array_at_runtime#jq:

def identity(n):   reduce range(0;n) as $i    (0 | matrix(n;n); .[$i][$i] = 1);

Jsish

/* Identity matrix, in Jsish */functionidentityMatrix(n){varmat=newArray(n).fill(0);for(varrinmat){mat[r]=newArray(n).fill(0);mat[r][r]=1;}returnmat;}provide('identityMatrix',1);if(Interp.conf('unitTest')){;identityMatrix(0);;identityMatrix(1);;identityMatrix(2);;identityMatrix(3);varmat=identityMatrix(4);for(varrinmat)puts(mat[r]);}/*=!EXPECTSTART!=identityMatrix(0) ==> []identityMatrix(1) ==> [ [ 1 ] ]identityMatrix(2) ==> [ [ 1, 0 ], [ 0, 1 ] ]identityMatrix(3) ==> [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ][ 1, 0, 0, 0 ][ 0, 1, 0, 0 ][ 0, 0, 1, 0 ][ 0, 0, 0, 1 ]=!EXPECTEND!=*/
Output:
promt$ jsish -u identityMatrix.jsi[PASS] identityMatrix.jsi

Julia

I is an object of type UniformScaling,representing an identity matrix of any size,boolean by default, that can be multiplied by a scalar

usingLinearAlgebraunitfloat64matrix=1.0I

UniformScaling object can be used as a function to construct a Diagonalmatrix of given size, that can be converted to a full matrix usingcollect

usingLinearAlgebradiagI3=1.0I(3)fullI3=collect(diagI3)

The function I(3) is not defined in Julia-1.0.5. Other ways to construct a full matrix of given size are

usingLinearAlgebrafullI3=Matrix{Float64}(I,3,3)fullI3=Array{Float64}(I,3,3)fullI3=Array{Float64,2}(I,3,3)fullI3=zeros(3,3)+I

K

=4(1000010000100001)=5(1000001000001000001000001)

Kotlin

funmain(){print("Enter size of matrix : ")valn=readln().toInt()println()validentity=Array(n){i->IntArray(n){j->if(i==j)1else0}}// print identity matrix if n <= 40if(n<=40)for(rowinidentity)println(row.joinToString(" "))elseprintln("Matrix is too big to display on 80 column console")}

Sample input/output

Output:
Enter size of matrix : 51 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1

Lambdatalk

{defidentity{lambda{:n}{A.new{S.map{{lambda{:n:i}{A.new{S.map{{lambda{:i:j}{if{=:i:j}then1else0}}:i}{S.serie0:n}}}}:n}{S.serie0:n}}}}}->identity{identity2}->[[1,0],[0,1]]{identity5}->[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]


Lang5

: identity-matrix    dup iota 'A set    : i.(*) A in ;    [1] swap append reverse A swap reshape 'i. apply    ;5 identity-matrix .
Output:
[  [    1     0     0     0     0  ]  [    0     1     0     0     0  ]  [    0     0     1     0     0  ]  [    0     0     0     1     0  ]  [    0     0     0     0     1  ]]

LFE

(defunidentity((`(,m,n))(identitymn))((m)(identitymm)))(defunidentity(mn)(lists:duplicatem(lists:duplicaten1)))

From the LFE REPL; note that the last two usage examples demonstrate how identify could be used when composed with functions that get the dimension of a matrix:

>(identity3)((111)(111)(111))>(identity33)((111)(111)(111))>(identity'(33))((111)(111)(111))

LSL

To test it yourself; rez a box on the ground, and add the following as a New Script.

default{state_entry(){llListen(PUBLIC_CHANNEL,"",llGetOwner(),"");llOwnerSay("Please Enter a Dimension for an Identity Matrix.");}listen(integeriChannel,stringsName,keykId,stringsMessage){llOwnerSay("You entered "+sMessage+".");listlMatrix=[];integerx=0;integern=(integer)sMessage;for(x=0;x<n*n;x++){lMatrix+=[(integer)(((x+1)%(n+1))==1)];}//llOwnerSay("["+llList2CSV(lMatrix)+"]");for(x=0;x<n;x++){llOwnerSay("["+llList2CSV(llList2ListStrided(lMatrix,x*n,(x+1)*n-1,1))+"]");}}}
Output:
You: 0Identity_Matrix: You entered 0.You: 1Identity_Matrix: You entered 1.Identity_Matrix: [1]You: 3Identity_Matrix: You entered 3.Identity_Matrix: [1, 0, 0]Identity_Matrix: [0, 1, 0]Identity_Matrix: [0, 0, 1]You: 5Identity_Matrix: You entered 5.Identity_Matrix: [1, 0, 0, 0, 0]Identity_Matrix: [0, 1, 0, 0, 0]Identity_Matrix: [0, 0, 1, 0, 0]Identity_Matrix: [0, 0, 0, 1, 0]Identity_Matrix: [0, 0, 0, 0, 1]

Lua

functionidentity_matrix(size)localm={}fori=1,sizedom[i]={}forj=1,sizedom[i][j]=i==jand1or0endendreturnmendfunctionprint_matrix(m)fori=1,#mdoprint(table.concat(m[i]," "))endendprint_matrix(identity_matrix(5))
Output:
1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1

Maple

One of a number of ways to do this:

> LinearAlgebra:-IdentityMatrix( 4 );                           [1    0    0    0]                           [                ]                           [0    1    0    0]                           [                ]                           [0    0    1    0]                           [                ]                           [0    0    0    1]

Here, for instance, is another, in which the entries are (4-byte) floats.

> Matrix( 4, shape = scalar[1], datatype = float[4] );                         [1.    0.    0.    0.]                         [                    ]                         [0.    1.    0.    0.]                         [                    ]                         [0.    0.    1.    0.]                         [                    ]                         [0.    0.    0.    1.]

Yet another, with 2-byte integer entries:

> Matrix( 4, shape = identity, datatype = integer[ 2 ] );                           [1    0    0    0]                           [                ]                           [0    1    0    0]                           [                ]                           [0    0    1    0]                           [                ]                           [0    0    0    1]

MathCortex

I = eye(10)

Mathematica /Wolfram Language

IdentityMatrix[4]

MATLAB /Octave

Theeye function create the identity (I) matrix, e.g.:

I=eye(10)

Maxima

ident(4);/* matrix([1, 0, 0, 0],          [0, 1, 0, 0],          [0, 0, 1, 0],          [0, 0, 0, 1]) */

NetRexx

Using int Array

Translation of:REXX
/* NetRexx ************************************************************* show identity matrix of size n* I consider m[i,j] to represent the matrix* 09.07.2013 Walter Pachl (translated from REXX Version 2)**********************************************************************/optionsreplaceformatcommentsjavacrossrefsymbolsbinaryParseArgn.Ifn=''thenn=5Say'Identity Matrix of size'n'(m[i,j] IS the Matrix)'m=int[n,n]--Allocate2Dsquarearrayatrun-timeLoopi=0Ton-1--LikeJava,arraysinNetRexxstartat0ol=''Loopj=0Ton-1m[i,j]=(i=j)ol=olm[i,j]EndSayolEnd

Using Indexed String

/* NetRexx */optionsreplaceformatcommentsjavacrossrefsymbolsnobinaryrunSample(arg)return--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~methodcreateIdMatrix(n)publicstaticDIM_='DIMENSION'm=0--Indexedstringtoholdmatrix;defaultvalueforallelementsiszerom[DIM_]=nloopi=1ton--NetRexxindexedstringsdon't have to start at zerom[i,i]=1--setthisdiagonalelementto1endireturnm--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~methoddisplayIdMatrix(m)publicstaticDIM_='DIMENSION'if\m.exists(DIM_)thensignalRuntimeException('Matrix dimension not set')n=m[DIM_]loopi=1tonol=''loopj=1Tonol=olm[i,j]endjsayolendireturn--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~methodrunSample(arg)publicstaticparseargn.ifn=''thenn=5say'Identity Matrix of size'ndisplayIdMatrix(createIdMatrix(n))return

Nim

procidentityMatrix(n:Positive):auto=result=newSeq[seq[int]](n)foriin0..<result.len:result[i]=newSeq[int](n)result[i][i]=1

Nu

Works with:Nushell version 0.97.1
def identity-matrix [n: int] {  ..<$n | each {|i| ..<$n | each { $in == $i | into int } }}..5 | each { {k: $in v: (identity-matrix $in)} } | transpose -r | table -i false -e --flatten
Output:
╭───┬───────┬─────────┬───────────┬─────────────┬───────────────╮│ 0 │   1   │    2    │     3     │      4      │       5       │├───┼───────┼─────────┼───────────┼─────────────┼───────────────┤│   │ ╭───╮ │ ╭─────╮ │ ╭───────╮ │ ╭─────────╮ │ ╭───────────╮ ││   │ │ 1 │ │ │ 1 0 │ │ │ 1 0 0 │ │ │ 1 0 0 0 │ │ │ 1 0 0 0 0 │ ││   │ ╰───╯ │ │ 0 1 │ │ │ 0 1 0 │ │ │ 0 1 0 0 │ │ │ 0 1 0 0 0 │ ││   │       │ ╰─────╯ │ │ 0 0 1 │ │ │ 0 0 1 0 │ │ │ 0 0 1 0 0 │ ││   │       │         │ ╰───────╯ │ │ 0 0 0 1 │ │ │ 0 0 0 1 0 │ ││   │       │         │           │ ╰─────────╯ │ │ 0 0 0 0 1 │ ││   │       │         │           │             │ ╰───────────╯ │╰───┴───────┴─────────┴───────────┴─────────────┴───────────────╯

Objeck

class IdentityMatrix {  function : Matrix(n : Int) ~ Int[,] {    array := Int->New[n,n];        for(row:=0; row<n; row+=1;){      for(col:=0; col<n; col+=1;){        if(row = col){          array[row, col] := 1;        }        else{          array[row,col] := 0;        };      };    };    return array;  }    function : PrintMatrix(array : Int[,]) ~ Nil {    sizes := array->Size();    for(row:=0; row<sizes[0]; row+=1;){      for(col:=0; col<sizes[1]; col+=1;){        value := array[row,col];        "{$value} \t"->Print();      };      '\n'->PrintLine();    };  }    function : Main(args : String[]) ~ Nil {    PrintMatrix(Matrix(5));  }}

OCaml

From the interactive loop (that we call the "toplevel"):

$ocaml#letmake_id_matrixn=letm=Array.make_matrixnn0.0infori=0topredndom.(i).(i)<-1.0done;(m);;valmake_id_matrix:int->floatarrayarray=<fun>#make_id_matrix4;;-:floatarrayarray=[|[|1.;0.;0.;0.|];[|0.;1.;0.;0.|];[|0.;0.;1.;0.|];[|0.;0.;0.;1.|]|]

another way:

#letmake_id_matrixn=Array.initn(funi->Array.initn(funj->ifi=jthen1.0else0.0));;valmake_id_matrix:int->floatarrayarray=<fun>#make_id_matrix4;;-:floatarrayarray=[|[|1.;0.;0.;0.|];[|0.;1.;0.;0.|];[|0.;0.;1.;0.|];[|0.;0.;0.;1.|]|]

When we write a function in the toplevel, it returns us its signature (the prototype), and when we write a variable (or a function call), it returns its type and its value.

Octave

Theeye function create the identity (I) matrix, e.g.:

I=eye(10)

Ol

(define(make-identity-matrixn)(map(lambda(i)(append(repeat0i)'(1)(repeat0(-ni1))))(iotan)))(for-eachprint(make-identity-matrix3))(for-eachprint(make-identity-matrix17))
Output:
(1 0 0)(0 1 0)(0 0 1)(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)(0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0)(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)(0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)(0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0)(0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0)(0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0)(0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0)(0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0)(0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0)(0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0)(0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0)(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0)(0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0)(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

ooRexx

ooRexx doesn't have a proper matrix class, but it does have multidimensional arrays.

say"a 3x3 identity matrix"saycallprintMatrixcreateIdentityMatrix(3)saysay"a 5x5 identity matrix"saycallprintMatrixcreateIdentityMatrix(5)::routinecreateIdentityMatrixuseargsizematrix=.array~new(size,size)loopi=1tosizeloopj=1tosizeifi==jthenmatrix[i,j]=1elsematrix[i,j]=0endjendireturnmatrix::routineprintMatrixuseargmatrixloopi=1tomatrix~dimension(1)line=""loopj=1tomatrix~dimension(2)line=linematrix[i,j]endjsaylineendi
Output:
a 3x3 identity matrix 1 0 0 0 1 0 0 0 1a 5x5 identity matrix 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

OxygenBasic

Class SquareMatrix'=================  double *Cell  sys    size  method SetIdentity()  indexbase 0  sys e,i,j  e=size*size  for i=0 to <size    cell(i*size+j)=1 : j++  next  end method  method constructor(sys n)  @cell=getmemory n*n*sizeof double  size=n  end method  method destructor()  freememory @cell  end methodend classnew SquareMatrix M(8)M.SetIdentity'...del M

PARI/GP

Built-in:

matid(9)

Custom:

matrix(9,9,i,j,i==j)

Pascal

programIdentityMatrix(input,output);varmatrix:arrayofarrayofinteger;n,i,j:integer;beginwrite('Size of matrix: ');readln(n);setlength(matrix,n,n);fori:=0ton-1domatrix[i,i]:=1;fori:=0ton-1dobeginforj:=0ton-1dowrite(matrix[i,j],' ');writeln;end;end.
Output:
% ./IdentityMatrixSize of matrix: 51 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

PascalABC.NET

beginvarn:=ReadInteger;varmatrix:array[,]ofinteger:=MatrGen(n,n,(i,j)->i=j?1:0);matrix.Printlnend.
Output:
5   1   0   0   0   0   0   1   0   0   0   0   0   1   0   0   0   0   0   1   0   0   0   0   0   1


Perl

usestrict;usewarnings;usefeature'say';subidentity_matrix{my($n)=shift()-1;map{[(0)x$_,1,(0)x($n-$_)]}0..$n}for(<456>){say"\n$_:";sayjoin' ',@$_foridentity_matrix$_;}
Output:
4:1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 5:1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 6:1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Phix

functionidentity(integern)sequenceres=repeat(repeat(0,n),n)fori=1tondores[i][i]=1endforreturnresendfunctionppOpt({pp_Nest,1})pp(identity(3))pp(identity(5))pp(identity(7))pp(identity(9))
Output:
{{1,0,0}, {0,1,0}, {0,0,1}}
{{1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}, {0,0,0,0,1}}
{{1,0,0,0,0,0,0}, {0,1,0,0,0,0,0}, {0,0,1,0,0,0,0}, {0,0,0,1,0,0,0}, {0,0,0,0,1,0,0}, {0,0,0,0,0,1,0}, {0,0,0,0,0,0,1}}
{{1,0,0,0,0,0,0,0,0}, {0,1,0,0,0,0,0,0,0}, {0,0,1,0,0,0,0,0,0}, {0,0,0,1,0,0,0,0,0}, {0,0,0,0,1,0,0,0,0}, {0,0,0,0,0,1,0,0,0}, {0,0,0,0,0,0,1,0,0}, {0,0,0,0,0,0,0,1,0}, {0,0,0,0,0,0,0,0,1}}

PHP

functionidentity($length){returnarray_map(function($key,$value){$value[$key]=1;return$value;},range(0,$length-1),array_fill(0,$length,array_fill(0,$length,0)));}functionprint_identity($identity){echoimplode(PHP_EOL,array_map(function($value){returnimplode(' ',$value);},$identity));}print_identity(identity(10));
Output:
1 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 00 0 0 0 1 0 0 0 0 00 0 0 0 0 1 0 0 0 00 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 1

PicoLisp

(de identity (Size)   (let L (need Size (1) 0)      (make         (do Size            (link (copy (rot L))) ) ) ) )

Test:

: (identity 3)-> ((1 0 0) (0 1 0) (0 0 1)): (mapc println (identity 5))(1 0 0 0 0)(0 1 0 0 0)(0 0 1 0 0)(0 0 0 1 0)(0 0 0 0 1)

PL/I

identity: procedure (A, n);   declare A(n,n) fixed controlled;   declare (i,n) fixed binary;   allocate A; A = 0;   do i = 1 to n; A(i,i) = 1; end;end identity;

PostScript

% n  ident  [identity-matrix]% create an identity matrix of dimension n*n.% Uses a local dictionary for its one parameter, perhaps overkill.% Constructs arrays of arrays of integers using [], for loops, and stack manipulation./ident{1dictbegin/nexchdef[11n{% [ i[exch% [ [ i11n{% [ [ i j1indexeq{1}{0}ifelse% [ [ i bexch% [ [ b i}for% [ [ b+ ipop]% [ [ b+ ]}for% [ [b+]+ ]]end}def

PowerShell

functionidentity($n){0..($n-1)|foreach{$row=@(0)*$n;$row[$_]=1;,$row}}functionshow($a){$a|foreach{"$_"}}$array=identity4show$array

Output:

 1 0 0 00 1 0 00 0 1 00 0 0 1
$array[0][0]$array[0][1]

Output:

 10


Prolog

Works with:SWi-Prolog
%rotates one list clockwise by one integerrotate(Int,List,Rotated):-integer(Int),length(Suff,Int),append(Pre,Suff,List),append(Suff,Pre,Rotated).%rotates a list of lists by a list of integersrotate(LoInts,LoLists,Rotated):-is_list(LoInts),maplist(rotate,LoInts,LoLists,Rotated).%helper functionappend_(Suff,Pre,List):-append([Pre],Suff,List).idmatrix(N,IdMatrix):-%make an N length list of 1s and append with N-1 0slength(Ones,N),maplist(=(1),Ones),succ(N0,N),length(Zeros,N0),maplist(=(0),Zeros),maplist(append_(Zeros),Ones,M),%create the offsets at rotate each rownumlist(0,N0,Offsets),rotate(Offsets,M,IdMatrix).main:-idmatrix(5,I),maplist(writeln,I).
Output:
?- main.[1,0,0,0,0][0,1,0,0,0][0,0,1,0,0][0,0,0,1,0][0,0,0,0,1]true .

PureBasic

>ProcedureidentityMatrix(Arrayi(2),size);validonlyforsize>=0;formatsarrayi()asanidentitymatrixofsizexsizeDimi(size-1,size-1)ProtectedjForj=0Tosize-1i(j,j)=1NextEndProcedureProceduredisplayMatrix(Arraya(2))Protectedrows=ArraySize(a(),2),columns=ArraySize(a(),1)Protectedi,jFori=0TorowsForj=0TocolumnsPrint(RSet(Str(a(i,j)),3," "))NextPrintN("")NextEndProcedureIfOpenConsole()Dimi3(0,0)Dimi4(0,0)identityMatrix(i3(),3)identityMatrix(i4(),4)displayMatrix(i3())PrintN("")displayMatrix(i4())Print(#CRLF$+#CRLF$+"Press ENTER to exit"):Input()CloseConsole()EndIf
Output:
  1  0  0  0  1  0  0  0  1  1  0  0  0  0  1  0  0  0  0  1  0  0  0  0  1

Python

Nested lists

A simple solution, using nested lists to represent the matrix.

defidentity(size):matrix=[[0]*sizeforiinrange(size)]#matrix = [[0] * size] * size    #Has a flaw. See http://stackoverflow.com/questions/240178/unexpected-feature-in-a-python-list-of-listsforiinrange(size):matrix[i][i]=1forrowsinmatrix:forelementsinrows:printelements,print""

Nested maps and comprehensions

Works with:Python version 3.7
'''Identity matrices by maps and equivalent list comprehensions'''importoperator# idMatrix :: Int -> [[Int]]defidMatrix(n):'''Identity matrix of order n,       expressed as a nested map.    '''eq=curry(operator.eq)xs=range(0,n)returnlist(map(lambdax:list(map(compose(int)(eq(x)),xs)),xs))# idMatrix3 :: Int -> [[Int]]defidMatrix2(n):'''Identity matrix of order n,       expressed as a nested comprehension.    '''xs=range(0,n)return([int(x==y)forxinxs]foryinxs)# TEST ----------------------------------------------------defmain():'''        Identity matrix of dimension five,        by two different routes.    '''forfin[idMatrix,idMatrix2]:print('\n'+f.__name__+':','\n\n'+'\n'.join(map(str,f(5))),)# GENERIC -------------------------------------------------# compose (<<<) :: (b -> c) -> (a -> b) -> a -> cdefcompose(g):'''Right to left function composition.'''returnlambdaf:lambdax:g(f(x))# curry :: ((a, b) -> c) -> a -> b -> cdefcurry(f):'''A curried function derived       from an uncurried function.'''returnlambdaa:lambdab:f(a,b)# MAIN ---if__name__=='__main__':main()
Output:
idMatrix: [1, 0, 0, 0, 0][0, 1, 0, 0, 0][0, 0, 1, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 1]idMatrix2: [1, 0, 0, 0, 0][0, 1, 0, 0, 0][0, 0, 1, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 1]

Dict of points

A dict of tuples of two ints (x, y) are used to represent the matrix.

>>> def identity(size):...     return {(x, y):int(x == y) for x in range(size) for y in range(size)}... >>> size = 4>>> matrix = identity(size)>>> print('\n'.join(' '.join(str(matrix[(x, y)]) for x in range(size)) for y in range(size)))1 0 0 00 1 0 00 0 1 00 0 0 1>>>

Numpy

A solution using the numpy library

np.mat(np.eye(size))

Quackery

[ [] swap times    [ 0 i^ of 1 join 0 i of      join nested join ] ]  is identity ( n --> [ )5 identity echo
Output:
[ [ 1 0 0 0 0 ] [ 0 1 0 0 0 ] [ 0 0 1 0 0 ] [ 0 0 0 1 0 ] [ 0 0 0 0 1 ] ]

R

When passed a single scalar argument,diag produces an identity matrix of size given by the scalar. For example:

diag(3)

produces:

     [,1] [,2] [,3][1,]    1    0    0[2,]    0    1    0[3,]    0    0    1

Or you can also use the method that is shown below

Identity_matrix=function(size){  x=matrix(0,size,size)  for (i in 1:size) {    x[i,i]=1  }  return(x)}

Racket

#lang racket(require math)(identity-matrix 5)
Output:
(array #[#[1 0 0 0 0]          #[0 1 0 0 0]         #[0 0 1 0 0]         #[0 0 0 1 0]         #[0 0 0 0 1]])

Raku

(formerly Perl 6)

Works with:rakudo version 2015-09-15
sub identity-matrix($n) {    my @id;    for flat ^$n X ^$n -> $i, $j {        @id[$i][$j] = +($i == $j);    }    @id;}.say for identity-matrix(5);
Output:
[1 0 0 0 0][0 1 0 0 0][0 0 1 0 0][0 0 0 1 0][0 0 0 0 1]

On the other hand, this may be clearer and/or faster:

sub identity-matrix($n) {    my @id = [0 xx $n] xx $n;    @id[$_][$_] = 1 for ^$n;    @id;}

Here is yet an other way to do it:

sub identity-matrix($n) {    [1, |(0 xx $n-1)], *.rotate(-1) ... *[*-1]}

Red

Red[]identity-matrix: function [size][    matrix: copy []    repeat i size [        append/only matrix append/dup copy [] 0 size        matrix/:i/:i: 1    ]    matrix]probe identity-matrix 5
Output:
[[1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1]]

REXX

version 1

The REXX language doesn't have matrices as such, so the problem is largely how to display the "matrix".

The code to display the matrices was kept as a stand-alone general-purpose (square) matrix display
subroutine,   which, in part,   determines if the square matrix is indeed a square matrix based on the
number of elements given.

It also finds the maximum widths of the integer and decimal fraction parts   (if any)   and uses those widths
to align   (right-justify according to the [possibly implied] decimal point)   the columns of the square matrix.

It also tries to display a centered (and easier to read) matrix,   along with a title.

/*REXX program  creates and displays any sized  identity matrix  (centered, with title).*/           do k=3  to 6                          /* [↓]  build and display a sq. matrix.*/           call ident_mat  k                     /*build & display a KxK square matrix. */           end   /*k*/                           /* [↑]  use general─purpose display sub*/exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/ident_mat: procedure;  parse arg n; $=              do    r=1  for n                   /*build identity matrix, by row and col*/                 do c=1  for n;     $= $ (r==c)  /*append  zero  or  one  (if on diag). */                 end   /*c*/              end      /*r*/           call showMat  'identity matrix of size'   n,   $           return/*──────────────────────────────────────────────────────────────────────────────────────*/showMat: procedure; parse arg hdr,x;  #=words(x) /*#  is the number of matrix elements. */         dp= 0                                   /*DP:  max width of decimal fractions. */         w= 0                                    /*W:   max width of integer part.      */                 do n=1  until n*n>=#;  _= word(x,n)      /*determine the matrix order. */                 parse var _ y '.' f;   w= max(w, length(y));      dp= max(dp, length(f) )                 end   /*n*/                     /* [↑]  idiomatically find the widths. */         w= w +1         say;  say center(hdr, max(length(hdr)+8, (w+1)*#%n), '─');  say         #= 0                                                            /*#: element #.*/                 do   row=1  for n;     _= left('', n+w)                 /*indentation. */                   do col=1  for n;     #= # + 1                         /*bump element.*/                   _=_ right(format(word(x, #), , dp)/1, w)                   end   /*col*/                 /* [↑]  division by unity normalizes #.*/                 say _                           /*display a single line of the matrix. */                 end     /*row*/         return
output  when using the default sizes   (3 ──► 6)   for generating four matrices:
────identity matrix of size 3────       1  0  0       0  1  0       0  0  1────identity matrix of size 4────        1  0  0  0        0  1  0  0        0  0  1  0        0  0  0  1────identity matrix of size 5────         1  0  0  0  0         0  1  0  0  0         0  0  1  0  0         0  0  0  1  0         0  0  0  0  1────identity matrix of size 6────          1  0  0  0  0  0          0  1  0  0  0  0          0  0  1  0  0  0          0  0  0  1  0  0          0  0  0  0  1  0          0  0  0  0  0  1

version 2

An alternative?!

/* REXX **************************************************************** show identity matrix of size n* I consider m.i.j to represent the matrix (not needed for showing)* 06.07.2012 Walter Pachl**********************************************************************/Parse Arg nSay 'Identity Matrix of size' n '(m.i.j IS the Matrix)'m.=0Do i=1 To n  ol=''  Do j=1 To n    m.i.j=(i=j)    ol=ol''format(m.i.j,2) /* or ol=ol (i=j)                         */    End  Say ol  End
Output:
Identity Matrix of size 3  (m.i.j IS the Matrix) 1 0 0 0 1 0 0 0 1

This could be a 3-dimensional sparse matrix with one element set:

m.=0m.0=1000 /* the matrix' size */m.4.17.333='Walter'

Ring

size = 5im = newlist(size, size)identityMatrix(size, im)for r = 1 to size    for c = 1 to size        see im[r][c]    next    see nlnext  func identityMatrix s, m     m = newlist(s, s)     for i = 1 to s         m[i][i] = 1     next     return mfunc newlist x, y     if isstring(x) x=0+x ok     if isstring(y) y=0+y ok     alist = list(x)     for t in alist         t = list(y)     next     return alist

Output:

1000001000001000001000001

Gui version

# Project : Identity Matrix# Date    : 2022/16/02# Author  : Gal Zsolt (~ CalmoSoft ~)# Email   : <calmosoft@gmail.com>load "stdlib.ring"load "guilib.ring"size = 8C_Spacing = 1C_ButtonBlueStyle   = 'border-radius:6px;color:black; background-color: blue'C_ButtonOrangeStyle = 'border-radius:6px;color:black; background-color: orange'Button = newlist(size,size)LayoutButtonRow = list(size)app = new qApp {      win = new qWidget() {    setWindowTitle('Identity Matrix')    move(500,100)    reSize(600,600)    winheight = win.height()    fontSize = 18 + (winheight / 100)     LayoutButtonMain = new QVBoxLayout()    LayoutButtonMain.setSpacing(C_Spacing)    LayoutButtonMain.setContentsmargins(0,0,0,0)    for Row = 1 to sizeLayoutButtonRow[Row] = new QHBoxLayout() {       setSpacing(C_Spacing)       setContentsmargins(0,0,0,0)       }           for Col = 1 to size     Button[Row][Col] = new QPushButton(win) {                                        setSizePolicy(1,1)                                                }     LayoutButtonRow[Row].AddWidget(Button[Row][Col]) next LayoutButtonMain.AddLayout(LayoutButtonRow[Row])      next              LayoutDataRow1 = new QHBoxLayout() { setSpacing(C_Spacing) setContentsMargins(0,0,0,0) }              LayoutButtonMain.AddLayout(LayoutDataRow1)              setLayout(LayoutButtonMain)              show()   }   pBegin()   exec()   }func pBegin()     for Row = 1 to size         for Col = 1 to size              if Row = Col                Button[Row][Col].setStyleSheet(C_ButtonOrangeStyle)                Button[Row][Col].settext("1")             else                Button[Row][Col].setStyleSheet(C_ButtonBlueStyle)                Button[Row][Col].settext("0")             ok next     next     score = 0

Output image:

Identity Matrix

RPL

Input:
3 IDN
Output:
1:          [[ 1 0 0 ]             [ 0 1 0 ]            [ 0 0 1 ]]

Ruby

Using Array

def identity(size)  Array.new(size){|i| Array.new(size){|j| i==j ? 1 : 0}}end[4,5,6].each do |size|  puts size, identity(size).map {|r| r.to_s}, ""end
Output:
4[1, 0, 0, 0][0, 1, 0, 0][0, 0, 1, 0][0, 0, 0, 1]5[1, 0, 0, 0, 0][0, 1, 0, 0, 0][0, 0, 1, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 1]6[1, 0, 0, 0, 0, 0][0, 1, 0, 0, 0, 0][0, 0, 1, 0, 0, 0][0, 0, 0, 1, 0, 0][0, 0, 0, 0, 1, 0][0, 0, 0, 0, 0, 1]

Using Matrix

require 'matrix'p Matrix.identity(5) # => Matrix[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]

Run BASIC

' formats array im() of size imsfor ims = 4 to 6print :print "--- Size: ";ims;" ---" Dim im(ims,ims) For i = 1 To ims   im(i,i) = 1 next  For row = 1 To ims   print "[";   cma$ = ""     For col = 1 To ims       print cma$;im(row, col);       cma$ = ", "    next   print "]" nextnext ims
Output:
--- Size: 4 ---[1, 0, 0, 0][0, 1, 0, 0][0, 0, 1, 0][0, 0, 0, 1]--- Size: 5 ---[1, 0, 0, 0, 0][0, 1, 0, 0, 0][0, 0, 1, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 1]--- Size: 6 ---[1, 0, 0, 0, 0, 0][0, 1, 0, 0, 0, 0][0, 0, 1, 0, 0, 0][0, 0, 0, 1, 0, 0][0, 0, 0, 0, 1, 0][0, 0, 0, 0, 0, 1]

Rust

Run with command-line containing the matrix size.

extern crate num;struct Matrix<T> {    data: Vec<T>,    size: usize,}impl<T> Matrix<T>where    T: num::Num + Clone + Copy,{    fn new(size: usize) -> Self {        Self {            data: vec![T::zero(); size * size],            size: size,        }    }    fn get(&mut self, x: usize, y: usize) -> T {        self.data[x + self.size * y]    }    fn identity(&mut self) {        for (i, item) in self.data.iter_mut().enumerate() {            *item = if i % (self.size + 1) == 0 {                T::one()            } else {                T::zero()            }        }    }}fn main() {    let size = std::env::args().nth(1).unwrap().parse().unwrap();    let mut matrix = Matrix::<i32>::new(size);    matrix.identity();    for y in 0..size {        for x in 0..size {            print!("{} ", matrix.get(x, y));        }        println!();    }}

Scala

def identityMatrix(n:Int)=Array.tabulate(n,n)((x,y) => if(x==y) 1 else 0)def printMatrix[T](m:Array[Array[T]])=m map (_.mkString("[", ", ", "]")) mkString "\n"printMatrix(identityMatrix(5))
Output:
[1, 0, 0, 0, 0][0, 1, 0, 0, 0][0, 0, 1, 0, 0][0, 0, 0, 1, 0][0, 0, 0, 0, 1]

Scheme

When representing a matrix as a collection of nested lists:

(define (identity n)  (letrec      ((uvec (lambda (m i acc)  (if (= i n)      acc      (uvec m (+ i 1)    (cons (if (= i m) 1 0) acc)))))       (idgen(lambda (i acc)  (if (= i n)      acc      (idgen (+ i 1)     (cons (uvec i 0 '()) acc))))))       (idgen 0 '())))

Test program:

(display (identity 4))
Output:
((1 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1))

Seed7

$ include "seed7_05.s7i";const type: matrix is array array integer;const func matrix: identity (in integer: size) is func  result    var matrix: identity is matrix.value;  local    var integer: index is 0;  begin    identity := size times size times 0;    for index range 1 to size do      identity[index][index] := 1;    end for;  end func;const proc: writeMat (in matrix: a) is func  local    var integer: i is 0;    var integer: num is 0;  begin    for key i range a do      for num range a[i] do        write(num lpad 2);      end for;      writeln;    end for;  end func;const proc: main is func  begin    writeMat(identity(6));  end func;
Output:
 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

SenseTalk

set matrix to buildIdentityMatrix(3)repeat for each item in matrixput itend repeatset matrix to buildIdentityMatrix(17)repeat for each item in matrixput itend repeatfunction buildIdentityMatrix matrixSizeset matrixList to ()repeat matrixSize timesset rowMatrixIndex to the counterset rowMatrix to ()repeat matrixSize timesif the counter equals rowMatrixIndexinsert 1 after rowMatrixelseinsert 0 after rowMatrixend ifend repeatinsert rowMatrix nested after matrixListend repeatreturn matrixListend buildIdentityMatrix

Output for n 3

(1,0,0)(0,1,0)(0,0,1)

Output for n 17

(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)(0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0)(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)(0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0)(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0)(0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)(0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0)(0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0)(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0)(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0)(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0)(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)

Sidef

func identity_matrix(n) {    n.of { |i|        n.of { |j|            i == j ? 1 : 0        }    }}for n (ARGV ? ARGV.map{.to_i} : [4, 5, 6]) {  say "\n#{n}:"  for row (identity_matrix(n)) {    say row.join(' ')  }}
Output:
4:1 0 0 00 1 0 00 0 1 00 0 0 15:1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 16:1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1

Sinclair ZX81 BASIC

Works with 1k of RAM, but for a larger matrix you'll want at least 2k.

 10 INPUT S 20 DIM M(S,S) 30 FOR I=1 TO S 40 LET M(I,I)=1 50 NEXT I 60 FOR I=1 TO S 70 SCROLL 80 FOR J=1 TO S 90 PRINT M(I,J);100 NEXT J110 PRINT120 NEXT I
Input:
10
Output:
1000000000010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001

Smalltalk

Works with:Pharo Smalltalk
(Array2D identity: (UIManager default request: 'Enter size of the matrix:') asInteger) asString
Output:
'(1 0 0 00 1 0 00 0 1 00 0 0 1 )'

Sparkling

function unitMatrix(n) {return map(range(n), function(k1, v1) {return map(range(n), function(k2, v2) {return v2 == v1 ? 1 : 0;});});}

Standard ML

 val eye= fn n => List.tabulate( n, fn i => List.tabulate( n, fn j=> if j=i then 1.0 else 0.0));

Stata

Stata matrix

. mat a = I(3). mat list asymmetric a[3,3]    c1  c2  c3r1   1r2   0   1r3   0   0   1

Mata

: I(3)[symmetric]       1   2   3    +-------------+  1 |  1          |  2 |  0   1      |  3 |  0   0   1  |    +-------------+

Swift

Translation of:Elixir
func identityMatrix(size: Int) -> [[Int]] {  return (0..<size).map({i in    return (0..<size).map({ $0 == i ? 1 : 0})  })}print(identityMatrix(size: 5))
Output:
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]

Tailspin

templates identityMatrix  def n: $;  [1..$n -> [1..~$ -> 0, 1, $~..$n -> 0]] !end identityMatrixdef identity: 5 -> identityMatrix;$identity... -> '|$(1);$(2..last)... -> ', $;';|' -> !OUT::write

v0.5

identityMatrix templates  n is $;  [1..$n -> [1..~$ -> 0, 1, $~..$n -> 0]] !end identityMatrixidentity is 5 -> identityMatrix;$identity... -> '|$(1);$(2..)... -> ', $;';|' !
Output:
|1, 0, 0, 0, 0||0, 1, 0, 0, 0||0, 0, 1, 0, 0||0, 0, 0, 1, 0||0, 0, 0, 0, 1|

Tcl

When representing a matrix as a collection of nested lists:

proc I {rank {zero 0.0} {one 1.0}} {    set m [lrepeat $rank [lrepeat $rank $zero]]    for {set i 0} {$i < $rank} {incr i} {lset m $i $i $one    }    return $m}

Or alternatively with the help of the tcllib package for rectangular data structures:

Library:Tcllib(Package: struct::matrix)
package require struct::matrixproc I {rank {zero 0.0} {one 1.0}} {    set m [struct::matrix]    $m add columns $rank    $m add rows $rank    for {set i 0} {$i < $rank} {incr i} {for {set j 0} {$j < $rank} {incr j} {    $m set cell $i $j [expr {$i==$j ? $one : $zero}]}    }    return $m}

Demonstrating the latter:

set m [I 5 0 1]    ;# Integer 0/1 for clarity of presentationputs [$m format 2string]
Output:
1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1

TypeScript

function identity(n) {    if (n < 1) return "Not defined";    else if (n == 1) return 1;    else {        var idMatrix:number[][];        for (var i: number = 0; i < n; i++) {            for (var j: number = 0; j < n; j++) {                if (i != j) idMatrix[i][j] = 0;                else idMatrix[i][j] = 1;            }                    }        return idMatrix;    }}

Uiua

Works with:Uiua version 0.11.1
IdMatrix ← ⊞=.⇡IdMatrix 7
Output:
╭─               ╷ 1 0 0 0 0 0 0    0 1 0 0 0 0 0    0 0 1 0 0 0 0    0 0 0 1 0 0 0    0 0 0 0 1 0 0    0 0 0 0 0 1 0    0 0 0 0 0 0 1                  ╯

Vala

int main (string[] args) {if (args.length < 2) {print ("Please, input an integer > 0.\n");return 0;}var n = int.parse (args[1]);if (n <= 0) {print ("Please, input an integer > 0.\n");return 0;}int[,] array = new int[n, n];for (var i = 0; i < n; i ++) {for (var j = 0; j < n; j ++) {if (i == j) array[i,j] = 1;else array[i,j] = 0;}}for (var i = 0; i < n; i ++) {for (var j = 0; j < n; j ++) {print ("%d ", array[i,j]);}print ("\b\n");}return 0;}

VBA

Private Function Identity(n As Integer) As Variant    Dim I() As Integer    ReDim I(n - 1, n - 1)    For j = 0 To n - 1        I(j, j) = 1    Next j    Identity = IEnd Function

VBScript

build_matrix(7)Sub build_matrix(n)Dim matrix()ReDim matrix(n-1,n-1)i = 0'populate the matrixFor row = 0 To n-1For col = 0 To n-1If col = i Thenmatrix(row,col) = 1Elsematrix(row,col) = 0End IfNexti = i + 1Next'display the matrixFor row = 0 To n-1For col = 0 To n-1If col < n-1 ThenWScript.StdOut.Write matrix(row,col) & " "ElseWScript.StdOut.Write matrix(row,col)End IfNextWScript.StdOut.WriteLineNextEnd Sub
Output:
1 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1 0 0 00 0 0 0 1 0 00 0 0 0 0 1 00 0 0 0 0 0 1


Alternate version

n = 8arr = Identity(n)for i = 0 to n-1    for j = 0 to n-1        wscript.stdout.Write arr(i,j) & " "    next    wscript.stdout.writelinenextFunction Identity (size)    Execute Replace("dim a(#,#):for i=0 to #:for j=0 to #:a(i,j)=0:next:a(i,i)=1:next","#",size-1)    Identity = aEnd Function
Output:
1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1

Visual Basic

Works with:Visual Basic version 6
Option Explicit'------------Public Function BuildIdentityMatrix(ByVal Size As Long) As Byte()Dim i As LongDim b() As Byte  Size = Size - 1  ReDim b(0 To Size, 0 To Size)  'at this point, the matrix is allocated and  'all elements are initialized to 0 (zero)  For i = 0 To Size    b(i, i) = 1   'set diagonal elements to 1  Next i  BuildIdentityMatrix = b  End Function'------------Sub IdentityMatrixDemo(ByVal Size As Long)Dim b() As ByteDim i As Long, j As Long  b() = BuildIdentityMatrix(Size)  For i = LBound(b(), 1) To UBound(b(), 1)    For j = LBound(b(), 2) To UBound(b(), 2)      Debug.Print CStr(b(i, j));    Next j  Debug.Print  Next iEnd Sub'------------Sub Main()  IdentityMatrixDemo 5  Debug.Print  IdentityMatrixDemo 10End Sub
Output:
10000010000010000010000011000000000010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001

Wortel

@let {  im ^(%^\@table ^(@+ =) @to)  !im 4}

Returns:

[[1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1]]

Wren

Library:Wren-matrix
Library:Wren-fmt
import "./matrix" for Matriximport "./fmt" for Fmtvar numRows = 10 // sayFmt.mprint(Matrix.identity(numRows), 2, 0)
Output:
| 1  0  0  0  0  0  0  0  0  0|| 0  1  0  0  0  0  0  0  0  0|| 0  0  1  0  0  0  0  0  0  0|| 0  0  0  1  0  0  0  0  0  0|| 0  0  0  0  1  0  0  0  0  0|| 0  0  0  0  0  1  0  0  0  0|| 0  0  0  0  0  0  1  0  0  0|| 0  0  0  0  0  0  0  1  0  0|| 0  0  0  0  0  0  0  0  1  0|| 0  0  0  0  0  0  0  0  0  1|

XPL0

include c:\cxpl\codes;def IntSize = 4;                        \number of bytes in an integerint Matrix, Size, I, J;[Text(0, "Size: ");  Size:= IntIn(0);Matrix:= Reserve(Size*IntSize);         \reserve memory for 2D integer arrayfor I:= 0 to Size-1 do        Matrix(I):= Reserve(Size*IntSize);for J:= 0 to Size-1 do                  \make array an identity matrix    for I:= 0 to Size-1 do        Matrix(I,J):= if I=J then 1 else 0;for J:= 0 to Size-1 do                  \display the result    [for I:= 0 to Size-1 do        [IntOut(0, Matrix(I,J));  ChOut(0, ^ )];    CrLf(0);    ];]
Output:
Size: 51 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

zkl

Using lists of lists:

fcn idMatrix(n){   m:=(0).pump(n,List.createLong(n).write,0)*n;   m.apply2(fcn(row,rc){ row[rc.inc()]=1 },Ref(0));   m}idMatrix(5).println();idMatrix(5).pump(Console.println);
Output:
L(L(1,0,0,0,0),L(0,1,0,0,0),L(0,0,1,0,0),L(0,0,0,1,0),L(0,0,0,0,1))L(1,0,0,0,0)L(0,1,0,0,0)L(0,0,1,0,0)L(0,0,0,1,0)L(0,0,0,0,1)

ZX Spectrum Basic

Translation of:Applesoft_BASIC
10 INPUT "Matrix size: ";size20 GO SUB 200: REM Identity matrix30 FOR r=1 TO size40 FOR c=1 TO size50 LET s$=CHR$ 1360 IF c<size THEN LET s$=" "70 PRINT i(r,c);s$;80 NEXT c90 NEXT r100 STOP 200 REM Identity matrix size220 DIM i(size,size)230 FOR i=1 TO size240 LET i(i,i)=1250 NEXT i260 RETURN
Retrieved from "https://rosettacode.org/wiki/Identity_matrix?oldid=377164"
Categories:
Hidden category:
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

[8]ページ先頭

©2009-2025 Movatter.jp