Movatterモバイル変換


[0]ホーム

URL:


Jump to content
Rosetta Code
Search

Factors of an integer

From Rosetta Code
Task
Factors of an integer
You are encouraged tosolve this task according to the task description, using any language you may know.

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.

You may see other such operations in theBasic Data Operations category, or:

Integer Operations
Arithmetic |Comparison

Boolean Operations
Bitwise |Logical

String Operations
Concatenation |Interpolation |Comparison |Matching

Memory Operations
Pointers & references |Addresses

Task

Compute the  factors   of a positive integer.

These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.

(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases).

Note that every prime number has two factors:  1   and itself.


Related tasks



0815

<:1:~>|~#:end:>~x}:str:/={^:wei:~%x<:a:x=$~=}:wei:x<:1:+{>~>x=-#:fin:^:str:}:fin:{{~%

11l

Translation of:Python
F factor(n)   V factors = Set[Int]()   L(x) 1..Int(sqrt(n))      I n % x == 0         factors.add(x)         factors.add(n I/ x)   R sorted(Array(factors))L(i) (45, 53, 64)   print(i‘: factors: ’String(factor(i)))
Output:
45: factors: [1, 3, 5, 9, 15, 45]53: factors: [1, 53]64: factors: [1, 2, 4, 8, 16, 32, 64]

360 Assembly

Very compact version.

*        Factors of an integer -   07/10/2015FACTOR   CSECT         USING  FACTOR,R15         set base register         LA     R7,PG              pgi=@pg         LA     R6,1               i         L      R3,N               loop countLOOP     L      R5,N               n         LA     R4,0         DR     R4,R6              n/i         LTR    R4,R4              if mod(n,i)=0         BNZ    NEXT         XDECO  R6,PG+120          edit i         MVC    0(6,R7),PG+126     output i         LA     R7,6(R7)           pgi=pgi+6NEXT     LA     R6,1(R6)           i=i+1         BCT    R3,LOOP            loop         XPRNT  PG,120             print buffer         XR     R15,R15            set return code         BR     R14                return to callerN        DC     F'12345'           <== input valuePG       DC     CL132' '           buffer         YREGS         END    FACTOR
Output:
     1     3     5    15   823  2469  4115 12345

68000 Assembly

;max input range equals 0 to 0xFFFFFFFF.jsrGetInput;unimplemented routine to get user input for a positive (nonzero) integer.;output of this routine will be in D0.MOVE.LD0,D1;D1 will be used for temp storage.MOVE.L#1,D2;start with 1.computeFactors:DIVUD2,D1;remainder is in top 2 bytes, quotient in bottom 2.MOVE.LD1,D3;temporarily store into D3 to check the remainderSWAPD3;swap the high and low words of D3. Now bottom 2 bytes contain remainder.CMP.W#0,D3;is the bottom word equal to 0?BNED2_Wasnt_A_Divisor;if not, D2 was not a factor of D1.JSRPrintD2;unimplemented routine to print D2 to the screen as a decimal number.D2_Wasnt_A_Divisor:MOVE.LD0,D1;restore D1.ADDQ.L#1,D2;increment D2CMP.LD2,D1;is D2 now greater than D1?BLScomputeFactors;if not, loop again;end of program

AArch64 Assembly

Works with:as version Raspberry Pi 3B version Buster 64 bits
/* ARM assembly AARCH64 Raspberry PI 3B *//*  program factorst64.s   *//*******************************************//* Constantes file                         *//*******************************************//* for this file see task include a file in language AArch64 assembly*/.include "../includeConstantesARM64.inc".equ CHARPOS,       '@'/*******************************************//* Initialized data                        *//*******************************************/.dataszMessDeb:         .ascii "Factors of : @ are : \n"szMessFactor:      .asciz "@ \n"szCarriageReturn:  .asciz "\n"/*******************************************//* UnInitialized data                      *//*******************************************/.bss sZoneConversion:        .skip 100/*******************************************//*  code section                           *//*******************************************/.text.global main main:                             // entry of program    mov x0,#100    bl factors    mov x0,#97    bl factors    ldr x0,qNumber    bl factors100:                             // standard end of the program    mov x0, #0                   // return code    mov x8, #EXIT                // request to exit program    svc 0                        // perform the system callqNumber:               .quad 32767qAdrszCarriageReturn:  .quad szCarriageReturn/******************************************************************//*     calcul factors of number                                  */ /******************************************************************//* x0 contains the number to factorize */factors:    stp x1,lr,[sp,-16]!         // save  registers    stp x2,x3,[sp,-16]!         // save  registers    mov x5,x0                   // limit calcul    ldr x1,qAdrsZoneConversion  // conversion register in decimal string    bl conversion10S    ldr x0,qAdrszMessDeb        // display message    ldr x1,qAdrsZoneConversion     bl strInsertAtChar    bl affichageMess    mov x6,#1                   // counter loop1:   // loop     udiv x0,x5,x6               // division    msub x3,x0,x6,x5            // compute remainder    cbnz x3,2f                  // remainder not = zero -> loop                                // display result if yes    mov x0,x6    ldr x1,qAdrsZoneConversion    bl conversion10S    ldr x0,qAdrszMessFactor     // display message    ldr x1,qAdrsZoneConversion     bl strInsertAtChar    bl affichageMess2:    add x6,x6,#1                // add 1 to loop counter    cmp x6,x5                   // <=  number ?    ble 1b                      // yes loop100:    ldp x2,x3,[sp],16           // restaur  2 registers    ldp x1,lr,[sp],16           // restaur  2 registers    retqAdrszMessDeb:        .quad szMessDebqAdrszMessFactor:     .quad szMessFactorqAdrsZoneConversion:  .quad sZoneConversion/******************************************************************//*   insert string at character insertion  */ /******************************************************************//* x0 contains the address of string 1 *//* x1 contains the address of insertion string   *//* x0 return the address of new string  on the heap *//* or -1 if error   */strInsertAtChar:    stp x2,lr,[sp,-16]!                      // save  registers    stp x3,x4,[sp,-16]!                      // save  registers    stp x5,x6,[sp,-16]!                      // save  registers    stp x7,x8,[sp,-16]!                      // save  registers    mov x3,#0                                // length counter 1:                                           // compute length of string 1    ldrb w4,[x0,x3]    cmp w4,#0    cinc  x3,x3,ne                           // increment to one if not equal    bne 1b                                   // loop if not equal    mov x5,#0                                // length counter insertion string2:                                           // compute length to insertion string    ldrb w4,[x1,x5]    cmp x4,#0    cinc  x5,x5,ne                           // increment to one if not equal    bne 2b                                   // and loop    cmp x5,#0    beq 99f                                  // string empty -> error    add x3,x3,x5                             // add 2 length    add x3,x3,#1                             // +1 for final zero    mov x6,x0                                // save address string 1    mov x0,#0                                // allocation place heap    mov x8,BRK                               // call system 'brk'     svc #0    mov x5,x0                                // save address heap for output string    add x0,x0,x3                             // reservation place x3 length    mov x8,BRK                               // call system 'brk'    svc #0    cmp x0,#-1                               // allocation error    beq 99f        mov x2,0    mov x4,0               3:                                           // loop copy string begin     ldrb w3,[x6,x2]    cmp w3,0    beq 99f    cmp w3,CHARPOS                           // insertion character ?    beq 5f                                   // yes    strb w3,[x5,x4]                          // no store character in output string    add x2,x2,1    add x4,x4,1    b 3b                                     // and loop5:                                           // x4 contains position insertion    add x8,x4,1                              // init index character output string                                             // at position insertion + one    mov x3,#0                                // index load characters insertion string6:    ldrb w0,[x1,x3]                          // load characters insertion string    cmp w0,#0                                // end string ?    beq 7f                                   // yes     strb w0,[x5,x4]                          // store in output string    add x3,x3,#1                             // increment index    add x4,x4,#1                             // increment output index    b 6b                                     // and loop7:                                           // loop copy end string     ldrb w0,[x6,x8]                          // load other character string 1    strb w0,[x5,x4]                          // store in output string    cmp x0,#0                                // end string 1 ?    beq 8f                                   // yes -> end    add x4,x4,#1                             // increment output index    add x8,x8,#1                             // increment index    b 7b                                     // and loop8:    mov x0,x5                                // return output string address     b 100f99:                                          // error    mov x0,#-1100:    ldp x7,x8,[sp],16                        // restaur  2 registers    ldp x5,x6,[sp],16                        // restaur  2 registers    ldp x3,x4,[sp],16                        // restaur  2 registers    ldp x2,lr,[sp],16                        // restaur  2 registers    ret/********************************************************//*        File Include fonctions                        *//********************************************************//* for this file see task include a file in language AArch64 assembly */.include "../includeARM64.inc"

ACL2

(defunfactors-r(ni)(declare(xargs:measure(nfix(-ni))))(cond((zp(-ni))(listn))((=(modni)0)(consi(factors-rn(1+i))))(t(factors-rn(1+i)))))(defunfactors(n)(factors-rn1))

Action!

PROC PrintFactors(CARD a)  BYTE notFirst  CARD p  p=1 notFirst=0  WHILE p<=a  DO    IF a MOD p=0 THEN      IF notFirst THEN        Print(", ")      FI      notFirst=1      PrintC(p)    FI    p==+1  ODRETURNPROC Test(CARD a)  PrintF("Factors of %U: ",a)  PrintFactors(a)  PutE()RETURNPROC Main()  Test(1)  Test(101)  Test(666)  Test(1977)  Test(2021)  Test(6502)  Test(12345)RETURN
Output:

Screenshot from Atari 8-bit computer

Factors of 1: 1Factors of 101: 1, 101Factors of 666: 1, 2, 3, 6, 9, 18, 37,74, 111, 222, 333, 666Factors of 1977: 1, 3, 659, 1977Factors of 2021: 1, 43, 47, 2021Factors of 6502: 1, 2, 3251, 6502Factors of 12345: 1, 3, 5, 15, 823, 2469, 4115, 12345

ActionScript

functionfactor(n:uint):Vector.<uint>{varfactors:Vector.<uint>=newVector.<uint>();for(vari:uint=1;i<=n;i++)if(n%i==0)factors.push(i);returnfactors;}

Ada

withAda.Text_IO;withAda.Command_Line;procedureFactorsisNumber:Positive;Test_Nr:Positive:=1;beginifAda.Command_Line.Argument_Count/=1thenAda.Text_IO.Put(Ada.Text_IO.Standard_Error,"Missing argument!");Ada.Command_Line.Set_Exit_Status(Ada.Command_Line.Failure);return;endif;Number:=Positive'Value(Ada.Command_Line.Argument(1));Ada.Text_IO.Put("Factors of"&Positive'Image(Number)&": ");loopifNumbermodTest_Nr=0thenAda.Text_IO.Put(Positive'Image(Test_Nr)&",");endif;exitwhenTest_Nr**2>=Number;Test_Nr:=Test_Nr+1;endloop;Ada.Text_IO.Put_Line(Positive'Image(Number)&".");endFactors;

Aikido

import mathfunction factor (n:int) {    var result = []    function append (v) {        if (!(v in result)) {            result.append (v)        }    }    var sqrt = cast<int>(Math.sqrt (n))    append (1)    for (var i = n-1 ; i >= sqrt ; i--) {        if ((n % i) == 0) {            append (i)            append (n/i)        }    }    append (n)    return result.sort()}function printvec (vec) {    var comma = ""    print ("[")    foreach v vec {        print (comma + v)        comma = ", "    }    println ("]")}printvec (factor (45))printvec (factor (25))printvec (factor (100))

ALGOL 68

Works with:ALGOL 68 version Revision 1 - no extensions to language used
Works with:ALGOL 68G version Any - tested with release1.18.0-9h.tiny
Works with:ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release1.8-8d

Note: The following implements generators, eliminating the need of declaring arbitrarily longint arrays for caching.

MODE YIELDINT = PROC(INT)VOID;PROC gen factors = (INT n, YIELDINT yield)VOID: (  FOR i FROM 1 TO ENTIER sqrt(n) DO    IF n MOD i = 0 THEN      yield(i);       INT other = n OVER i;      IF i NE other THEN yield(n OVER i) FI    FI  OD);[]INT nums2factor = (45, 53, 64);FOR i TO UPB nums2factor DO  INT num = nums2factor[i];  STRING sep := ": ";  print(num);# FOR INT j IN # gen factors(num, # ) DO ( ###   (INT j)VOID:(       print((sep,whole(j,0)));        sep:=", "# OD # ));  print(new line)OD
Output:
        +45: 1, 45, 3, 15, 5, 9        +53: 1, 53        +64: 1, 64, 2, 32, 4, 16, 8

ALGOL W

begin    % return the factors of n ( n should be >= 1 ) in the array factor       %    % the bounds of factor should be 0 :: len (len must be at least 1)       %    % the number of factors will be returned in factor( 0 )                  %    procedure getFactorsOf ( integer value n                           ; integer array factor( * )                           ; integer value len                           ) ;    begin        for i := 0 until len do factor( i ) := 0;        if n >= 1 and len >= 1 then begin            integer pos, lastFactor;            factor( 0 ) := factor( 1 ) := pos := 1;            % find the factors up to sqrt( n )                               %            for f := 2 until truncate( sqrt( n ) ) + 1 do begin                if ( n rem f ) = 0 and pos <= len then begin                    % found another factor and there's room to store it      %                    pos           := pos + 1;                    factor( 0   ) := pos;                    factor( pos ) := f                end if_found_factor            end for_f;            % find the factors above sqrt( n )                               %            lastFactor := factor( factor( 0 ) );            for f := factor( 0 ) step -1 until 1 do begin                integer newFactor;                newFactor := n div factor( f );                if newFactor > lastFactor and pos <= len then begin                    % found another factor and there's room to store it      %                    pos           := pos + 1;                    factor( 0   ) := pos;                    factor( pos ) := newFactor                end if_found_factor            end for_f;        end if_params_ok    end getFactorsOf ;    % prpocedure to test getFactorsOf                                        %    procedure testFactorsOf( integer value n ) ;    begin        integer array factor( 0 :: 100 );        getFactorsOf( n, factor, 100 );        i_w := 1; s_w := 0; % set output format                              %        write( n, " has ", factor( 0 ), " factors:" );        for f := 1 until factor( 0 ) do writeon( " ", factor( f ) )    end testFactorsOf ;    % test the factorising                                                   %    for i := 1 until 100 do testFactorsOf( i )end.
Output:
1 has 1 factors: 12 has 2 factors: 1 23 has 2 factors: 1 34 has 3 factors: 1 2 4...96 has 12 factors: 1 2 3 4 6 8 12 16 24 32 48 9697 has 2 factors: 1 9798 has 6 factors: 1 2 7 14 49 9899 has 6 factors: 1 3 9 11 33 99100 has 9 factors: 1 2 4 5 10 20 25 50 100

ALGOL-M

Instead of displaying 1 and the number itself as factors, prime numbers are explicitly reported as such. To reduce the number of test divisions, only odd divisors are tested if an initial check shows the number to be factored is not even. The upper limit of divisors is set at N/2 or N/3, depending on whether N is even or odd, and is continuously reduced to N divided by the next potential divisor until the first factor is found. For a prime number the resulting limit will be the square root of N, which avoids the necessity of explicitly calculating that value. (ALGOL-M does not have a built-in square root function.)

BEGINCOMMENT RETURN P MOD Q; INTEGER FUNCTION MOD (P, Q);INTEGER P, Q;BEGIN    MOD := P - Q * (P / Q);END;INTEGER I, N, LIMIT, FOUND, START, DELTA;WHILE 1 = 1 DO  BEGIN    WRITE ("NUMBER TO FACTOR (OR 0 TO QUIT):");    READ (N);    IF N = 0 THEN GOTO DONE;    WRITE ("THE FACTORS ARE:");    COMMENT CHECK WHETHER NUMBER IS EVEN OR ODD;    IF MOD(N, 2) = 0 THEN      BEGIN        START := 2;        DELTA := 1;      END    ELSE      BEGIN        START := 3;        DELTA := 2;      END;    COMMENT TEST POTENTIAL DIVISORS;    FOUND := 0;    I := START;    LIMIT := N / I;    WHILE I <= LIMIT DO      BEGIN        IF MOD(N, I) = 0 THEN          BEGIN            WRITEON (I);            FOUND := FOUND + 1;          END;        I := I + DELTA;        IF FOUND = 0 THEN LIMIT := N / I;      END;    IF FOUND = 0 THEN WRITEON (" NONE - THE NUMBER IS PRIME.");    WRITE("");  END;DONE: WRITE ("GOODBYE");END
Output:
NUMBER TO FACTOR (OR 0 TO QUIT):-> 96THE FACTORS ARE:     2    3    4    6    8   12   16   24   32   48NUMBER TO FACTOR (OR 0 TO QUIT):-> 97THE FACTORS ARE: NONE - THE NUMBER IS PRIME.NUMBER TO FACTOR (OR 0 TO QUIT):-> 98THE FACTORS ARE:     2     7    14    49NUMBER TO FACTOR (OR 0 TO QUIT):-> 0GOODBYE

APL

factors{(0=()|)/}factors12345135158232469411512345factors7201234568910121516182024303640454860728090120144180240360720

Apple

 > (λn. (λk. n|k=0) #. ⍳ 1 n 1) 60Vec 12 [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]

AppleScript

Functional

Translation of:JavaScript
-- integerFactors :: Int -> [Int]onintegerFactors(n)ifn=1then{1}elseif1>nthenmissing valueelsesetrealRootton^(1/2)setintRoottorealRootasintegersetblnPerfectSquaretointRoot=realRoot-- isFactor :: Int -> BoolscriptisFactoron|λ|(x)(nmodx)=0end|λ|endscript-- Factors up to square root of n,setlowstofilter(isFactor,enumFromTo(1,intRoot))-- integerQuotient :: Int -> IntscriptintegerQuotienton|λ|(x)(n/x)asintegerend|λ|endscript-- and quotients of these factors beyond the square root.lows&map(integerQuotient,¬items(1+(blnPerfectSquareasinteger))thru-1ofreverseoflows)endifendintegerFactors--------------------------- TEST -------------------------onrunintegerFactors(120)--> {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}endrun-------------------- GENERIC FUNCTIONS --------------------- enumFromTo :: Int -> Int -> [Int]onenumFromTo(m,n)ifn<mthensetdto-1elsesetdto1endifsetlstto{}repeatwithifrommtonbydsetendoflsttoiendrepeatreturnlstendenumFromTo-- filter :: (a -> Bool) -> [a] -> [a]onfilter(f,xs)tellmReturn(f)setlstto{}setlngtolengthofxsrepeatwithifrom1tolngsetvtoitemiofxsif|λ|(v,i,xs)thensetendoflsttovendrepeatreturnlstendtellendfilter-- map :: (a -> b) -> [a] -> [b]onmap(f,xs)tellmReturn(f)setlngtolengthofxssetlstto{}repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,i,xs)endrepeatreturnlstendtellendmap-- Lift 2nd class handler function into 1st class script wrapper-- mReturn :: Handler -> ScriptonmReturn(f)ifclassoffisscriptthenfelsescriptproperty|λ|:fendscriptendifendmReturn
Output:
{1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}

Straightforward

onfactors(n)setoutputto{}setsqrtton^0.5setlimittosqrtdiv1if(limit=sqrt)thensetendofoutputtolimitsetlimittolimit-1endifrepeatwithifromlimitto1by-1if(nmodiis0)thensetbeginningofoutputtoisetendofoutputtondiviendifendrepeatreturnoutputendfactorsfactors(123456789)
Output:
{1,3,9,3607,3803,10821,11409,32463,34227,13717421,41152263,123456789}

Arc

(= divisor (fn (num)   (= dlist '())   (when (is 1 num) (= dlist '(1 0)))   (when (is 2 num) (= dlist '(2 1)))   (unless (or (is 1 num) (is 2 num))   (up i 1 (+ 1 (/ num 2))     (if (is 0 (mod num i))         (push i dlist)))   (= dlist (cons num dlist)))   dlist))(map [rev _] (map [divisor _] '(45 53 60 64)))
Output:
'((1 3 5 9 15 45) (1 53) (1 2 3 4 5 6 10 12 15 20 30 60) (1 2 4 8 16 32 64))

ARM Assembly

Works with:as version Raspberry Pi
/* ARM assembly Raspberry PI  *//*  program factorst.s   *//* Constantes    */.equ STDOUT, 1     @ Linux output console.equ EXIT,   1     @ Linux syscall.equ WRITE,  4     @ Linux syscall/* Initialized data */.dataszMessDeb: .ascii "Factors of :"sMessValeur:   .fill 12, 1, ' '                   .asciz "are : \n"sMessFactor:   .fill 12, 1, ' '                   .asciz "\n"szCarriageReturn:  .asciz "\n"/* UnInitialized data */.bss /*  code section */.text.global main main:                /* entry of program  */    push {fp,lr}    /* saves 2 registers */     mov r0,#100    bl factors    mov r0,#97    bl factors    ldr r0,iNumber    bl factors    100:   /* standard end of the program */    mov r0, #0                  @ return code    pop {fp,lr}                 @restaur 2 registers    mov r7, #EXIT              @ request to exit program    swi 0                       @ perform the system calliNumber: .int 32767iAdrszCarriageReturn:  .int  szCarriageReturn/******************************************************************//*     calcul factors of number                                  */ /******************************************************************//* r0 contains the number */factors:    push {fp,lr}    /* save  registres */     push {r1-r6}    /* save others registers */    mov r5,r0    @ limit calcul    ldr r1,iAdrsMessValeur   @ conversion register in decimal string    bl conversion10S    ldr r0,iAdrszMessDeb     @ display message    bl affichageMess    mov r6,#1    @ counter loop1:   @ loop     mov r0,r5    @ dividende    mov r1,r6    @ divisor    bl division    cmp r3,#0    @ remainder = zero ?    bne 2f    @ display result if yes    mov r0,r6    ldr r1,iAdrsMessFactor    bl conversion10S    ldr r0,iAdrsMessFactor    bl affichageMess2:    add r6,#1      @ add 1 to loop counter    cmp r6,r5      @ <=  number ?    ble 1b        @ yes loop100:    pop {r1-r6}     /* restaur others registers */    pop {fp,lr}    /* restaur des  2 registres */     bx lr        /* return  */iAdrsMessValeur: .int sMessValeuriAdrszMessDeb: .int szMessDebiAdrsMessFactor: .int sMessFactor/******************************************************************//*     display text with size calculation                         */ /******************************************************************//* r0 contains the address of the message */affichageMess:    push {fp,lr}    /* save  registres */     push {r0,r1,r2,r7}    /* save others registers */    mov r2,#0   /* counter length */1:      /* loop length calculation */    ldrb r1,[r0,r2]  /* read octet start position + index */    cmp r1,#0       /* if 0 its over */    addne r2,r2,#1   /* else add 1 in the length */    bne 1b          /* and loop */                                /* so here r2 contains the length of the message */    mov r1,r0        /* address message in r1 */    mov r0,#STDOUT      /* code to write to the standard output Linux */    mov r7, #WRITE             /* code call system "write" */    swi #0                      /* call systeme */    pop {r0,r1,r2,r7}     /* restaur others registers */    pop {fp,lr}    /* restaur des  2 registres */     bx lr        /* return  *//*=============================================*//* division integer unsigned                *//*============================================*/division:    /* r0 contains N */    /* r1 contains D */    /* r2 contains Q */    /* r3 contains R */    push {r4, lr}    mov r2, #0                 /* r2 ? 0 */    mov r3, #0                 /* r3 ? 0 */    mov r4, #32                /* r4 ? 32 */    b 2f1:    movs r0, r0, LSL #1    /* r0 ? r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1) */    adc r3, r3, r3         /* r3 ? r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C */     cmp r3, r1             /* compute r3 - r1 and update cpsr */    subhs r3, r3, r1       /* if r3 >= r1 (C=1) then r3 ? r3 - r1 */    adc r2, r2, r2         /* r2 ? r2 + r2 + C. This is equivalent to r2 ? (r2 << 1) + C */2:    subs r4, r4, #1        /* r4 ? r4 - 1 */    bpl 1b            /* if r4 >= 0 (N=0) then branch to .Lloop1 */     pop {r4, lr}    bx lr/***************************************************//*   conversion register in string décimal signed  *//***************************************************//* r0 contains the register   *//* r1 contains address of conversion area */conversion10S:    push {fp,lr}    /* save registers frame and return */    push {r0-r5}   /* save other registers  */    mov r2,r1       /* early storage area */    mov r5,#'+'     /* default sign is + */    cmp r0,#0       /* négatif number ? */    movlt r5,#'-'     /* yes sign is - */    mvnlt r0,r0       /* and inverse in positive value */    addlt r0,#1    mov r4,#10   /* area length */1: /* conversion loop */    bl divisionpar10 /* division  */    add r1,#48        /* add 48 at remainder for conversion ascii */    strb r1,[r2,r4]  /* store byte area r5 + position r4 */    sub r4,r4,#1      /* previous position */    cmp r0,#0         bne 1b       /* loop if quotient not equal zéro */    strb r5,[r2,r4]  /* store sign at current position  */    subs r4,r4,#1   /* previous position */    blt  100f         /* if r4 < 0  end  */    /* else complete area with space */    mov r3,#' '   /* character space */2:    strb r3,[r2,r4]  /* store  byte  */    subs r4,r4,#1   /* previous position */    bge 2b        /* loop if r4 greather or equal zero */100:  /*  standard end of function  */    pop {r0-r5}   /*restaur others registers */    pop {fp,lr}   /* restaur des  2 registers frame et return  */    bx lr   /***************************************************//*   division par 10   signé                       *//* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*  /* and   http://www.hackersdelight.org/            *//***************************************************//* r0 contient le dividende   *//* r0 retourne le quotient *//* r1 retourne le reste  */divisionpar10:  /* r0 contains the argument to be divided by 10 */   push {r2-r4}   /* save autres registres  */   mov r4,r0    ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */   smull r1, r2, r3, r0   /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */   mov r2, r2, ASR #2     /* r2 <- r2 >> 2 */   mov r1, r0, LSR #31    /* r1 <- r0 >> 31 */   add r0, r2, r1         /* r0 <- r2 + r1 */   add r2,r0,r0, lsl #2   /* r2 <- r0 * 5 */   sub r1,r4,r2, lsl #1   /* r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10) */   pop {r2-r4}   bx lr                  /* leave function */   .align 4.Ls_magic_number_10: .word 0x66666667

Arturo

factors:$[num][select1..num[x][(num%x)=0]]printfactors36
Output:
1 2 3 4 6 9 12 18 36

Asymptote

int[]n={11,21,32,45,67,519};for(varj:n){write(j,suffix=none);write(" =>",suffix=none);for(inti=1;i<(j/2);++i){if(j%i==0){write(" ",i,suffix=none);}}write(" ",j);}
Output:
11 => 1 1121 => 1 3 7 2132 => 1 2 4 8 3245 => 1 3 5 9 15 4567 => 1 67519 => 1 3 173 519

AutoHotkey

msgbox,%factors(45)"`n"factors(53)"`n"factors(64)Factors(n){Loop,%floor(sqrt(n)){v:=A_Index=1?1","n:mod(n,A_Index)?v:v","A_Index","n//A_Index}Sort,v,NUD,Return,v}
Output:
1,3,5,9,15,451,531,2,4,8,16,32,64

AutoIt

;AutoIt Version: 3.2.10.0$num=45MsgBox(0,"Factors","Factors of "&$num&" are: "&factors($num))consolewrite("Factors of "&$num&" are: "&factors($num))Funcfactors($intg)$ls_factors=""For$i=1to$intg/2if($intg/$i-int($intg/$i))=0Then$ls_factors=$ls_factors&$i&", "EndIfNextReturn$ls_factors&$intgEndFunc
Output:
Factors of 45 are: 1, 3, 5, 9, 15, 45

AWK

# syntax: GAWK -f FACTORS_OF_AN_INTEGER.AWKBEGIN{print("enter a number or C/R to exit")}{if($0==""){exit(0)}if($0!~/^[0-9]+$/){printf("invalid: %s\n",$0)next}n=$0printf("factors of %s:",n)for(i=1;i<=n;i++){if(n%i==0){printf(" %d",i)}}printf("\n")}
Output:
enter a number or C/R to exitinvalid: -1factors of 0:factors of 1: 1factors of 2: 1 2factors of 11: 1 11factors of 64: 1 2 4 8 16 32 64factors of 100: 1 2 4 5 10 20 25 50 100factors of 32766: 1 2 3 6 43 86 127 129 254 258 381 762 5461 10922 16383 32766factors of 32767: 1 7 31 151 217 1057 4681 32767

BASIC

Applesoft BASIC

TheFactors_of_an_integer#Sinclair ZX81 BASIC code works the same in Applesoft BASIC.

ASIC

Translation of:GW-BASIC
REM Factors of an integerPRINT"Enter an integer";LOOP:INPUTNIFN=0THENLOOP:NA=ABS(N)NDIV2=NA/2FORI=1TONDIV2NMODI=NAMODIIFNMODI=0THENPRINTI;ENDIFNEXTIPRINTNAEND
Output:
Enter an integer?60     1     2     3     4     5     6    10    12    15    20    30    60

BASIC256

Translation of:FreeBASIC
subroutine printFactors(n)    print n; " => ";    for i = 1 to n / 2        if n mod i = 0 then print i; "  ";    next i    print nend subroutinecall printFactors(11)call printFactors(21)call printFactors(32)call printFactors(45)call printFactors(67)call printFactors(96)end

BBC BASIC

Works with:BBC BASIC for Windows
INSTALL@lib$+"SORTLIB"sort%=FN_sortinit(0,0)PRINT"The factors of 45 are "FNfactorlist(45)PRINT"The factors of 12345 are "FNfactorlist(12345)ENDDEFFNfactorlist(N%)LOCALC%,I%,L%(),L$DIML%(32)FORI%=1TOSQR(N%)IF(N%MODI%=0)THENL%(C%)=I%C%+=1IF(N%<>I%^2)THENL%(C%)=(N%DIVI%)C%+=1ENDIFENDIFNEXTI%CALLsort%,L%(0)FORI%=0TOC%-1L$+=STR$(L%(I%))+", "NEXT=LEFT$(LEFT$(L$))
Output:
The factors of 45 are 1, 3, 5, 9, 15, 45The factors of 12345 are 1, 3, 5, 15, 823, 2469, 4115, 12345

Chipmunk Basic

Works with:Chipmunk Basic version 3.6.4
Translation of:BASIC256
10cls20printfactors(11)30printfactors(21)40printfactors(32)50printfactors(45)60printfactors(67)70printfactors(96)80end100subprintfactors(n)110ifn<1thenprintfactors=0120printn"=> ";130fori=1ton/2140ifnmodi=0thenprinti" ";150nexti160printn170endsub

Craft Basic

doinput"enter an integer",nloopn=0leta=abs(n)fori=1toint(a/2)ifa=int(a/i)*ithenprintiendifnextiprinta
Output:
?601 2 3 4 5 6 10 12 15 20 30 60

FreeBASIC

' FB 1.05.0 Win64SubprintFactors(nAsInteger)Ifn<1ThenReturnPrintn;" =>";ForiAsInteger=1Ton/2IfnModi=0ThenPrinti;" ";NextiPrintnEndSubprintFactors(11)printFactors(21)printFactors(32)printFactors(45)printFactors(67)printFactors(96)PrintPrint"Press any key to quit"Sleep
Output:
 11 => 1  11 21 => 1  3  7  21 32 => 1  2  4  8  16  32 45 => 1  3  5  9  15  45 67 => 1  67 96 => 1  2  3  4  6  8  12  16  24  32  48  96

FutureBasic

window 1, @"Factors of an Integer", (0,0,1000,270)clear local modelocal fn IntegerFactors( f as long ) as CFStringRef  long        i, s, l(100), c = 0  CFStringRef factorStr = @""    for i = 1 to sqr(f)    if ( f mod i == 0 )      l(c) = i      c++      if ( f != i ^ 2 )        l(c) = ( f / i )        c++      end if    end if  next i    s = 1  while ( s = 1 )    s = 0    for i = 0 to c-1      if l(i) > l(i+1) and l(i+1) != 0        swap l(i), l(i+1)        s = 1      end if    next i  wend    for i = 0 to c - 1    if ( i < c - 1 )      factorStr = fn StringWithFormat( @"%@ %ld, ", factorStr, l(i) )    else      factorStr = fn StringWithFormat( @"%@ %ld", factorStr, l(i) )    end if  nextend fn = factorStrprint @"Factors of 25 are:"; fn IntegerFactors( 25 )print @"Factors of 45 are:"; fn IntegerFactors( 45 )print @"Factors of 103 are:"; fn IntegerFactors( 103 )print @"Factors of 760 are:"; fn IntegerFactors( 760 )print @"Factors of 12345 are:"; fn IntegerFactors( 12345 )print @"Factors of 32766 are:"; fn IntegerFactors( 32766 )print @"Factors of 32767 are:"; fn IntegerFactors( 32767 )print @"Factors of 57097 are:"; fn IntegerFactors( 57097 )print @"Factors of 12345678 are:"; fn IntegerFactors( 12345678 )print @"Factors of 32434243 are:"; fn IntegerFactors( 32434243 )HandleEvents
Output:
Factors of 25 are: 1, 5, 25Factors of 45 are: 1, 3, 5, 9, 15, 45Factors of 103 are: 1, 103Factors of 760 are: 1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 760Factors of 12345 are: 1, 3, 5, 15, 823, 2469, 4115, 12345Factors of 32766 are: 1, 2, 3, 6, 43, 86, 127, 129, 254, 258, 381, 762, 5461, 10922, 16383, 32766Factors of 32767 are: 1, 7, 31, 151, 217, 1057, 4681, 32767Factors of 57097 are: 1, 57097Factors of 12345678 are: 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846, 14593, 29186, 43779, 87558, 131337, 262674, 685871, 1371742, 2057613, 4115226, 6172839, 12345678Factors of 32434243 are: 1, 307, 105649, 32434243

Gambas

Translation of:FreeBASIC
PublicSubMain()printFactors(11)printFactors(21)printFactors(32)printFactors(45)printFactors(67)printFactors(96)EndSubprintFactors(nAsInteger)Ifn<1ThenReturnPrintn;" =>";ForiAsInteger=1Ton/2IfnModi=0ThenPrinti;" ";NextPrintnEndSub

GW-BASIC

10INPUT"Enter an integer: ",N20IFN=0THENGOTO1030NA=ABS(N)40FORI=1TONA/250IFNAMODI=0THENPRINTI;60NEXTI70PRINTNA
Output:
Enter an integer: 1 1Enter an integer: 12 1  2  3  4  6  12Enter an integer: 13 1  13Enter an integer: -22222 1  2  41  82  271 542  11111 22222

IS-BASIC

100PROGRAM"Factors.bas"110INPUTPROMPT"Number: ":N120FORI=1TOINT(N/2)130IFMOD(N,I)=0THENPRINTI;140NEXT150PRINTN

Liberty BASIC

num = 10677106534462215678539721403561279maxnFactors = 1000dim primeFactors(maxnFactors),  nPrimeFactors(maxnFactors)global nDifferentPrimeNumbersFound, nFactors, iFactorprint "Start finding all factors of ";num; ":"nDifferentPrimeNumbersFound=0dummy = factorize(num,2)nFactors = showPrimeFactors(num)dim factors(nFactors)dummy = generateFactors(1,1)sort factors(), 0, nFactors-1for i=1 to nFactors   print i;"     ";factors(i-1)next iprint "done"waitfunction factorize(iNum,offset)    factorFound=0    i = offset    do        if (iNum MOD i)=0 _        then            if primeFactors(nDifferentPrimeNumbersFound) = i _            then               nPrimeFactors(nDifferentPrimeNumbersFound) = nPrimeFactors(nDifferentPrimeNumbersFound) + 1            else               nDifferentPrimeNumbersFound = nDifferentPrimeNumbersFound + 1               primeFactors(nDifferentPrimeNumbersFound) = i               nPrimeFactors(nDifferentPrimeNumbersFound) = 1            end if            if iNum/i<>1 then dummy = factorize(iNum/i,i)            factorFound=1         end if         i=i+1    loop while factorFound=0 and i<=sqr(iNum)    if factorFound=0 _    then       nDifferentPrimeNumbersFound = nDifferentPrimeNumbersFound + 1       primeFactors(nDifferentPrimeNumbersFound) = iNum       nPrimeFactors(nDifferentPrimeNumbersFound) = 1    end ifend functionfunction showPrimeFactors(iNum)   showPrimeFactors=1   print iNum;" = ";   for i=1 to nDifferentPrimeNumbersFound      print primeFactors(i);"^";nPrimeFactors(i);      if i<nDifferentPrimeNumbersFound then print " * "; else print ""      showPrimeFactors = showPrimeFactors*(nPrimeFactors(i)+1)   next iend functionfunction generateFactors(product,pIndex)   if pIndex>nDifferentPrimeNumbersFound _   then      factors(iFactor) = product      iFactor=iFactor+1   else      for i=0 to nPrimeFactors(pIndex)         dummy = generateFactors(product*primeFactors(pIndex)^i,pIndex+1)      next i   end ifend function
Output:
Start finding all factors of 10677106534462215678539721403561279:10677106534462215678539721403561279 = 29269^1 * 32579^1 * 98731^2 * 104729^31 12 292693 325794 987315 1047296 9535547517 28897576398 30653131019 321655724910 341196609111 974781036112 1033999889913 1096816344114 9414541412098115 9986483551747916 28530866145610917 30264142777483118 31757391375101919 32102717575462920 33686682413052121 35733179674433922 102087843129716923 108289774469337124 114868478901248925 929507088157857511126 985975507547621914927 1045874435891005819128 2988009080563683946129 3169533408943027579930 3325919841323046885131 3362085508960654054132 3527972562436533380933 3742300174123787913134 10691557723132121220135 11341079790399205145936 97346347835684259279991937 103260228929954895525562138 109533383796429148428523939 312931202998354055991106940 331942064385194335415347141 348320259061921377229637942 369481038491415704448276143 1119716148785903923259852944 10194985662483376790134271695145 10814340515605246253496593170946 32772971958814621929892634530147 36479232411295963915882747629148 10677106534462215678539721403561279done

A Simpler Approach

This is a somewhat simpler approach for finding the factors of smaller numbers (less than one million).

Works with:Just BASIC
print "ROSETTA CODE - Factors of an integer"'A simpler approach for smaller numbers[Start]printinput "Enter an integer (< 1,000,000): "; nn=abs(int(n)): if n=0 then goto [Quit]if n>999999 then goto [Start]FactorCount=FactorCount(n)select case FactorCount    case 1: print "The factor of 1 is: 1"    case else        print "The "; FactorCount; " factors of "; n; " are: ";        for x=1 to FactorCount            print " "; Factor(x);        next x        if FactorCount=2 then print " (Prime)" else printend selectgoto [Start][Quit]print "Program complete."endfunction FactorCount(n)    dim Factor(100)    for y=1 to n        if y>sqr(n) and FactorCount=1 then'If no second factor is found by the square root of n, then n is prime.            FactorCount=2: Factor(FactorCount)=n: exit function        end if        if (n mod y)=0 then            FactorCount=FactorCount+1            Factor(FactorCount)=y        end if    next yend function
Output:
ROSETTA CODE - Factors of an integerEnter an integer (< 1,000,000): 1The factor of 1 is: 1Enter an integer (< 1,000,000): 2The 2 factors of 2 are:  1 2 (Prime)Enter an integer (< 1,000,000): 4The 3 factors of 4 are:  1 2 4Enter an integer (< 1,000,000): 6The 4 factors of 6 are:  1 2 3 6Enter an integer (< 1,000,000): 999999The 64 factors of 999999 are:  1 3 7 9 11 13 21 27 33 37 39 63 77 91 99 111 117 143 189 231 259 273 297 333 351 407 429 481 693 777 819 999 1001 1221 1287 1443 2079 2331 2457 2849 3003 3367 3663 3861 4329 5291 6993 8547 9009 10101 10989 12987 15873 25641 27027 30303 37037 47619 76923 90909 111111 142857 333333 999999Enter an integer (< 1,000,000):Program complete.

Minimal BASIC

Translation of:GW-BASIC
Works with:Commodore BASIC
Works with:IS-BASIC
Works with:MSX BASIC version any
Works with:Nascom ROM BASIC version 4.7
10REM Factors of an integer20PRINT"Enter an integer";30INPUTN40IFN=0THEN3050N1=ABS(N)60FORI=1TON1/270IFINT(N1/I)*I<>N1THEN9080PRINTI;90NEXTI100PRINTN1110END

MSX Basic

Translation of:GW-BASIC
10INPUT"Enter an integer: ";N20IFN=0THENGOTO1030N1=ABS(N)40FORI=1TON1/250IFN1MODI=0THENPRINTI;60NEXTI70PRINTN1

Nascom BASIC

Translation of:GW-BASIC
Works with:Nascom ROM BASIC version 4.7
10REM Factors of an integer20INPUT"Enter an integer";N30IFN=0THEN2040NA=ABS(N)50FORI=1TOINT(NA/2)60IFNA=INT(NA/I)*ITHENPRINTI;70NEXTI80PRINTNA90END
Output:
Enter an integer? 60 1  2  3  4  5  6  10  12  15  20  30  60

See alsoMinimal BASIC

Palo Alto Tiny BASIC

Translation of:GW-BASIC
10REM FACTORS OF AN INTEGER20INPUT"ENTER AN INTEGER"N30IFN=0GOTO2040LETA=ABS(N)50IFA=1GOTO9060FORI=1TOA/270IF(A/I)*I=APRINTI," ",80NEXTI90PRINTA100STOP
Output:

3 runs.

ENTER AN INTEGER:1      1
ENTER AN INTEGER:60      1       2       3       4       5       6      10      12      15      20     30      60
ENTER AN INTEGER:-22222      1       2      41      82     271     542   11111   22222

PureBasic

ProcedurePrintFactors(n)Protectedi,lim=Round(sqr(n),#PB_Round_Up)NewListF.i()Fori=1TolimIfn%i=0AddElement(F()):F()=iAddElement(F()):F()=n/iEndIfNext;-PresenttheresultSortList(F(),#PB_Sort_Ascending)ForEachF()Print(str(F())+" ")NextEndProcedureIfOpenConsole()Print("Enter integer to factorize: ")PrintFactors(Val(Input()))Print(#CRLF$+#CRLF$+"Press ENTER to quit."):Input()EndIf
Output:
 Enter integer to factorize: 96 1 2 3 4 6 8 12 16 24 32 48 96

QB64

'Task'Compute the   factors   of a positive integer.'These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.Dim Dividendum As Integer, Index As IntegerRandomize TimerDividendum = Int(Rnd * 1000) + 1Print " Dividendum: "; DividendumIndex = Int(Dividendum / 2)print "Divisors: ";While Index > 0    If Dividendum Mod Index = 0 Then Print Index; " ";    Index = Index - 1WendEnd

QBasic

SeeQuickBASIC.

QuickBASIC

Works with:QBasic

This example stores the factors in a shared array (with the original number as the last element) for later retrieval.

Note that this will error out if you pass 32767 (or higher).

DECLARESUBfactor(whatASINTEGER)REDIMSHAREDfactors(0)ASINTEGERDIMiASINTEGER,LASINTEGERINPUT"Gimme a number";ifactoriPRINTfactors(0);FORL=1TOUBOUND(factors)PRINT",";factors(L);NEXTPRINTSUBfactor(whatASINTEGER)DIMtmpint1ASINTEGERDIML0ASINTEGER,L1ASINTEGERREDIMtmp(0)ASINTEGERREDIMfactors(0)ASINTEGERfactors(0)=1FORL0=2TOwhatIF(0=(whatMODL0))THEN'all this REDIMing and copying can be replaced with:'REDIM PRESERVE factors(UBOUND(factors)+1)'in languages that support the PRESERVE keywordREDIMtmp(UBOUND(factors))ASINTEGERFORL1=0TOUBOUND(factors)tmp(L1)=factors(L1)NEXTREDIMfactors(UBOUND(factors)+1)ASINTEGERFORL1=0TOUBOUND(factors)-1factors(L1)=tmp(L1)NEXTfactors(UBOUND(factors))=L0ENDIFNEXTENDSUB
Output:
 Gimme a number? 17  1 , 17 Gimme a number? 12345  1 , 3 , 5 , 15 , 823 , 2469 , 4115 , 12345 Gimme a number? 32765  1 , 5 , 6553 , 32765 Gimme a number? 32766  1 , 2 , 3 , 6 , 43 , 86 , 127 , 129 , 254 , 258 , 381 , 762 , 5461 , 10922 ,  16383 , 32766

Quite BASIC

Translation of:GW-BASIC
10INPUT"Enter an integer: ";N20IFN=0THENGOTO1530N1=ABS(N)40FORI=1TON1/250IFN1-INT(N1/I)*I=0THENPRINTI;" ";60NEXTI70PRINTN1

REALbasic

Functionfactors(numAsUInt64)AsUInt64()'This function accepts an unsigned 64 bit integer as input and returns an array of unsigned 64 bit integersDimresult()AsUInt64DimiFactorAsUInt64=1WhileiFactor<=num/2'Since a factor will never be larger than half of the numberIfnumModiFactor=0Thenresult.Append(iFactor)EndIfiFactor=iFactor+1Wendresult.Append(num)'Since a given number is always a factor of itselfReturnresultEndFunction

Run BASIC

PRINT"Factors of 45 are ";factorlist$(45)PRINT"Factors of 12345 are ";factorlist$(12345)ENDFUNCTIONfactorlist$(f)DIML(100)FORi=1TOSQR(f)IF(fMODi)=0THENL(c)=ic=c+1IF(f<>i^2)THENL(c)=(f/i)c=c+1ENDIFENDIFNEXTis=1WHILEs=1s=0FORi=0TOc-1IFL(i)>L(i+1)ANDL(i+1)<>0THENt=L(i)L(i)=L(i+1)L(i+1)=ts=1ENDIFNEXTiWENDFORi=0TOc-1factorlist$=factorlist$+STR$(L(i))+", "NEXTENDFUNCTION
Output:
Factors of 45 are 1, 3, 5, 9, 15, 45, Factors of 12345 are 1, 3, 5, 15, 823, 2469, 4115, 12345,

Sinclair ZX81 BASIC

Works with:Applesoft BASIC
10INPUTN20FORI=1TON30IFN/I=INT(N/I)THENPRINTI;" ";40NEXTI
Input:
315
Output:
1 3 5 7 9 15 35 45 63 105 315

Tiny BASIC

Works with:TinyBasic
100PRINT"Give me a number:"110INPUTI120LETC=1130PRINT"Factors of ",I,":"140IFI/C*C=ITHENPRINTC150LETC=C+1160IFC<=ITHENGOTO140170END
Output:
Give me a number:60Factors of 60:123456101215203060

True BASIC

Translation of:FreeBASIC
SUBprintfactors(n)IFn<1THENEXITSUBPRINTn;"=>";FORi=1TOn/2IFREMAINDER(n,i)=0THENPRINTi;NEXTiPRINTnENDSUBCALLprintfactors(11)CALLprintfactors(21)CALLprintfactors(32)CALLprintfactors(45)CALLprintfactors(67)CALLprintfactors(96)END

VBA

FunctionFactors(xAsInteger)AsStringApplication.VolatileDimiAsIntegerDimcooresponding_factorsAsStringFactors=1corresponding_factors=xFori=2ToSqr(x)IfxModi=0ThenFactors=Factors&", "&iIfi<>x/iThencorresponding_factors=x/i&", "&corresponding_factorsEndIfNextiIfx<>1ThenFactors=Factors&", "&corresponding_factorsEndFunction
Output:
cell formula is "=Factors(840)"resultant value is "1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840"

XBasic

Translation of:BASIC256
Works with:Windows XBasic
PROGRAM"Factors of an integer"VERSION"0.0000"DECLAREFUNCTIONEntry()DECLAREFUNCTIONprintFactors(n)FUNCTIONEntry()printFactors(11)printFactors(21)printFactors(32)printFactors(45)printFactors(67)printFactors(96)ENDFUNCTIONFUNCTIONprintFactors(n)PRINTn;" =>";FORi=1TOn/2IFnMODi=0THENPRINTi;" ";NEXTiPRINTnENDFUNCTIONENDPROGRAM

Yabasic

Translation of:FreeBASIC
sub printFactors(n)    if n < 1  return 0    print n, " =>";    for i = 1 to n / 2        if mod(n, i) = 0  print i, "  ";     next i    print nend sub printFactors(11)printFactors(21)printFactors(32)printFactors(45)printFactors(67)printFactors(96)printend

ZX Spectrum Basic

Translation of:AWK
10INPUT"Enter a number or 0 to exit: ";n20IFn=0THENSTOP30PRINT"Factors of ";n;": ";40FORi=1TOn50IFFNm(n,i)=0THENPRINTi;" ";60NEXTi70DEF FNm(a,b)=a-INT(a/b)*b

Batch File

Command line version:

@echo offsetres=Factors of%1:for/L%%iin(1,1,%1)docall:fac%1%%iecho%res%goto:eof:facset/atest=%1%%%2if%test%equ 0setres=%res%%2
Output:
>factors 32767Factors of 32767: 1 7 31 151 217 1057 4681 32767>factors 45Factors of 45: 1 3 5 9 15 45>factors 53Factors of 53: 1 53>factors 64Factors of 64: 1 2 4 8 16 32 64>factors 100Factors of 100: 1 2 4 5 10 20 25 50 100

Interactive version:

@echo offset/plimit=Gimme a number:setres=Factors of%limit%:for/L%%iin(1,1,%limit%)docall:fac%limit%%%iecho%res%goto:eof:facset/atest=%1%%%2if%test%equ 0setres=%res%%2
Output:
>factorsGimme a number:27Factors of 27: 1 3 9 27>factorsGimme a number:102Factors of 102: 1 2 3 6 17 34 51 102

bc

/* Calculate the factors of n and return their count. * This function mutates the global array f[] which will * contain all factors of n in ascending order after the call! */define f(n){auto i, d, h, h[], l, o/* Local variables:     * i: Loop variable.     * d: Complementary (higher) factor to i.     * h: Will always point to the last element of h[].     * h[]: Array to hold the greater factor of the pair (x, y), where     *      x * y == n. The factors are stored in descending order.     * l: Will always point to the next free spot in f[].     * o: For saving the value of scale.     *//* Use integer arithmetic */    o=scalescale=0/* Two factors are 1 and n (if n != 1) */    f[l++]=1if(n==1)return(1)    h[0]= n/* Main loop */for(i=2; i< h[h]; i++){if(n% i==0){            d= n/ iif(d!= i){                h[++h]= d}            f[l++]= i}}/* Append the values in h[] to f[] */while(h>=0){        f[l++]= h[h--]}scale= oreturn(l)}

Befunge

10:p&v:>:0:g%#v_0:g\:0:g/\v>:0:g:*`|>>0:g1+0:p>:0:g:*-#v_0:g\>$>:!#@_.v>^^," "<

BQN

A bqncrate idiom.

Factors(1+↕)(⊣/˜0=|)•ShowFactors12345•ShowFactors729
⟨ 1 3 5 15 823 2469 4115 12345 ⟩⟨ 1 3 9 27 81 243 729 ⟩

Theprimes library from bqn-libs can be used for a solution that's more efficient for large inputs.FactorExponents returns each unique prime factor along with its exponent.

FactorExponents•Import"primes.bqn"# With appropriate pathFactors{∧⥊1×⌜´(1+⊢)¨˝FactorExponents𝕩}

Burlesque

blsq ) 32767 fc{1 7 31 151 217 1057 4681 32767}

C

#include<stdio.h>#include<stdlib.h>typedefstruct{int*list;shortcount;}Factors;voidxferFactors(Factors*fctrs,int*flist,intflix){intix,ij;intnewSize=fctrs->count+flix;if(newSize>flix){fctrs->list=realloc(fctrs->list,newSize*sizeof(int));}else{fctrs->list=malloc(newSize*sizeof(int));}for(ij=0,ix=fctrs->count;ix<newSize;ij++,ix++){fctrs->list[ix]=flist[ij];}fctrs->count=newSize;}Factors*factor(intnum,Factors*fctrs){intflist[301],flix;intdvsr;flix=0;fctrs->count=0;free(fctrs->list);fctrs->list=NULL;for(dvsr=1;dvsr*dvsr<num;dvsr++){if(num%dvsr!=0)continue;if(flix==300){xferFactors(fctrs,flist,flix);flix=0;}flist[flix++]=dvsr;flist[flix++]=num/dvsr;}if(dvsr*dvsr==num)flist[flix++]=dvsr;if(flix>0)xferFactors(fctrs,flist,flix);returnfctrs;}intmain(intargc,char*argv[]){intnums2factor[]={2059,223092870,3135,45};Factorsftors={NULL,0};charsep;inti,j;for(i=0;i<4;i++){factor(nums2factor[i],&ftors);printf("\nfactors of %d are:\n  ",nums2factor[i]);sep=' ';for(j=0;j<ftors.count;j++){printf("%c %d",sep,ftors.list[j]);sep=',';}printf("\n");}return0;}

Prime factoring

#include<stdio.h>#include<stdlib.h>#include<string.h>/* 65536 = 2^16, so we can factor all 32 bit ints */charbits[65536];typedefunsignedlongulong;ulongprimes[7000],n_primes;typedefstruct{ulongp,e;}prime_factor;/* prime, exponent */voidsieve(){inti,j;memset(bits,1,65536);bits[0]=bits[1]=0;for(i=0;i<256;i++)if(bits[i])for(j=i*i;j<65536;j+=i)bits[j]=0;/* collect primes into a list. slightly faster this way if dealing with large numbers */for(i=j=0;i<65536;i++)if(bits[i])primes[j++]=i;n_primes=j;}intget_prime_factors(ulongn,prime_factor*lst){ulongi,e,p;intlen=0;for(i=0;i<n_primes;i++){p=primes[i];if(p*p>n)break;for(e=0;!(n%p);n/=p,e++);if(e){lst[len].p=p;lst[len++].e=e;}}returnn==1?len:(lst[len].p=n,lst[len].e=1,++len);}intulong_cmp(constvoid*a,constvoid*b){return*(constulong*)a<*(constulong*)b?-1:*(constulong*)a>*(constulong*)b;}intget_factors(ulongn,ulong*lst){intn_f,len,len2,i,j,k,p;prime_factorf[100];n_f=get_prime_factors(n,f);len2=len=lst[0]=1;/* L = (1); L = (L, L * p**(1 .. e)) forall((p, e)) */for(i=0;i<n_f;i++,len2=len)for(j=0,p=f[i].p;j<f[i].e;j++,p*=f[i].p)for(k=0;k<len2;k++)lst[len++]=lst[k]*p;qsort(lst,len,sizeof(ulong),ulong_cmp);returnlen;}intmain(){ulongfac[10000];intlen,i,j;ulongnums[]={3,120,1024,2UL*2*2*2*3*3*3*5*5*7*11*13*17*19};sieve();for(i=0;i<4;i++){len=get_factors(nums[i],fac);printf("%lu:",nums[i]);for(j=0;j<len;j++)printf(" %lu",fac[j]);printf("\n");}return0;}
Output:
3: 1 3120: 1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 1201024: 1 2 4 8 16 32 64 128 256 512 10243491888400: 1 2 3 4 5 6 7 8 9 10 11 ...(>1900 numbers)... 1163962800 1745944200 3491888400

C#

C# 1.0

staticvoidMain(string[]args){do{Console.WriteLine("Number:");Int64p=0;do{try{p=Convert.ToInt64(Console.ReadLine());break;}catch(Exception){}}while(true);Console.WriteLine("For 1 through "+((int)Math.Sqrt(p)).ToString()+"");for(intx=1;x<=(int)Math.Sqrt(p);x++){if(p%x==0)Console.WriteLine("Found: "+x.ToString()+". "+p.ToString()+" / "+x.ToString()+" = "+(p/x).ToString());}Console.WriteLine("Done.");}while(true);}
Output:
Number:32434243For 1 through 5695Found: 1. 32434243 / 1 = 32434243Found: 307. 32434243 / 307 = 105649Done.

C# 3.0

usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;publicstaticclassExtension{publicstaticList<int>Factors(thisintme){returnEnumerable.Range(1,me).Where(x=>me%x==0).ToList();}}classProgram{staticvoidMain(string[]args){Console.WriteLine(String.Join(", ",45.Factors()));}}
Output:
1, 3, 5, 9, 15, 45

C++

#include<iostream>#include<iomanip>#include<vector>#include<algorithm>#include<iterator>std::vector<int>GenerateFactors(intn){std::vector<int>factors={1,n};for(inti=2;i*i<=n;++i){if(n%i==0){factors.push_back(i);if(i*i!=n)factors.push_back(n/i);}}std::sort(factors.begin(),factors.end());returnfactors;}intmain(){constintSampleNumbers[]={3135,45,60,81};for(size_ti=0;i<sizeof(SampleNumbers)/sizeof(int);++i){std::vector<int>factors=GenerateFactors(SampleNumbers[i]);std::cout<<"Factors of ";std::cout.width(4);std::cout<<SampleNumbers[i]<<" are: ";std::copy(factors.begin(),factors.end(),std::ostream_iterator<int>(std::cout," "));std::cout<<std::endl;}returnEXIT_SUCCESS;}
Output:
Factors of 3135 are: 1 3 5 11 15 19 33 55 57 95 165 209 285 627 1045 3135 Factors of   45 are: 1 3 5 9 15 45 Factors of   60 are: 1 2 3 4 5 6 10 12 15 20 30 60 Factors of   81 are: 1 3 9 27 81

Ceylon

sharedvoidrun(){{Integer*}getFactors(Integern)=>(1..n).filter((Integerelement)=>element.divides(n));for(Integeriin1..100){print("the factors of ``i`` are ``getFactors(i)``");}}

Chapel

Inspired by the Clojure solution:

iterfactors(n){foriin1..floor(sqrt(n)):int{ifn%i==0then{yieldi;yieldn/i;}}}

Clojure

(defnfactors[n](filter#(zero?(remn%))(range1(incn))))(print(factors45))
(1 3 5 9 15 45)

Improved version. Considers small factors from 1 up to (sqrt n) -- we increment it because range does not include the end point. Pair each small factor with its co-factor, flattening the results, and put them into a sorted set to get the factors in order.

(defnfactors[n](into(sorted-set)(mapcat(fn[x][x(/nx)])(filter#(zero?(remn%))(range1(inc(Math/sqrtn)))))))

Same idea, using for comprehensions.

(defnfactors[n](into(sorted-set)(reduceconcat(for[x(range1(inc(Math/sqrtn))):when(zero?(remnx))][x(/nx)]))))

CLU

Translation of:Sather
isqrt = proc (s: int) returns (int)    x0: int := s/2    if x0=0 then return(s) end    x1: int := (x0 + s/x0)/2    while x1<x0 do        x0, x1 := x1, (x1 + s/x1)/2    end    return(x0)end isqrtfactors = iter (n: int) yields (int)    yield(1)    for i: int in int$from_to(2,isqrt(n)) do        if n//i=0 then            yield(i)            if i*i ~= n then yield(n/i) end        end    end    yield(n)end factorsstart_up = proc ()    po: stream := stream$primary_output()    a: array[int] := array[int]$[3135, 45, 64, 53, 45, 81]    for n: int in array[int]$elements(a) do        stream$puts(po, "Factors of " || int$unparse(n) || ":")        for f: int in factors(n) do            stream$puts(po, " " || int$unparse(f))        end        stream$putl(po, "")    endend start_up
Output:
Factors of 3135: 1 3 1045 5 627 11 285 15 209 19 165 33 95 55 57 3135Factors of 45: 1 3 15 5 9 45Factors of 64: 1 2 32 4 16 8 64Factors of 53: 1 53Factors of 45: 1 3 15 5 9 45Factors of 81: 1 3 27 9 81

COBOL

IDENTIFICATIONDIVISION.PROGRAM-ID.FACTORS.DATADIVISION.WORKING-STORAGESECTION.01CALCULATING.03NUMUSAGEBINARY-LONGVALUEZERO.03LIMUSAGEBINARY-LONGVALUEZERO.03CNTUSAGEBINARY-LONGVALUEZERO.03DIVUSAGEBINARY-LONGVALUEZERO.03REMUSAGEBINARY-LONGVALUEZERO.03ZRSUSAGEBINARY-SHORTVALUEZERO.01DISPLAYING.03DISPIC 9(10)USAGEDISPLAY.PROCEDUREDIVISION.MAIN-PROCEDURE.DISPLAY"Factors of? "WITHNOADVANCINGACCEPTNUMDIVIDENUMBY2GIVINGLIM.PERFORMVARYINGCNTFROM1BY1UNTILCNT>LIMDIVIDENUMBYCNTGIVINGDIVREMAINDERREMIFREM=0MOVECNTTODISPERFORMSHODISEND-IFEND-PERFORM.MOVENUMTODIS.PERFORMSHODIS.STOPRUN.SHODIS.MOVEZEROTOZRS.INSPECTDISTALLYINGZRSFORLEADINGZERO.DISPLAYDIS(ZRS+1:)EXITPARAGRAPH.ENDPROGRAMFACTORS.

CoffeeScript

# Reference implementation for finding factors is slow, but hopefully# robust--we'll use it to verify the more complicated (but hopefully faster)# algorithm.slow_factors=(n) ->(iforiin[1..n]whenn%i==0)# The rest of this code does two optimizations:#   1) When you find a prime factor, divide it out of n (smallest_prime_factor).#   2) Find the prime factorization first, then compute composite factors from those.smallest_prime_factor=(n) ->foriin[2..n]returnnifi*i>nreturniifn%i==0prime_factors=(n) ->return{}ifn==1spf=smallest_prime_factornresult=prime_factors(n/spf)result[spf]or=0result[spf]+=1resultfast_factors=(n) ->prime_hash=prime_factorsnexponents=[]forpofprime_hashexponents.pushp:pexp:0result=[]whiletruefactor=1forobjinexponentsfactor*=Math.powobj.p,obj.expresult.pushfactorbreakiffactor==n# roll the odometerforobj,iinexponentsifobj.exp<prime_hash[obj.p]obj.exp+=1breakelseobj.exp=0returnresult.sort(a, b) ->a-bverify_factors=(factors, n) ->expected_result=slow_factorsnthrowError("wrong length")iffactors.length!=expected_result.lengthforfactor,iinexpected_resultconsole.logError("wrong value")iffactors[i]!=factorfornin[1,3,4,8,24,37,1001,11111111111,99999999999]factors=fast_factorsnconsole.logn,factorsifn<1000000verify_factorsfactors,n
Output:
> coffee factors.coffee 1 [ 1 ]3 [ 1, 3 ]4 [ 1, 2, 4 ]8 [ 1, 2, 4, 8 ]24 [ 1, 2, 3, 4, 6, 8, 12, 24 ]37 [ 1, 37 ]1001 [ 1, 7, 11, 13, 77, 91, 143, 1001 ]11111111111 [ 1, 21649, 513239, 11111111111 ]99999999999 [ 1,  3,  9,  21649,  64947,  194841,  513239,  1539717,  4619151,  11111111111,  33333333333,  99999999999 ]

Common Lisp

We iterate in the range1..sqrt(n) collecting ‘low’ factors and corresponding ‘high’ factors, and combine at the end to produce an ordered list of factors.

(defunfactors(n&aux(lows'())(highs'()))(do((limit(1+(isqrtn)))(factor1(1+factor)))((=factorlimit)(when(=n(*limitlimit))(pushlimithighs))(remove-duplicates(nreconclowshighs)))(multiple-value-bind(quotientremainder)(floornfactor)(when(zeropremainder)(pushfactorlows)(pushquotienthighs)))))

Crystal

Translation of:Ruby

Brute force and slow, by checking every value up to n.

structIntdeffactors()(1..self).select{|n|(self%n).zero?}endend

Faster, by only checking values up ton{\displaystyle {\displaystyle {\sqrt {n}}}}.

structIntdeffactorsf=[]ofInt32(1..Math.sqrt(self)).each{|i|(f<<i;f<<self//iifself//i!=i)if(self%i).zero?}f.sortendend

Tests:

[45,53,64].each{|n|puts"#{n} :#{n.factors}"}
Output:
45 : [1, 3, 5, 9, 15, 45]53 : [1, 53]64 : [1, 2, 4, 8, 16, 32, 64]

D

Procedural Style

importstd.stdio,std.math,std.algorithm;T[]factors(T)(inTn)purenothrow{if(n==1)return[n];T[]res=[1,n];Tlimit=cast(T)real(n).sqrt+1;for(Ti=2;i<limit;i++){if(n%i==0){res~=i;immutableq=n/i;if(q>i)res~=q;}}returnres.sort().release;}voidmain(){writefln("%(%s\n%)",[45,53,64,1111111].map!factors);}
Output:
[1, 3, 5, 9, 15, 45][1, 53][1, 2, 4, 8, 16, 32, 64][1, 239, 4649, 1111111]

Functional Style

importstd.stdio,std.algorithm,std.range;autofactors(I)(In){returniota(1,n+1).filter!(i=>n%i==0);}voidmain(){36.factors.writeln;}
Output:
[1, 2, 3, 4, 6, 9, 12, 18, 36]

Dart

import 'dart:math';factors(n){ var factorsArr = []; factorsArr.add(n); factorsArr.add(1); for(var test = n - 1; test >= sqrt(n).toInt(); test--)  if(n % test == 0)  {   factorsArr.add(test);   factorsArr.add(n / test);  } return factorsArr;}void main() {  print(factors(5688));}

Dc

Simple O(n) version

[Enter positive number: ]P ? sn[Factors of ]P lnn [ are: ]P[q]sq 1si [[ ]P lin]sp [ li ln <q ln li % 0=p li1+si lxx ]dsxx AP
Output:
Factors of 998877 are:  1 3 11 33 30269 90807 332959 9988770m1.120s

Faster O(sqrt(n)) version

[Enter positive number: ]P ? sn[Factors of ]P lnn [ are: ]P[q]sq lnvsv 1si 0sj [[ ]P lin]sp [lkSb lj1+sj]sa [lpx ln li /dsk li<a ]sP[li lv <q ln li % 0=P li1+si lxx]dsxx[lj 1>q lj1-sj Lbsi lpx lxx]dsxx AP
0m0.004s

Delphi

See#Pascal.

DuckDB

Works with:DuckDB version V1.0

DuckDB allows both functional and table-oriented approaches to solvingproblems such as finding the factors of a number, and solutions usingboth approaches are presented here.

Functional Approach

The following function produces a list of the sorted factors.

createorreplacefunctionfactors(n)aslist_filter(generate_series(1,sqrt(n)::INT),i->n%i=0).list_transform(i->if(n//i=i,[i],[i,n//i])).flatten().list_sort();##Examplesselectn,factors(n)from(selectunnest([1,2,3,4,5,6,45,53,64])asn);
Output:
┌───────┬──────────────────────────┐│   n   │        factors(n)        ││ int32 │         int64[]          │├───────┼──────────────────────────┤│     1 │ [1]                      ││     2 │ [1, 2]                   ││     3 │ [1, 3]                   ││     4 │ [1, 2, 4]                ││     5 │ [1, 5]                   ││     6 │ [1, 2, 3, 6]             ││    45 │ [1, 3, 5, 9, 15, 45]     ││    53 │ [1, 53]                  ││    64 │ [1, 2, 4, 8, 16, 32, 64] │└───────┴──────────────────────────┘

Tabular Approach

The following function produces a table of the factors without sorting them.

createorreplacefunctionunsorted_factors(n)astable(withcteas(selectifromgenerate_series(1,sqrt(n)::INT)_(i)wheren%i=0)fromcteunionall(selectn//ifromctewheren//i!=i));##Examplesfromunsorted_factors(99);selectn,(selectarray_agg(x)fromunsorted_factors(n)_(x))asunsorted_factorsfrom(selectunnest([1,2,3,4,5,6,45,53,64])asn);
Output:
┌───────┐│   i   ││ int64 │├───────┤│     1 ││     3 ││     9 ││    99 ││    33 ││    11 │└───────┘┌───────┬──────────────────────────┐│   n   │         factors          ││ int32 │         int64[]          │├───────┼──────────────────────────┤│     1 │ [1]                      ││     2 │ [2, 1]                   ││     3 │ [3, 1]                   ││     4 │ [4, 1, 2]                ││     5 │ [1, 5]                   ││     6 │ [6, 3, 1, 2]             ││    45 │ [45, 15, 9, 1, 3, 5]     ││    53 │ [53, 1]                  ││    64 │ [1, 2, 4, 8, 64, 32, 16] │└───────┴──────────────────────────┘

Dyalect

func Iterator.Where(pred) {    for x in this when pred(x) {        yield x    }}func Integer.Factors() {    (1..this).Where(x => this % x == 0)}for x in 45.Factors() {    print(x)}

Output:

13591545

E

This example isin need of improvement:

Use a cleverer algorithm such as in the Common Lisp example.

def factors(x :(int > 0)) {    var xfactors := []    for f ? (x % f <=> 0) in 1..x {      xfactors with= f    }    return xfactors}

EasyLang

n = 720for i = 1 to n  if n mod i = 0    factors[] &= i  ..print factors[]

EchoLisp

prime-factors gives the list of n's prime-factors. We mix them to get all the factors.

;; ppows;; input : a list g of grouped prime factors ( 3 3 3 ..);; returns (1 3 9 27 ...)(define(ppowsg(mult1))(for/fold(ppows'(1))((ag))(set!mult(*multa))(consmultppows)));; factors;; decomp n into ((2 2 ..) ( 3 3 ..)  ) prime factors groups;; combines (1 2 4 8 ..) (1 3 9 ..) lists(define(factorsn)(list-sort<(if(<=n1)'(1)(for/fold(divs'(1))((g(mapppows(group(prime-factorsn)))))(for*/list((adivs)(bg))(*ab))))))
Output:
(lib'bigint)(factors666)(12369183774111222333666)(length(factors108233175859200))666;; 💀(definehuge1200034005600070000008900000000000000000)(time(length(factorshuge)))(394ms7776)

EDSAC order code

Input is limited to 10 decimal digits, which is as many as the EDSAC print subroutine P7 can handle. Factors are printed in pairs, such that the product of the factors in each pair equals the input number.

2021-10-10 Integers are now read from the tape in decimal format, instead of being defined by the awkward method of pseudo-orders. The factorization of 999,999,999 has been removed, as it took too long on the commonly-used EdsacPC simulator (14.6 million orders - over 6 hours on the original EDSAC).

[Factors of an integer, from Rosetta Code website.][EDSAC program, Initial Orders 2.][2024-12-25 (1) Fixed bug in print subroutine            (2) Added factors of more integers.[The numbers to  be factorized are read in by library subroutine R2  (Wilkes, Wheeler and Gill, 1951 edition, pp.96-97, 148).][The address of the integers is placed in location 46, so they can be  referred to by the N parameter (or we could have used 45 and H, etc.)]          T46K          P600F           [address of integers][Subroutine R2]GKT20FVDL8FA40DUDTFI40FA40FS39FG@S2FG23FA5@T5@E4@E13Z          T#N             [pass address of integers to R2][Integers, separated by 'F' and terminated by '#TZ', as R2 requires.]420F42000F420000F99999F999999F0#          TZ              [resume normal loading] [Modified library subroutine P7.  Prints signed integer; up to 10 digits, left-justified.  Input: 0D = integer  52 locations. Load at even address. Workspace 4D.]          T56KGKA3FT42@A47@T31@ADE10@T31@A46@T31@SDTDH44#@NDYFLDT4DS43@TFH17@S17@A43@G23@UFS43@T1FV4DAFG48@SFLDUFXFOFFFSFL4FT4DA47@T31@A1FA43@G20@XFT44#ZPFT43ZP1024FP610D@524DO26@XFSFL8FT4DE39@ [Division subroutine for positive long integers.  35-bit dividend and divisor (max 2^34 - 1)  returning quotient and remainder.  Input:  dividend at 4D, divisor at 6D  Output: remainder at 4D, quotient at 6D.  37 locations; working locations 0D, 8D.]          T110KGKA3FT35@A6DU8DTDA4DRDSDG13@T36@ADLDE4@T36@T6DA4DSDG23@T4DA6DYFYFT6DT36@A8DSDE35@T36@ADRDTDA6DLDT6DE15@EFPF  [********************** ROSETTA CODE TASK **********************] [Subroutine to find and print factors of a positive integer.  Input: 0D = integer, maximum 10 decimal digits.  Load at even address.]          T148K          GK          A3F             [form and plant link for return]          T55@          AD              [load integer whose factors are to be found]          T56#@           [store]          A62#@           [load 1]          T58#@           [possible factor := 1]          S65@            [negative count of items per line]          T64@            [initialize count]          [Start of loop round possible factors]    [8]   TF              [clear acc]          A56#@           [load integer]          T4D             [to 4D for division]          A58#@           [load possible factor]          T6D             [to 6D for division]          A13@            [for return from next]          G110F           [do division; clears acc]          A6D             [save quotient (6D may be changed below)]          T60#@          S4D             [load negative of remainder]          G44@            [skip if remainder > 0]          [Here if m is a factor of n.]          [Print m and the quotient together]          TF              [clear acc]          A64@            [test count of items per line]          G26@            [skip if not start of line]          S65@            [start of line, reset count]          T64@          O70@            [and print CR, LF]          O71@   [26]   TF              [clear acc]          O67@            [print '(']          A58#@           [load factor]          TD              [to 0D for printing]          A30@            [for return from next]          G56F            [print factor; clears acc]          O69@            [print comma]          A60#@           [load quotient]          TD              [to 0D for printing]          A35@            [for return from next]          G56F            [print quotient; clears acc]          O68@            [print ')']          A64@            [negative counter for items per line]          A2F             [inc]          E43@            [skip if end of line]          O66@            [not end of line, print 2 spaces]          O66@   [43]   T64@            [update counter]          [Common code after testing possible factor]   [44]   TF              [clear acc]          A58#@           [load possible factor]          A62#@           [inc by 1]          U58#@           [store back]          S60#@           [compare with quotient]          G8@             [loop if (new factor) < (old quotient)]          [Here when found all factors]          O70@            [print CR, LF twice]          O71@          O70@          O71@          TF              [exit with acc = 0]   [55]   EF              [(planted) return to caller]          [--------------]   [56]   PF PF           [number whose factors are to be found]   [58]   PF PF           [possible factor]   [60]   PF PF           [integer part of (number/factor)]          T62#Z           [clear whole of 35-bit constant, including sandwich bit]          PF          T62Z            [resume normal loading]   [62]   PD PF           [35-bit constant 1]   [64]   PF              [negative counter for items per line]   [65]   P4F             [items per line, in address field]   [66]   !F              [space]   [67]   KF   [68]   LF   [69]   NF              [comma, in figure shift]   [70]   @F              [carriage return]   [71]   &F              [line feed]  [Main routine for demonstrating subroutine.]          T400K          GK    [0]   #F              [figure shift]    [1]   K4096F          [null char]    [2]   S#N             [order to load negative first number]    [3]   P2F             [to inc address by 2 for next number]          [Enter with acc = 0]    [4]   O@              [set teleprinter to figures]          A2@             [load order for first integer]    [6]   T7@             [plant in next order]    [7]   SD              [load negative of 35-bit integer]          E17@            [exit if number is 0]          TD          SD              [convert to positive]          TD              [pass to subroutine]          A12@            [call subroutine to find and print factors]          G148F          A7@             [modify order above, for next integer]          A3@          E6@             [always jump, since S = 12 > 0]   [17]   O1@             [done, print null to flush printer buffer]          ZF              [stop]          E4Z             [define entry point]          PF              [acc = 0 on entry
Output:
(1,420)  (2,210)  (3,140)  (4,105)(5,84)  (6,70)  (7,60)  (10,42)(12,35)  (14,30)  (15,28)  (20,21)(1,42000)  (2,21000)  (3,14000)  (4,10500)(5,8400)  (6,7000)  (7,6000)  (8,5250)(10,4200)  (12,3500)  (14,3000)  (15,2800)(16,2625)  (20,2100)  (21,2000)  (24,1750)(25,1680)  (28,1500)  (30,1400)  (35,1200)(40,1050)  (42,1000)  (48,875)  (50,840)(56,750)  (60,700)  (70,600)  (75,560)(80,525)  (84,500)  (100,420)  (105,400)(112,375)  (120,350)  (125,336)  (140,300)(150,280)  (168,250)  (175,240)  (200,210)(1,420000)  (2,210000)  (3,140000)  (4,105000)(5,84000)  (6,70000)  (7,60000)  (8,52500)(10,42000)  (12,35000)  (14,30000)  (15,28000)(16,26250)  (20,21000)  (21,20000)  (24,17500)(25,16800)  (28,15000)  (30,14000)  (32,13125)(35,12000)  (40,10500)  (42,10000)  (48,8750)(50,8400)  (56,7500)  (60,7000)  (70,6000)(75,5600)  (80,5250)  (84,5000)  (96,4375)(100,4200)  (105,4000)  (112,3750)  (120,3500)(125,3360)  (140,3000)  (150,2800)  (160,2625)(168,2500)  (175,2400)  (200,2100)  (210,2000)(224,1875)  (240,1750)  (250,1680)  (280,1500)(300,1400)  (336,1250)  (350,1200)  (375,1120)(400,1050)  (420,1000)  (480,875)  (500,840)(525,800)  (560,750)  (600,700)  (625,672)(1,99999)  (3,33333)  (9,11111)  (41,2439)(123,813)  (271,369)(1,999999)  (3,333333)  (7,142857)  (9,111111)(11,90909)  (13,76923)  (21,47619)  (27,37037)(33,30303)  (37,27027)  (39,25641)  (63,15873)(77,12987)  (91,10989)  (99,10101)  (111,9009)(117,8547)  (143,6993)  (189,5291)  (231,4329)(259,3861)  (273,3663)  (297,3367)  (333,3003)(351,2849)  (407,2457)  (429,2331)  (481,2079)(693,1443)  (777,1287)  (819,1221)  (999,1001)

Ela

Using higher-order function

open listfactors m = filter (\x -> m % x == 0) [1..m]

Using comprehension

factors m = [x \\ x <- [1..m] | m % x == 0]

Elixir

defmoduleRCdodeffactor(1),do:[1]deffactor(n)do(fori<-1..div(n,2),rem(n,i)==0,do:i)++[n]end# Recursive (faster version);defdivisor(n),do:divisor(n,1,[])|>Enum.sortdefpdivisor(n,i,factors)whenn<i*i,do:factorsdefpdivisor(n,i,factors)whenn==i*i,do:[i|factors]defpdivisor(n,i,factors)whenrem(n,i)==0,do:divisor(n,i+1,[i,div(n,i)|factors])defpdivisor(n,i,factors),do:divisor(n,i+1,factors)endEnum.each([45,53,60,64],fnn->IO.puts"#{n}:#{inspectRC.factor(n)}"end)IO.puts"\nRange:#{inspectrange=1..10000}"funs=[factor:&RC.factor/1,divisor:&RC.divisor/1]Enum.each(funs,fn{name,fun}->{time,value}=:timer.tc(fn->Enum.count(range,&length(fun.(&1))==2)end)IO.puts"#{name}\t prime count :#{value},\t#{time/1000000} sec"end)
Output:
45: [1, 3, 5, 9, 15, 45]53: [1, 53]60: [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]64: [1, 2, 4, 8, 16, 32, 64]Range: 1..10000factor   prime count : 1229,    7.316 secdivisor  prime count : 1229,    0.265 sec

EMal

fun factors = List by int n  List result = int[1]  for each int i in range(2, n)    if n % i == 0 do result.append(i) end  end  result.append(n)  return resultendfun main = int by List args  int n = when(args.length == 0, ask(int, "Enter the number to factor please "), int!args[0])  writeLine(factors(n))  return 0endexit main(Runtime.args)
Output:
emal.exe Org\RosettaCode\FactorsOfAnInteger.emal 999997[1,757,1321,999997]

Erlang

with Built in fuctions

factors(N)->[I||I<-lists:seq(1,trunc(N/2)),NremI==0]++[N].

Recursive

Another, less concise, but faster version

-module(divs).-export([divs/1]).divs(0)->[];divs(1)->[];divs(N)->lists:sort(divisors(1,N))++[N].divisors(1,N)->[1]++divisors(2,N,math:sqrt(N)).divisors(K,_N,Q)whenK>Q->[];divisors(K,N,_Q)whenNremK=/=0->[]++divisors(K+1,N,math:sqrt(N));divisors(K,N,_Q)whenK*K==N->[K]++divisors(K+1,N,math:sqrt(N));divisors(K,N,_Q)->[K,NdivK]++divisors(K+1,N,math:sqrt(N)).
Output:
58> timer:tc(divs, factors, [20000]).{2237, [1,2,4,5,8,10,16,20,25,32,40,50,80,100,125,160,200,250,400,  500,625,800,1000,1250,2000,2500,4000|...]}59> timer:tc(divs, divs, [20000]).   {106, [1,2,4,5,8,10,16,20,25,32,40,50,80,100,125,160,200,250,400,  500,625,800,1000,1250,2000,2500,4000|...]}

The first number is milliseconds. I'v ommitted repeating the first fuction.

ERRE

PROGRAM FACTORS!$DOUBLEPROCEDURE FACTORLIST(N->L$)      LOCAL C%,I,FLIPS%,I%      LOCAL DIM L[32]      FOR I=1 TO SQR(N) DO        IF N=I*INT(N/I) THEN          L[C%]=I          C%=C%+1          IF N<>I*I THEN            L[C%]=INT(N/I)            C%=C%+1          END IF        END IF      END FOR      ! BUBBLE SORT ARRAY L[]      FLIPS%=1      WHILE FLIPS%>0 DO         FLIPS%=0         FOR I%=0 TO C%-2 DO            IF L[I%]>L[I%+1] THEN SWAP(L[I%],L[I%+1]) FLIPS%=1         END FOR      END WHILE      L$=""      FOR I%=0 TO C%-1 DO        L$=L$+STR$(L[I%])+","      END FOR      L$=LEFT$(L$,LEN(L$)-1)END PROCEDUREBEGIN    PRINT(CHR$(12);) ! CLS    FACTORLIST(45->L$)    PRINT("The factors of 45 are ";L$)    FACTORLIST(12345->L$)    PRINT("The factors of 12345 are ";L$)END PROGRAM
Output:
The factors of 45 are  1, 3, 5, 9, 15, 45The factors of 12345 are  1, 3, 5, 15, 823, 2469, 4115, 12345

Excel

LAMBDA

Binding the nameFACTORS to a custom function defined by the following LAMBDA expression

in the Name Manager of an Excel workbook.

(See:The LAMBDA worksheet function in Excel)

Works with:Office 365 Betas 2021
=LAMBDA(n,IF(1<n,LET(froot,SQRT(n),nroot,FLOOR.MATH(froot),lows,FILTERP(LAMBDA(x,0=MOD(n,x)))(ENUMFROMTO(1)(nroot)),APPEND(lows)(LAMBDA(x,n/x)(REVERSE(IF(froot<>nroot,lows,INIT(lows)))))),IF(1=n,{1},NA())))

and assuming that in the same worksheet, each of the following names is bound to the reusable generic lambda expression which follows it:

APPEND=LAMBDA(xs,LAMBDA(ys,LET(nx,ROWS(xs),rowIndexes,SEQUENCE(nx+ROWS(ys)),colIndexes,SEQUENCE(1,MAX(COLUMNS(xs),COLUMNS(ys))),IF(rowIndexes<=nx,INDEX(xs,rowIndexes,colIndexes),INDEX(ys,rowIndexes-nx,colIndexes)))))ENUMFROMTO=LAMBDA(a,LAMBDA(z,SEQUENCE(1+z-a,1,a,1)))FILTERP=LAMBDA(p,LAMBDA(xs,FILTER(xs,p(xs))))INIT=LAMBDA(xs,IF(AND(1=ROWS(xs),ISBLANK(xs)),NA(),INDEX(xs,SEQUENCE(ROWS(xs)-1,1,1,1))))REVERSE=LAMBDA(xs,LET(n,ROWS(xs),SORTBY(xs,SEQUENCE(n,1,n,-1))))

TheFACTORS function, applied to an integer, defines a column of integer values.

Here we define a row instead, by composingFACTORS with the standardTRANSPOSE function.

Output:
fx=TRANSPOSE(FACTORS(A2))
ABCDEFGHIJKLMNOPQ
1NFactors
2641248163264
312012345681012152024304060120
412345678913936073803108211140932463342271371742141152263123456789
5212
611
70#N/A
8-1#N/A

F#

If number % divisor = 0 then both divisor AND number / divisor are factors.

So, we only have to search till sqrt(number).

Also, this is lazily evaluated.

letfactorsnumber=seq{fordivisorin1..(float>>sqrt>>int)numberdoifnumber%divisor=0thenyielddivisorifnumber<>1thenyieldnumber/divisor//special case condition: when number=1 then divisor=(number/divisor), so don't repeat it}

Prime factoring

[6;120;2048;402642;1206432]|>Seq.iter(funn->printf"%d :"n;[1..n]|>Seq.filter(fung->n%g=0)|>Seq.iter(funn->printf" %d"n);printfn"");;
Output:
OUTPUT :6 : 1  2  3  6                                                                                                                                                                  120 : 1  2  3  4  5  6  8  10  12  15  20  24  30  40  60  120                                                                                                                  2048 : 1  2  4  8  16  32  64  128  256  512  1024  2048                                                                                                                        402642 : 1  2  3  6  9  18  22369  44738  67107  134214  201321  402642                                                                                                         120643200 : 1  2  3  4  6  8  9  12  16  18  24  32  36  48  59  71  72  96  118  142  144  177  213  236  284  288  354  426  472  531  568  639  708  852  944  1062  1136  1278  1416  1704  1888  2124  2272  2556  2832  3408  4189  4248  5112  5664  6816  8378  8496  10224  12567  16756  16992  20448  25134  33512  37701  50268  67024  75402  100536  134048  150804  201072  301608  402144  603216  1206432

Factor

   USE: math.primes.factors   ( scratchpad ) 24 divisors .   { 1 2 3 4 6 8 12 24 }

FALSE

[1[\$@$@-][\$@$@$@$@\/*=[$." "]?1+]#.%]f:45f;! 53f;! 64f;!

Fish

0v>i:0(?v'0'%+a*>~a,:1:>r{%        ?vr:nr','ov^:&:;?(&:+1r:<<

Must be called with pre-polulated value (Positive Integer) in the input stack. Try at Fish Playground[1].

For Input Number :

 120

The following output was generated:

1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120,

Forth

This is a slightly optimized algorithm, since it realizes there are no factors between n/2 and n. The values are saved on the stack and - in true Forth fashion - printed in descending order.

:factorsdup2/1+1dodupimod0=ifiswapthenloop;:.factorsfactorsbegindupdup.1<>whiledroprepeatdropcr;45.factors53.factors64.factors100.factors

Alternative version with vectored execution

It's not really idiomatic FORTH to leave a variable number of items on the stack, so instead this version repeatedly calls an execution token for each factor, and it uses a defining word to create a fold over the factors of an integer. This version also only tests up to the square root, which means that items are generated in pairs, rather than in sorted order.

:sqs"dup *"evaluate;immediate:factors( n a xt -- )swap2>r1BEGIN2dupsq>WHILE2dup/modswap0=IFoverr>r@executer@execute>rELSEdropTHEN1+REPEAT2dupsq=IF2r>swapexecutenipELSE2dropr>rdropTHEN;:<with-factors>create2,does>2@factors;0:nonamenip1+;<with-factors>count-factors0'+<with-factors>sum-factors0:nonameswap.;<with-factors>(.factors):.factors(.factors)drop;
Output:
100 .factors 1 100 2 50 4 25 5 20 10  ok100 count-factors . 9  ok100 sum-factors . 217  ok1 100 + 2 + 50 + 4 + 25 + 5 + 20 + 10 + . 217  ok  \ test sum-factors result77 .factors 1 77 7 11  ok108 .factors 1 108 2 54 3 36 4 27 6 18 9 12  ok

Fortran

Works with:Fortran version 90 and later
programFactorsimplicit noneinteger::i,numberwrite(*,*)"Enter a number between 1 and 2147483647"read*,numberdoi=1,int(sqrt(real(number)))-1if(mod(number,i)==0)write(*,*)i,number/iend do! Check to see if number is a squarei=int(sqrt(real(number)))if(i*i==number)then     write(*,*)ielse if(mod(number,i)==0)then     write(*,*)i,number/iend ifend program

Frink

Frink has built-in factoring functions which use wheel factoring, trial division, Pollard p-1 factoring, and Pollard rho factoring. It also recognizes some special forms (e.g. Mersenne numbers) and handles them efficiently. Integers can either be decomposed into prime factors or all factors.

Thefactors[n] function will return the prime decomposition ofn.

TheallFactors[n,include1=true,includeN=true,sort=true,onlyToSqrt=false] function will return all factors ofn. The optional argumentsinclude1 andincludeN indicate if the numbers 1 and n are to be included in the results. If the optional argumentsort is true, the results will be sorted. If the optional argumentonlyToSqrt=true, then only the factors less than or equal to the square root of the number will be produced.

The following produces all factors of n, including 1 and n:

allFactors[n]

FunL

Function to compute set of factors:

def factors( n ) = {d | d <- 1..n if d|n}

Test:

for x <- [103, 316, 519, 639, 760]  println( 'The set of factors of ' + x + ' is ' + factors(x) )
Output:
The set of factors of 103 is {1, 103}The set of factors of 316 is {158, 4, 79, 1, 2, 316}The set of factors of 519 is {1, 3, 173, 519}The set of factors of 639 is {9, 639, 71, 213, 1, 3}The set of factors of 760 is {8, 19, 4, 40, 152, 5, 10, 76, 1, 95, 190, 760, 20, 2, 38, 380}

FutureBasic

Function to compute set of factors:

local fn Factors( n as int ) as CFArrayRef  CFMutableArrayRef mutArray = fn MutableArrayNew    for int factor = 1 to sqr(n)    if ( n mod factor == 0 )      MutableArrayAddObject( mutArray, @(factor) )      if ( n/factor != factor )        MutableArrayAddObject( mutArray, @(n/factor) )      end if    end if  next  CFArrayRef result = fn ArraySortedArrayUsingSelector( mutArray, @"compare:" )end fn = resultmda (0) = {1,2,3,4,5,6,7,8,9,10,20,40,60,80,100,200,300,400,512,677,768,966,1000,1024,2048,4096}int i, nfor i = 0 to mda_count -1  n = mda_integer(i)  print fn StringWithFormat( @"Factors of %4d: [%@]", n, fn ArrayComponentsJoinedByString( fn Factors( n ), @", " ) )nextHandleEvents
Output:
Factors of    1: [1]Factors of    2: [1, 2]Factors of    3: [1, 3]Factors of    4: [1, 2, 4]Factors of    5: [1, 5]Factors of    6: [1, 2, 3, 6]Factors of    7: [1, 7]Factors of    8: [1, 2, 4, 8]Factors of    9: [1, 3, 9]Factors of   10: [1, 2, 5, 10]Factors of   20: [1, 2, 4, 5, 10, 20]Factors of   40: [1, 2, 4, 5, 8, 10, 20, 40]Factors of   60: [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]Factors of   80: [1, 2, 4, 5, 8, 10, 16, 20, 40, 80]Factors of  100: [1, 2, 4, 5, 10, 20, 25, 50, 100]Factors of  200: [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200]Factors of  300: [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300]Factors of  400: [1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400]Factors of  512: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]Factors of  677: [1, 677]Factors of  768: [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768]Factors of  966: [1, 2, 3, 6, 7, 14, 21, 23, 42, 46, 69, 138, 161, 322, 483, 966]Factors of 1000: [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000]Factors of 1024: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]Factors of 2048: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]Factors of 4096: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

GAP

# Built-in functionDivisorsInt(Factorial(5));# [ 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 ]# A possible implementation, not suitable to large ndiv:=n->Filtered([1..n],k->nmodk=0);div(Factorial(5));# [ 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 ]# Another implementation, usable for large n (if n can be factored quickly)div2:=function(n)localf,p;f:=Collected(FactorsInt(n));p:=List(f,v->List([0..v[2]],k->v[1]^k));returnSortedList(List(Cartesian(p),Product));end;div2(Factorial(5));# [ 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 ]

Go

Trial division, no prime number generator, but with some optimizations. It's good enough to factor any 64 bit integer, with large primes taking several seconds.

packagemainimport"fmt"funcmain(){printFactors(-1)printFactors(0)printFactors(1)printFactors(2)printFactors(3)printFactors(53)printFactors(45)printFactors(64)printFactors(600851475143)printFactors(999999999999999989)}funcprintFactors(nrint64){ifnr<1{fmt.Println("\nFactors of",nr,"not computed")return}fmt.Printf("\nFactors of %d: ",nr)fs:=make([]int64,1)fs[0]=1apf:=func(pint64,eint){n:=len(fs)fori,pp:=0,p;i<e;i,pp=i+1,pp*p{forj:=0;j<n;j++{fs=append(fs,fs[j]*pp)}}}e:=0for;nr&1==0;e++{nr>>=1}apf(2,e)ford:=int64(3);nr>1;d+=2{ifd*d>nr{d=nr}fore=0;nr%d==0;e++{nr/=d}ife>0{apf(d,e)}}fmt.Println(fs)fmt.Println("Number of factors =",len(fs))}
Output:
Factors of -1 not computedFactors of 0 not computedFactors of 1: [1]Number of factors = 1Factors of 2: [1 2]Number of factors = 2Factors of 3: [1 3]Number of factors = 2Factors of 53: [1 53]Number of factors = 2Factors of 45: [1 3 9 5 15 45]Number of factors = 6Factors of 64: [1 2 4 8 16 32 64]Number of factors = 7Factors of 600851475143: [1 71 839 59569 1471 104441 1234169 87625999 6857 486847 5753023 408464633 10086647 716151937 8462696833 600851475143]Number of factors = 16Factors of 999999999999999989: [1 999999999999999989]Number of factors = 2

Golfscript

{.),1>\{\%!}+,}:f;60 f`
Output:
[1 2 3 4 5 6 10 12 15 20 30 60]

Gosu

varnumbers={11,21,32,45,67,96}numbers.each(\number->printFactors(number))functionprintFactors(n:int){if(n<1)returnvarresult="${n} => "(1..n/2).each(\i->{result+=n%i==0?"${i} ":""})print("${result}${n}")}
Output:
11 => 1 1121 => 1 3 7 2132 => 1 2 4 8 16 3245 => 1 3 5 9 15 4567 => 1 6796 => 1 2 3 4 6 8 12 16 24 32 48 96

Groovy

A straight brute force approach up to the square root ofN:

deffactorize={longtarget->if(target==1)return[1L]if(target<4)return[1L,target]deftargetSqrt=Math.sqrt(target)deflowfactors=(2L..targetSqrt).grep{(target%it)==0}if(lowfactors==[])return[1L,target]defnhalf=lowfactors.size()-((lowfactors[-1]==targetSqrt)?1:0)[1]+lowfactors+(0..<nhalf).collect{target.intdiv(lowfactors[it])}.reverse()+[target]}

Test:

((1..30)+[333333]).each{println([number:it,factors:factorize(it)])}
Output:
[number:1, factors:[1]][number:2, factors:[1, 2]][number:3, factors:[1, 3]][number:4, factors:[1, 2, 4]][number:5, factors:[1, 5]][number:6, factors:[1, 2, 3, 6]][number:7, factors:[1, 7]][number:8, factors:[1, 2, 4, 8]][number:9, factors:[1, 3, 9]][number:10, factors:[1, 2, 5, 10]][number:11, factors:[1, 11]][number:12, factors:[1, 2, 3, 4, 6, 12]][number:13, factors:[1, 13]][number:14, factors:[1, 2, 7, 14]][number:15, factors:[1, 3, 5, 15]][number:16, factors:[1, 2, 4, 8, 16]][number:17, factors:[1, 17]][number:18, factors:[1, 2, 3, 6, 9, 18]][number:19, factors:[1, 19]][number:20, factors:[1, 2, 4, 5, 10, 20]][number:21, factors:[1, 3, 7, 21]][number:22, factors:[1, 2, 11, 22]][number:23, factors:[1, 23]][number:24, factors:[1, 2, 3, 4, 6, 8, 12, 24]][number:25, factors:[1, 5, 25]][number:26, factors:[1, 2, 13, 26]][number:27, factors:[1, 3, 9, 27]][number:28, factors:[1, 2, 4, 7, 14, 28]][number:29, factors:[1, 29]][number:30, factors:[1, 2, 3, 5, 6, 10, 15, 30]][number:333333, factors:[1, 3, 7, 9, 11, 13, 21, 33, 37, 39, 63, 77, 91, 99, 111, 117, 143, 231, 259, 273, 333, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2331, 2849, 3003, 3367, 3663, 4329, 5291, 8547, 9009, 10101, 15873, 25641, 30303, 37037, 47619, 111111, 333333]]

Haskell

UsingD. Amos'es Primes module for finding prime factors

importHFM.Primes(primePowerFactors)importControl.Monad(mapM)importData.List(product)-- primePowerFactors :: Integer -> [(Integer,Int)]factors=mapproduct.mapM(\(p,m)->[p^i|i<-[0..m]]).primePowerFactors

Returns list of factors out of order, e.g.:

~>factors42[1,7,3,21,2,14,6,42]

Or,prime decomposition task can be used (although, a trial division-only version will become very slow for large primes),

importData.List(group)primePowerFactors=map(\x->(headx,lengthx)).group.factorize

The above function can also be found in the packagearithmoi, asMath.NumberTheory.Primes.factorise :: Integer -> [(Integer, Int)],which performs "factorisation of Integers by the elliptic curve algorithm after Montgomery" and "is best suited for numbers of up to 50-60 digits".

Or, deriving cofactors from factors up to the square root:

integerFactors::Int->[Int]integerFactorsn|1>n=[]|otherwise=lows<>(quotn<$>partn(reverselows))wherepartn|n==square=tail|otherwise=id(square,lows)=(,).(^2)<*>(filter((0==).remn).enumFromTo1)$floor(sqrt$fromIntegraln)main::IO()main=print$integerFactors600
Output:
[1,2,3,4,5,6,8,10,12,15,20,24,25,30,40,50,60,75,100,120,150,200,300,600]

List comprehension

Naive, functional, no import, in increasing order:

factorsNaiven=[i|i<-[1..n],modni==0]
~>factorsNaive25[1,5,25]

Factor,cofactor. Get the list of factor–cofactor pairs sorted, for a quadratic speedup:

importData.List(sort)factorsCon=sort[i|i<-[1..floor(sqrt(fromIntegraln))],(d,0)<-[divModni],i<-i:[d|d>i]]

A version of the above without the need for sorting, making it to beonline (i.e. productive immediately, which can be seen in GHCi); factors in increasing order:

factorsOn=ds++[r|(d,0)<-[divModnr],r<-r:[d|d>r]]++reverse(map(n`div`)ds)wherer=floor(sqrt(fromIntegraln))ds=[i|i<-[1..r-1],modni==0]

Testing:

*Main>:set+s~>factorsO120[1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120](0.00secs,0bytes)~>factorsO12041111117[1,7,41,287,541,3787,22181,77551,155267,542857,3179591,22257137,41955091,293685637,1720158731,12041111117](0.09secs,50758224bytes)

HicEst

 DLG(NameEdit=N, TItle='Enter an integer') DO i = 1, N^0.5   IF( MOD(N,i) == 0) WRITE() i, N/i ENDDOEND

Icon andUnicon

proceduremain(arglist)numbers:=arglist|||[32767,45,53,64,100]# combine command line provided and default set of valueseverywrites(lf,"factors of ",i:=!numbers,"=")&writes(divisors(i)," ")dolf:="\n"endlinkfactors
Output:
factors of 32767=1 7 31 151 217 1057 4681 32767factors of 45=1 3 5 9 15 45factors of 53=1 53factors of 64=1 2 4 8 16 32 64factors of 100=1 2 4 5 10 20 25 50 100
Library:Icon Programming Library

divisors

Insitux

Translation of:Clojure
(function factors n  (filter (div? n) (range 1 (inc n))))(factors 45)
Output:
[1 3 5 9 15 45]

J

The "brute force" approach is the most concise:

foi=:[:I.0=(|~i.@>:)

Example use:

foi4012458102040

Basically we test every non-negative integer up through the number itself to see if it divides evenly.

However, this becomes very slow for large numbers. So other approaches can be worthwhile.

J has a primitive, q: which returns its argument's prime factors.

q:402225

Alternatively, q: can produce provide a table of the exponents of the unique relevant prime factors

__q:42023572111

With this, we can form lists of each of the potential relevant powers of each of these prime factors

(^i.@>:)&.>/__q:420┌─────┬───┬───┬───┐124131517└─────┴───┴───┴───┘

From here, it's a simple matter (*/&>@{ or, find all possible combinations of one item from each list ({ without a left argument) then unpack each list and multiply its elements) to compute all possible factors of the original number

factrs=:*/&>@{@((^i.@>:)&.>/)@q:~&__factrs4015210420840

However, a data structure which is organized around the prime decomposition of the argument can be hard to read. So, for reader convenience, we should probably arrange them in a monotonically increasing list:

   factrst=: [: /:~@, */&>@{@((^ i.@>:)&.>/)@q:~&__   factrst 4201 2 3 4 5 6 7 10 12 14 15 20 21 28 30 35 42 60 70 84 105 140 210 420

A less efficient, but concise variation on this theme:

    ~.,*/&> { 1 ,&.> q: 401 5 2 10 4 20 8 40

This computes 2^n intermediate values where n is the number of prime factors of the original number.

That said, note that we get a representation issue when dealing with large numbers:

   factors 5684742201 2 4 5 10 17 20 34 68 85 170 340 1.67198e6 3.34397e6 6.68793e6 8.35992e6 1.67198e7 2.84237e7 3.34397e7 5.68474e7 1.13695e8 1.42119e8 2.84237e8 5.68474e8

One approach here (if we don't want to explicitly format the result) is to use an arbitrary precision (aka "extended") argument. This propagates through into the result:

   factors 568474220x1 2 4 5 10 17 20 34 68 85 170 340 1671983 3343966 6687932 8359915 16719830 28423711 33439660 56847422 113694844 142118555 284237110 568474220

Another less efficient approach, in which remainders are examined up to the square root, larger factors obtained as fractions, and the combined list nubbed and sorted might be:

factorsOfNumber=: monad define  Y=. y"_  /:~ ~. ( , Y%]) ( #~ 0=]|Y) 1+i.>.%:y)   factorsOfNumber 401 2 4 5 8 10 20 40

Another approach:

odometer =: #: i.@(*/)factors=: (*/@:^"1 odometer@:>:)/@q:~&__

See also the J essaysOdometer andDivisors.

Java

Works with:Java version 5+
public static TreeSet<Long> factors(long n){ TreeSet<Long> factors = new TreeSet<Long>(); factors.add(n); factors.add(1L); for(long test = n - 1; test >= Math.sqrt(n); test--)  if(n % test == 0)  {   factors.add(test);   factors.add(n / test);  } return factors;}

JavaScript

Imperative

function factors(num){ var  n_factors = [],  i; for (i = 1; i <= Math.floor(Math.sqrt(num)); i += 1)  if (num % i === 0)  {   n_factors.push(i);   if (num / i !== i)    n_factors.push(num / i);  } n_factors.sort(function(a, b){return a - b;});  // numeric sort return n_factors;}factors(45);  // [1,3,5,9,15,45] factors(53);  // [1,53] factors(64);  // [1,2,4,8,16,32,64]

Functional

ES5

Translating the naive list comprehension example from Haskell, using a list monad for the comprehension

// Monadic bind (chain) for listsfunction chain(xs, f) {  return [].concat.apply([], xs.map(f));}// [m..n]function range(m, n) {  return Array.apply(null, Array(n - m + 1)).map(function (x, i) {    return m + i;  });}function factors_naive(n) {  return chain( range(1, n), function (x) {       // monadic chain/bind    return n % x ? [] : [x];                      // monadic fail or inject/return  });}factors_naive(6)

Output:

[1, 2, 3, 6]

Translating the Haskell (lows and highs) example

console.log(  (function (lstTest) {    // INTEGER FACTORS    function integerFactors(n) {      var rRoot = Math.sqrt(n),        intRoot = Math.floor(rRoot),        lows = range(1, intRoot).filter(function (x) {          return (n % x) === 0;        });      // for perfect squares, we can drop the head of the 'highs' list      return lows.concat(lows.map(function (x) {        return n / x;      }).reverse().slice((rRoot === intRoot) | 0));    }    // [m .. n]    function range(m, n) {      return Array.apply(null, Array(n - m + 1)).map(function (x, i) {        return m + i;      });    }    /*************************** TESTING *****************************/    // TABULATION OF RESULTS IN SPACED AND ALIGNED COLUMNS    function alignedTable(lstRows, lngPad, fnAligned) {      var lstColWidths = range(0, lstRows.reduce(function (a, x) {        return x.length > a ? x.length : a;      }, 0) - 1).map(function (iCol) {        return lstRows.reduce(function (a, lst) {          var w = lst[iCol] ? lst[iCol].toString().length : 0;          return (w > a) ? w : a;        }, 0);      });      return lstRows.map(function (lstRow) {        return lstRow.map(function (v, i) {          return fnAligned(v, lstColWidths[i] + lngPad);        }).join('')      }).join('\n');    }    function alignRight(n, lngWidth) {      var s = n.toString();      return Array(lngWidth - s.length + 1).join(' ') + s;    }    // TEST    return '\nintegerFactors(n)\n\n' + alignedTable(      lstTest.map(integerFactors).map(function (x, i) {        return [lstTest[i], '-->'].concat(x);      }), 2, alignRight    ) + '\n';  })([25, 45, 53, 64, 100, 102, 120, 12345, 32766, 32767]));

Output:

integerFactors(n)     25  -->  1   5  25     45  -->  1   3   5    9   15    45     53  -->  1  53     64  -->  1   2   4    8   16    32    64    100  -->  1   2   4    5   10    20    25     50  100    102  -->  1   2   3    6   17    34    51    102    120  -->  1   2   3    4    5     6     8     10   12   15   20   24    30     40     60    120  12345  -->  1   3   5   15  823  2469  4115  12345  32766  -->  1   2   3    6   43    86   127    129  254  258  381  762  5461  10922  16383  32766  32767  -->  1   7  31  151  217  1057  4681  32767


ES6

(function (lstTest) {    'use strict';    // INTEGER FACTORS    // integerFactors :: Int -> [Int]    let integerFactors = (n) => {            let rRoot = Math.sqrt(n),                intRoot = Math.floor(rRoot),                lows = range(1, intRoot)                .filter(x => (n % x) === 0);            // for perfect squares, we can drop             // the head of the 'highs' list            return lows.concat(lows                .map(x => n / x)                .reverse()                .slice((rRoot === intRoot) | 0)            );        },        // range :: Int -> Int -> [Int]        range = (m, n) => Array.from({            length: (n - m) + 1        }, (_, i) => m + i);    /*************************** TESTING *****************************/    // TABULATION OF RESULTS IN SPACED AND ALIGNED COLUMNS    let alignedTable = (lstRows, lngPad, fnAligned) => {            var lstColWidths = range(                    0, lstRows                    .reduce(                        (a, x) => (x.length > a ? x.length : a),                        0                    ) - 1                )                .map((iCol) => lstRows                    .reduce((a, lst) => {                        let w = lst[iCol] ? lst[iCol].toString()                            .length : 0;                        return (w > a) ? w : a;                    }, 0));            return lstRows.map((lstRow) =>                    lstRow.map((v, i) => fnAligned(                        v, lstColWidths[i] + lngPad                    ))                    .join('')                )                .join('\n');        },        alignRight = (n, lngWidth) => {            let s = n.toString();            return Array(lngWidth - s.length + 1)                .join(' ') + s;        };    // TEST    return '\nintegerFactors(n)\n\n' + alignedTable(lstTest        .map(integerFactors)        .map(            (x, i) => [lstTest[i], '-->'].concat(x)        ), 2, alignRight    ) + '\n';})([25, 45, 53, 64, 100, 102, 120, 12345, 32766, 32767]);
Output:
integerFactors(n)     25  -->  1   5  25     45  -->  1   3   5    9   15    45     53  -->  1  53     64  -->  1   2   4    8   16    32    64    100  -->  1   2   4    5   10    20    25     50  100    102  -->  1   2   3    6   17    34    51    102    120  -->  1   2   3    4    5     6     8     10   12   15   20   24    30     40     60    120  12345  -->  1   3   5   15  823  2469  4115  12345  32766  -->  1   2   3    6   43    86   127    129  254  258  381  762  5461  10922  16383  32766  32767  -->  1   7  31  151  217  1057  4681  32767

jq

Works with:jq version 1.4
# This implementation uses "sort" for tidinessdef factors:  . as $num  | reduce range(1; 1 + sqrt|floor) as $i      ([];       if ($num % $i) == 0 then         ($num / $i) as $r         | if $i == $r then . + [$i] else . + [$i, $r] end       else .        end )  | sort; def task:  (45, 53, 64) | "\(.): \(factors)" ;task
Output:
$ jq -n -M -r -c -f factors.jq45: [1,3,5,9,15,45]53: [1,53]64: [1,2,4,8,16,32,64]

Julia

using Primes""" Return the factors of n, including 1, n """function factors(n::T)::Vector{T} where T <: Integer  sort(vec(map(prod, Iterators.product((p.^(0:m) for (p, m) in eachfactor(n))...))))endconst examples = [28, 45, 53, 64, 6435789435768]for n in examples    @time println("The factors of $n are: $(factors(n))")end
Output:
The factors of 28 are: [1, 2, 4, 7, 14, 28]  0.330684 seconds (784.75 k allocations: 39.104 MiB, 3.17% gc time)The factors of 45 are: [1, 3, 5, 9, 15, 45]  0.000117 seconds (56 allocations: 2.672 KiB)The factors of 53 are: [1, 53]  0.000102 seconds (35 allocations: 1.516 KiB)The factors of 64 are: [1, 2, 4, 8, 16, 32, 64]  0.000093 seconds (56 allocations: 3.172 KiB)The factors of 6435789435768 are: [1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 21, 22, 24, 28, 33, 42, 44, 56, 66, 77, 84, 88, 132, 154, 168, 191, 231, 264, 308, 382, 462, 573, 616, 764, 924, 1146, 1337, 1528, 1848, 2101, 2292, 2674, 4011, 4202, 4584, 5348, 6303, 8022, 8404, 10696, 12606, 14707, 16044, 16808, 25212, 29414, 32088, 44121, 50424, 58828, 88242, 117656, 176484, 352968, 18233351, 36466702, 54700053, 72933404, 109400106, 127633457, 145866808, 200566861, 218800212, 255266914, 382900371, 401133722, 437600424, 510533828, 601700583, 765800742, 802267444, 1021067656, 1203401166, 1403968027, 1531601484, 1604534888, 2406802332, 2807936054, 3063202968, 3482570041, 4211904081, 4813604664, 5615872108, 6965140082, 8423808162, 10447710123, 11231744216, 13930280164, 16847616324, 20895420246, 24377990287, 27860560328, 33695232648, 38308270451, 41790840492, 48755980574, 73133970861, 76616540902, 83581680984, 97511961148, 114924811353, 146267941722, 153233081804, 195023922296, 229849622706, 268157893157, 292535883444, 306466163608, 459699245412, 536315786314, 585071766888, 804473679471, 919398490824, 1072631572628, 1608947358942, 2145263145256, 3217894717884, 6435789435768]  0.000249 seconds (451 allocations: 24.813 KiB)

K

 f:{i:{y[&x=y*x div y]}[x;1+!_sqrt x];?i,x div|i}equivalent to:q)f:{i:{y where x=y*x div y}[x ; 1+ til floor sqrt x]; distinct i,x div reverse i}   f 1201 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120   f 10241 2 4 8 16 32 64 128 256 512 1024   f 6008514751431 71 839 1471 6857 59569 104441 486847 1234169 5753023 10086647 87625999 408464633 716151937 8462696833 600851475143   #f 3491888400 / has 1920 factors1920   / Number of factors for 3491888400 .. 3491888409   #:'f' 3491888400+!101920 16 4 4 12 16 32 16 8 24

Kotlin

fun printFactors(n: Int) {    if (n < 1) return    print("$n => ")    (1..n / 2)        .filter { n % it == 0 }        .forEach { print("$it ") }    println(n)}fun main(args: Array<String>) {    val numbers = intArrayOf(11, 21, 32, 45, 67, 96)    for (number in numbers) printFactors(number)}
Output:
11 => 1 1121 => 1 3 7 2132 => 1 2 4 8 16 3245 => 1 3 5 9 15 4567 => 1 6796 => 1 2 3 4 6 8 12 16 24 32 48 96

Lambdatalk

{def factors {def factors.r   {lambda {:num :i :N}   {if {> :i :N}    then     else {if {= {% :num :i} 0}          then :i               {if {not {= {/ :num :i} :i}}                then {/ :num :i}                else}          else}            {factors.r :num {+ :i 1} :N} }}} {lambda {:n}  {S.sort < {factors.r :n 1 {sqrt :n}}}}}-> factors{factors 45}-> 1 3 5 9 15 45{factors 53}-> 1 53{factors 64}-> 1 2 4 8 16 32 64

LFE

Using List Comprehensions

This following function is elegant looking and concise. However, it will not handle large numbers well: it will consume a great deal of memory (on one large number, the function consumed 4.3GB of memory on my desktop machine):

(defun factors (n)  (list-comp    ((<- i (when (== 0 (rem n i))) (lists:seq 1 (trunc (/ n 2)))))    i))

Non-Stack-Consuming

This version will not consume the stack (this function only used 18MB of memory on my machine with a ridiculously large number):

(defun factors (n)  "Tail-recursive prime factors function."  (factors n 2 '()))(defun factors  ((1 _ acc) (++ acc '(1)))  ((n _ acc) (when (=< n 0))    #(error undefined))  ((n k acc) (when (== 0 (rem n k)))    (factors (div n k) k (cons k acc)))  ((n k acc)    (factors n (+ k 1) acc)))
Output:
> (factors 10677106534462215678539721403561279)(104729 104729 104729 98731 98731 32579 29269 1)

Lingo

on factors(n)   res = [1]  repeat with i = 2 to n/2    if n mod i = 0 then res.add(i)  end repeat  res.add(n)  return resend
put factors(45)-- [1, 3, 5, 9, 15, 45]put factors(53)-- [1, 53]put factors(64)-- [1, 2, 4, 8, 16, 32, 64]

Logo

to factors :n  output filter [equal? 0 modulo :n ?] iseq 1 :nendshow factors 28       ; [1 2 4 7 14 28]

Lua

function Factors( n )     local f = {}        for i = 1, n/2 do        if n % i == 0 then             f[#f+1] = i        end    end    f[#f+1] = n        return fend

M2000 Interpreter

\\ Factors of an integer\\ For act as BASIC's FOR (if N<1 no loop start)FORM 60,40SET SWITCHES "+FOR"MODULE LikeBasic {           10 INPUT N%      20 FOR I%=1 TO N%      30 IF N%/I%=INT(N%/I%) THEN PRINT I%,      40 NEXT I%      50 PRINT}CALL LikeBasicSET SWITCHES "-FOR"MODULE LikeM2000 {      DEF DECIMAL N%, I%      INPUT N%      IF N%<1 THEN EXIT      FOR I%=1 TO N% {          IF N% MOD I%=0 THEN PRINT I%,      }      PRINT}CALL LikeM2000

Maple

numtheory:-divisors(n);

Mathematica /Wolfram Language

Factorize[n_Integer] := Divisors[n]

MATLAB /Octave

  function fact(n);    f = factor(n);% prime decomposition    K = dec2bin(0:2^length(f)-1)-'0';   % generate all possible permutations    F = ones(1,2^length(f));    for k = 1:size(K)      F(k) = prod(f(~K(k,:)));% and compute products     end;     F = unique(F);% eliminate duplicates    printf('There are %i factors for %i.\n',length(F),n);    disp(F);  end;
Output:
>> fact(12)There are 6 factors for 12.    1    2    3    4    6   12>> fact(28)There are 6 factors for 28.    1    2    4    7   14   28>> fact(64)There are 7 factors for 64.    1    2    4    8   16   32   64>>fact(53)There are 2 factors for 53.    1   53

Maxima

The builtindivisors function does this.

(%i96) divisors(100);(%o96) {1,2,4,5,10,20,25,50,100}

Such a function could be implemented like so:

divisors2(n) := map( lambda([l], lreduce("*", l)),    apply( cartesian_product,    map( lambda([fac],        setify(makelist(fac[1]^i, i, 0, fac[2]))),    ifactors(n))));

MAXScript

fn factors n =(return (for i = 1 to n+1 where mod n i == 0 collect i))
Output:
factors 3#(1, 3)factors 7#(1, 7)factors 14#(1, 2, 7, 14)factors 60#(1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60)factors 54#(1, 2, 3, 6, 9, 18, 27, 54)

Mercury

Mercury is both a logic language and a functional language. As such there are two possible interfaces for calculating the factors of an integer. This code shows both styles of implementation. Note that much of the code here is ceremony put in place to have this be something which can actually compile. The actual factoring is contained in the predicatefactor/2 and in the functionfactor/1. The function form is implemented in terms of the predicate form rather than duplicating all of the predicate code.

The predicates main/2 and factor/2 are shown with the combined type and mode statement (e.g. int::in) as is the usual case for simple predicates with only one mode. This makes the code more immediately understandable. The predicate factor/5, however, has its mode broken out onto a separate line both to show Mercury's mode statement (useful for predicates which can have varying instantiation of parameters) and to stop the code from extending too far to the right. Finally the function factor/1 has its mode statements removed (shown underneath in a comment for illustration purposes) because good coding style (and the default of the compiler!) has all parameters "in"-moded and the return value "out"-moded.

This implementation of factoring works as follows:

  1. The input number itself and 1 are both considered factors.
  2. The numbers between 2 and the square root of the input number are checked for even division.
  3. If the incremental number divides evenly into the input number, both the incremental number and the quotient are added to the list of factors.

This implementation makes use of Mercury's "state variable notation" to keep a pair of variables for accumulation, thus allowing the implementation to be tail recursive. !Accumulator is syntax sugar for a *pair* of variables. One of them is an "in"-moded variable and the other is an "out"-moded variable.  !:Accumulator is the "out" portion and !.Accumulator is the "in" portion in the ensuing code.

Using the state variable notation avoids having to keep track of strings of variables unified in the code named things like Acc0, Acc1, Acc2, Acc3, etc.

fac.m

:- module fac.:- interface.:- import_module io.:- pred main(io::di, io::uo) is det.:- implementation.:- import_module float, int, list, math, string.main(!IO) :-    io.command_line_arguments(Args, !IO),    list.filter_map(string.to_int, Args, CleanArgs),    list.foldl((pred(Arg::in, !.IO::di, !:IO::uo) is det :-                    factor(Arg, X),                    io.format("factor(%d, [", [i(Arg)], !IO),                    io.write_list(X, ",", io.write_int, !IO),                    io.write_string("])\n", !IO)               ), CleanArgs, !IO).:- pred factor(int::in, list(int)::out) is det.factor(N, Factors) :-    Limit = float.truncate_to_int(math.sqrt(float(N))),factor(N, 2, Limit, [], Unsorted),    list.sort_and_remove_dups([1, N | Unsorted], Factors). :- pred factor(int, int, int, list(int), list(int)).:- mode factor(in,  in,  in,  in,        out) is det.factor(N, X, Limit, !Accumulator) :-    ( if X  > Limit           then true          else ( if 0 = N mod X                      then !:Accumulator = [X, N / X | !.Accumulator]                     else true ),               factor(N, X + 1, Limit, !Accumulator) ).:- func factor(int) = list(int).%:- mode factor(in) = out is det.factor(N) = Factors :- factor(N, Factors).:- end_module fac.

Use and output

Use of the code looks like this:

$ mmc fac.m && ./fac 100 999 12345678 boogerfactor(100, [1,2,4,5,10,20,25,50,100])factor(999, [1,3,9,27,37,111,333,999])factor(12345678, [1,2,3,6,9,18,47,94,141,282,423,846,14593,29186,43779,87558,131337,262674,685871,1371742,2057613,4115226,6172839,12345678])

min

Works with:min version 0.19.6
(mod 0 ==) :divisor?(() 0 shorten) :new(new (over swons 'pred dip) pick times nip) :iota(  :n  n sqrt int iota                            ; Only consider numbers up to sqrt(n).  (n swap divisor?) filter =f1  f1 (n swap div) map reverse =f2            ; "Mirror" the list of divisors at sqrt(n).  (f1 last f2 first ==) (f2 rest #f2) when   ; Handle perfect squares.  f1 f2 concat) :factors24 factors puts!9 factors puts!11 factors puts!

MiniScript

factors = function(n)    result = [1]    for i in range(2, n)        if n % i == 0 then result.push i    end for    return resultend functionwhile true    n = val(input("Number to factor (0 to quit)? "))    if n <= 0 then break    print factors(n)end while
Output:
Number to factor (0 to quit)? 42[1, 2, 3, 6, 7, 14, 21, 42]Number to factor (0 to quit)? 101[1, 101]Number to factor (0 to quit)? 360[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360]Number to factor (0 to quit)? 0

МК-61/52

П91П6КИП6ИП9ИП6/П8^[x]x#021-x=003ИП6С/ПИП8П9БП041С/ПБП21

MUMPS

factors(num)New fctr,list,sep,sqrtIf num<1 Quit "Too small a number"If num["." Quit "Not an integer"Set sqrt=num**0.5\1For fctr=1:1:sqrt Set:num/fctr'["." list(fctr)=1,list(num/fctr)=1Set (list,fctr)="",sep="[" For  Set fctr=$Order(list(fctr)) Quit:fctr=""  Set list=list_sep_fctr,sep=","Quit list_"]"w $$factors(45) ; [1,3,5,9,15,45]w $$factors(53) ; [1,53]w $$factors(64) ; [1,2,4,8,16,32,64]

Nanoquery

n = int(input())for i in range(1, n / 2) if (n % i = 0)print i + " "endendprintln n

NetRexx

Translation of:REXX
/* NetRexx ************************************************************ 21.04.2013 Walter Pachl* 21.04.2013 add method main to accept argument(s)*********************************************************************/options replace format comments java crossref symbols nobinaryclass divl  method main(argwords=String[]) static    arg=Rexx(argwords)    Parse arg a b    Say a b    If a='' Then Do      help='java divl low [high] shows'      help=help||' divisors of all numbers between low and high'      Say help      Return      End    If b='' Then b=a    loop x=a To b      say x '->' divs(x)      Endmethod divs(x) public static returns Rexx  if x==1 then return 1               /*handle special case of 1     */  lo=1  hi=x  odd=x//2                            /* 1 if x is odd               */  loop j=2+odd By 1+odd While j*j<x   /*divide by numbers<sqrt(x)    */    if x//j==0 then Do                /*Divisible?  Add two divisors:*/      lo=lo j                         /* list low divisors           */      hi=x%j hi                       /* list high divisors          */      End    End  If j*j=x Then                       /*for a square number as input */    lo=lo j                           /* add its square root         */  return lo hi                        /* return both lists           */
Output:
java divl 1 101 -> 12 -> 1 23 -> 1 34 -> 1 2 45 -> 1 56 -> 1 2 3 67 -> 1 78 -> 1 2 4 89 -> 1 3 910 -> 1 2 5 10

Nim

import intsets, math, algorithm proc factors(n: int): seq[int] =  var fs: IntSet  for x in 1 .. int(sqrt(float(n))):    if n mod x == 0:      fs.incl(x)      fs.incl(n div x)   for x in fs:    result.add(x)  result.sort() echo factors(45)

Niue

[ 'n ; [ negative-or-zero [ , ] if        [ n not-factor [ , ] when ] else ] n times n ] 'factors ;[ dup 0 <= ] 'negative-or-zero ;[ swap dup rot swap mod 0 = not ] 'not-factor ;( tests )100 factors .s .clr ( => 1 2 4 5 10 20 25 50 100 ) newline53 factors .s .clr ( => 1 53 ) newline64 factors .s .clr ( => 1 2 4 8 16 32 64 ) newline12 factors .s .clr ( => 1 2 3 4 6 12 )

Oberon-2

Oxford Oberon-2

MODULE Factors;IMPORT Out,SYSTEM;TYPELIPool = POINTER TO ARRAY OF LONGINT;LIVector= POINTER TO LIVectorDesc;LIVectorDesc = RECORDcap: INTEGER;len: INTEGER;LIPool: LIPool;END;PROCEDURE New(cap: INTEGER): LIVector;VARv: LIVector;BEGINNEW(v);v.cap := cap;v.len := 0;NEW(v.LIPool,cap);RETURN vEND New;PROCEDURE (v: LIVector) Add(x: LONGINT);VAR newLIPool: LIPool;BEGINIF v.len = LEN(v.LIPool^) THEN(* run out of space *)v.cap := v.cap + (v.cap DIV 2);NEW(newLIPool,v.cap);SYSTEM.MOVE(SYSTEM.ADR(v.LIPool^),SYSTEM.ADR(newLIPool^),v.cap * SIZE(LONGINT));v.LIPool := newLIPoolEND;v.LIPool[v.len] := x;INC(v.len)END Add;PROCEDURE (v: LIVector) At(idx: INTEGER): LONGINT;BEGINRETURN v.LIPool[idx];END At;PROCEDURE Factors(n:LONGINT): LIVector;VAR j: LONGINT;v: LIVector;BEGINv := New(16);FOR j := 1 TO n DOIF (n MOD j) = 0 THEN v.Add(j) END;END; RETURN vEND Factors;VARv: LIVector;j: INTEGER;BEGINv := Factors(123);FOR j := 0 TO v.len - 1 DOOut.LongInt(v.At(j),4);Out.LnEND;Out.Int(v.len,6);Out.String(" factors");Out.LnEND Factors.
Output:
      1   3  41 123     4 factors

Objeck

use IO;use Structure;bundle Default {  class Basic {    function : native : GenerateFactors(n : Int)  ~ IntVector {      factors := IntVector->New();      factors-> AddBack(1);      factors->AddBack(n);      for(i := 2; i * i <= n; i += 1;) {        if(n % i = 0) {          factors->AddBack(i);          if(i * i <> n) {            factors->AddBack(n / i);          };        };      };      factors->Sort();              return factors;    }         function : Main(args : String[]) ~ Nil {      numbers := [3135, 45, 60, 81];      for(i := 0; i < numbers->Size(); i += 1;) {        factors := GenerateFactors(numbers[i]);                Console->GetInstance()->Print("Factors of ")->Print(numbers[i])->PrintLine(" are:");        each(i : factors) {          Console->GetInstance()->Print(factors->Get(i))->Print(", ");        };        "\n\n"->Print();      };    }  }}

OCaml

let rec range = function 0 -> [] | n -> range(n-1) @ [n]let factors n =  List.filter (fun v -> (n mod v) = 0) (range n)

Odin

Uses built-in dynamic arrays, and only checks up to the square root

package mainimport "core:fmt"import "core:slice"factors :: proc(n: int) -> [dynamic]int {    d := 1    factors := make([dynamic]int)    for {        q := n / d        r := n % d        if d >= q {            if d == q && r == 0 {                append(&factors, d)            }            slice.sort(factors[:])            return factors        }        if r == 0 {            append(&factors, d, q)        }        d += 1    }}main :: proc() {    for n in ([?]int{100, 108, 999, 255, 256, 257}) {        a := factors(n)        fmt.println("The factors of", n, "are", a)        delete(a)    }}
Output:
The factors of 100 are [1, 2, 4, 5, 10, 20, 25, 50, 100]The factors of 108 are [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108]The factors of 999 are [1, 3, 9, 27, 37, 111, 333, 999]The factors of 255 are [1, 3, 5, 15, 17, 51, 85, 255]The factors of 256 are [1, 2, 4, 8, 16, 32, 64, 128, 256]The factors of 257 are [1, 257]

Oforth

Integer method: factors  self seq filter(#[ self isMultiple ]) ;120 factors println
Output:
[1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120]

Oz

declare  fun {Factors N}     Sqr = {Float.toInt {Sqrt {Int.toFloat N}}}      Fs = for X in 1..Sqr append:App do             if N mod X == 0 then                CoFactor = N div X             in                if CoFactor == X then %% avoid duplicate factor                   {App [X]}          %% when N is a square number                else                   {App [X CoFactor]}                end             end          end  in     {Sort Fs Value.'<'}  endin  {Show {Factors 53}}

Panda

Panda has a factor function already, it's defined as:

fun factor(n) type integer->integer   f where n.mod(1..n=>f)==045.factor

PARI/GP

divisors(n)

Pascal

Translation of:Fortran
Works with:Free Pascal version 2.6.2
program Factors;var  i, number: integer;begin   write('Enter a number between 1 and 2147483647: ');  readln(number);   for i := 1 to round(sqrt(number)) - 1 do    if number mod i = 0 then      write (i, ' ',  number div i, ' ');   // Check to see if number is a square  i := round(sqrt(number));  if i*i = number then     write(i)  else if number mod i = 0 then     write(i, number/i);  writeln;end.
Output:
Enter a number between 1 and 2147483647: 491 49 7Enter a number between 1 and 2147483647: 3534351 25755 3 8585 5 5151 15 1717 17 1515 51 505 85 303 101 255

using Prime decomposition

Works with:Free Pascal

like [C Prime_factoring].
Insertion sort was much faster, because mostly not so many factors need to be sorted.
"runtime overhead" +25% instead +100% for quicksort against no sort.
Especially fast for consecutive integers.

program FacOfInt;// gets factors of consecutive integers fast// limited to 1.2e11{$IFDEF FPC}  {$MODE DELPHI}  {$OPTIMIZATION ON,ALL}  {$COPERATORS ON}{$ELSE}  {$APPTYPE CONSOLE}{$ENDIF}uses  sysutils{$IFDEF WINDOWS},Windows{$ENDIF}  ;//######################################################################//prime decompositionconst//HCN(86) > 1.2E11 = 128,501,493,120     count of divs = 4096   7 3 1 1 1 1 1 1 1  HCN_DivCnt  = 4096;type  tItem     = Uint64;  tDivisors = array [0..HCN_DivCnt] of tItem;  tpDivisor = pUint64;const  //used odd size for test only  SizePrDeFe = 32768;//*72 <= 64kb level I or 2 Mb ~ level 2 cachetype  tdigits = array [0..31] of Uint32;  //the first number with 11 different prime factors =  //2*3*5*7*11*13*17*19*23*29*31 = 2E11  //56 byte  tprimeFac = packed record                 pfSumOfDivs,                 pfRemain  : Uint64;                 pfDivCnt  : Uint32;                 pfMaxIdx  : Uint32;                 pfpotPrimIdx : array[0..9] of word;                 pfpotMax  : array[0..11] of byte;               end;  tpPrimeFac = ^tprimeFac;  tPrimeDecompField = array[0..SizePrDeFe-1] of tprimeFac;  tPrimes = array[0..65535] of Uint32;var  {$ALIGN 8}  SmallPrimes: tPrimes;  {$ALIGN 32}  PrimeDecompField :tPrimeDecompField;  pdfIDX,pdfOfs: NativeInt;procedure InitSmallPrimes;//get primes. #0..65535.Sieving only odd numbersconst  MAXLIMIT = (821641-1) shr 1;var  pr : array[0..MAXLIMIT] of byte;  p,j,d,flipflop :NativeUInt;Begin  SmallPrimes[0] := 2;  fillchar(pr[0],SizeOf(pr),#0);  p := 0;  repeat    repeat      p +=1    until pr[p]= 0;    j := (p+1)*p*2;    if j>MAXLIMIT then      BREAK;    d := 2*p+1;    repeat      pr[j] := 1;      j += d;    until j>MAXLIMIT;  until false;  SmallPrimes[1] := 3;  SmallPrimes[2] := 5;  j := 3;  d := 7;  flipflop := (2+1)-1;//7+2*2,11+2*1,13,17,19,23  p := 3;  repeat    if pr[p] = 0 then    begin      SmallPrimes[j] := d;      inc(j);    end;    d += 2*flipflop;    p+=flipflop;    flipflop := 3-flipflop;  until (p > MAXLIMIT) OR (j>High(SmallPrimes));end;function OutPots(pD:tpPrimeFac;n:NativeInt):Ansistring;var  s: String[31];  chk,p,i: NativeInt;Begin  str(n,s);  result := s+' :';  with pd^ do  begin    str(pfDivCnt:3,s);    result += s+' : ';    chk := 1;    For n := 0 to pfMaxIdx-1 do    Begin      if n>0 then        result += '*';      p := SmallPrimes[pfpotPrimIdx[n]];      chk *= p;      str(p,s);      result += s;      i := pfpotMax[n];      if i >1 then      Begin        str(pfpotMax[n],s);        result += '^'+s;        repeat          chk *= p;          dec(i);        until i <= 1;      end;    end;    p := pfRemain;    If p >1 then    Begin      str(p,s);      chk *= p;      result += '*'+s;    end;    str(chk,s);    result += '_chk_'+s+'<';    str(pfSumOfDivs,s);    result += '_SoD_'+s+'<';  end;end;function smplPrimeDecomp(n:Uint64):tprimeFac;var  pr,i,pot,fac,q :NativeUInt;Begin  with result do  Begin    pfDivCnt := 1;    pfSumOfDivs := 1;    pfRemain := n;    pfMaxIdx := 0;    pfpotPrimIdx[0] := 1;    pfpotMax[0] := 0;    i := 0;    while i < High(SmallPrimes) do    begin      pr := SmallPrimes[i];      q := n DIV pr;      //if n < pr*pr      if pr > q then         BREAK;      if n = pr*q then      Begin        pfpotPrimIdx[pfMaxIdx] := i;        pot := 0;        fac := pr;        repeat          n := q;          q := n div pr;          pot+=1;          fac *= pr;        until n <> pr*q;        pfpotMax[pfMaxIdx] := pot;        pfDivCnt *= pot+1;        pfSumOfDivs *= (fac-1)DIV(pr-1);        inc(pfMaxIdx);      end;      inc(i);    end;    pfRemain := n;    if n > 1 then    Begin      pfDivCnt *= 2;      pfSumOfDivs *= n+1    end;  end;end;function CnvtoBASE(var dgt:tDigits;n:Uint64;base:NativeUint):NativeInt;//n must be multiple of base aka n mod base must be 0var  q,r: Uint64;  i : NativeInt;Begin  fillchar(dgt,SizeOf(dgt),#0);  i := 0;  n := n div base;  result := 0;  repeat    r := n;    q := n div base;    r  -= q*base;    n := q;    dgt[i] := r;    inc(i);  until (q = 0);  //searching lowest pot in base  result := 0;  while (result<i) AND (dgt[result] = 0) do    inc(result);  inc(result);end;function IncByBaseInBase(var dgt:tDigits;base:NativeInt):NativeInt;var  q :NativeInt;Begin  result := 0;  q := dgt[result]+1;  if q = base then    repeat      dgt[result] := 0;      inc(result);      q := dgt[result]+1;    until q <> base;  dgt[result] := q;  result +=1;end;function SieveOneSieve(var pdf:tPrimeDecompField):boolean;var  dgt:tDigits;  i,j,k,pr,fac,n,MaxP : Uint64;begin  n := pdfOfs;  if n+SizePrDeFe >= sqr(SmallPrimes[High(SmallPrimes)]) then    EXIT(FALSE);  //init  for i := 0 to SizePrDeFe-1 do  begin    with pdf[i] do    Begin      pfDivCnt := 1;      pfSumOfDivs := 1;      pfRemain := n+i;      pfMaxIdx := 0;      pfpotPrimIdx[0] := 0;      pfpotMax[0] := 0;    end;  end;  //first factor 2. Make n+i even  i := (pdfIdx+n) AND 1;  IF (n = 0) AND (pdfIdx<2)  then    i := 2;  repeat    with pdf[i] do    begin      j := BsfQWord(n+i);      pfMaxIdx := 1;      pfpotPrimIdx[0] := 0;      pfpotMax[0] := j;      pfRemain := (n+i) shr j;      pfSumOfDivs := (Uint64(1) shl (j+1))-1;      pfDivCnt := j+1;    end;    i += 2;  until i >=SizePrDeFe;  //i now index in SmallPrimes  i := 0;  maxP := trunc(sqrt(n+SizePrDeFe))+1;  repeat    //search next prime that is in bounds of sieve    if n = 0 then    begin      repeat        inc(i);        pr := SmallPrimes[i];        k := pr-n MOD pr;        if k < SizePrDeFe then          break;      until pr > MaxP;    end    else    begin      repeat        inc(i);        pr := SmallPrimes[i];        k := pr-n MOD pr;        if (k = pr) AND (n>0) then          k:= 0;        if k < SizePrDeFe then          break;      until pr > MaxP;    end;    //no need to use higher primes    if pr*pr > n+SizePrDeFe then      BREAK;    //j is power of prime    j := CnvtoBASE(dgt,n+k,pr);    repeat      with pdf[k] do      Begin        pfpotPrimIdx[pfMaxIdx] := i;        pfpotMax[pfMaxIdx] := j;        pfDivCnt *= j+1;        fac := pr;        repeat          pfRemain := pfRemain DIV pr;          dec(j);          fac *= pr;        until j<= 0;        pfSumOfDivs *= (fac-1)DIV(pr-1);        inc(pfMaxIdx);        k += pr;        j := IncByBaseInBase(dgt,pr);      end;    until k >= SizePrDeFe;  until false;  //correct sum of & count of divisors  for i := 0 to High(pdf) do  Begin    with pdf[i] do    begin      j := pfRemain;      if j <> 1 then      begin        pfSumOFDivs *= (j+1);        pfDivCnt *=2;      end;    end;  end;  result := true;end;function NextSieve:boolean;begin  dec(pdfIDX,SizePrDeFe);  inc(pdfOfs,SizePrDeFe);  result := SieveOneSieve(PrimeDecompField);end;function GetNextPrimeDecomp:tpPrimeFac;begin  if pdfIDX >= SizePrDeFe then    if Not(NextSieve) then      EXIT(NIL);  result := @PrimeDecompField[pdfIDX];  inc(pdfIDX);end;function Init_Sieve(n:NativeUint):boolean;//Init Sieve pdfIdx,pdfOfs are Globalbegin  pdfIdx := n MOD SizePrDeFe;  pdfOfs := n-pdfIdx;  result := SieveOneSieve(PrimeDecompField);end;procedure InsertSort(pDiv:tpDivisor; Left, Right : NativeInt );var  I, J: NativeInt;  Pivot : tItem;begin  for i:= 1 + Left to Right do  begin    Pivot:= pDiv[i];    j:= i - 1;    while (j >= Left) and (pDiv[j] > Pivot) do    begin      pDiv[j+1]:=pDiv[j];      Dec(j);    end;    pDiv[j+1]:= pivot;  end;end;procedure GetDivisors(pD:tpPrimeFac;var Divs:tDivisors);var  pDivs : tpDivisor;  pPot : UInt64;  i,len,j,l,p,k: Int32;Begin  pDivs := @Divs[0];  pDivs[0] := 1;  len := 1;  l   := 1;  with pD^ do  Begin    For i := 0 to pfMaxIdx-1 do    begin      //Multiply every divisor before with the new primefactors      //and append them to the list      k := pfpotMax[i];      p := SmallPrimes[pfpotPrimIdx[i]];      pPot :=1;      repeat        pPot *= p;        For j := 0 to len-1 do        Begin          pDivs[l]:= pPot*pDivs[j];          inc(l);        end;        dec(k);      until k<=0;      len := l;    end;    p := pfRemain;    If p >1 then    begin      For j := 0 to len-1 do      Begin        pDivs[l]:= p*pDivs[j];        inc(l);      end;      len := l;    end;  end;  //Sort. Insertsort much faster than QuickSort in this special case  InsertSort(pDivs,0,len-1);  //end marker  pDivs[len] :=0;end;procedure AllFacsOut(var Divs:tdivisors;proper:boolean=true);var  k,j: Int32;Begin  k := 0;  j := 1;  if Proper then    j:= 2;  repeat    IF Divs[j] = 0 then      BREAK;    write(Divs[k],',');    inc(j);    inc(k);  until false;  writeln(Divs[k]);end;var  pPrimeDecomp :tpPrimeFac;  Mypd : tPrimeFac;  Divs:tDivisors;  T0:Int64;  n : NativeUInt;Begin  InitSmallPrimes;  T0 := GetTickCount64;  n := 0;  Init_Sieve(0);  repeat    pPrimeDecomp:= GetNextPrimeDecomp;    GetDivisors(pPrimeDecomp,Divs);    inc(n);  until n > 10*1000*1000+1;  T0 := GetTickCount64-T0;  writeln('runtime ',T0/1000:0:3,' s');  GetDivisors(pPrimeDecomp,Divs);  AllFacsOut(Divs,true);  AllFacsOut(Divs,false);  writeln('simple version');  T0 := GetTickCount64;  n := 0;  repeat    Mypd:= smplPrimeDecomp(n);    GetDivisors(@Mypd,Divs);    inc(n);  until n > 10*1000*1000+1;  T0 := GetTickCount64-T0;  writeln('runtime ',T0/1000:0:3,' s');  GetDivisors(@Mypd,Divs);  AllFacsOut(Divs,true);  AllFacsOut(Divs,false);end.
Output:
TIO.RUN//out-commented GetDivisors, but still calculates sum of divisors and count of divisorsruntime 0.555 s1,11,9090911,11,909091,10000001simple versionruntime 8.167 s1,11,9090911,11,909091,10000001Real time: 8.868 s  CPU share: 99.57 %//with GetDivisorsruntime 1.815 s1,11,9090911,11,909091,10000001simple versionruntime 11.057 s1,11,9090911,11,909091,10000001Real time: 13.082 s  CPU share: 99.16 %

PascalABC.NET

function Factors(n: integer): List<integer>;begin  var res := HSet(1,n);  for var i:=2 to n.Sqrt.Trunc do    if n.Divs(i) then    begin      res.Add(i);      res.Add(n div i);    end;  Result := res.Order.ToList;end;begin  foreach var x in |45,53,64| do    Println(x,Factors(x));end.
Output:
45 [1,3,5,9,15,45]53 [1,53]64 [1,2,4,8,16,32,64]


Perl

sub factors{        my($n) = @_;        return grep { $n % $_ == 0 }(1 .. $n);}print join ' ',factors(64), "\n";

Or more intelligently:

sub factors {  my $n = shift;  $n = -$n if $n < 0;  my @divisors;  for (1 .. int(sqrt($n))) {  # faster and less memory than map/grep    push @divisors, $_ unless $n % $_;  }  # Return divisors including top half, without duplicating a square  @divisors, map { $_*$_ == $n ? () : int($n/$_) } reverse @divisors;}print join " ", factors(64), "\n";

One could also use a module, e.g.:

Library:ntheory
use ntheory qw/divisors/;print join " ", divisors(12345678), "\n";# Alternately something like:  fordivisors { say } 12345678;

Phix

There is a builtin factors(n), which takes an optional second parameter to include 1 and n:

?factors(12345,1)
Output:
{1,3,5,15,823,2469,4115,12345}

You can find the implementation of factors(), prime_factors(), and prime_powers() in builtins\pfactors.e,
and mpz_factors(), mpz_prime_factors(), and mpz_pollard_rho() in mpfr.e for larger numbers, for example:

requires("1.0.2")-- [p2js/integer() bugs]includempfr.e?shorten(factors(3491888400),"factors",4)-- {2,3,4,5,"...",698377680,872972100,1163962800.0,1745944200.0," (1,918 factors)"}?shorten(mpz_factors(3491888400),"factors",4)-- {2,3,4,5,"...",698377680,872972100,1163962800.0,1745944200.0," (1,918 factors)"}-- If the include1 parameter is 1 or "BOTH", then you'll also get 1 and 3491888400?prime_factors(3491888400)-- {2,3,5,7,11,13,17,19}?prime_powers(3491888400)-- {{2,4},{3,3},{5,2},{7,1},{11,1},{13,1},{17,1},{19,1}}?vslice(mpz_prime_factors("3491888400",10000),1)-- {2,3,5,7,11,13,17,19}?mpz_prime_factors("3491888400",10000)-- {{2,4},{3,3},{5,2},{7,1},{11,1},{13,1},{17,1},{19,1}}-- Note that mpz_prime_factors() only accepts string or mpz, and not a raw native atom/integer.?length(factors(108233175859200,1))-- 666?length(mpz_factors(108233175859200,1))-- 666stringd="10677106534462215678539721403561279"?mpz_prime_factors(d,10000)-- {{29269,1},{32579,1},{98731,2},{104729,3}}?shorten(mpz_factors(d,1),"factors",2)-- {1,29269,"...","364792324112959639158827476291","10677106534462215678539721403561279"," (48 factors)"}

Note the value in (string) d exceeds the precision limit of an IEEE-754 float, and would trigger a suitable human readable run-time error if passed to any of the non-mpz routines. Sadly, 1200034005600070000008900000000000000000 exceeds the capabilities of my mpz_pollard_rho(), which I had hoped to showcase - perhaps you would like to improve it?

Phixmonti

/# Rosetta Code problem: http://rosettacode.org/wiki/Factors_of_an_integerby Galileo, 05/2022 #/include ..\Utilitys.pmtdef Factors >ps    ( ( 1 tps 2 / ) for tps over mod if drop endif endfor ps> )enddef11 Factors21 Factors32 factors45 factors67 factors96 factorspstack
Output:
[[1, 11], [1, 3, 7, 21], [1, 2, 4, 8, 16, 32], [1, 3, 5, 9, 15, 45], [1, 67], [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96]]=== Press any key to exit ===

PHP

function GetFactors($n){   $factors = array(1, $n);   for($i = 2; $i * $i <= $n; $i++){      if($n % $i == 0){         $factors[] = $i;         if($i * $i != $n)            $factors[] = $n/$i;      }   }   sort($factors);   return $factors;}

Picat

List comprehension

factors(N) = [[D,N // D] : D in 1..N.sqrt.floor, N mod D == 0].flatten.sort_remove_dups.

Recursion

Translation of:Prolog
factors2(N,Fs) :-  integer(N),  N > 0,  Fs = findall(F,factors2_(N,F)).sort_remove_dups. factors2_(N,F) :-  L = floor(sqrt(N)),  between(1,L,X),  0 == N mod X,  ( F = X ; F = N // X ).

Loop using set

factors3(N) = Set.keys.sort =>  Set = new_set(),  Set.put(1),  Set.put(N),  foreach(I in 1..floor(sqrt(N)), N mod I == 0)    Set.put(I),    Set.put(N//I)  end.

Comparison

Let's compare with 18! (6402373705728000) which has 14688 factors. The recursive version is slightly faster than the loop + set version.

go =>    N = 6402373705728000, % factorial(18),  println("factors:"),  time(_Fs1 = factors(N)) ,  println("factors2:"),  time(factors2(N,_Fs2)),  println("factors3:"),  time(Fs3=factors3(N)).len),
Output:
factors:CPU time 3.938 seconds.factors2:CPU time 3.108 seconds.factors3:CPU time 3.159 seconds.

PicoLisp

(de factors (N)   (filter      '((D) (=0 (% N D)))      (range 1 N) ) )

PILOT

T  :Enter a number.A  :#nC  :factor = 1T  :The factors of #n are:*LoopC  :remainder = n % factorT ( remainder = 0 )  :#factorJ ( factor = n )     :*FinishedC  :factor = factor + 1J  :*Loop*FinishedEND:

PL/0

Translation of:GW-BASIC

PL/0 does not handle strings. So, no prompt. The program waits for entering a number, and then displays the factors.

var n, absn, ndiv2, i;begin  ? n;  absn := n;  if n < 0 then absn := -n;   ndiv2 := absn / 2;  i := 1;  while i <= ndiv2 do  begin    if (absn / i) * i = absn then ! i;    i := i + 1  end;  ! absn;end.

4 runs.

Input:
1
Output:
       1
Input:
11
Output:
       1       2       3       4       6      12
Input:
13
Output:
       1      13
Input:
-22222
Output:
       1       2      41      82     271     542   11111   22222

PL/I

factors: procedure options(main);   declare i binary( 15 )fixed;   declare n binary( 15 )fixed;    do n = 90 to 100;       put skip list( 'factors of: ', n, ': ' );       do i = 1 to n;         if mod(n, i) = 0 then put edit( i )(f(4));       end;    end;end factors;
Output:
factors of:         90 :    1   2   3   5   6   9  10  15  18  30  45  90factors of:         91 :    1   7  13  91factors of:         92 :    1   2   4  23  46  92factors of:         93 :    1   3  31  93factors of:         94 :    1   2  47  94factors of:         95 :    1   5  19  95factors of:         96 :    1   2   3   4   6   8  12  16  24  32  48  96factors of:         97 :    1  97factors of:         98 :    1   2   7  14  49  98factors of:         99 :    1   3   9  11  33  99factors of:        100 :    1   2   4   5  10  20  25  50 100

See also#Polyglot:PL/I and PL/M

PL/M

See#Polyglot:PL/I and PL/M

Plain English

To run:Start up.Show the factors of 11.Show the factors of 21.Show the factors of 519.Wait for the escape key.Shut down.To show the factors of a number:Write "The factors of " then the number then ":" on the console.Find a square root of the number.Loop.If a counter is past the square root, write "" on the console; exit.Divide the number by the counter giving a quotient and a remainder.If the remainder is 0, show the counter and the quotient.Repeat.A factor is a number.To show a factor and another factor:If the factor is not the other factor, write "" then the factor then " " then the other factor then " " on the console without advancing; exit.Write "" then the factor on the console without advancing.
Output:
The factors of 11:1 11The factors of 21:1 21 3 7The factors of 519:1 519 3 173

Polyglot:PL/I and PL/M

Works with:8080 PL/M Compiler

... under CP/M (or an emulator)

Should work with many PL/I implementations.
The PL/I include file "pg.inc" can be found on thePolyglot:PL/I and PL/M page.Note the use of text in column 81 onwards to hide the PL/I specifics from the PL/M compiler.

factors_100H: procedure options                                                 (main);/* PL/I DEFINITIONS                                                             */%include 'pg.inc';/* PL/M DEFINITIONS: CP/M BDOS SYSTEM CALL AND CONSOLE I/O ROUTINES, ETC. */    /*   DECLARE BINARY LITERALLY 'ADDRESS', CHARACTER LITERALLY 'BYTE';   DECLARE SADDR  LITERALLY '.',       BIT       LITERALLY 'BYTE';   DECLARE FIXED  LITERALLY ' ';   BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;   END;   PRSTRING: PROCEDURE( S );   DECLARE S ADDRESS;   CALL BDOS( 9, S ); END;   PRCHAR:   PROCEDURE( C );   DECLARE C CHARACTER; CALL BDOS( 2, C ); END;   PRNL:     PROCEDURE;        CALL PRCHAR( 0DH ); CALL PRCHAR( 0AH ); END;   PRNUMBER: PROCEDURE( N );      DECLARE N ADDRESS;      DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;      N$STR( W := LAST( N$STR ) ) = '$';      N$STR( W := W - 1 ) = '0' + ( ( V := N ) MOD 10 );      DO WHILE( ( V := V / 10 ) > 0 );         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );      END;       CALL BDOS( 9, .N$STR( W ) );   END PRNUMBER;   MODF: PROCEDURE( A, B )ADDRESS;      DECLARE ( A, B )ADDRESS;      RETURN( A MOD B );   END MODF;/* END LANGUAGE DEFINITIONS */   /* TASK */   DECLARE ( I, N ) FIXED BINARY;   DO N = 90 TO 100;       CALL PRSTRING( SADDR( 'FACTORS OF: $' ) );       CALL PRNUMBER( N );       CALL PRCHAR( ':' );       DO I = 1 TO N;          IF MODF( N, I ) = 0 THEN DO;             CALL PRCHAR( ' ' );             CALL PRNUMBER( I );          END;       END;       CALL PRNL;   END;EOF: end factors_100H;
Output:
FACTORS OF: 90: 1 2 3 5 6 9 10 15 18 30 45 90FACTORS OF: 91: 1 7 13 91FACTORS OF: 92: 1 2 4 23 46 92FACTORS OF: 93: 1 3 31 93FACTORS OF: 94: 1 2 47 94FACTORS OF: 95: 1 5 19 95FACTORS OF: 96: 1 2 3 4 6 8 12 16 24 32 48 96FACTORS OF: 97: 1 97FACTORS OF: 98: 1 2 7 14 49 98FACTORS OF: 99: 1 3 9 11 33 99FACTORS OF: 100: 1 2 4 5 10 20 25 50 100

PowerShell

Straightforward but slow

function Get-Factor ($a) {    1..$a | Where-Object { $a % $_ -eq 0 }}

This one uses a range of integers up to the target number and just filters it using theWhere-Object cmdlet. It's very slow though, so it is not very usable for larger numbers.

A little more clever

function Get-Factor ($a) {    1..[Math]::Sqrt($a) `        | Where-Object { $a % $_ -eq 0 } `        | ForEach-Object { $_; $a / $_ } `        | Sort-Object -Unique}

Here the range of integers is only taken up to the square root of the number, the same filtering applies. Afterwards the corresponding larger factors are calculated and sent down the pipeline along with the small ones found earlier.

ProDOS

Uses the math module:

editvar /newvar /value=a /userinput=1 /title=Enter an integer:do /delimspaces %% -a- >bprintline Factors of -a-: -b-

Prolog

Simple Brute Force Implementation

brute_force_factors( N , Fs ) :-  integer(N) ,  N > 0 ,    setof( F , ( between(1,N,F) , N mod F =:= 0 ) , Fs )  .

A Slightly Smarter Implementation

smart_factors(N,Fs) :-  integer(N) ,  N > 0 ,  setof( F , factor(N,F) , Fs )  .factor(N,F) :-  L is floor(sqrt(N)) ,  between(1,L,X) ,  0 =:= N mod X ,  ( F = X ; F is N // X )  .

Not every Prolog hasbetween/3: you might need this:

between(X,Y,Z) :-  integer(X) ,  integer(Y) ,  X =< Z ,  between1(X,Y,Z)  .between1(X,Y,X) :-  X =< Y  .between1(X,Y,Z) :-  X < Y ,  X1 is X+1 ,  between1(X1,Y,Z)  .
Output:
?- N=36 ,( brute_force_factors(N,Factors) ; smart_factors(N,Factors) ).N = 36, Factors = [1, 2, 3, 4, 6, 9, 12, 18, 36] ;N = 36, Factors = [1, 2, 3, 4, 6, 9, 12, 18, 36] .?- N=53,( brute_force_factors(N,Factors) ; smart_factors(N,Factors) ).N = 53, Factors = [1, 53] ;N = 53, Factors = [1, 53] .?- N=100,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).N = 100, Factors = [1, 2, 4, 5, 10, 20, 25, 50, 100] ;N = 100, Factors = [1, 2, 4, 5, 10, 20, 25, 50, 100] .?- N=144,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).N = 144, Factors = [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144] ;N = 144, Factors = [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144] .?- N=32765,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).N = 32765, Factors = [1, 5, 6553, 32765] ;N = 32765, Factors = [1, 5, 6553, 32765] .?- N=32766,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).N = 32766, Factors = [1, 2, 3, 6, 43, 86, 127, 129, 254, 258, 381, 762, 5461, 10922, 16383, 32766] ;N = 32766, Factors = [1, 2, 3, 6, 43, 86, 127, 129, 254, 258, 381, 762, 5461, 10922, 16383, 32766] .38 ?- N=32767,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).N = 32767, Factors = [1, 7, 31, 151, 217, 1057, 4681, 32767] ;N = 32767, Factors = [1, 7, 31, 151, 217, 1057, 4681, 32767] .

Python

Naive and slow but simplest (check all numbers from 1 to n):

>>> def factors(n):      return [i for i in range(1, n + 1) if not n%i]

Slightly better (realize that there are no factors between n/2 and n):

>>> def factors(n):      return [i for i in range(1, n//2 + 1) if not n%i] + [n]>>> factors(45)[1, 3, 5, 9, 15, 45]

Much better (realize that factors come in pairs, the smaller of which is no bigger than sqrt(n)):

from math import isqrtdef factor(n):    factors1, factors2 = [], []    for x in range(1, isqrt(n)):        if n % x == 0:            factors1.append(x)            factors2.append(n // x)    x += 1    if x * x == n:        factors1.append(x)    factors1.extend(reversed(factors2))    return factors1for i in 45, 53, 64:    print("%i: factors: %s" % (i, factor(i)))
45: factors: [1, 3, 5, 9, 15, 45]53: factors: [1, 53]64: factors: [1, 2, 4, 8, 16, 32, 64]

More efficient when factoring many numbers:

from itertools import chain, cycle, accumulate # last of which is Python 3 onlydef factors(n):    def prime_powers(n):        # c goes through 2, 3, 5, then the infinite (6n+1, 6n+5) series        for c in accumulate(chain([2, 1, 2], cycle([2,4]))):            if c*c > n: break            if n%c: continue            d,p = (), c            while not n%c:                n,p,d = n//c, p*c, d + (p,)            yield(d)        if n > 1: yield((n,))    r = [1]    for e in prime_powers(n):        r += [a*b for a in r for b in e]    return r

Quackery

sqrt+ is defined atIsqrt (integer square root) of X#Quackery. It returns the integer square root and remainder (i.e. the square root of 11 is 3 remainder 2, because three squared plus two equals eleven.) If the number is a perfect square the remainder is zero. This is used to remove a duplicate factor from the list of factors which is generated when finding the factors of a perfect square.

The nest editing at the end of the definition (i.e. the code after thedrop on a line by itself) removes a duplicate factor if there is one, and arranges the factors in ascending numerical order at the same time.

  [ [] swap    dup sqrt+ 0 = dip      [ times        [ dup i^ 1+ /mod iff            drop done          rot join           i^ 1+ join swap ]        drop         dup size 2 / split ]    if [ -1 split drop ]    swap join ]                is factors (   n --> [  )    20 times     [ i^ 1+ dup       dup 10 < if sp       echo       say ": "        factors witheach        [ echo i if say ", " ]      cr ]
Output:
 1: 1 2: 1, 2 3: 1, 3 4: 1, 2, 4 5: 1, 5 6: 1, 2, 3, 6 7: 1, 7 8: 1, 2, 4, 8 9: 1, 3, 910: 1, 2, 5, 1011: 1, 1112: 1, 2, 3, 4, 6, 1213: 1, 1314: 1, 2, 7, 1415: 1, 3, 5, 1516: 1, 2, 4, 8, 1617: 1, 1718: 1, 2, 3, 6, 9, 1819: 1, 1920: 1, 2, 4, 5, 10, 20

R

Array solution

factors <- function(n){   if(length(n) > 1)    {      lapply(as.list(n), factors)   } else   {      one.to.n <- seq_len(n)      one.to.n[(n %% one.to.n) == 0]   }}
Output:
>factors(60)[1]  1  2  3  4  5  6 10 12 15 20 30 60>factors(c(45, 53, 64))[[1]][1]  1  3  5  9 15 45[[2]][1]  1 53[[3]][1]  1  2  4  8 16 32 64

Filter solution

With identical output, a more idiomatic way is to use R's Filter.

factors <- function(n) c(Filter(function(x) n %% x == 0, seq_len(n %/% 2)), n)#Vectorize is an interesting alternative to the previous solution's lapply.manyFactors <- function(vec) Vectorize(factors)(vec)

Racket

#lang racket;; a naive version(define (naive-factors n)  (for/list ([i (in-range 1 (add1 n))] #:when (zero? (modulo n i))) i))(naive-factors 120) ; -> '(1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120);; much better: use `factorize' to get prime factors and construct the;; list of results from that(require math)(define (factors n)  (sort (for/fold ([l '(1)]) ([p (factorize n)])          (append (for*/list ([e (in-range 1 (add1 (cadr p)))] [x l])                    (* x (expt (car p) e)))                  l))        <))(naive-factors 120) ; -> same;; to see how fast it is:(define huge 1200034005600070000008900000000000000000)(time (length (factors  huge)));; I get 42ms for getting a list of 7776 numbers;; but actually the math library comes with a `divisors' function that;; does the same, except even faster(divisors 120) ; -> same(time (length (divisors huge)));; And this one clocks at 17ms

Raku

(formerly Perl 6)

Works with:Rakudo version 2015.12

Brute-force

Naive, brute-force, and slow, but ok for small numbers.

sub factors (Int $n) { (1..$n).grep($n %% *) }

Optimized

If you don't want to roll your own.

use Prime::Factor;put divisors :s, 2⁹⁹ + 1;say (now - INIT now).round(.001) ~' seconds';
Output:
1 3 9 19 27 57 67 171 201 513 603 683 1273 1809 2049 3819 5347 6147 11457 12977 16041 18441 20857 34371 38931 45761 48123 62571 101593 116793 137283 144369 187713 304779 350379 358249 396283 411849 563139 869459 914337 1074747 1188849 1235547 1397419 2608377 2743011 3224241 3566547 3652001 4192257 6806731 7825131 9672723 10699641 10956003 12576771 14245331 20420193 23475393 26550961 32868009 37730313 42735993 61260579 69388019 79652883 98604027 111522379 128207979 183781737 208164057 238958649 244684067 270661289 334567137 384623937 624492171 716875947 734052201 811983867 954437177 1003701411 1873476513 2118925201 2202156603 2435951601 2863311531 3011104233 4648997273 6356775603 6606469809 7307854803 7471999393 8589934593 13946991819 18134306363 19070326809 22415998179 25769803779 41840975457 54402919089 57210980427 67247994537 76169784857 125522926371 141967988467 163208757267 201743983611 228509354571 425903965401 489626271801 685528063713 1277711896203 1447225912283 2056584191139 3833135688609 4341677736849 5103375585419 13025033210547 15310126756257 39075099631641 45930380268771 96964136122961 137791140806313 242099935645987 290892408368883 726299806937961 872677225106649 2178899420813883 2618031675319947 4599898777273753 6536698262441649 13799696331821259 16220695688281129 41399088995463777 48662087064843387 124197266986391331 145986261194530161 165354256046209121 308193218077341451 437958783583590483 496062768138627363 924579654232024353 1294508355899092489 1488188304415882089 2773738962696073059 3141730864877973299 3883525067697277467 4464564913247646267 5049478357768350859 8321216888088219177 9425192594633919897 11078735155096011107 11650575203091832401 15148435073305052577 24595658762082757291 28275577783901759691 33236205465288033321 34951725609275497203 45445305219915157731 73786976286248271873 84826733351705279073 86732059845239196763 95940088797598666321 99708616395864099963 136335915659745473193 210495967946824211033 221360928858744815619 260196179535717590289 287820266392795998963 299125849187592299889 338315049970479507553 631487903840472633099 664082786576234446857 780588538607152770867 863460799178387996889 884149207079080169987 1014945149911438522659 1647909137059544738497 1894463711521417899297 2341765615821458312601 2590382397535163990667 2652447621237240509961 3044835449734315567977 3448793718355783636697 4943727411178634215491 5683391134564253697891 6427985949439110643507 7957342863711721529883 9134506349202946703931 10346381155067350910091 14831182233535902646473 16798834934502523229753 19283957848317331930521 23872028591135164589649 26999560778987372043073 31039143465202052730273 44493546700607707939419 50396504803507569689259 57851873544951995791563 59237996874298371389129 65527080648759889097243 80998682336962116129219 93117430395606158190819 151189514410522709067777 173555620634855987374689 177713990622895114167387 196581241946279667291729 231069179129837503658699 242996047010886348387657 453568543231568127203331 512991654800760068818387 533141971868685342502161 589743725838839001875187 693207537389512510976097 728988141032659045162971 1125521940611669056393451 1538974964402280206455161 1599425915606056027506483 1769231177516517005625561 1808970572192153926885891 2079622612168537532928291 3376565821835007169180353 4390314403466912569515281 4616924893206840619365483 5426911716576461780657673 6238867836505612598784873 10129697465505021507541059 13170943210400737708545843 13850774679620521858096449 16280735149729385341973019 18440700012048375105418859 30389092396515064522623177 34370440871650924610831929 39512829631202213125637529 48842205449188156025919057 55322100036145125316256577 103111322614952773832495787 118538488893606639376912587 165966300108435375948769731 309333967844858321497487361 350373300228919127002958321 497898900325306127846309193 928001903534574964492462083 1051119900686757381008874963 1235526900807241132063063553 3153359702060272143026624889 3706580702421723396189190659 9460079106180816429079874667 11119742107265170188567571977 23475011115337581509198207507 33359226321795510565702715931 70425033346012744527594622521 211275100038038233582783867563 6338253001141147007483516026890.046 seconds

Red

Red []factors: function [n [integer!]] [    n: absolute n    collect [        repeat i (sq: sqrt n) - 1 [            if n % i = 0 [                keep i                keep n / i            ]        ]        if sq = sq: to-integer sq [keep sq]    ]]foreach num [    24   -64        ; negative    64        ; square    101       ; prime    123456789 ; large][    print mold/flat sort factors num]

Refal

$ENTRY Go {    = <Prout <Factors 120>>;}Factors {    s.N = <Factors (s.N 1)>;    (s.N s.D), <Compare s.N <* s.D s.D>>: '-' = ;    (s.N s.D), <Divmod s.N s.D>: {        (s.D) 0 = s.D;        (s.F) 0 = s.D <Factors (s.N <+ 1 s.D>)> s.F;        (s.X) s.Y = <Factors (s.N <+ 1 s.D>)>;    };};
Output:
1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120

Relation

program factors(num)relation factinsert 1set i = 2while i < num / 2if num / i = floor(num/i)insert iend ifset i = i + 1end whileinsert numprintend program

REXX

Version 1

/* REXX **************************************************************** Program to calculate and show divisors of positive integer(s).* 03.08.2012 Walter Pachl  simplified the above somewhat*            in particular I see no benefit from divAdd procedure* 04.08.2012 the reference to 'above' is no longer valid since that*            was meanwhile changed for the better.* 04.08.2012 took over some improvements from new above**********************************************************************/Parse arg low high .Select  When low=''  Then Parse Value '1 200' with low high  When high='' Then high=low  Otherwise Nop  Enddo j=low to high  say '   n = ' right(j,6) "   divisors = " divs(j)  endexitdivs: procedure; parse arg x  if x==1 then return 1               /*handle special case of 1     */  Parse Value '1' x With lo hi        /*initialize lists: lo=1 hi=x  */  odd=x//2                            /* 1 if x is odd               */  Do j=2+odd By 1+odd While j*j<x     /*divide by numbers<sqrt(x)    */    if x//j==0 then Do                /*Divisible?  Add two divisors:*/      lo=lo j                         /* list low divisors           */      hi=x%j hi                       /* list high divisors          */      End    End  If j*j=x Then                       /*for a square number as input */    lo=lo j                           /* add its square root         */  return lo hi                        /* return both lists           */
output  when using the default input:

(Shown at  3/4   size.)

   n =       1    divisors =  1   n =       2    divisors =  1 2   n =       3    divisors =  1 3   n =       4    divisors =  1 2 4   n =       5    divisors =  1 5   n =       6    divisors =  1 2 3 6   n =       7    divisors =  1 7   n =       8    divisors =  1 2 4 8   n =       9    divisors =  1 3 9   n =      10    divisors =  1 2 5 10   n =      11    divisors =  1 11   n =      12    divisors =  1 2 3 4 6 12   n =      13    divisors =  1 13   n =      14    divisors =  1 2 7 14   n =      15    divisors =  1 3 5 15   n =      16    divisors =  1 2 4 8 16   n =      17    divisors =  1 17   n =      18    divisors =  1 2 3 6 9 18   n =      19    divisors =  1 19   n =      20    divisors =  1 2 4 5 10 20   n =      21    divisors =  1 3 7 21   n =      22    divisors =  1 2 11 22   n =      23    divisors =  1 23   n =      24    divisors =  1 2 3 4 6 8 12 24   n =      25    divisors =  1 5 25   n =      26    divisors =  1 2 13 26   n =      27    divisors =  1 3 9 27   n =      28    divisors =  1 2 4 7 14 28   n =      29    divisors =  1 29   n =      30    divisors =  1 2 3 5 6 10 15 30   n =      31    divisors =  1 31   n =      32    divisors =  1 2 4 8 16 32   n =      33    divisors =  1 3 11 33   n =      34    divisors =  1 2 17 34   n =      35    divisors =  1 5 7 35   n =      36    divisors =  1 2 3 4 6 9 12 18 36   n =      37    divisors =  1 37   n =      38    divisors =  1 2 19 38   n =      39    divisors =  1 3 13 39   n =      40    divisors =  1 2 4 5 8 10 20 40   n =      41    divisors =  1 41   n =      42    divisors =  1 2 3 6 7 14 21 42   n =      43    divisors =  1 43   n =      44    divisors =  1 2 4 11 22 44   n =      45    divisors =  1 3 5 9 15 45   n =      46    divisors =  1 2 23 46   n =      47    divisors =  1 47   n =      48    divisors =  1 2 3 4 6 8 12 16 24 48   n =      49    divisors =  1 7 49   n =      50    divisors =  1 2 5 10 25 50   n =      51    divisors =  1 3 17 51   n =      52    divisors =  1 2 4 13 26 52   n =      53    divisors =  1 53   n =      54    divisors =  1 2 3 6 9 18 27 54   n =      55    divisors =  1 5 11 55   n =      56    divisors =  1 2 4 7 8 14 28 56   n =      57    divisors =  1 3 19 57   n =      58    divisors =  1 2 29 58   n =      59    divisors =  1 59   n =      60    divisors =  1 2 3 4 5 6 10 12 15 20 30 60   n =      61    divisors =  1 61   n =      62    divisors =  1 2 31 62   n =      63    divisors =  1 3 7 9 21 63   n =      64    divisors =  1 2 4 8 16 32 64   n =      65    divisors =  1 5 13 65   n =      66    divisors =  1 2 3 6 11 22 33 66   n =      67    divisors =  1 67   n =      68    divisors =  1 2 4 17 34 68   n =      69    divisors =  1 3 23 69   n =      70    divisors =  1 2 5 7 10 14 35 70   n =      71    divisors =  1 71   n =      72    divisors =  1 2 3 4 6 8 9 12 18 24 36 72   n =      73    divisors =  1 73   n =      74    divisors =  1 2 37 74   n =      75    divisors =  1 3 5 15 25 75   n =      76    divisors =  1 2 4 19 38 76   n =      77    divisors =  1 7 11 77   n =      78    divisors =  1 2 3 6 13 26 39 78   n =      79    divisors =  1 79   n =      80    divisors =  1 2 4 5 8 10 16 20 40 80   n =      81    divisors =  1 3 9 27 81   n =      82    divisors =  1 2 41 82   n =      83    divisors =  1 83   n =      84    divisors =  1 2 3 4 6 7 12 14 21 28 42 84   n =      85    divisors =  1 5 17 85   n =      86    divisors =  1 2 43 86   n =      87    divisors =  1 3 29 87   n =      88    divisors =  1 2 4 8 11 22 44 88   n =      89    divisors =  1 89   n =      90    divisors =  1 2 3 5 6 9 10 15 18 30 45 90   n =      91    divisors =  1 7 13 91   n =      92    divisors =  1 2 4 23 46 92   n =      93    divisors =  1 3 31 93   n =      94    divisors =  1 2 47 94   n =      95    divisors =  1 5 19 95   n =      96    divisors =  1 2 3 4 6 8 12 16 24 32 48 96   n =      97    divisors =  1 97   n =      98    divisors =  1 2 7 14 49 98   n =      99    divisors =  1 3 9 11 33 99   n =     100    divisors =  1 2 4 5 10 20 25 50 100   n =     101    divisors =  1 101   n =     102    divisors =  1 2 3 6 17 34 51 102   n =     103    divisors =  1 103   n =     104    divisors =  1 2 4 8 13 26 52 104   n =     105    divisors =  1 3 5 7 15 21 35 105   n =     106    divisors =  1 2 53 106   n =     107    divisors =  1 107   n =     108    divisors =  1 2 3 4 6 9 12 18 27 36 54 108   n =     109    divisors =  1 109   n =     110    divisors =  1 2 5 10 11 22 55 110   n =     111    divisors =  1 3 37 111   n =     112    divisors =  1 2 4 7 8 14 16 28 56 112   n =     113    divisors =  1 113   n =     114    divisors =  1 2 3 6 19 38 57 114   n =     115    divisors =  1 5 23 115   n =     116    divisors =  1 2 4 29 58 116   n =     117    divisors =  1 3 9 13 39 117   n =     118    divisors =  1 2 59 118   n =     119    divisors =  1 7 17 119   n =     120    divisors =  1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120   n =     121    divisors =  1 11 121   n =     122    divisors =  1 2 61 122   n =     123    divisors =  1 3 41 123   n =     124    divisors =  1 2 4 31 62 124   n =     125    divisors =  1 5 25 125   n =     126    divisors =  1 2 3 6 7 9 14 18 21 42 63 126   n =     127    divisors =  1 127   n =     128    divisors =  1 2 4 8 16 32 64 128   n =     129    divisors =  1 3 43 129   n =     130    divisors =  1 2 5 10 13 26 65 130   n =     131    divisors =  1 131   n =     132    divisors =  1 2 3 4 6 11 12 22 33 44 66 132   n =     133    divisors =  1 7 19 133   n =     134    divisors =  1 2 67 134   n =     135    divisors =  1 3 5 9 15 27 45 135   n =     136    divisors =  1 2 4 8 17 34 68 136   n =     137    divisors =  1 137   n =     138    divisors =  1 2 3 6 23 46 69 138   n =     139    divisors =  1 139   n =     140    divisors =  1 2 4 5 7 10 14 20 28 35 70 140   n =     141    divisors =  1 3 47 141   n =     142    divisors =  1 2 71 142   n =     143    divisors =  1 11 13 143   n =     144    divisors =  1 2 3 4 6 8 9 12 16 18 24 36 48 72 144   n =     145    divisors =  1 5 29 145   n =     146    divisors =  1 2 73 146   n =     147    divisors =  1 3 7 21 49 147   n =     148    divisors =  1 2 4 37 74 148   n =     149    divisors =  1 149   n =     150    divisors =  1 2 3 5 6 10 15 25 30 50 75 150   n =     151    divisors =  1 151   n =     152    divisors =  1 2 4 8 19 38 76 152   n =     153    divisors =  1 3 9 17 51 153   n =     154    divisors =  1 2 7 11 14 22 77 154   n =     155    divisors =  1 5 31 155   n =     156    divisors =  1 2 3 4 6 12 13 26 39 52 78 156   n =     157    divisors =  1 157   n =     158    divisors =  1 2 79 158   n =     159    divisors =  1 3 53 159   n =     160    divisors =  1 2 4 5 8 10 16 20 32 40 80 160   n =     161    divisors =  1 7 23 161   n =     162    divisors =  1 2 3 6 9 18 27 54 81 162   n =     163    divisors =  1 163   n =     164    divisors =  1 2 4 41 82 164   n =     165    divisors =  1 3 5 11 15 33 55 165   n =     166    divisors =  1 2 83 166   n =     167    divisors =  1 167   n =     168    divisors =  1 2 3 4 6 7 8 12 14 21 24 28 42 56 84 168   n =     169    divisors =  1 13 169   n =     170    divisors =  1 2 5 10 17 34 85 170   n =     171    divisors =  1 3 9 19 57 171   n =     172    divisors =  1 2 4 43 86 172   n =     173    divisors =  1 173   n =     174    divisors =  1 2 3 6 29 58 87 174   n =     175    divisors =  1 5 7 25 35 175   n =     176    divisors =  1 2 4 8 11 16 22 44 88 176   n =     177    divisors =  1 3 59 177   n =     178    divisors =  1 2 89 178   n =     179    divisors =  1 179   n =     180    divisors =  1 2 3 4 5 6 9 10 12 15 18 20 30 36 45 60 90 180   n =     181    divisors =  1 181   n =     182    divisors =  1 2 7 13 14 26 91 182   n =     183    divisors =  1 3 61 183   n =     184    divisors =  1 2 4 8 23 46 92 184   n =     185    divisors =  1 5 37 185   n =     186    divisors =  1 2 3 6 31 62 93 186   n =     187    divisors =  1 11 17 187   n =     188    divisors =  1 2 4 47 94 188   n =     189    divisors =  1 3 7 9 21 27 63 189   n =     190    divisors =  1 2 5 10 19 38 95 190   n =     191    divisors =  1 191   n =     192    divisors =  1 2 3 4 6 8 12 16 24 32 48 64 96 192   n =     193    divisors =  1 193   n =     194    divisors =  1 2 97 194   n =     195    divisors =  1 3 5 13 15 39 65 195   n =     196    divisors =  1 2 4 7 14 28 49 98 196   n =     197    divisors =  1 197   n =     198    divisors =  1 2 3 6 9 11 18 22 33 66 99 198   n =     199    divisors =  1 199   n =     200    divisors =  1 2 4 5 8 10 20 25 40 50 100 200

Version 2

Modules:How to use
Modules:Source code

The procedure Divisors() is present in Sequences.

-- 22 Mar 2025include Settingssay 'FACTORS OF AN INTEGER'say versionsaynumeric digits 16parse arg l','hif l = '' then   l = 1if h = '' then   h = 100do i = l to h   f = Divisors(i)   call Charout ,Right(i,3) 'has' Right(f,2) 'divisors: '   do j = 1 to f      call Charout ,divi.j' '   end   sayendsay Format(Time('e'),,3) 'seconds'; sayexitinclude Functionsinclude Sequencesinclude Abend
FACTORS OF AN INTEGERREXX-Regina_3.9.6(MT) 5.00 29 Apr 2024  1 has  1 divisors: 1  2 has  2 divisors: 1 2  3 has  2 divisors: 1 3  4 has  3 divisors: 1 2 4  5 has  2 divisors: 1 5  6 has  4 divisors: 1 2 3 6  7 has  2 divisors: 1 7  8 has  4 divisors: 1 2 4 8  9 has  3 divisors: 1 3 9 10 has  4 divisors: 1 2 5 10 11 has  2 divisors: 1 11 12 has  6 divisors: 1 2 3 4 6 12 13 has  2 divisors: 1 13 14 has  4 divisors: 1 2 7 14 15 has  4 divisors: 1 3 5 15 16 has  5 divisors: 1 2 4 8 16 17 has  2 divisors: 1 17 18 has  6 divisors: 1 2 3 6 9 18 19 has  2 divisors: 1 19 20 has  6 divisors: 1 2 4 5 10 20 21 has  4 divisors: 1 3 7 21 22 has  4 divisors: 1 2 11 22 23 has  2 divisors: 1 23 24 has  8 divisors: 1 2 3 4 6 8 12 24 25 has  3 divisors: 1 5 25 26 has  4 divisors: 1 2 13 26 27 has  4 divisors: 1 3 9 27 28 has  6 divisors: 1 2 4 7 14 28 29 has  2 divisors: 1 29 30 has  8 divisors: 1 2 3 5 6 10 15 30 31 has  2 divisors: 1 31 32 has  6 divisors: 1 2 4 8 16 32 33 has  4 divisors: 1 3 11 33 34 has  4 divisors: 1 2 17 34 35 has  4 divisors: 1 5 7 35 36 has  9 divisors: 1 2 3 4 6 9 12 18 36 37 has  2 divisors: 1 37 38 has  4 divisors: 1 2 19 38 39 has  4 divisors: 1 3 13 39 40 has  8 divisors: 1 2 4 5 8 10 20 40 41 has  2 divisors: 1 41 42 has  8 divisors: 1 2 3 6 7 14 21 42 43 has  2 divisors: 1 43 44 has  6 divisors: 1 2 4 11 22 44 45 has  6 divisors: 1 3 5 9 15 45 46 has  4 divisors: 1 2 23 46 47 has  2 divisors: 1 47 48 has 10 divisors: 1 2 3 4 6 8 12 16 24 48 49 has  3 divisors: 1 7 49 50 has  6 divisors: 1 2 5 10 25 50 51 has  4 divisors: 1 3 17 51 52 has  6 divisors: 1 2 4 13 26 52 53 has  2 divisors: 1 53 54 has  8 divisors: 1 2 3 6 9 18 27 54 55 has  4 divisors: 1 5 11 55 56 has  8 divisors: 1 2 4 7 8 14 28 56 57 has  4 divisors: 1 3 19 57 58 has  4 divisors: 1 2 29 58 59 has  2 divisors: 1 59 60 has 12 divisors: 1 2 3 4 5 6 10 12 15 20 30 60 61 has  2 divisors: 1 61 62 has  4 divisors: 1 2 31 62 63 has  6 divisors: 1 3 7 9 21 63 64 has  7 divisors: 1 2 4 8 16 32 64 65 has  4 divisors: 1 5 13 65 66 has  8 divisors: 1 2 3 6 11 22 33 66 67 has  2 divisors: 1 67 68 has  6 divisors: 1 2 4 17 34 68 69 has  4 divisors: 1 3 23 69 70 has  8 divisors: 1 2 5 7 10 14 35 70 71 has  2 divisors: 1 71 72 has 12 divisors: 1 2 3 4 6 8 9 12 18 24 36 72 73 has  2 divisors: 1 73 74 has  4 divisors: 1 2 37 74 75 has  6 divisors: 1 3 5 15 25 75 76 has  6 divisors: 1 2 4 19 38 76 77 has  4 divisors: 1 7 11 77 78 has  8 divisors: 1 2 3 6 13 26 39 78 79 has  2 divisors: 1 79 80 has 10 divisors: 1 2 4 5 8 10 16 20 40 80 81 has  5 divisors: 1 3 9 27 81 82 has  4 divisors: 1 2 41 82 83 has  2 divisors: 1 83 84 has 12 divisors: 1 2 3 4 6 7 12 14 21 28 42 84 85 has  4 divisors: 1 5 17 85 86 has  4 divisors: 1 2 43 86 87 has  4 divisors: 1 3 29 87 88 has  8 divisors: 1 2 4 8 11 22 44 88 89 has  2 divisors: 1 89 90 has 12 divisors: 1 2 3 5 6 9 10 15 18 30 45 90 91 has  4 divisors: 1 7 13 91 92 has  6 divisors: 1 2 4 23 46 92 93 has  4 divisors: 1 3 31 93 94 has  4 divisors: 1 2 47 94 95 has  4 divisors: 1 5 19 95 96 has 12 divisors: 1 2 3 4 6 8 12 16 24 32 48 96 97 has  2 divisors: 1 97 98 has  6 divisors: 1 2 7 14 49 98 99 has  6 divisors: 1 3 9 11 33 99100 has  9 divisors: 1 2 4 5 10 20 25 50 1000.003 seconds

Ring

nArray = list(100)n = 45j = 0for i = 1 to n    if n % i = 0 j = j + 1 nArray[j] = i oknextsee "Factors of " + n + " = "for i = 1 to j    see "" + nArray[i] + " "next

RPL

Works with:Halcyon Calc version 4.2.7
≪ → n    ≪ { } DUP 1 n √FOR dIF n d MOD NOTTHEN            d + n d /IF DUP d ≠THEN ROT + SWAPELSE DROPENDENDNEXT     SWAP + ≫ ≫'FACTS' STO
45 FACTS53 FACTS64 FACTS
Output:
3: { 1 3 5 9 15 45 }2: { 1 53 }1: { 1 2 4 8 16 32 64 }

Ruby

class Integer  def factors() (1..self).select { |n| (self % n).zero? } endendp 45.factors
[1, 3, 5, 9, 15, 45]

As we only have to loop up ton{\displaystyle {\displaystyle {\sqrt {n}}}}, we can write

class Integer  def factors    1.upto(Integer.sqrt(self)).select {|i| (self % i).zero?}.inject([]) do |f, i|       f << self/i unless i == self/i      f << i    end.sort  endend[45, 53, 64].each {|n| puts "#{n} : #{n.factors}"}
Output:
45 : [1, 3, 5, 9, 15, 45]53 : [1, 53]64 : [1, 2, 4, 8, 16, 32, 64]

Using the prime library

require 'prime'def factors m  return [1] if 1==m  primes, powers = Prime.prime_division(m).transpose  ranges = powers.map{|n| (0..n).to_a}  ranges[0].product( *ranges[1..-1] ).  map{|es| primes.zip(es).map{|p,e| p**e}.reduce :*}.  sortend[1, 7, 45, 100].each{|n| p factors n}

Output:

[1][1, 7][1, 3, 5, 9, 15, 45][1, 2, 4, 5, 10, 20, 25, 50, 100]

Rust

fn main() {    assert_eq!(vec![1, 2, 4, 5, 10, 10, 20, 25, 50, 100], factor(100)); // asserts that two expressions are equal to each other    assert_eq!(vec![1, 101], factor(101));}fn factor(num: i32) -> Vec<i32> {    let mut factors: Vec<i32> = Vec::new(); // creates a new vector for the factors of the number    for i in 1..((num as f32).sqrt() as i32 + 1) {         if num % i == 0 {            factors.push(i); // pushes smallest factor to factors            factors.push(num/i); // pushes largest factor to factors        }    }    factors.sort(); // sorts the factors into numerical order for viewing purposes    factors // returns the factors}

Alternative functional version:

fn factor(n: i32) -> Vec<i32> {    (1..=n).filter(|i| n % i == 0).collect()}

Sather

class MAIN is  factors!(n :INT):INT is    yield 1;    loop i ::= 2.upto!( n.flt.sqrt.int );      if n%i = 0 then        yield i;        if (i*i) /= n then          yield n / i;        end;      end;    end;    yield n;  end;  main is    a :ARRAY{INT} := |3135, 45, 64, 53, 45, 81|;    loop l ::= a.elt!;      #OUT + "factors of " + l + ": ";      loop ri ::= factors!(l);        #OUT + ri + " ";      end;      #OUT + "\n";    end;  end;end;

Scala

Brute force approach:

def factors(num: Int) = {    (1 to num).filter { divisor =>      num % divisor == 0    }}

Brute force until sqrt(num) is enough, the code above can be edited as follows (Scala 3 enabled)

def factors(num: Int) = {    val list = (1 to math.sqrt(num).floor.toInt).filter(num % _ == 0)    list ++ list.reverse.dropWhile(d => d*d == num).map(num / _)}

Scheme

This implementation uses a naive trial division algorithm.

(define (factors n)  (define (*factors d)    (cond ((> d n) (list))          ((= (modulo n d) 0) (cons d (*factors (+ d 1))))          (else (*factors (+ d 1)))))  (*factors 1))(display (factors 1111111))(newline)
Output:
 (1 239 4649 1111111)

Seed7

$ include "seed7_05.s7i";const proc: writeFactors (in integer: number) is func  local    var integer: testNum is 0;  begin    write("Factors of " <& number <& ": ");    for testNum range 1 to sqrt(number) do      if number rem testNum = 0 then        if testNum <> 1 then          write(", ");        end if;        write(testNum);        if testNum <> number div testNum then          write(", " <& number div testNum);        end if;      end if;    end for;    writeln;  end func;const proc: main is func  local    const array integer: numsToFactor is [] (45, 53, 64);    var integer: number is 0;  begin    for number range numsToFactor do      writeFactors(number);    end for;  end func;
Output:
Factors of 45: 1, 45, 3, 15, 5, 9Factors of 53: 1, 53Factors of 64: 1, 64, 2, 32, 4, 16, 8

SequenceL

Brute Force Method

A simple brute force method using an indexed partial function as a filter.

Factors(num(0))[i] := i when num mod i = 0 foreach i within 1 ... num;

Slightly More Efficient Method

A slightly more efficient method, only going up to the sqrt(n).

Factors(num(0)) :=letfactorPairs[i] :=[i] when i = sqrt(num)else [i, num/i] when num mod i = 0 foreach i within 1 ... floor(sqrt(num));injoin(factorPairs);

Sidef

Built-in:

say divisors(97)    #=> [1, 97]say divisors(2695)  #=> [1, 5, 7, 11, 35, 49, 55, 77, 245, 385, 539, 2695]

Trial-division (slow for large n):

func divisors(n) {  gather {    { |d|        take(d, n//d) if d.divides(n)    } << 1..n.isqrt  }.sort.uniq} [53, 64, 32766].each {|n|    say "divisors(#{n}): #{divisors(n)}"}
Output:
divisors(53): [1, 53]divisors(64): [1, 2, 4, 8, 16, 32, 64]divisors(32766): [1, 2, 3, 6, 43, 86, 127, 129, 254, 258, 381, 762, 5461, 10922, 16383, 32766]

Slate

n@(Integer traits) primeFactors[  [| :result |   result nextPut: 1.   n primesDo: [| :prime | result nextPut: prime]] writingAs: {}].

whereprimesDo: is a part of the standard numerics library:

n@(Integer traits) primesDo: block"Decomposes the Integer into primes, applying the block to each (in increasingorder)."[| div next remaining |  div: 2.  next: 3.  remaining: n.  [[(remaining \\ div) isZero]     whileTrue:       [block applyTo: {div}.remaining: remaining // div].   remaining = 1] whileFalse:     [div: next.      next: next + 2] "Just looks at the next odd integer."].

Smalltalk

Copied from the Python example, but code added to the Integer built in class:

Integer>>factors| a |a := OrderedCollection new.1 to: (self / 2) do: [ :i | ((self \\ i) = 0) ifTrue: [ a add: i ] ].a add: self.^a

Then use as follows:

59 factors -> an OrderedCollection(1 59)120 factors -> an OrderedCollection(1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120)

Standard ML

Need to print the list because Standard ML truncates the display oflonger returned lists.

fun printIntList ls =  (    List.app (fn n => print(Int.toString n ^ " ")) ls;    print "\n"  );fun factors n =  let    fun factors'(n, k) =      if k > n then        []      else if n mod k = 0 then        k :: factors'(n, k+1)      else        factors'(n, k+1)  in    factors'(n,1)  end;

Call:

printIntList(factors 12345)printIntList(factors 120)
Output:
1 3 5 15 823 2469 4115 123451 2 3 4 5 6 8 10 12 15 20 24 30 40 60

Swift

Simple implementation:

func factors(n: Int) -> [Int] {        return filter(1...n) { n % $0 == 0 }}

More efficient implementation:

import func Darwin.sqrtfunc sqrt(x:Int) -> Int { return Int(sqrt(Double(x))) }func factors(n: Int) -> [Int] {        var result = [Int]()        for factor in filter (1...sqrt(n), { n % $0 == 0 }) {                result.append(factor)        if n/factor != factor { result.append(n/factor) }    }        return sorted(result)    }

Call:

println(factors(4))println(factors(1))println(factors(25))println(factors(63))println(factors(19))println(factors(768))
Output:
[1, 2, 4][1][1, 5, 25][1, 3, 7, 9, 21, 63][1, 19][1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768]

Tailspin

[1..351 -> \(when <?(351 mod $ <=0>)> do $! \)] -> !OUT::write

v0.5

[1..351 -> if <|?(351 mod $ matches <|=0>)>] !
Output:
[1, 3, 9, 13, 27, 39, 117, 351]

Tcl

proc factors {n} {    set factors {}    for {set i 1} {$i <= sqrt($n)} {incr i} {        if {$n % $i == 0} {            lappend factors $i [expr {$n / $i}]        }    }    return [lsort -unique -integer $factors]}puts [factors 64]puts [factors 45]puts [factors 53]
Output:
1 2 4 8 16 32 641 3 5 9 15 451 53

Uiua

Factors ← ◴⊂⟜(⇌÷)⊸(▽:⟜≡(=0◿)⊙¤⊸(↘1⇡+1⌊√))⍚Factors {45 53 64}
Output:
{[1 3 5 9 15 45] [1 53] [1 2 4 8 16 32 64]}

UNIX Shell

This should work in all Bourne-compatible shells, assuming the system has bothsort and at least one ofbc ordc.

factor() {  r=`echo "sqrt($1)" | bc` # or `echo $1 v p | dc`  i=1   while [ $i -lt $r ]; do    if [ `expr $1 % $i` -eq 0 ]; then      echo $i        expr $1 / $i    fi    i=`expr $i + 1`  done | sort -nu}

Ursa

This program takes an integer from the command line and outputs its factors.

decl int nset n (int args<1>)decl int ifor (set i 1) (< i (+ (/ n 2) 1)) (inc i)        if (= (mod n i) 0)                out i "  " console        end ifend forout n endl console

Ursala

The simple way:

#import std#import natfactors "n" = (filter not remainder/"n") nrange(1,"n")

The complicated way:

factors "n" = nleq-<&@s <.~&r,quotient>*= "n"-* (not remainder/"n")*~ nrange(1,root("n",2))

Another idea would be to approximate an upper bound for the square root of"n" with some bit twiddling such as&!*K31 "n", which evaluates to a binary number of all 1's half the width of "n" rounded up, and another would be to use thedivision function to get the quotient and remainder at the same time. Combining these ideas, losing the dummy variable, and cleaning up some other cruft, we have

factors = nleq-<&@rrZPFLs+ ^(~&r,division)^*D/~& nrange/1+ &!*K31

wherenleq-<& isn't strictly necessary unless an ordered list is required.

#cast %nLexample = factors 100
Output:
<1,2,4,5,10,20,25,50,100>

Verilog

module main;  integer i, n;  initial begin    n = 45;        $write(n, " =>");    for(i = 1; i <= n / 2; i = i + 1) if(n % i == 0) $write(i);    $display(n);    $finish ;    endendmodule
Output:
         45 =>          1          3          5          9         15         45

Wortel

@let {  factors1      &n !-\%%n @to n  factors_tacit @(\\%% !- @to)  [[    !factors1 10     !factors_tacit 100     !factors1 720   ]]}

Returns:

[  [1 2 5 10]  [1 2 4 5 10 20 25 50 100]  [1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 30 36 40 45 48 60 72 80 90 120 144 180 240 360 720]]

V (Vlang)

Translation of:Ring
fn main() {mut arr := []int{len: 100}mut n, mut j := 45, 0for i in 1..n + 1 {if n % i == 0 {j++ arr[j] = i}}print("Factors of ${n} = ")for i in 1..j + 1 {print(" ${arr[i]} ")}}
Output:
Factors of 45 =  1  3  5  9  15  45

Wren

Library:Wren-fmt
Library:Wren-math
import "./fmt" for Fmtimport "./math" for Intvar a = [11, 21, 32, 45, 67, 96, 159, 723, 1024, 5673, 12345, 32767, 123459, 999997]System.print("The factors of the following numbers are:")for (e in a) Fmt.print("$6d => $n", e, Int.divisors(e))
Output:
The factors of the following numbers are:    11 => [1, 11]    21 => [1, 3, 7, 21]    32 => [1, 2, 4, 8, 16, 32]    45 => [1, 3, 5, 9, 15, 45]    67 => [1, 67]    96 => [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96]   159 => [1, 3, 53, 159]   723 => [1, 3, 241, 723]  1024 => [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]  5673 => [1, 3, 31, 61, 93, 183, 1891, 5673] 12345 => [1, 3, 5, 15, 823, 2469, 4115, 12345] 32767 => [1, 7, 31, 151, 217, 1057, 4681, 32767]123459 => [1, 3, 7, 21, 5879, 17637, 41153, 123459]999997 => [1, 757, 1321, 999997]

X86 Assembly

Works with:nasm
section .bss     factorArr resd 250 ;big buffer against seg fault    section .textglobal _main_main:    mov ebp, esp; for correct debugging    mov eax, 0x7ffffffe ;number of which we want to know the factors, max num this program works with    mov ebx, eax ;save eax    mov ecx, 1 ;n, factor we test for    mov [factorArr], dword 0    looping:        mov eax, ebx ;restore eax        xor edx, edx ;clear edx        div ecx        cmp edx, 0 ;test if our number % n == 0        jne next        mov edx, [factorArr] ;if yes, we increment the size of the array and append n        inc edx        mov [factorArr+edx*4], ecx ;appending n        mov [factorArr], edx ;storing the new size    next:        mov eax, ecx        cmp eax, ebx ;is n bigger then our number ?        jg end ;if yes we end        inc ecx        jmp looping    end:        mov ecx, factorArr ;pass arr address by ecx          xor eax, eax ;clear eax        mov esp, ebp ;garbage collecting        ret

XPL0

include c:\cxpl\codes;int     N0, N, F;[N0:= 1;repeat  IntOut(0, N0);  Text(0, " = ");        F:= 2;  N:= N0;        repeat  if rem(N/F) = 0 then                        [if N # N0 then Text(0, " * ");                        IntOut(0, F);                        N:= N/F;                        ]                else F:= F+1;        until   F>N;        if N0=1 then IntOut(0, 1);      \1 = 1        CrLf(0);        N0:= N0+1;until   KeyHit;]
Output:
1 = 12 = 23 = 34 = 2 * 25 = 56 = 2 * 37 = 78 = 2 * 2 * 29 = 3 * 310 = 2 * 511 = 1112 = 2 * 2 * 313 = 1314 = 2 * 715 = 3 * 516 = 2 * 2 * 2 * 217 = 1718 = 2 * 3 * 3. . .57086 = 2 * 17 * 23 * 7357087 = 3 * 3 * 634357088 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 22357089 = 5708957090 = 2 * 3 * 5 * 11 * 17357091 = 37 * 154357092 = 2 * 2 * 7 * 203957093 = 3 * 1903157094 = 2 * 2854757095 = 5 * 19 * 60157096 = 2 * 2 * 2 * 3 * 3 * 13 * 6157097 = 57097

zkl

Translation of:Chapel
fcn f(n){ (1).pump(n.toFloat().sqrt(), List,   'wrap(m){((n % m)==0) and T(m,n/m) or Void.Skip}) }fcn g(n){ [[(m); [1..n.toFloat().sqrt()],'{n%m==0}; '{T(m,n/m)} ]] }  // list comprehension
Output:
zkl: f(45)L(L(1,45),L(3,15),L(5,9))zkl: g(45)L(L(1,45),L(3,15),L(5,9))
Retrieved from "https://rosettacode.org/wiki/Factors_of_an_integer?oldid=378492"
Categories:
Hidden category:
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

[8]ページ先頭

©2009-2025 Movatter.jp