Movatterモバイル変換


[0]ホーム

URL:


Jump to content
Rosetta Code
Search

Combinations

From Rosetta Code
Task
Combinations
You are encouraged tosolve this task according to the task description, using any language you may know.
Task

Given non-negative integers  m   and  n,   generate all size  m  combinations   of the integers from  0   (zero)   to  n-1   in sorted order   (each combination is sorted and the entire table is sorted).


Example

3   comb  5     is:

0 1 20 1 30 1 40 2 30 2 40 3 41 2 31 2 41 3 42 3 4

If it is more "natural" in your language to start counting from  1   (unity) instead of  0   (zero),
the combinations can be of the integers from  1   to  n.


See also
The number of samples of size k from n objects.

With  combinations and permutations   generation tasks.

Order UnimportantOrder Important
Without replacement(nk)=nCk=n(n1)(nk+1)k(k1)1{\displaystyle {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}}}nPk=n(n1)(n2)(nk+1){\displaystyle {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)}}
Task:CombinationsTask:Permutations
With replacement(n+k1k)=n+k1Ck=(n+k1)!(n1)!k!{\displaystyle {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}}}nk{\displaystyle {\displaystyle n^{k}}}
Task:Combinations with repetitionsTask:Permutations with repetitions



11l

Translation of:D
F comb(arr, k)   I k == 0      R [[Int]()]   [[Int]] result   L(x) arr      V i = L.index      L(suffix) comb(arr[i+1..], k-1)         result [+]= x [+] suffix   R resultprint(comb([0, 1, 2, 3, 4], 3))
Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

360 Assembly

Translation of:C

Nice algorithm without recursion borrowed from C. Recursion is elegant but iteration is efficient.For maximum compatibility, this program uses only the basic instruction set (S/360) and two ASSIST macros (XDECO, XPRNT) to keep the code as short as possible.

*        Combinations              26/05/2016COMBINE  CSECT         USING  COMBINE,R13        base register         B      72(R15)            skip savearea         DC     17F'0'             savearea         STM    R14,R12,12(R13)    prolog         ST     R13,4(R15)         "         ST     R15,8(R13)         "         LR     R13,R15            "         SR     R3,R3              clear         LA     R7,C               @c(1)         LH     R8,N               v=nLOOPI1   STC    R8,0(R7)           do i=1 to n; c(i)=n-i+1         LA     R7,1(R7)             @c(i)++         BCT    R8,LOOPI1          next iLOOPBIG  LA     R10,PG             big loop {------------------         LH     R1,N               n         LA     R7,C-1(R1)         @c(i)         LH     R6,N               i=nLOOPI2   IC     R3,0(R7)           do i=n to 1 by -1; r2=c(i)         XDECO  R3,PG+80             edit c(i)         MVC    0(2,R10),PG+90       output c(i)         LA     R10,3(R10)           @pgi=@pgi+3         BCTR   R7,0                 @c(i)--         BCT    R6,LOOPI2          next i         XPRNT  PG,80              print buffer         LA     R7,C               @c(1)         LH     R8,M               v=m         LA     R6,1               i=1LOOPI3   LR     R1,R6              do i=1 by 1; r1=i         IC     R3,0(R7)             c(i)         CR     R3,R8                while c(i)>=m-i+1          BL     ELOOPI3              leave i         CH     R6,N                 if i>=n         BNL    ELOOPBIG             exit loop         BCTR   R8,0                 v=v-1         LA     R7,1(R7)             @c(i)++         LA     R6,1(R6)             i=i+1         B      LOOPI3             next iELOOPI3  LR     R1,R6              i         LA     R4,C-1(R1)         @c(i)         IC     R3,0(R4)           c(i)         LA     R3,1(R3)           c(i)+1         STC    R3,0(R4)           c(i)=c(i)+1         BCTR   R7,0               @c(i)--LOOPI4   CH     R6,=H'2'           do i=i to 2 by -1         BL     ELOOPI4            leave i         IC     R3,1(R7)             c(i)         LA     R3,1(R3)             c(i)+1         STC    R3,0(R7)             c(i-1)=c(i)+1         BCTR   R7,0                 @c(i)--         BCTR   R6,0                 i=i-1         B      LOOPI4             next iELOOPI4  B      LOOPBIG            big loop }------------------ELOOPBIG L      R13,4(0,R13)       epilog          LM     R14,R12,12(R13)    "         XR     R15,R15            "         BR     R14                exitM        DC     H'5'               <=input N        DC     H'3'               <=input C        DS     64X                array of 8 bit integersPG       DC     CL92' '            buffer                 YREGS         END    COMBINE
Output:
 1  2  3 1  2  4 1  2  5 1  3  4 1  3  5 1  4  5 2  3  4 2  3  5 2  4  5 3  4  5

Acornsoft Lisp

Translation of:Emacs Lisp
(defuncomb(mn(i.0))(cond((zeropm)'(()))((eqin)'())(t(append(mapc'(lambda(rest)(consirest))(comb(sub1m)n(add1i)))(combmn(add1i))))))(defunappend(ab)(cond((nulla)b)(t(cons(cara)(append(cdra)b)))))(mapprint(comb35))
Output:
(0 1 2)(0 1 3)(0 1 4)(0 2 3)(0 2 4)(0 3 4)(1 2 3)(1 2 4)(1 3 4)(2 3 4)

Action!

PROC PrintComb(BYTE ARRAY c BYTE len)  BYTE i  Put('()  FOR i=0 TO len-1  DO    IF i>0 THEN Put(',) FI    PrintB(c(i))  OD  Put(')) PutE()RETURNBYTE FUNC Increasing(BYTE ARRAY c BYTE len)  BYTE i  IF len<2 THEN RETURN (1) FI  FOR i=0 TO len-2  DO    IF c(i)>=c(i+1) THEN      RETURN (0)    FI  ODRETURN (1)BYTE FUNC NextComb(BYTE ARRAY c BYTE n,k)  INT pos,i  DO    pos=k-1    DO      c(pos)==+1      IF c(pos)<n THEN        EXIT      ELSE        pos==-1        IF pos<0 THEN RETURN (0) FI      FI      FOR i=pos+1 TO k-1      DO        c(i)=c(pos)      OD    OD  UNTIL Increasing(c,k)  ODRETURN (1)PROC Comb(BYTE n,k)  BYTE ARRAY c(10)  BYTE i  IF k>n THEN    Print("Error! k is greater than n.")    Break()  FI  FOR i=0 TO k-1  DO    c(i)=i  OD  DO    PrintComb(c,k)  UNTIL NextComb(c,n,k)=0  ODRETURNPROC Main()  Comb(5,3)RETURN
Output:

Screenshot from Atari 8-bit computer

(0,1,2)(0,1,3)(0,1,4)(0,2,3)(0,2,4)(0,3,4)(1,2,3)(1,2,4)(1,3,4)(2,3,4)

Ada

withAda.Text_IO;useAda.Text_IO;procedureTest_CombinationsisgenerictypeIntegersisrange<>;packageCombinationsistypeCombinationisarray(Positiverange<>)ofIntegers;procedureFirst(X:inoutCombination);procedureNext(X:inoutCombination);procedurePut(X:Combination);endCombinations;packagebodyCombinationsisprocedureFirst(X:inoutCombination)isbeginX(1):=Integers'First;forIin2..X'LastloopX(I):=X(I-1)+1;endloop;endFirst;procedureNext(X:inoutCombination)isbeginforIinreverseX'RangeloopifX(I)<Integers'Val(Integers'Pos(Integers'Last)-X'Last+I)thenX(I):=X(I)+1;forJinI+1..X'LastloopX(J):=X(J-1)+1;endloop;return;endif;endloop;raiseConstraint_Error;endNext;procedurePut(X:Combination)isbeginforIinX'RangeloopPut(Integers'Image(X(I)));endloop;endPut;endCombinations;typeFiveisrange0..4;packageFivesis newCombinations(Five);useFives;X:Combination(1..3);beginFirst(X);loopPut(X);New_Line;Next(X);endloop;exceptionwhenConstraint_Error=>null;endTest_Combinations;

The solution is generic the formal parameter is the integer type to make combinations of. The type range determinesn. In the example it is

typeFiveisrange0..4;

The parameterm is the object's constraint. Whenn <m the procedure First (selects the first combination) will propagate Constraint_Error. The procedure Next selects the next combination. Constraint_Error is propagated when it is the last one.

Output:
 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

ALGOL 68

Translation of:Python
Works with:ALGOL 68 version Revision 1 - one minor extension to language used - PRAGMA READ, similar to C's #include directive.
Works with:ALGOL 68G version Any - tested with releasealgol68g-2.6.

File: prelude_combinations.a68

# -*- coding: utf-8 -*- #COMMENT REQUIRED BY "prelude_combinations_generative.a68"  MODE COMBDATA = ~;PROVIDES:# COMBDATA*=~* ## comb*=~ list* #END COMMENTMODE COMBDATALIST = REF[]COMBDATA;MODE COMBDATALISTYIELD = PROC(COMBDATALIST)VOID;PROC comb gen combinations = (INT m, COMBDATALIST list, COMBDATALISTYIELD yield)VOID:(  CASE m IN  # case 1: transpose list #    FOR i TO UPB list DO yield(list[i]) OD  OUT    [m + LWB list - 1]COMBDATA out;    INT index out := 1;    FOR i TO UPB list DO      COMBDATA first = list[i];    # FOR COMBDATALIST sub recombination IN # comb gen combinations(m - 1, list[i+1:] #) DO (#,    ##   (COMBDATALIST sub recombination)VOID:(        out[LWB list   ] := first;        out[LWB list+1:] := sub recombination;        yield(out)    # OD #))    OD  ESAC);SKIP

File: test_combinations.a68

#!/usr/bin/a68g --script ## -*- coding: utf-8 -*- #CO REQUIRED BY "prelude_combinations.a68" CO  MODE COMBDATA = INT;#PROVIDES:## COMBDATA~=INT~ ## comb ~=int list ~#PR READ "prelude_combinations.a68" PR;FORMAT data fmt = $g(0)$;main:(  INT m = 3;  FORMAT list fmt = $"("n(m-1)(f(data fmt)",")f(data fmt)")"$;  FLEX[0]COMBDATA test data list := (1,2,3,4,5);# FOR COMBDATALIST recombination data IN # comb gen combinations(m, test data list #) DO (#,##    (COMBDATALIST recombination)VOID:(    printf ((list fmt, recombination, $l$))# OD # )))
Output:
(1,2,3)(1,2,4)(1,2,5)(1,3,4)(1,3,5)(1,4,5)(2,3,4)(2,3,5)(2,4,5)(3,4,5)

APL

Works with:Dyalog APL

From Roger Hui's paper "A History of APL in 50 Functions":

comb{(=0)=⍵:⌷⍉⍪⍳(0,1+(-1)-1)1+-1}4comb501230125014503452345
Works with:Dyalog APL
comb{{0=⍺:0=≢⍵:((),¨(-1)r),⍺∇r1}}
Output:
      3 comb 5┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐│1 2 3│1 2 4│1 2 5│1 3 4│1 3 5│1 4 5│2 3 4│2 3 5│2 4 5│3 4 5│└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘

AppleScript

Iteration

oncomb(n,k)setcto{}repeatwithifrom1toksetendofctoi'scontentsendrepeatsetrto{c'scontents}repeatwhilemynext_comb(c,k,n)setendofrtoc'scontentsendrepeatreturnrendcombonnext_comb(c,k,n)setitoksetc'sitemito(c'sitemi)+1repeatwhile(i>1andc'sitemin-k+1+i)setitoi-1setc'sitemito(c'sitemi)+1endrepeatif(c'sitem1>n-k+1)thenreturnfalserepeatwithifromi+1toksetc'sitemito(c'sitem(i-1))+1endrepeatreturntrueendnext_combreturncomb(5,3)
Output:
{{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5}}

Functional composition

Translation of:JavaScript
----------------------- COMBINATIONS ----------------------- comb :: Int -> [a] -> [[a]]oncomb(n,lst)if1>nthen{{}}elseifnotisNull(lst)thenset{h,xs}touncons(lst)map(cons(h),¬comb(n-1,xs))&comb(n,xs)else{}endifendifendcomb--------------------------- TEST -------------------------onrunintercalate(linefeed,¬map(unwords,comb(3,enumFromTo(0,4))))endrun-------------------- GENERIC FUNCTIONS --------------------- cons :: a -> [a] -> [a]oncons(x)scripton|λ|(xs){x}&xsend|λ|endscriptendcons-- enumFromTo :: Int -> Int -> [Int]onenumFromTo(m,n)ifmnthensetlstto{}repeatwithifrommtonsetendoflsttoiendrepeatlstelse{}endifendenumFromTo-- intercalate :: Text -> [Text] -> Textonintercalate(strText,lstText)set{dlm,mytext item delimiters}to{mytext item delimiters,strText}setstrJoinedtolstTextastextsetmytext item delimiterstodlmreturnstrJoinedendintercalate-- isNull :: [a] -> BoolonisNull(xs)ifclassofxsisstringthenxs=""elsexs={}endifendisNull-- map :: (a -> b) -> [a] -> [b]onmap(f,xs)tellmReturn(f)setlngtolengthofxssetlstto{}repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,i,xs)endrepeatreturnlstendtellendmap-- Lift 2nd class handler function into 1st class script wrapper-- mReturn :: Handler -> ScriptonmReturn(f)ifclassoffisscriptthenfelsescriptproperty|λ|:fendscriptendifendmReturn-- uncons :: [a] -> Maybe (a, [a])onuncons(xs)setlngtolengthofxsiflng>0thenifclassofxsisstringthensetcstotextitemsofxs{item1ofcs,restofcs}else{item1ofxs,restofxs}endifelsemissing valueendifenduncons-- unwords :: [String] -> Stringonunwords(xs)intercalate(space,xs)endunwords
Output:
0 1 20 1 30 1 40 2 30 2 40 3 41 2 31 2 41 3 42 3 4

Arturo

print.linescombine.by:3@0..4
Output:
[0 1 2][0 1 3][0 1 4][0 2 3][0 2 4][0 3 4][1 2 3][1 2 4][1 3 4][2 3 4]

AutoHotkey

contributed by Laszlo on the ahkforum

MsgBox%Comb(1,1)MsgBox%Comb(3,3)MsgBox%Comb(3,2)MsgBox%Comb(2,3)MsgBox%Comb(5,3)Comb(n,t){ ; Generate all n choose t combinations of 1..n, lexicographicallyIfLessn,%t%,ReturnLoop%t%c%A_Index%:=A_Indexi:=t+1,c%i%:=n+1Loop{Loop%t%i:=t+1-A_Index,c.=c%i%" "c.="`n"     ; combinations in new linesj:=1,i:=2LoopIf(c%j%+1=c%i%)c%j%:=j,++j,++iElseBreakIf(j>t)Returncc%j%+=1}}

AWK

BEGIN{## Default values for r and n (Choose 3 from pool of 5).  Can## alternatively be set on the command line:-## awk -v r=<number of items being chosen> -v n=<how many to choose from> -f <scriptname>if(length(r)==0)r=3if(length(n)==0)n=5for(i=1;i<=r;i++){## First combination of items:A[i]=iif(i<r)printfiOFSelseprinti}## While 1st item is less than its maximum permitted value...while(A[1]<n-r+1){## loop backwards through all items in the previous## combination of items until an item is found that is## less than its maximum permitted value:for(i=r;i>=1;i--){## If the equivalently positioned item in the## previous combination of items is less than its## maximum permitted value...if(A[i]<n-r+i){## increment the current item by 1:A[i]++## Save the current position-index for use## outside this "for" loop:p=ibreak}}## Put consecutive numbers in the remainder of the array,## counting up from position-index p.for(i=p+1;i<=r;i++)A[i]=A[i-1]+1## Print the current combination of items:for(i=1;i<=r;i++){if(i<r)printfA[i]OFSelseprintA[i]}}exit}

Usage:

awk -v r=3 -v n=5 -f combn.awk
Output:
1 2 31 2 41 2 51 3 41 3 51 4 52 3 42 3 52 4 53 4 5

BASIC

BASIC256

input"Enter n comb m. ",ninputmoutstr$=""calliterate(outstr$,0,m-1,n-1)endsubroutineiterate(curr$,start,stp,depth)fori=starttostpifdepth=0thenprintcurr$+" "+string(i)calliterate(curr$+" "+string(i),i+1,stp,depth-1)nextiendsubroutine
Output:
Enter n comb m. 35 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

IS-BASIC

100 PROGRAM "Combinat.bas"110 LET MMAX=3:LET NMAX=5120 NUMERIC COMB(0 TO MMAX)130 CALL GENERATE(1)140 DEF GENERATE(M)150   NUMERIC N,I160   IF M>MMAX THEN170     FOR I=1 TO MMAX180       PRINT COMB(I);190     NEXT200     PRINT220   ELSE230     FOR N=0 TO NMAX-1240       IF M=1 OR N>COMB(M-1) THEN250         LET COMB(M)=N260         CALL GENERATE(M+1)270       END IF280     NEXT290   END IF300 END DEF

QBasic

Works with:QBasic version 1.1
Works with:QuickBasic version 4.5
SUBiterate(curr$,start,stp,depth)FORi=startTOstpIFdepth=0THENPRINTcurr$+" "+STR$(i)CALLiterate(curr$+" "+STR$(i),i+1,stp,depth-1)NEXTiENDSUBINPUT"Enter n comb m.  ",n,moutstr$=""CALLiterate(outstr$,0,m-1,n-1)END
Output:
Same as FreeBASIC entry.

Run BASIC

subiteratecurr$,start,stp,depthfori=starttostpifdepth=0thenprintcurr$+" "+str$(i)calliteratecurr$+" "+str$(i),i+1,stp,depth-1nextiendsubinput"Enter n comb m. ";n,moutstr$=""calliterateoutstr$,0,m-1,n-1end

XBasic

Works with:Windows XBasic
PROGRAM"Combinations"VERSION"0.0000"DECLAREFUNCTIONEntry()DECLAREFUNCTIONiterate(curr$,start,stp,depth)FUNCTIONEntry()n=3m=5outstr$=""iterate(outstr$,0,m-1,n-1)ENDFUNCTIONFUNCTIONiterate(curr$,start,stp,depth)FORi=startTOstpIFdepth=0THENPRINTcurr$+" "+STR$(i)iterate(curr$+" "+STR$(i),i+1,stp,depth-1)NEXTiRETURNENDFUNCTIONENDPROGRAM

BBC BASIC

Works with:BBC BASIC for Windows
INSTALL@lib$+"SORTLIB"sort%=FN_sortinit(0,0)M%=3N%=5C%=FNfact(N%)/(FNfact(M%)*FNfact(N%-M%))DIMs$(C%)PROCcomb(M%,N%,s$())CALLsort%,s$(0)FORI%=0TOC%-1PRINTs$(I%)NEXTENDDEFPROCcomb(C%,N%,s$())LOCALI%,U%FORU%=0TO2^N%-1IFFNbits(U%)=C%THENs$(I%)=FNlist(U%)I%+=1ENDIFNEXTENDPROCDEFFNbits(U%)LOCALN%WHILEU%N%+=1U%=U%AND(U%-1)ENDWHILE=N%DEFFNlist(U%)LOCALN%,s$WHILEU%IFU%AND1s$+=STR$(N%)+" "N%+=1U%=U%>>1ENDWHILE=s$DEFFNfact(N%)IFN%<=1THEN=1ELSE=N%*FNfact(N%-1)

BQN

Cmat{𝕨0𝕩?≍↕𝕨;0˘´1+(𝕨-10)𝕊¨𝕩-1}# RecursiveCmat1{k⌽↕d𝕩¬𝕨∾⌽{k˘¨˜`1+𝕩}𝕨d↑↓100}# Roger Hui
┌─       ╵ 0 1 2    0 1 3    0 1 4    0 2 3    0 2 4    0 3 4    1 2 3    1 2 4    1 3 4    2 3 4          ┘

Bracmat

The program first constructs a pattern withm variables and an expression that evaluatesm variables into a combination.Then the program constructs a list of the integers0 ... n-1.The real work is done in the expression!list:!pat. When a combination is found, it is added to the list of combinations. Then we force the program to backtrack and find the next combination by evaluating the always failing~.When all combinations are found, the pattern fails and we are in the rhs of the last| operator.

(comb=  bvar combination combinations list m n pat pvar var.     !arg:(?m.?n)    & ( pat      =   ?        & !combinations (.!combination):?combinations        & ~      )    & :?list:?combination:?combinations    &   whl      ' ( !m+-1:~<0:?m        & chu$(utf$a+!m):?var        & glf$('(%@?.$var)):(=?pvar)        & '(? ()$pvar ()$pat):(=?pat)        & glf$('(!.$var)):(=?bvar)        & (   '$combination:(=)            & '$bvar:(=?combination)          | '($bvar ()$combination):(=?combination)          )        )    &   whl      ' (!n+-1:~<0:?n&!n !list:?list)    & !list:!pat  | !combinations);
comb$(3.5)
(.0 1 2)(.0 1 3)(.0 1 4)(.0 2 3)(.0 2 4)(.0 3 4)(.1 2 3)(.1 2 4)(.1 3 4)(.2 3 4)

C

#include<stdio.h>/* Type marker stick: using bits to indicate what's chosen.  The stick can't * handle more than 32 items, but the idea is there; at worst, use array instead */typedefunsignedlongmarker;markerone=1;voidcomb(intpool,intneed,markerchosen,intat){if(pool<need+at)return;/* not enough bits left */if(!need){/* got all we needed; print the thing.  if other actions are * desired, we could have passed in a callback function. */for(at=0;at<pool;at++)if(chosen&(one<<at))printf("%d ",at);printf("\n");return;}/* if we choose the current item, "or" (|) the bit to mark it so. */comb(pool,need-1,chosen|(one<<at),at+1);comb(pool,need,chosen,at+1);/* or don't choose it, go to next */}intmain(){comb(5,3,0,0);return0;}

Lexicographic ordered generation

Without recursions, generate all combinations in sequence. Basic logic: put n items in the first n of m slots; each step, if right most slot can be moved one slot further right, do so; otherwisefind right most item that can be moved, move it one step and put all items already to its right next to it.

#include<stdio.h>voidcomb(intm,intn,unsignedchar*c){inti;for(i=0;i<n;i++)c[i]=n-i;while(1){for(i=n;i--;)printf("%d%c",c[i],i?' ':'\n');/* this check is not strictly necessary, but if m is not close to n,   it makes the whole thing quite a bit faster */i=0;if(c[i]++<m)continue;for(;c[i]>=m-i;)if(++i>=n)return;for(c[i]++;i;i--)c[i-1]=c[i]+1;}}intmain(){unsignedcharbuf[100];comb(5,3,buf);return0;}

C#

usingSystem;usingSystem.Collections.Generic;publicclassProgram{publicstaticIEnumerable<int[]>Combinations(intm,intn){int[]result=newint[m];Stack<int>stack=newStack<int>();stack.Push(0);while(stack.Count>0){intindex=stack.Count-1;intvalue=stack.Pop();while(value<n){result[index++]=++value;stack.Push(value);if(index==m){yieldreturnresult;break;}}}}staticvoidMain(){foreach(int[]cinCombinations(3,5)){Console.WriteLine(string.Join(",",c));Console.WriteLine();}}}

Here is another implementation that uses recursion, intead of an explicit stack:

usingSystem;usingSystem.Collections.Generic;publicclassProgram{publicstaticIEnumerable<int[]>FindCombosRec(int[]buffer,intdone,intbegin,intend){for(inti=begin;i<end;i++){buffer[done]=i;if(done==buffer.Length-1)yieldreturnbuffer;elseforeach(int[]childinFindCombosRec(buffer,done+1,i+1,end))yieldreturnchild;}}publicstaticIEnumerable<int[]>FindCombinations(intm,intn){returnFindCombosRec(newint[m],0,0,n);}staticvoidMain(){foreach(int[]cinFindCombinations(3,5)){for(inti=0;i<c.Length;i++){Console.Write(c[i]+" ");}Console.WriteLine();}}}



Recursive version

usingSystem;classCombinations{staticintk=3,n=5;staticint[]buf=newint[k];staticvoidMain(){rec(0,0);}staticvoidrec(intind,intbegin){for(inti=begin;i<n;i++){buf[ind]=i;if(ind+1<k)rec(ind+1,buf[ind]+1);elseConsole.WriteLine(string.Join(",",buf));}}}

C++

#include<algorithm>#include<iostream>#include<string>voidcomb(intN,intK){std::stringbitmask(K,1);// K leading 1'sbitmask.resize(N,0);// N-K trailing 0's// print integers and permute bitmaskdo{for(inti=0;i<N;++i)// [0..N-1] integers{if(bitmask[i])std::cout<<" "<<i;}std::cout<<std::endl;}while(std::prev_permutation(bitmask.begin(),bitmask.end()));}intmain(){comb(5,3);}
Output:
 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

Clojure

(defncombinations"If m=1, generate a nested list of numbers [0,n)   If m>1, for each x in [0,n), and for each list in the recursion on [x+1,n), cons the two"[mn](letfn[(comb-aux[mstart](if(=1m)(for[x(rangestartn)](listx))(for[x(rangestartn)xs(comb-aux(decm)(incx))](consxxs))))](comb-auxm0)))(defnprint-combinations[mn](doseq[line(combinationsmn)](doseq[nline](printf"%s "n))(printf"%n")))

The below code do not comply to the task described above. However, the combinations of n elements taken from m elements might be more natural to be expressed as a set of unordered sets of elements in Clojure using its Set data structure.

(defncombinations"Generate the combinations of n elements from a list of [0..m)"[mn](let[xs(rangem)](loop[i(int0)res#{#{}}](if(==in)res(recur(+1i)(set(for[xxsrres:when(not-any?#{x}r)](conjrx))))))))

CLU

% generate the size-M combinations from 0 to n-1combinations = iter (m, n: int) yields (sequence[int])    if m<=n then        state: array[int] := array[int]$predict(1, m)        for i: int in int$from_to(0, m-1) do            array[int]$addh(state, i)        end                i: int := m         while i>0 do            yield (sequence[int]$a2s(state))            i := m            while i>0 do                state[i] := state[i] + 1                for j: int in int$from_to(i,m-1) do                     state[j+1] := state[j] + 1                 end                if state[i] < n-(m-i) then break end                i := i - 1            end        end    end end combinations% print a combinationprint_comb = proc (s: stream, comb: sequence[int])    for i: int in sequence[int]$elements(comb) do        stream$puts(s, int$unparse(i) || " ")    endend print_combstart_up = proc ()    po: stream := stream$primary_output()    for comb: sequence[int] in combinations(3, 5) do        print_comb(po, comb)        stream$putl(po, "")    endend start_up
Output:
0 1 20 1 30 1 40 2 30 2 40 3 41 2 31 2 41 3 42 3 4

CoffeeScript

Basic backtracking solution.

combinations=(n, p) ->return[[]]ifp==0i=0combos=[]combo=[]whilecombo.length<pifi<ncombo.pushii+=1elsebreakifcombo.length==0i=combo.pop()+1ifcombo.length==pcombos.pushclonecomboi=combo.pop()+1combosclone=(arr) ->(nforninarr)N=5foriin[0..N]console.log"------#{N}#{i}"forcomboincombinationsN,iconsole.logcombo
Output:
> coffee combo.coffee ------ 5 0[]------ 5 1[ 0 ][ 1 ][ 2 ][ 3 ][ 4 ]------ 5 2[ 0, 1 ][ 0, 2 ][ 0, 3 ][ 0, 4 ][ 1, 2 ][ 1, 3 ][ 1, 4 ][ 2, 3 ][ 2, 4 ][ 3, 4 ]------ 5 3[ 0, 1, 2 ][ 0, 1, 3 ][ 0, 1, 4 ][ 0, 2, 3 ][ 0, 2, 4 ][ 0, 3, 4 ][ 1, 2, 3 ][ 1, 2, 4 ][ 1, 3, 4 ][ 2, 3, 4 ]------ 5 4[ 0, 1, 2, 3 ][ 0, 1, 2, 4 ][ 0, 1, 3, 4 ][ 0, 2, 3, 4 ][ 1, 2, 3, 4 ]------ 5 5[ 0, 1, 2, 3, 4 ]

Common Lisp

(defunmap-combinations(mnfn)"Call fn with each m combination of the integers from 0 to n-1 as a list. The list may be destroyed after fn returns."(let((combination(make-listm)))(labels((up-from(low)(let((start(1-low)))(lambda()(incfstart))))(mc(currleftneededcomb-tail)(cond((zeropneeded)(funcallfncombination))((=leftneeded)(map-intocomb-tail(up-fromcurr))(funcallfncombination))(t(setf(firstcomb-tail)curr)(mc(1+curr)(1-left)(1-needed)(restcomb-tail))(mc(1+curr)(1-left)neededcomb-tail)))))(mc0nmcombination))))
Output:

Example use

> (map-combinations 3 5 'print)(0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4) (2 3 4)

Recursive method

(defuncomb(mlistfn)(labels((comb1(lcm)(when(>=(lengthl)m)(if(zeropm)(return-fromcomb1(funcallfnc)))(comb1(cdrl)cm)(comb1(cdrl)(cons(firstl)c)(1-m)))))(comb1listnilm)))(comb3'(012345)#'print)

Alternate, iterative method

(defunnext-combination(na)(let((k(lengtha))m)(loopforifrom1do(when(>ik)(returnnil))(when(<(arefa(-ki))(-ni))(setfm(arefa(-ki)))(loopforjfromidownto1do(incfm)(setf(arefa(-kj))m))(returnt)))))(defunall-combinations(nk)(if(or(<k0)(<nk))'()(let((a(make-arrayk)))(loopforibelowkdo(setf(arefai)i))(loopcollect(coercea'list)while(next-combinationna)))))(defunmap-combinations(nkfun)(if(and(>=k0)(>=nk))(let((a(make-arrayk)))(loopforibelowkdo(setf(arefai)i))(loopdo(funcallfun(coercea'list))while(next-combinationna))))); all-combinations returns a list of lists>(all-combinations43)((012)(013)(023)(123)); map-combinations applies a function to each combination>(map-combinations64#'print)(0123)(0124)(0125)(0134)(0135)(0145)(0234)(0235)(0245)(0345)(1234)(1235)(1245)(1345)(2345)

Crystal

defcomb(m,n)(0...n).to_a.each_combination(m){|p|puts(p)}end
[0,1,2][0,1,3][0,1,4][0,2,3][0,2,4][0,3,4][1,2,3][1,2,4][1,3,4][2,3,4]

D

Slow Recursive Version

Translation of:Python
T[][]comb(T)(inT[]arr,inintk)purenothrow{if(k==0)return[[]];typeof(return)result;foreach(immutablei,immutablex;arr)foreach(suffix;arr[i+1..$].comb(k-1))result~=x~suffix;returnresult;}voidmain(){importstd.stdio;[0,1,2,3].comb(2).writeln;}
Output:
[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]

More Functional Recursive Version

Translation of:Haskell

Same output.

importstd.stdio,std.algorithm,std.range;immutable(int)[][]comb(immutableint[]s,inintm)purenothrow@safe{if(!m)return[[]];if(s.empty)return[];returns[1..$].comb(m-1).map!(x=>s[0]~x).array~s[1..$].comb(m);}voidmain(){4.iota.array.comb(2).writeln;}

Lazy Version

modulecombinations3;importstd.traits:Unqual;structCombinations(T,boolcopy=true){Unqual!T[]pool,front;size_tr,n;boolempty=false;size_t[]indices;size_tlen;boollenComputed=false;this(T[]pool_,insize_tr_)purenothrow@safe{this.pool=pool_.dup;this.r=r_;this.n=pool.length;if(r>n)empty=true;indices.length=r;foreach(immutablei,refini;indices)ini=i;front.length=r;foreach(immutablei,immutableidx;indices)front[i]=pool[idx];}@propertysize_tlength()/*logic_const*/purenothrow@nogc{staticsize_tbinomial(size_tn,size_tk)purenothrow@safe@nogcin{assert(n>0,"binomial: n must be > 0.");}body{if(k<0||k>n)return0;if(k>(n/2))k=n-k;size_tresult=1;foreach(size_td;1..k+1){result*=n;n--;result/=d;}returnresult;}if(!lenComputed){// Set cache.len=binomial(n,r);lenComputed=true;}returnlen;}voidpopFront()purenothrow@safe{if(!empty){boolbroken=false;size_tpos=0;foreach_reverse(immutablei;0..r){pos=i;if(indices[i]!=i+n-r){broken=true;break;}}if(!broken){empty=true;return;}indices[pos]++;foreach(immutablej;pos+1..r)indices[j]=indices[j-1]+1;staticif(copy)front=newUnqual!T[front.length];foreach(immutablei,immutableidx;indices)front[i]=pool[idx];}}}Combinations!(T,copy)combinations(boolcopy=true,T)(T[]items,insize_tk)in{assert(items.length,"combinations: items can't be empty.");}body{returntypeof(return)(items,k);}// Compile with -version=combinations3_main to run main.version(combinations3_main)voidmain(){importstd.stdio,std.array,std.algorithm;[1,2,3,4].combinations!false(2).array.writeln;[1,2,3,4].combinations!true(2).array.writeln;[1,2,3,4].combinations(2).map!(x=>x).writeln;}

Lazy Lexicographical Combinations

Includes an algorithm to findmth Lexicographical Element of a Combination.

modulecombinations4;importstd.stdio,std.algorithm,std.conv;ulongchoose(intn,intk)nothrowin{assert(n>=0&&k>=0,"choose: no negative input.");}body{staticulong[][]cache;if(n<k)return0;elseif(n==k)return1;while(n>=cache.length)cache~=[1UL];// = choose(m, 0);autokmax=min(k,n-k);while(kmax>=cache[n].length){immutableh=cache[n].length;cache[n]~=choose(n-1,h-1)+choose(n-1,h);}returncache[n][kmax];}intlargestV(inintp,inintq,inlongr)nothrowin{assert(p>0&&q>=0&&r>=0,"largestV: no negative input.");}body{autov=p-1;while(choose(v,q)>r)v--;returnv;}structComb{immutableintn,m;@propertysize_tlength()const/*nothrow*/{returnto!size_t(choose(n,m));}int[]opIndex(insize_tidx)const{if(m<0||n<0)return[];if(idx>=length)thrownewException("Out of bound");ulongx=choose(n,m)-1-idx;inta=n,b=m;autores=newint[m];foreach(i;0..m){a=largestV(a,b,x);x=x-choose(a,b);b=b-1;res[i]=n-1-a;}returnres;}intopApply(intdelegate(refint[])dg)const{int[]yield;foreach(i;0..length){yield=this[i];if(dg(yield))break;}return0;}staticautoOn(T)(inT[]arr,inintm){autocomb=Comb(arr.length,m);returnnewclass{@propertysize_tlength()const/*nothrow*/{returncomb.length;}intopApply(intdelegate(refT[])dg)const{autoyield=newT[m];foreach(c;comb){foreach(idx;0..m)yield[idx]=arr[c[idx]];if(dg(yield))break;}return0;}};}}version(combinations4_main)voidmain(){foreach(c;Comb.On([1,2,3],2))writeln(c);}

Delphi

SeePascal.

DuckDB

Works with:DuckDB version V1.1

combinations(n,k) as defined here is a table-valued functionfor generating the nCk distinct k-combinations of range(1, n+1)in no particular order. The sorting of the table is easilyaccomplished as shown in the example. The `ORDER BY combination`clause could evidently be moved into the function if desired.

CREATEORREPLACEFUNCTIONcombinations(n,k)astable(WITHRECURSIVEcte(current,remaining)AS(-- start with empty combination and the full listSELECT[],range(1,n+1)UNIONALL-- recursive case: add one item to the current combinationSELECTcurrent||remaining[j:j],remaining[j+1:]FROMcte,range(1,length(remaining)+1)_(j)WHERElength(current)<k)SELECTcurrentAScombinationFROMcteWHERElength(current)=k);##Example:FROMcombinations(5,3)ORDERBYcombination;
Output:
┌─────────────┐│ combination ││   int32[]   │├─────────────┤│ [1, 2, 3]   ││ [1, 2, 4]   ││ [1, 2, 5]   ││ [1, 3, 4]   ││ [1, 3, 5]   ││ [1, 4, 5]   ││ [2, 3, 4]   ││ [2, 3, 5]   ││ [2, 4, 5]   ││ [3, 4, 5]   │├─────────────┤│   10 rows   │└─────────────┘

E

def combinations(m, range) {  return if (m <=> 0) { [[]] } else {    def combGenerator {      to iterate(f) {        for i in range {          for suffix in combinations(m.previous(), range & (int > i)) {            f(null, [i] + suffix)          }        }      }    }  }}
? for x in combinations(3, 0..4) { println(x) }

EasyLang

n = 5m = 3len result[] m# proc combinations pos val .   if pos > m      print result[]      return   .   for i = val to pos + n - m      result[pos] = i      combinations pos + 1 i + 1   ..combinations 1 1
Output:
[ 1 2 3 ][ 1 2 4 ][ 1 2 5 ][ 1 3 4 ][ 1 3 5 ][ 1 4 5 ][ 2 3 4 ][ 2 3 5 ][ 2 4 5 ][ 3 4 5 ]

EchoLisp

;;;; using the native (combinations) function(lib'list)(combinations(iota5)3)((012)(013)(014)(023)(024)(034)(123)(124)(134)(234));;;; using an iterator;;(lib'sequences)(take(combinator(iota5)3)#:all)((012)(013)(014)(023)(024)(034)(123)(124)(134)(234));;;; defining a function;;(define(combinelstp)(cond[(null?lst)null][(<(lengthlst)p)null][(=(lengthlst)p)(listlst)][(=p1)(maplistlst)][else(append(mapcons(circular-list(firstlst))(combine(restlst)(1-p)))(combine(restlst)p))]))(combine(iota5)3)((012)(013)(014)(023)(024)(034)(123)(124)(134)(234))

Egison

(define $comb  (lambda [$n $xs]    (match-all xs (list integer)      [(loop $i [1 ,n] <join _ <cons $a_i ...>> _) a])))(test (comb 3 (between 0 4)))
Output:
{[|0 1 2|] [|0 1 3|] [|0 2 3|] [|1 2 3|] [|0 1 4|] [|0 2 4|] [|0 3 4|] [|1 2 4|] [|1 3 4|] [|2 3 4|]}

Eiffel

The core of the program is the recursive feature solve, which returns all possible strings of length n with k "ones" and n-k "zeros". The strings are then evaluated, each resulting in k corresponding integers for the digits where ones are found.

classCOMBINATIONScreatemakefeaturemake(n,k:INTEGER)requiren_positive:n>0k_positive:k>0k_smaller_equal:k<=ndocreateset.makeset.extend("")createsol.makesol:=solve(set,k,n-k)sol:=convert_solution(n,sol)ensurecorrect_num_of_sol:num_of_comb(n,k)=sol.countendsol:LINKED_LIST[STRING]feature{None}set:LINKED_LIST[STRING]convert_solution(n:INTEGER;solution:LINKED_LIST[STRING]):LINKED_LIST[STRING]-- strings of 'k' digits between 1 and 'n'locali,j:INTEGERtemp:STRINGdocreatetemp.make(n)fromi:=1untili>solution.countloopfromj:=1untilj>nloopifsolution[i].at(j)='1'thentemp.append(j.out)endj:=j+1endsolution[i].deep_copy(temp)temp.wipe_outi:=i+1endResult:=solutionendsolve(seta:LINKED_LIST[STRING];one,zero:INTEGER):LINKED_LIST[STRING]-- list of strings with a number of 'one' 1s and 'zero' 0, standig for wether the corresponing digit is taken or not.localnew_P1,new_P0:LINKED_LIST[STRING]docreatenew_P1.makecreatenew_P0.makeifone>0thennew_P1.deep_copy(seta)acrossnew_P1asP1loopnew_P1.item.append("1")endnew_P1:=solve(new_P1,one-1,zero)endifzero>0thennew_P0.deep_copy(seta)acrossnew_P0asP0loopnew_P0.item.append("0")endnew_P0:=solve(new_P0,one,zero-1)endifone=0andzero=0thenResult:=setaelsecreateResult.makeResult.fill(new_p0)Result.fill(new_p1)endendnum_of_comb(n,k:INTEGER):INTEGER-- number of 'k' sized combinations out of 'n'.localupper,lower,m,l:INTEGERdoupper:=1lower:=1m:=nl:=kfromuntilm<n-k+1loopupper:=m*upperlower:=l*lowerm:=m-1l:=l-1endResult:=upper//lowerendend

Test:

classAPPLICATIONcreatemakefeaturemakedocreatecomb.make(5,3)acrosscomb.solasarloopio.put_string(ar.item.out+"%T")endendcomb:COMBINATIONSend
Output:
345 245 235 234 145 135 134 125 124 123

Elena

ELENA 6.x :

import system'routines;import extensions;import extensions'routines;const int M = 3;const int N = 5; Numbers(n){    ^ Array.allocate(n).populate::(int n => n)}public Program(){    var numbers := Numbers(N);        Combinator.new(M, numbers).forEach::(row)    {        Console.printLine(row.toString())    };        Console.readChar()}
Output:
0,1,20,1,30,1,40,2,30,2,40,3,41,2,31,2,41,3,42,3,4

Elixir

Translation of:Erlang
defmoduleRCdodefcomb(0,_),do:[[]]defcomb(_,[]),do:[]defcomb(m,[h|t])do(forl<-comb(m-1,t),do:[h|l])++comb(m,t)endend{m,n}={3,5}list=fori<-1..n,do:iEnum.each(RC.comb(m,list),fnx->IO.inspectxend)
Output:
[1, 2, 3][1, 2, 4][1, 2, 5][1, 3, 4][1, 3, 5][1, 4, 5][2, 3, 4][2, 3, 5][2, 4, 5][3, 4, 5]

Emacs Lisp

Translation of:Haskell
(defuncomb-recurse(mnn-max)(cond((zeropm)'(()))((=n-maxn)'())(t(append(mapcar#'(lambda(rest)(consnrest))(comb-recurse(1-m)(1+n)n-max))(comb-recursem(1+n)n-max)))))(defuncomb(mn)(comb-recursem0n))(comb35)
Output:
((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))

Erlang

-module(comb).-compile(export_all).comb(0,_)->[[]];comb(_,[])->[];comb(N,[H|T])->[[H|L]||L<-comb(N-1,T)]++comb(N,T).

Dynamic Programming

Translation of:Haskell

Could be optimized with a customzipwith/3 function instead of usinglists:sublist/2.

-module(comb).-export([combinations/2]).combinations(K,List)->lists:last(all_combinations(K,List)).all_combinations(K,List)->lists:foldr(fun(X,Next)->Sub=lists:sublist(Next,length(Next)-1),Step=[[]]++[[[X|S]||S<-L]||L<-Sub],lists:zipwith(funlists:append/2,Step,Next)end,[[[]]]++lists:duplicate(K,[]),List).

ERRE

PROGRAM COMBINATIONSCONST M_MAX=3,N_MAX=5DIM COMBINATION[M_MAX],STACK[100,1]PROCEDURE GENERATE(M)   LOCAL I   IF (M>M_MAX) THEN    FOR I=1 TO M_MAX DO     PRINT(COMBINATION[I];" ";)    END FOR    PRINT   ELSE    FOR N=1 TO N_MAX DO      IF ((M=1) OR (N>COMBINATION[M-1])) THEN        COMBINATION[M]=N        ! --- PUSH STACK -----------        STACK[SP,0]=M  STACK[SP,1]=N        SP=SP+1        ! --------------------------        GENERATE(M+1)        ! --- POP STACK ------------        SP=SP-1        M=STACK[SP,0] N=STACK[SP,1]        ! --------------------------      END IF    END FOR   END IFEND PROCEDUREBEGIN GENERATE(1)END PROGRAM
Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5

F#

letchoosemn=letrecfCprefixmfrom=seq{letrecloopForf=seq{matchfwith|[]->()|x::xs->yield(x,fC[](m-1)xs)yield!loopForxs}ifm=0thenyieldprefixelsefor(i,s)inloopForfromdoforxinsdoyieldprefix@[i]@x}fC[]m[0..(n-1)][<EntryPoint>]letmainargv=choose35|>Seq.iter(printfn"%A")0
Output:
[0; 1; 2][0; 1; 3][0; 1; 4][0; 2; 3][0; 2; 4][0; 3; 4][1; 2; 3][1; 2; 4][1; 3; 4][2; 3; 4]

Factor

USING:math.combinatoricsprettyprint;5iota3all-combinations.
{    { 0 1 2 }    { 0 1 3 }    { 0 1 4 }    { 0 2 3 }    { 0 2 4 }    { 0 3 4 }    { 1 2 3 }    { 1 2 4 }    { 1 3 4 }    { 2 3 4 }}

This works with any kind of sequence:

{"a""b""c"}2all-combinations.
{ { "a" "b" } { "a" "c" } { "b" "c" } }

FOCAL

01.10 S M=301.20 S N=501.30 D 201.40 Q02.10 F I=1,M;S C(I)=I-102.20 D 302.30 S I=M02.40 S C(I)=C(I)+102.50 I (C(I)-N+M-I)2.802.60 S I=I-102.70 I (-I)2.4;R02.80 F J=I+1,M;S C(J)=C(J-1)+102.90 G 2.203.10 F I=1,M;T %3,C(I)03.20 T !
Output:
=   0=   1=   2=   0=   1=   3=   0=   1=   4=   0=   2=   3=   0=   2=   4=   0=   3=   4=   1=   2=   3=   1=   2=   4=   1=   3=   4=   2=   3=   4

Fortran

programCombinationsuseiso_fortran_envimplicit none  typecomb_resultinteger,dimension(:),allocatable::combsend typecomb_resulttype(comb_result),dimension(:),pointer::rinteger::i,jcallcomb(5,3,r)doi=0,choose(5,3)-1doj=2,0,-1write(*,"(I4, ' ')",advance="no")r(i)%combs(j)end do     deallocate(r(i)%combs)write(*,*)""end do  deallocate(r)contains  functionchoose(n,k,err)integer::chooseinteger,intent(in)::n,kinteger,optional,intent(out)::errinteger::imax,i,imin,ieie=0if((n<0).or.(k<0))then       write(ERROR_UNIT,*)"negative in choose"choose=0ie=1else       if(n<k)thenchoose=0else if(n==k)thenchoose=1elseimax=max(k,n-k)imin=min(k,n-k)choose=1doi=imax+1,nchoose=choose*iend do          doi=2,iminchoose=choose/iend do       end if    end if    if(present(err))err=ieend functionchoosesubroutinecomb(n,k,co)integer,intent(in)::n,ktype(comb_result),dimension(:),pointer,intent(out)::cointeger::i,j,s,ix,kx,hm,tinteger::errhm=choose(n,k,err)if(err/=0)then       nullify(co)return    end if    allocate(co(0:hm-1))doi=0,hm-1allocate(co(i)%combs(0:k-1))end do    doi=0,hm-1ix=i;kx=kdos=0,n-1if(kx==0)exitt=choose(n-(s+1),kx-1)if(ix<t)thenco(i)%combs(kx-1)=skx=kx-1elseix=ix-tend if       end do    end do  end subroutinecombend programCombinations

Alternatively:

programcombinationsimplicit noneinteger,parameter::m_max=3integer,parameter::n_max=5integer,dimension(m_max)::combcharacter(*),parameter::fmt='(i0'//repeat(', 1x, i0',m_max-1)//')'callgen(1)contains  recursive subroutinegen(m)implicit noneinteger,intent(in)::minteger::nif(m>m_max)then      write(*,fmt)combelse      don=1,n_maxif((m==1).or.(n>comb(m-1)))thencomb(m)=ncallgen(m+1)end if      end do    end if  end subroutinegenend programcombinations
Output:
1 2 31 2 41 2 51 3 41 3 51 4 52 3 42 3 52 4 53 4 5

FreeBASIC

This is remarkably compact and elegant.

subiterate(byvalcurrasstring,byvalstartasuinteger,_byvalstpasuinteger,byvaldepthasuinteger)dimasuintegerifori=starttostpifdepth=0thenprintcurr+" "+str(i)endifiterate(curr+" "+str(i),i+1,stp,depth-1)nextireturnendsubdimasuintegerm,ninput"Enter n comb m.  ",n,mdimasstringoutstr=""iterateoutstr,0,m-1,n-1
Output:
Enter n comb m.  3,5 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

Frink

combinations[m, n] :={   a = toArray[0 to n-1]   return lexicalSort[a.combinations[m]]}println[formatTable[combinations[3,5]]]
Output:
0 1 20 1 30 1 40 2 30 2 40 3 41 2 31 2 41 3 42 3 4


FutureBasic

void local fn Combinations( currStr as CFStringRef, start as int, stp as int, depth as int )  int i    for i = start to stp    if depth = 0 then printf @"%@  %d", currStr, i    fn Combinations( fn StringWithFormat( @"%@  %d", currStr, i ), i+1, stp, depth-1 )  nextend fnint n : n = 3int m : m = 5printf @"  %d combinations of integers 0 through %d are:", n, m-1fn Combinations( @"", 0, m-1, n-1 )HandleEvents
Output:
  3 combinations of integers 0 through 4 are:  0  1  2  0  1  3  0  1  4  0  2  3  0  2  4  0  3  4  1  2  3  1  2  4  1  3  4  2  3  4


GAP

# Built-inCombinations([1..n],m);Combinations([1..5],3);# [ [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 2, 5 ], [ 1, 3, 4 ], [ 1, 3, 5 ],#   [ 1, 4, 5 ], [ 2, 3, 4 ], [ 2, 3, 5 ], [ 2, 4, 5 ], [ 3, 4, 5 ] ]

Glee

5!3 >>> ,,\$$(5!3) give all combinations of 3 out of 5$$(>>>) sorted up,$$(,,\) printed with crlf delimiters.

Result:

Result:1 2 31 2 41 2 51 3 41 3 51 4 52 3 42 3 52 4 53 4 5

Go

packagemainimport("fmt")funcmain(){comb(5,3,func(c[]int){fmt.Println(c)})}funccomb(n,mint,emitfunc([]int)){s:=make([]int,m)last:=m-1varrcfunc(int,int)rc=func(i,nextint){forj:=next;j<n;j++{s[i]=jifi==last{emit(s)}else{rc(i+1,j+1)}}return}rc(0,0)}
Output:
[0 1 2][0 1 3][0 1 4][0 2 3][0 2 4][0 3 4][1 2 3][1 2 4][1 3 4][2 3 4]

Groovy

Following the spirit of theHaskell solution.

In General

A recursive closure must bepre-declared.

defcombcomb={m,list->defn=list.size()m==0?[[]]:(0..(n-m)).inject([]){newlist,k->defsublist=(k+1==n)?[]:list[(k+1)..<n]newlist+=comb(m-1,sublist).collect{[list[k]]+it}}}

Test program:

defcsny=["Crosby","Stills","Nash","Young"]println"Choose from ${csny}"(0..(csny.size())).each{i->println"Choose ${i}:";comb(i,csny).each{printlnit};println()}
Output:
Choose from [Crosby, Stills, Nash, Young]Choose 0:[]Choose 1:[Crosby][Stills][Nash][Young]Choose 2:[Crosby, Stills][Crosby, Nash][Crosby, Young][Stills, Nash][Stills, Young][Nash, Young]Choose 3:[Crosby, Stills, Nash][Crosby, Stills, Young][Crosby, Nash, Young][Stills, Nash, Young]Choose 4:[Crosby, Stills, Nash, Young]

Zero-based Integers

defcomb0={m,n->comb(m,(0..<n))}

Test program:

println"Choose out of 5 (zero-based):"(0..3).each{i->println"Choose ${i}:";comb0(i,5).each{printlnit};println()}
Output:
Choose out of 5 (zero-based):Choose 0:[]Choose 1:[0][1][2][3][4]Choose 2:[0, 1][0, 2][0, 3][0, 4][1, 2][1, 3][1, 4][2, 3][2, 4][3, 4]Choose 3:[0, 1, 2][0, 1, 3][0, 1, 4][0, 2, 3][0, 2, 4][0, 3, 4][1, 2, 3][1, 2, 4][1, 3, 4][2, 3, 4]

One-based Integers

defcomb1={m,n->comb(m,(1..n))}

Test program:

println"Choose out of 5 (one-based):"(0..3).each{i->println"Choose ${i}:";comb1(i,5).each{printlnit};println()}
Output:
Choose out of 5 (one-based):Choose 0:[]Choose 1:[1][2][3][4][5]Choose 2:[1, 2][1, 3][1, 4][1, 5][2, 3][2, 4][2, 5][3, 4][3, 5][4, 5]Choose 3:[1, 2, 3][1, 2, 4][1, 2, 5][1, 3, 4][1, 3, 5][1, 4, 5][2, 3, 4][2, 3, 5][2, 4, 5][3, 4, 5]

Haskell

It's more natural to extend the task to all (ordered) sublists of sizem of a list.

Straightforward, unoptimized implementation with divide-and-conquer:

comb::Int->[a]->[[a]]comb0_=[[]]comb_[]=[]combm(x:xs)=map(x:)(comb(m-1)xs)++combmxs

In the induction step, eitherx is not in the result and the recursion proceeds with the rest of the listxs, or it is in the result and then we only needm-1 elements.

Shorter version of the above:

importData.List(tails)comb::Int->[a]->[[a]]comb0_=[[]]combml=[x:ys|x:xs<-tailsl,ys<-comb(m-1)xs]

To generate combinations of integers between 0 andn-1, use

comb0mn=combm[0..n-1]

Similar, for integers between 1 andn, use

comb1mn=combm[1..n]

Another method is to use the built inData.List.subsequences function, filter for subsequences of lengthm and then sort:

importData.List(sort,subsequences)combmn=sort.filter((==m).length)$subsequences[0..n-1]

And yet another way is to use the list monad to generate all possible subsets:

combmn=filter((==m.length)$filterM(const[True,False])[0..n-1]

Dynamic Programming

The first solution is inefficient because it repeatedly calculates the same subproblem in different branches of recursion. For example,comb m (x1:x2:xs) involves computingcomb (m-1) (x2:xs) andcomb m (x2:xs), both of which (separately) computecomb (m-1) xs. To avoid repeated computation, we can use dynamic programming:

comb::Int->[a]->[[a]]combmxs=combsBySizexs!!mwherecombsBySize=foldrf([[]]:repeat[])fxnext=zipWith(<>)(fmap(x:)<$>([]:next))nextmain::IO()main=print$comb3[0..4]
Output:
[[0,1,2],[0,1,3],[0,1,4],[0,2,3],[0,2,4],[0,3,4],[1,2,3],[1,2,4],[1,3,4],[2,3,4]]

Hobbes

// @test: combinations((3, [0,1,2,3,4]))tail xs = [xs[i] | i <- [1L..length(xs)-1]]prepend x = match x with  | (elem, lists) -> [([elem] ++ r) | r <- lists]combinations :: (int * [int]) -> [[int]]combinations x = match x with  | (0, _) -> [[]]  | (k, xs) -> if (length(xs) == 0) then [] else prepend((xs[0], combinations((k-1, tail(xs))))) ++ combinations((k, tail(xs)))
Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

Icon andUnicon

proceduremain()returncombinations(3,5,0)endprocedurecombinations(m,n,z)# demonstrate combinations/z:=1write(m," combinations of ",n," integers starting from ",z)everyput(L:=[],zton-1+zby1)# generate list of n items from zwrite("Intial list\n",list2string(L))write("Combinations:")everywrite(list2string(lcomb(L,m)))endprocedurelist2string(L)# helper functionevery(s:="[")||:=" "||(!L|"]")returnsendlinklists

The

Library:Icon Programming Library

provides the core procedurelcomb in lists written by Ralph E. Griswold and Richard L. Goerwitz.

procedurelcomb(L,i)#: list combinationslocaljifi<1thenfailsuspendifi=1then[!L]else[L[j:=1to*L-i+1]]|||lcomb(L[j+1:0],i-1)end
Output:
3 combinations of 5 integers starting from 0Intial list[ 0 1 2 3 4 ]Combinations:[ 0 1 2 ][ 0 1 3 ][ 0 1 4 ][ 0 2 3 ][ 0 2 4 ][ 0 3 4 ][ 1 2 3 ][ 1 2 4 ][ 1 3 4 ][ 2 3 4 ]

J

Library

require'stats'

Example use:

3comb5012013014023024034123124134234

All implementations here give that same result if given the same arguments.

Iteration

comb1=:dyaddefinec=.1{.~-d=.1+y-xz=.i.10for_j.(d-1+y)+/&i.ddo.z=.(c#j),.z{~;(-c){.&.><i.{.c=.+/\.cend.)

another iteration version

comb2=:dyaddefined=.1+y-xk=.>:|.i.dz=.<\.|.i.dfor.i.x-1do.z=.,each/\.k,.eachzk=.1+kend.;{.z)

Recursion

combr=:((0,.$:&.<:),1+($:<:))`(<:i.@,[)@.(>:+.0=[)M.

or expressed explicitly:

combr=:dyaddefineM.if.(x>:y)+.0=xdo.i.(x<:y),xelse.(0,.xcombr&.<:y),1+xcombry-1end.)

TheM. uses memoization (caching) which greatly reduces the running time. As a result, this is probably the fastest of the implementations here.

A less efficient but easier to understand recursion (similar to Python and Haskell):

combr1=:(({.@],.<:@[$:}.@]),($:}.))`]@.((=#)+.1=[)

and its explicit equivalent:

combr1=:dyaddefineif.(x=#y)+.x=1do.yelse.(({.y),.(x-1)combr(}.y)),(xcombr}.y)end.)

You need to supply the "list" for examplei.5

  3 combr1 i.50 1 20 1 30 1 40 2 30 2 40 3 41 2 31 2 41 3 42 3 4

Brute Force

A compact iterative version requiring exponential space & time in the size of the result

comb3=:((=+/"1)|.@:I.@#])#:@i.@(2&^)

We can also generate all permutations and exclude those which are not properly sorted combinations. This is inefficient, but efficiency is not always important.

combb=:(#~((-:/:~)>/:~-:\:~)"1)@(##:[:i.^~)

Java

Translation of:JavaScript
Works with:Java version 1.5+
importjava.util.Collections;importjava.util.LinkedList;publicclassComb{publicstaticvoidmain(String[]args){System.out.println(comb(3,5));}publicstaticStringbitprint(intu){Strings="";for(intn=0;u>0;++n,u>>=1)if((u&1)>0)s+=n+" ";returns;}publicstaticintbitcount(intu){intn;for(n=0;u>0;++n,u&=(u-1));//Turn the last set bit to a 0returnn;}publicstaticLinkedList<String>comb(intc,intn){LinkedList<String>s=newLinkedList<String>();for(intu=0;u<1<<n;u++)if(bitcount(u)==c)s.push(bitprint(u));Collections.sort(s);returns;}}

Using Java version 8

importjava.util.ArrayList;importjava.util.List;publicfinalclassCombinations{publicstaticvoidmain(String[]args){System.out.println(createCombinations(List.of(0,1,2,3,4),3));System.out.println(createCombinations(List.of("Crosby","Nash","Stills","Young"),3));}privatestatic<T>List<List<T>>createCombinations(List<T>elements,intk){List<List<T>>combinations=newArrayList<List<T>>();createCombinations(elements,k,newArrayList<T>(),combinations,0);returncombinations;}privatestatic<T>voidcreateCombinations(List<T>elements,intk,List<T>accumulator,List<List<T>>combinations,intindex){if(accumulator.size()==k){combinations.addFirst(newArrayList<T>(accumulator));}elseif(k-accumulator.size()<=elements.size()-index){createCombinations(elements,k,accumulator,combinations,index+1);accumulator.add(elements.get(index));createCombinations(elements,k,accumulator,combinations,index+1);accumulator.removeLast();}}}
Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]][[Crosby, Nash, Stills], [Crosby, Nash, Young], [Crosby, Stills, Young], [Nash, Stills, Young]]

JavaScript

Imperative

functionbitprint(u){vars="";for(varn=0;u;++n,u>>=1)if(u&1)s+=n+" ";returns;}functionbitcount(u){for(varn=0;u;++n,u=u&(u-1));returnn;}functioncomb(c,n){vars=[];for(varu=0;u<1<<n;u++)if(bitcount(u)==c)s.push(bitprint(u))returns.sort();}comb(3,5)

Alternative recursive version using and an array of values instead of length:

Translation of:Python
functioncombinations(arr,k){vari,subI,ret=[],sub,next;for(i=0;i<arr.length;i++){if(k===1){ret.push([arr[i]]);}else{sub=combinations(arr.slice(i+1,arr.length),k-1);for(subI=0;subI<sub.length;subI++){next=sub[subI];next.unshift(arr[i]);ret.push(next);}}}returnret;}combinations([0,1,2,3,4],3);// produces: [[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]combinations(["Crosby","Stills","Nash","Young"],3);// produces: [["Crosby", "Stills", "Nash"], ["Crosby", "Stills", "Young"], ["Crosby", "Nash", "Young"], ["Stills", "Nash", "Young"]]

Functional

ES5

Simple recursion:

(function(){functioncomb(n,lst){if(!n)return[[]];if(!lst.length)return[];varx=lst[0],xs=lst.slice(1);returncomb(n-1,xs).map(function(t){return[x].concat(t);}).concat(comb(n,xs));}// [m..n]functionrange(m,n){returnArray.apply(null,Array(n-m+1)).map(function(x,i){returnm+i;});}returncomb(3,range(0,4)).map(function(x){returnx.join(' ');}).join('\n');})();

We can significantly improve on the performance of the simple recursive function by deriving a memoized version of it, which stores intermediate results for repeated use.

(function(n){// n -> [a] -> [[a]]functioncomb(n,lst){if(!n)return[[]];if(!lst.length)return[];varx=lst[0],xs=lst.slice(1);returncomb(n-1,xs).map(function(t){return[x].concat(t);}).concat(comb(n,xs));}// f -> ffunctionmemoized(fn){m={};returnfunction(x){varargs=[].slice.call(arguments),strKey=args.join('-');v=m[strKey];if('u'===(typeofv)[0])m[strKey]=v=fn.apply(null,args);returnv;}}// [m..n]functionrange(m,n){returnArray.apply(null,Array(n-m+1)).map(function(x,i){returnm+i;});}varfnMemoized=memoized(comb),lstRange=range(0,4);returnfnMemoized(n,lstRange).map(function(x){returnx.join(' ');}).join('\n');})(3);


Output:
012013014023024034123124134234


ES6

Defined in terms of a recursive helper function:

(()=>{'use strict';// ------------------ COMBINATIONS -------------------// combinations :: Int -> [a] -> [[a]]constcombinations=n=>xs=>{constcomb=n=>xs=>{return1>n?[[]]:0===xs.length?([]):(()=>{consth=xs[0],tail=xs.slice(1);returncomb(n-1)(tail).map(cons(h)).concat(comb(n)(tail));})()};returncomb(n)(xs);};// ---------------------- TEST -----------------------constmain=()=>show(combinations(3)(enumFromTo(0)(4)));// ---------------- GENERIC FUNCTIONS ----------------// cons :: a -> [a] -> [a]constcons=x=>// A list constructed from the item x,// followed by the existing list xs.xs=>[x].concat(xs);// enumFromTo :: Int -> Int -> [Int]constenumFromTo=m=>n=>!isNaN(m)?(Array.from({length:1+n-m},(_,i)=>m+i)):enumFromTo_(m)(n);// show :: a -> Stringconstshow=(...x)=>JSON.stringify.apply(null,x.length>1?[x[0],null,x[1]]:x);// MAIN ---returnmain();})();
Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

Or, defining combinations in terms of a more general subsequences function:

(()=>{'use strict';// ------------------ COMBINATIONS -------------------// comb :: Int -> Int -> [[Int]]constcomb=m=>n=>combinations(m)(enumFromTo(0)(n-1));// combinations :: Int -> [a] -> [[a]]constcombinations=k=>xs=>sort(filter(xs=>k===xs.length)(subsequences(xs)));// --------------------- TEST ---------------------constmain=()=>show(comb(3)(5));// ---------------- GENERIC FUNCTIONS ----------------// cons :: a -> [a] -> [a]constcons=x=>// A list constructed from the item x,// followed by the existing list xs.xs=>[x].concat(xs);// enumFromTo :: Int -> Int -> [Int]constenumFromTo=m=>n=>!isNaN(m)?(Array.from({length:1+n-m},(_,i)=>m+i)):enumFromTo_(m)(n);// filter :: (a -> Bool) -> [a] -> [a]constfilter=p=>// The elements of xs which match// the predicate p.xs=>[...xs].filter(p);// list :: StringOrArrayLike b => b -> [a]constlist=xs=>// xs itself, if it is an Array,// or an Array derived from xs.Array.isArray(xs)?(xs):Array.from(xs||[]);// show :: a -> Stringconstshow=x=>// JSON stringification of a JS value.JSON.stringify(x)// sort :: Ord a => [a] -> [a]constsort=xs=>list(xs).slice().sort((a,b)=>a<b?-1:(a>b?1:0));// subsequences :: [a] -> [[a]]// subsequences :: String -> [String]constsubsequences=xs=>{const// nonEmptySubsequences :: [a] -> [[a]]nonEmptySubsequences=xxs=>{if(xxs.length<1)return[];const[x,xs]=[xxs[0],xxs.slice(1)];constf=(r,ys)=>cons(ys)(cons(cons(x)(ys))(r));returncons([x])(nonEmptySubsequences(xs).reduceRight(f,[]));};return('string'===typeofxs)?(cons('')(nonEmptySubsequences(xs.split('')).map(x=>''.concat.apply('',x)))):cons([])(nonEmptySubsequences(xs));};// MAIN ---returnmain();})();
Output:
[[0,1,2],[0,1,3],[0,1,4],[0,2,3],[0,2,4],[0,3,4],[1,2,3],[1,2,4],[1,3,4],[2,3,4]]

With recursions:

functioncombinations(k,arr,prefix=[]){if(prefix.length==0)arr=[...Array(arr).keys()];if(k==0)return[prefix];returnarr.flatMap((v,i)=>combinations(k-1,arr.slice(i+1),[...prefix,v]));}

jq

combination(r) generates a stream of combinations of the input array.The stream can be captured in an array as shown in the second example.

def combination(r):  if r > length or r < 0 then empty  elif r == length then .  else  ( [.[0]] + (.[1:]|combination(r-1))),        ( .[1:]|combination(r))  end;# select r integers from the set (0 .. n-1)def combinations(n;r): [range(0;n)] | combination(r);

Example 1

combinations(5;3)
Output:
[0,1,2][0,1,3][0,1,4][0,2,3][0,2,4][0,3,4][1,2,3][1,2,4][1,3,4][2,3,4]

Example 2

["a", "b", "c", "d", "e"] | combination(3) ] | length
Output:
10

Julia

Thecombinations function in theCombinatorics.jl package generates an iterable sequence of the combinations that you can loop over. (Note that the combinations are computed on the fly during the loop iteration, and are not pre-computed or stored since there many be a very large number of them.)

usingCombinatoricsn=4m=3foriincombinations(0:n,m)println(i')end
Output:
[0 1 2][0 1 3][0 1 4][0 2 3][0 2 4][0 3 4][1 2 3][1 2 4][1 3 4][2 3 4]

Recursive solution without the library

The previous solution is the best: it is most elegant, production stile solution.

If, on the other hand we wanted to show how it could be done in Julia, this recursive solution shows some potentials of Julia lang.

############################### COMBINATIONS OF 3 OUT OF 5 ################################ Set n and mm=5n=3# Prepare the boundary of the calculation. Only m - n numbers are changing in each position.max_n=m-n#Prepare an array for resultresult=zeros(Int64,n)functioncombinations(pos,val)# n, max_n and result are visible in the functionfori=val:max_n# from current value to the boundaryresult[pos]=pos+i# fill the position of resultifpos<n# if combination isn't complete,combinations(pos+1,i)# go to the next positionelseprintln(result)# combination is complete, print itendendendcombinations(1,0)end
Output:
[1, 2, 3][1, 2, 4][1, 2, 5][1, 3, 4][1, 3, 5][1, 4, 5][2, 3, 4][2, 3, 5][2, 4, 5][3, 4, 5]

Iterator Solution

Alternatively, Julia's Iterators can be used for a very nice solution for any collection.

usingBase.Iteratorsfunctionbitmask(u,max_size)res=BitArray(undef,max_size)res.chunks[1]=u%UInt64resendfunctioncombinations(input_collection::Vector{T},choice_size::Int)::Vector{Vector{T}}whereTnum_elements=length(input_collection)size_filter(x)=Iterators.filter(y->count_ones(y)==choice_size,x)bitmask_map(x)=Iterators.map(y->bitmask(y,num_elements),x)getindex_map(x)=Iterators.map(y->input_collection[y],x)UnitRange(0,(2^num_elements)-1)|>size_filter|>bitmask_map|>getindex_map|>collectend
Output:
julia> show(combinations([1,2,3,4,5], 3))[[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4], [1, 2, 5], [1, 3, 5], [2, 3, 5], [1, 4, 5], [2, 4, 5], [3, 4, 5]]

end

K

Recursive implementation:

comb:{[n;k]f:{:[k=#x;:,x;:,/_f'x,'(1+*|x)_!n]}:,/f'!n}

Lambdatalk

Translation from Emacs-lisp

{defcomb{defcomb.r{lambda{:m:n:N}{if{=:m0}then{A.new{A.new}}else{if{=:n:N}then{A.new}else{A.concat{A.map{{lambda{:n:rest}{A.addfirst!:n:rest}}:n}{comb.r{-:m1}{+:n1}:N}}{comb.r:m{+:n1}:N}}}}}}{lambda{:m:n}{comb.r:m0:n}}}->comb{comb35}->[[0,1,2],[0,1,3],[0,1,4],[0,2,3],[0,2,4],[0,3,4],[1,2,3],[1,2,4],[1,3,4],[2,3,4]]

Kotlin

Recursion

Translation of:Pascal
classCombinations(valm:Int,valn:Int){privatevalcombination=IntArray(m)init{generate(0)}privatefungenerate(k:Int){if(k>=m){for(iin0untilm)print("${combination[i]} ")println()}else{for(jin0untiln)if(k==0||j>combination[k-1]){combination[k]=jgenerate(k+1)}}}}funmain(args:Array<String>){Combinations(3,5)}
Output:
0 1 20 1 30 1 40 2 30 2 40 3 41 2 31 2 41 3 42 3 4

Lazy

Translation of:C#
importjava.util.LinkedListinlinefun<reifiedT>combinations(arr:Array<T>,m:Int)=sequence{valn=arr.sizevalresult=Array(m){arr[0]}valstack=LinkedList<Int>()stack.push(0)while(stack.isNotEmpty()){varresIndex=stack.size-1;vararrIndex=stack.pop()while(arrIndex<n){result[resIndex++]=arr[arrIndex++]stack.push(arrIndex)if(resIndex==m){yield(result.toList())break}}}}funmain(){valn=5valm=3combinations((1..n).toList().toTypedArray(),m).forEach{println(it.joinToString(separator=" "))}}
Output:
1 2 31 2 41 2 51 3 41 3 51 4 52 3 42 3 52 4 53 4 5

Lobster

Translation of:Nim
import std// combi is an itertor that solves the Combinations problem for iota arrays as stateddef combi(m, n, f):    let c = map(n): _    while true:        f(c)        var i = n-1        c[i] = c[i] + 1        if c[i] > m - 1:            while c[i] >= m - n + i:                i -= 1                if i < 0: return            c[i] = c[i] + 1            while i < n-1:                c[i+1] = c[i] + 1                i += 1combi(5, 3): print(_)
Output:
[0, 1, 2][0, 1, 3][0, 1, 4][0, 2, 3][0, 2, 4][0, 3, 4][1, 2, 3][1, 2, 4][1, 3, 4][2, 3, 4]
Translation of:JavaScript
import std// comba solves the general problem for any values in an input arraydef comba<T>(arr: [T], k) -> [[T]]:    let ret = []    for(arr.length) i:        if k == 1:            ret.push([arr[i]])        else:            let sub = comba(arr.slice(i+1, -1), k-1)            for(sub) next:                next.insert(0, arr[i])                ret.push(next)    return retprint comba([0,1,2,3,4], 3)print comba(["Crosby", "Stills", "Nash", "Young"], 3)// Of course once could use combi to index the input array insteadvar s = ""combi(4, 3): s += (map(_) i: ["Crosby", "Stills", "Nash", "Young"][i]) + " "print s
Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]][["Crosby", "Stills", "Nash"], ["Crosby", "Stills", "Young"], ["Crosby", "Nash", "Young"], ["Stills", "Nash", "Young"]]["Crosby", "Stills", "Nash"] ["Crosby", "Stills", "Young"] ["Crosby", "Nash", "Young"] ["Stills", "Nash", "Young"]

Logo

to comb :n :list  if :n = 0 [output [[]]]  if empty? :list [output []]  output sentence map [sentence first :list ?] comb :n-1 bf :list ~                  comb :n bf :listendprint comb 3 [0 1 2 3 4]

Lua

functionmap(f,a,...)ifathenreturnf(a),map(f,...)endendfunctionincr(k)returnfunction(a)returnk>aandaora+1endendfunctioncombs(m,n)ifm*n==0thenreturn{{}}endlocalret,old={},combs(m-1,n-1)fori=1,ndofork,vinipairs(old)doret[#ret+1]={i,map(incr(i),unpack(v))}endendreturnretendfork,vinipairs(combs(3,5))doprint(unpack(v))end

M2000 Interpreter

Including a helper sub to export result to clipboard through a global variable (a temporary global variable)

ModuleCheckit{FunctionCombinations(maslong,naslong){Globala$Documenta$ModuleLevel(n,s,h){Ifn=1thenwhileLen(s)a$<=h#str$("-")+"-"+car(s)#str$()+{}s=cdr(s)EndWhileElseWhilelen(s)callLeveln-1,cdr(s),cons(h,car(s))s=cdr(s)EndWhileEndif}Ifm<1orn<1thenErrors=(,)fori=0ton-1Appends,(i,)nexts=s#sort()Head=(,)CallLevelm,s,Head=a$}ClipBoardCombinations(3,5)reportclipboard$}Checkit
Output:
0-1-20-1-30-1-40-2-30-2-40-3-41-2-31-2-41-3-42-3-4

Step by Step

ModuleStepByStep{FunctionCombinationsStep(a,nn){c1=lambda(&f,&a)->{=car(a):a=cdr(a):f=len(a)=0}m=len(a)c=c1n=m-nn+1p=2Whilem>nc1=lambdac2=c,n=p,z=(,)(&f,&m)->{iflen(z)=0thenz=cdr(m)=cons(car(m),c2(&f,&z))iffthenz=(,):m=cdr(m):f=len(m)+len(z)<n}c=c1p++m--EndWhile=lambdac,a(&f)->{=c(&f,&a)}}enumout{screen="",file="out.txt"}m=each(out)whilemopeneval(m)foroutputas#fk=falseStepA=CombinationsStep((1,2,3,4,5),3)WhilenotkPrint#f,StepA(&k)#str$()EndWhilePrint#fk=falseStepA=CombinationsStep((0,1,2,3,4),3)WhilenotkPrint#f,StepA(&k)#str$()EndWhilePrint#fk=falseStepA=CombinationsStep(("A","B","C","D","E"),3)WhilenotkPrint#f,StepA(&k)#str$("-")EndWhilePrint#fk=falseStepA=CombinationsStep(("CAT","DOG","BAT"),2)WhilenotkPrint#f,StepA(&k)#str$("-")EndWhileclose#fendwhilewin"notepad",dir$+file}StepByStep
Output:
1 2 31 2 41 2 51 3 41 3 51 4 52 3 42 3 52 4 53 4 50 1 20 1 30 1 40 2 30 2 40 3 41 2 31 2 41 3 42 3 4A-B-CA-B-DA-B-EA-C-DA-C-EA-D-EB-C-DB-C-EB-D-EC-D-ECAT-DOGCAT-BATDOG-BAT

M4

divert(-1)define(`set',`define(`$1[$2]',`$3')')define(`get',`defn(`$1[$2]')')define(`setrange',`ifelse(`$3',`',$2,`define($1[$2],$3)`'setrange($1,   incr($2),shift(shift(shift($@))))')')define(`for',   `ifelse($#,0,``$0'',   `ifelse(eval($2<=$3),1,   `pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')')define(`show',   `for(`k',0,decr($1),`get(a,k) ')')define(`chklim',   `ifelse(get(`a',$3),eval($2-($1-$3)),      `chklim($1,$2,decr($3))',      `set(`a',$3,incr(get(`a',$3)))`'for(`k',incr($3),decr($2),         `set(`a',k,incr(get(`a',decr(k))))')`'nextcomb($1,$2)')')define(`nextcomb',   `show($1)ifelse(eval(get(`a',0)<$2-$1),1,      `chklim($1,$2,decr($1))')')define(`comb',   `for(`j',0,decr($1),`set(`a',j,j)')`'nextcomb($1,$2)')divertcomb(3,5)

Maple

This is built-in in Maple:

>combinat:-choose(5,3);[[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],[2,3,5],[2,4,5],[3,4,5]]

Mathematica /Wolfram Language

combinations[n_Integer, m_Integer]/;m>= 0:=Union[Sort /@ Permutations[Range[0, n - 1], {m}]]

built-in function example

Subsets[Range[5], {2}]

MATLAB

This a built-in function in MATLAB called "nchoosek(n,k)". The argument "n" is a vector of values from which the combinations are made, and "k" is a scalar representing the amount of values to include in each combination.

Task Solution:

>> nchoosek((0:4),3)ans =     0     1     2     0     1     3     0     1     4     0     2     3     0     2     4     0     3     4     1     2     3     1     2     4     1     3     4     2     3     4

Maxima

next_comb(n, p, a) := block(   [a: copylist(a), i: p],   if a[1] + p = n + 1 then return(und),   while a[i] - i >= n - p do i: i - 1,   a[i]: a[i] + 1,   for j from i + 1 thru p do a[j]: a[j - 1] + 1,   a)$combinations(n, p) := block(   [a: makelist(i, i, 1, p), v: [ ]],   while a # 'und do (v: endcons(a, v), a: next_comb(n, p, a)),   v)$combinations(5, 3);/* [[1, 2, 3],     [1, 2, 4],     [1, 2, 5],     [1, 3, 4],     [1, 3, 5],     [1, 4, 5],     [2, 3, 4],     [2, 3, 5],     [2, 4, 5],     [3, 4, 5]] */

Miranda

main :: [sys_message]main = [Stdout (lay (map show (comb 3 5)))]comb :: num->num->[[num]]comb m n = comb' m [0..n-1]           where comb' 0 xs     = [[]]                 comb' m []     = []                 comb' m (x:xs) = map (x:) (comb' (m-1) xs) ++ comb' m xs
Output:
[0,1,2][0,1,3][0,1,4][0,2,3][0,2,4][0,3,4][1,2,3][1,2,4][1,3,4][2,3,4]

Modula-2

Translation of:Pascal
Works with:ADW Modula-2 version any (Compile with the linker optionConsole Application).
MODULE Combinations;FROM STextIO IMPORT  WriteString, WriteLn;FROM SWholeIO IMPORT  WriteInt;CONST  MMax = 3;  NMax = 5;VAR  Combination: ARRAY [0 .. MMax] OF CARDINAL;PROCEDURE Generate(M: CARDINAL);VAR  N, I: CARDINAL;BEGIN  IF (M > MMax) THEN    FOR I := 1 TO MMax DO      WriteInt(Combination[I], 1);      WriteString(' ');    END;    WriteLn;  ELSE    FOR N := 1 TO NMax DO      IF (M = 1) OR (N > Combination[M - 1]) THEN        Combination[M] := N;        Generate(M + 1);      END    END  ENDEND Generate;BEGIN  Generate(1);END Combinations.
Output:
1 2 31 2 41 2 51 3 41 3 51 4 52 3 42 3 52 4 53 4 5

Nim

iterator comb(m, n: int): seq[int] =  var c = newSeq[int](n)  for i in 0 ..< n: c[i] = i  block outer:    while true:      yield c      var i = n - 1      inc c[i]      if c[i] <= m - 1: continue      while c[i] >= m - n + i:        dec i        if i < 0: break outer      inc c[i]      while i < n-1:        c[i+1] = c[i] + 1        inc ifor i in comb(5, 3):  echo i
Output:
@[0, 1, 2]@[0, 1, 3]@[0, 1, 4]@[0, 2, 3]@[0, 2, 4]@[0, 3, 4]@[1, 2, 3]@[1, 2, 4]@[1, 3, 4]@[2, 3, 4]


Another way, using a stack. Adapted from C#:

iterator combinations(m: int, n: int): seq[int] =  var result = newSeq[int](n)  var stack = newSeq[int]()  stack.add 0  while stack.len > 0:    var index = stack.high    var value = stack.pop()    while value < m:      result[index] = value      inc value      inc index      stack.add value      if index == n:        yield result        break for i in combinations(5, 3):  echo i

OCaml

let combinations m n =  let rec c = function    | (0,_) -> [[]]    | (_,0) -> []    | (p,q) -> List.append               (List.map (List.cons (n-q)) (c (p-1, q-1)))               (c (p , q-1))  in c (m , n)let () =  let rec print_list = function    | [] -> print_newline ()    | hd :: tl -> print_int hd ; print_string " "; print_list tl        in List.iter print_list (combinations 3 5)

Octave

nchoosek([0:4], 3)

OpenEdge/Progress

Translation of:Julia
define variable r as integer no-undo extent 3.define variable m as integer no-undo initial 5.define variable n as integer no-undo initial 3.define variable max_n as integer no-undo.max_n = m - n.function combinations returns logical (input pos as integer, input val as integer):  define variable i as integer no-undo.  do i = val to max_n:    r[pos] = pos + i.if pos lt n thencombinations(pos + 1, i).else message r[1] - 1 r[2] - 1 r[3] - 1.  end.end function.combinations(1, 0).
Output:

0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

Oz

This can be implemented as a trivial application of finite set constraints:

declare  fun {Comb M N}     proc {CombScript Comb}        %% Comb is a subset of [0..N-1]        Comb = {FS.var.upperBound {List.number 0 N-1 1}}        %% Comb has cardinality M        {FS.card Comb M}        %% enumerate all possibilities        {FS.distribute naive [Comb]}     end  in     %% Collect all solutions and convert to lists     {Map {SearchAll CombScript} FS.reflect.upperBoundList}  endin  {Inspect {Comb 3 5}}

PARI/GP

Crv ( k, v, d ) = {    if( d == k,        print ( vecextract( v , "2..-2" ) )    ,           for( i = v[ d + 1 ] + 1, #v,            v[ d + 2 ] = i;            Crv( k, v, d + 1 ) ));} combRV( n, k ) = Crv ( k, vector( n, X, X-1), 0 );
Cr ( c, z, b, n, k ) = {    if( z < b,  print1( c, " " );        if( n>0, Cr( c+1, z  , b*  k  \n, n-1, k - 1 ))    ,        if( n>0, Cr( c+1, z-b, b*(n-k)\n, n-1, k     ))    );}combR( n, k ) = {     local(         bnk = binomial( n,   k ),        b11 = bnk * k \ n );          \\binomial( n-1, k-1 )    for( z = 0,  bnk - 1,        Cr( 1, z, b11, n-1, k-1 );        print    );}
Ci( z, b, n, k ) = { local( c = 1 );    n--; k--;    while( k >= 0 ,        if( z < b,            print1(c, " ");            c++;            if( n > 0,                 b = b*k \ n);            n--; k--;        ,            c++;            z -= b;            b = b*(n-k)\n;            n--        )    );print;}combI( n, k ) = {     local(  bnk = binomial( n, k ),             b11 = bnk * k \ n );            \\ binomial( n-1, k-1 )    for( z = 0, bnk - 1,        Ci(z,   b11,   n, k ) );}

Pascal

Program Combinations; const m_max = 3; n_max = 5;var combination: array [0..m_max] of integer; procedure generate(m: integer);  var   n, i: integer;  begin   if (m > m_max) then    begin    for i := 1 to m_max do     write (combination[i], ' ');    writeln;    end   else    for n := 1 to n_max do     if ((m = 1) or (n > combination[m-1])) then      begin       combination[m] := n;       generate(m + 1);      end;   end; begin generate(1);end.
Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5

PascalABC.NET

##(0..4).combinations(3).printlines;
Output:
[0,1,2][0,1,3][0,1,4][0,2,3][0,2,4][0,3,4][1,2,3][1,2,4][1,3,4][2,3,4]

Perl

Thentheory module has a combinations iterator that runs in lexicographic order.

Library:ntheory
use ntheory qw/forcomb/;forcomb { print "@_\n" } 5,3
Output:
0 1 20 1 30 1 40 2 30 2 40 3 41 2 31 2 41 3 42 3 4

Algorithm::Combinatorics also does lexicographic order and can return the whole array or an iterator:

Library:Algorithm::CombinatoricsCombinatorics
use Algorithm::Combinatorics qw/combinations/;my @c = combinations( [0..4], 3 );print "@$_\n" for @c;
use Algorithm::Combinatorics qw/combinations/;my $iter = combinations([0..4],3);while (my $c = $iter->next) {  print "@$c\n";}

Math::Combinatorics is another option but results will not be in lexicographic order as specified by the task.

Perl5i

Use a recursive solution, derived from the Raku (Haskell) solution

  • If we run out of eligable characters, we've gone too far, and won't find a solution along this path.
  • If we are looking for a single character, each character in @set is elegible, so return each as the single element of an array.
  • We have not yet reached the last character, so there are two possibilities:
    1. push the first element of the set onto the front of an N-1 length combination from the remainder of the set.
    2. skip the current element, and generate an N-length combination from the remainder

The majorPerl5i -isms are the implicit "autoboxing" of the intermediate resulting array into an array object, with the use of unshift() as a method, and the "func" keyword and signature.Note that Perl can construct ranges of numbers or of letters, so it is natural to identify the characters as 'a' .. 'e'.

use perl5i::2;# ----------------------------------------# generate combinations of length $n consisting of characters# from the sorted set @set, using each character once in a# combination, with sorted strings in sorted order.## Returns a list of array references, each containing one combination.#func combine($n, @set) {  return unless @set;  return map { [ $_ ] } @set if $n == 1;  my ($head) = shift @set;  my @result = combine( $n-1, @set );  for my $subarray ( @result ) {   $subarray->unshift( $head );  }  return ( @result, combine( $n, @set ) );}say @$_ for combine( 3, ('a'..'e') );
Output:
abcabdabeacdaceadebcdbcebdecde

Phix

It does not get much simpler or easier than this. SeeSudoku for a practical application of this algorithm

withjavascript_semanticsprocedurecomb(integerpool,needed,done=0,sequencechosen={})ifneeded=0then-- got a full set?chosen-- (or use a routine_id, result arg, or whatever)returnendififdone+needed>poolthenreturnendif-- cannot fulfil    -- get all combinations with and without the next item:done+=1comb(pool,needed-1,done,append(deep_copy(chosen),done))comb(pool,needed,done,chosen)endprocedurecomb(5,3)
Output:
{1,2,3}{1,2,4}{1,2,5}{1,3,4}{1,3,5}{1,4,5}{2,3,4}{2,3,5}{2,4,5}{3,4,5}

As of 1.0.2 there is a builtin combinations() function. Using a string here for simplicity and neater output, but it works with any sequence:

?join(combinations("12345",3),',')
Output:
"123,124,125,134,135,145,234,235,245,345"

PHP

non-recursive

Full non-recursive algorithm generating all combinations without repetions. Taken from here:[1]

Much slower than normal algorithm.

 <?php$a=array(1,2,3,4,5);$k=3;$n=5;$c=array_splice($a, $k);$b=array_splice($a, 0, $k);$j=$k-1;print_r($b);        while (1) {          $m=array_search($b[$j]+1,$c);            if ($m!==false) {     $c[$m]-=1;         $b[$j]=$b[$j]+1;               print_r($b);               }       if ($b[$k-1]==$n) { $i=$k-1;  while ($i >= 0) { if ($i == 0 && $b[$i] == $n-$k+1) break 2;         $m=array_search($b[$i]+1,$c);  if ($m!==false) {     $c[$m]=$c[$m]-1;   $b[$i]=$b[$i]+1; $g=$i;while ($g != $k-1) {array_unshift ($c, $b[$g+1]);$b[$g+1]=$b[$g]+1;$g++;}$c=array_diff($c,$b);print_r($b);      break;          } $i--;}}             }?>

Output:

Array(    [0] => 1    [1] => 2)Array(    [0] => 1    [1] => 3)Array(    [0] => 2    [1] => 3)

recursive

<?phpfunction combinations_set($set = [], $size = 0) {    if ($size == 0) {        return [[]];    }    if ($set == []) {        return [];    }    $prefix = [array_shift($set)];    $result = [];    foreach (combinations_set($set, $size-1) as $suffix) {        $result[] = array_merge($prefix, $suffix);    }    foreach (combinations_set($set, $size) as $next) {        $result[] = $next;    }    return $result;}function combination_integer($n, $m) {    return combinations_set(range(0, $n-1), $m);}assert(combination_integer(5, 3) == [    [0, 1, 2],    [0, 1, 3],    [0, 1, 4],    [0, 2, 3],    [0, 2, 4],    [0, 3, 4],    [1, 2, 3],    [1, 2, 4],    [1, 3, 4],    [2, 3, 4]]);echo "3 comb 5:\n";foreach (combination_integer(5, 3) as $combination) {    echo implode(", ", $combination), "\n";}

Outputs:

3 comb 5:0, 1, 20, 1, 30, 1, 40, 2, 30, 2, 40, 3, 41, 2, 31, 2, 41, 3, 42, 3, 4

Picat

Recursion

go =>   % Integers 1..K   N = 3,   K = 5,      printf("comb1(3,5): %w\n", comb1(N,K)),   nl.% Recursive (numbers)comb1(M,N) = comb1_(M, 1..N).comb1_(0, _X)     = [[]].comb1_(_M, [])    = [].comb1_(M, [X|Xs]) = [ [X] ++ Xs2 : Xs2 in comb1_(M-1, Xs) ] ++ comb1_(M, Xs).
Output:
comb1(3,5): [[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],[2,3,5],[2,4,5],[3,4,5]]

Using built-in power_set

comb2(K, N) = sort([[J : J in I] : I in power_set(1..N), I.length == K]).

Combinations from a list

go3 =>   L = "abcde",   printf("comb3(%d,%w): %w\n",3,L,comb3(3,L)).comb3(M, List) = [ [List[P[I]] : I in 1..P.length] : P in comb1(M,List.length)].
Output:
comb3(3,abcde): [abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde]

PicoLisp

Translation of:Scheme
(de comb (M Lst)   (cond      ((=0 M) '(NIL))      ((not Lst))      (T         (conc            (mapcar               '((Y) (cons (car Lst) Y))               (comb (dec M) (cdr Lst)) )            (comb M (cdr Lst)) ) ) ) )(comb 3 (1 2 3 4 5))

Pluto

Library:Pluto-perm
Library:Pluto-fmt
require "perm"local fmt = require "fmt"local a = range(0, 4)local co = coroutine.create(comb.generate)while true do    local _, res = coroutine.resume(co, a, 3)    if !res then break end    fmt.lprint(res)end
Output:
{0, 1, 2}{0, 1, 3}{0, 1, 4}{0, 2, 3}{0, 2, 4}{0, 3, 4}{1, 2, 3}{1, 2, 4}{1, 3, 4}{2, 3, 4}

Pop11

Natural recursive solution: first we choose first number i and then we recursively generate all combinations of m - 1 numbers between i + 1 and n - 1. Main work is done in the internal 'do_combs' function, the outer 'comb' just sets up variable to accumulate results and reverses the final result.

The 'el_lst' parameter to 'do_combs' contains partial combination (list of numbers which were chosen in previous steps) in reverse order.

define comb(n, m);    lvars ress = [];    define do_combs(l, m, el_lst);        lvars i;        if m = 0 then            cons(rev(el_lst), ress) -> ress;        else            for i from l to n - m do                do_combs(i + 1, m - 1, cons(i, el_lst));            endfor;        endif;    enddefine;    do_combs(0, m, []);    rev(ress);enddefine;comb(5, 3) ==>

PowerShell

An example of how PowerShell itself can translate C# code:

$source = @'    using System;    using System.Collections.Generic;    namespace Powershell    {        public class CSharp        {            public static IEnumerable<int[]> Combinations(int m, int n)            {                int[] result = new int[m];                Stack<int> stack = new Stack<int>();                stack.Push(0);                 while (stack.Count > 0) {                    int index = stack.Count - 1;                    int value = stack.Pop();                     while (value < n) {                        result[index++] = value++;                        stack.Push(value);                        if (index == m) {                            yield return result;                            break;                        }                    }                }            }        }    }'@Add-Type -TypeDefinition $source -Language CSharp[Powershell.CSharp]::Combinations(3,5) | Format-Wide {$_} -Column 3 -Force
Output:
0                              1                             2                            0                              1                             3                            0                              1                             4                            0                              2                             3                            0                              2                             4                            0                              3                             4                            1                              2                             3                            1                              2                             4                            1                              3                             4                            2                              3                             4

Prolog

The solutions work with SWI-Prolog
Solution with library clpfd : we first create a list of M elements, we say that the members of the list are numbers between 1 and N and there are in ascending order, finally we ask for a solution.

:- use_module(library(clpfd)).comb_clpfd(L, M, N) :-    length(L, M),    L ins 1..N,    chain(L, #<),    label(L).
Output:
 ?- comb_clpfd(L, 3, 5), writeln(L), fail.[1,2,3][1,2,4][1,2,5][1,3,4][1,3,5][1,4,5][2,3,4][2,3,5][2,4,5][3,4,5]false.

Another solution :

comb_Prolog(L, M, N) :-    length(L, M),    fill(L, 1, N).fill([], _, _).fill([H | T], Min, Max) :-    between(Min, Max, H),    H1 is H + 1,    fill(T, H1, Max).

with the same output.

List comprehension

Works with SWI-Prolog, libraryclpfd fromMarkus Triska, and list comprehension (seeList comprehensions ).

:- use_module(library(clpfd)).comb_lstcomp(N, M, V) :-V <- {L& length(L, N), L ins 1..M & all_distinct(L), chain(L, #<), label(L)}.
Output:
2?- comb_lstcomp(3, 5, V).V = [[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],[2,3,5],[2,4,5],[3,4,5]] ;false.

Pure

comb m n = comb m (0..n-1) with  comb 0 _ = [[]];  comb _ [] = [];  comb m (x:xs) = [x:xs | xs = comb (m-1) xs] + comb m xs;end;comb 3 5;

PureBasic

Procedure.s Combinations(amount, choose)  NewList comb.s()  ; all possible combinations with {amount} Bits  For a = 0 To 1 << amount    count = 0    ; count set bits    For x = 0 To amount      If (1 << x)&a        count + 1      EndIf    Next    ; if set bits are equal to combination length    ; we generate a String representing our combination and add it to list    If count = choose      string$ = ""      For x = 0 To amount        If (a >> x)&1          ; replace x by x+1 to start counting with 1          String$ + Str(x) + " "        EndIf      Next      AddElement(comb())      comb() = string$    EndIf  Next  ; now we sort our list and format it for output as string  SortList(comb(), #PB_Sort_Ascending)  ForEach comb()    out$ + ", [ " + comb() + "]"  Next  ProcedureReturn Mid(out$, 3)EndProcedureDebug Combinations(5, 3)

Pyret

fun combos<a>(lst :: List<a>, size :: Number) -> List<List<a>>:  # return all subsets of lst of a certain size,  # maintaining the original ordering of the list  # Let's handle a bunch of degenerate cases up front  # to be defensive...  if lst.length() < size:    # return an empty list if size is too big    [list:]  else if lst.length() == size:    # combos([list: 1,2,3,4]) == list[list: 1,2,3,4]]    [list: lst]  else if size == 1:    # combos(list: 5, 9]) == list[[list: 5], [list: 9]]    lst.map(lam(elem): [list: elem] end)  else:    # The main resursive step here is to consider    # all the combinations of the list that have the    # first element (aka head) and then those that don't    # don't.    cases(List) lst:      | empty => [list:]      | link(head, rest) =>        # All the subsets of our list either include the        # first element of the list (aka head) or they don't.        with-head-combos = combos(rest, size - 1).map(          lam(combo):          link(head, combo) end          )        without-head-combos = combos(rest, size)        with-head-combos._plus(without-head-combos)    end  endwhere:  # define semantics for the degenerate cases, although  # maybe we should just make some of these raise errors  combos([list:], 0) is [list: [list:]]  combos([list:], 1) is [list:]  combos([list: "foo"], 1) is [list: [list: "foo"]]  combos([list: "foo"], 2) is [list:]  # test the normal stuff  lst = [list: 1, 2, 3]  combos(lst, 1) is [list:    [list: 1],    [list: 2],    [list: 3]  ]  combos(lst, 2) is [list:    [list: 1, 2],    [list: 1, 3],    [list: 2, 3]  ]  combos(lst, 3) is [list:    [list: 1, 2, 3]  ]  # remember the 10th row of Pascal's Triangle? :)  lst10 = [list: 1,2,3,4,5,6,7,8,9,10]  combos(lst10, 3).length() is 120  combos(lst10, 4).length() is 210  combos(lst10, 5).length() is 252  combos(lst10, 6).length() is 210  combos(lst10, 7).length() is 120  # more sanity checks...  for each(sublst from combos(lst10, 6)):    sublst.length() is 6  end  for each(sublst from combos(lst10, 9)):    sublst.length() is 9  endendfun int-combos(n :: Number, m :: Number) -> List<List<Number>>:  doc: "return all lists of size m containing distinct, ordered nonnegative ints < n"   lst = range(0, n)  combos(lst, m)where:  int-combos(5, 5) is [list: [list: 0,1,2,3,4]]  int-combos(3, 2) is [list:    [list: 0, 1],    [list: 0, 2],    [list: 1, 2]  ]endfun display-3-comb-5-for-rosetta-code():  # The very concrete nature of this function is driven  # by the web page from Rosetta Code.  We want to display  # output similar to the top of this page:  #  # https://rosettacode.org/wiki/Combinations  results = int-combos(5, 3)  for each(lst from results):    print(lst.join-str(" "))  endenddisplay-3-comb-5-for-rosetta-code()

Python

Starting from Python 2.6 and 3.0 you have a pre-defined function that returns an iterator. Here we turn the result into a list for easy printing:

>>> from itertools import combinations>>> list(combinations(range(5),3))[(0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2, 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]

Earlier versions could use functions like the following:

Translation of:E
def comb(m, lst):    if m == 0: return [[]]    return [[x] + suffix for i, x in enumerate(lst)            for suffix in comb(m - 1, lst[i + 1:])]

Example:

>>> comb(3, range(5))[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
Translation of:Haskell
def comb(m, s):    if m == 0: return [[]]    if s == []: return []    return [s[:1] + a for a in comb(m-1, s[1:])] + comb(m, s[1:])print comb(3, range(5))

A slightly different recursion version

def comb(m, s):    if m == 1: return [[x] for x in s]    if m == len(s): return [s]    return [s[:1] + a for a in comb(m-1, s[1:])] + comb(m, s[1:])

Quackery

Recursive

  [ over 0 = iff      [ 2drop ' [ [ ] ] ]      done    dup [] = iff nip done    1 split rot tuck    1 - over recurse    dip [ rot [] ]    witheach      [ dip over join        nested join ]    nip unrot recurse join ] is comb ( n [ --> [ )  [ [] swap times      [ i^ join ]    comb    witheach      [ witheach          [ echo sp ]        cr ] ]               is task ( n n -->   )  3 5 task
Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

Bit Bashing

  [ 0 swap    [ dup 0 != while      dup 1 & if        [ dip 1+ ]      1 >> again ]    drop ]                     is bits      (   n --> n )  [ [] unrot    bit times      [ i bits        over = if          [ dip              [ i join ] ] ]    drop ]                     is combnums  ( n n --> [ )  [ [] 0 rot    [ dup 0 != while      dup 1 & if        [ dip            [ dup dip join ] ]       dip 1+       1 >>       again ]    2drop ]                    is makecomb  (   n --> [ )  [ over 0 = iff      [ 2drop [] ] done    combnums    [] swap witheach       [ makecomb         nested join ] ]       is comb      ( n n --> [ )  [ behead swap witheach max ] is largest   (   [ --> n )  [ 0 rot witheach      [ [ dip [ over * ] ] + ]    nip ]                      is comborder ( [ n --> n )  [ dup [] != while    sortwith      [ 2dup join        largest 1+ dup dip          [ comborder swap ]        comborder < ] ]        is sortcombs (   [ --> [ )  3 5 comb  sortcombs  witheach [ witheach [ echo sp ] cr ]
Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

Iterative

  [ stack ]                              is comb.stack  [ stack ]                              is comb.items  [ stack ]                              is comb.required  [ stack ]                              is comb.result  [ 1 - comb.items put    1+ comb.required put    0 comb.stack put    [] comb.result put    [ comb.required share      comb.stack size = if        [ comb.result take          comb.stack behead           drop nested join          comb.result put ]      comb.stack take      dup comb.items share      = iff          [ drop            comb.stack size 1 > iff              [ 1 comb.stack tally ] ]            else              [ dup comb.stack put                1+ comb.stack put ]             comb.stack size 1 = until ]    comb.items release    comb.required release    comb.result take ]                   is comb ( n n --> )  3 5 comb  witheach [ witheach [ echo sp ] cr ]
Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

… and a handy tool

Can be used withcomb, (bit-bashing and iterative versions) and is general purpose.

  [ dup size dip      [ witheach          [ over swap peek swap ] ]      nip pack ]                    is arrange ( [ [ --> [ )  ' [ 10 20 30 40 50 ]  3 5 comb  witheach      [ dip dup arrange      witheach [ echo sp ]       cr ]  drop   cr  $ "zero one two three four" nest$  ' [ 4 3 1 0 1 4 3 ]  arrange   witheach [ echo$ sp ]
Output:
10 20 30 10 20 40 10 20 50 10 30 40 10 30 50 10 40 50 20 30 40 20 30 50 20 40 50 30 40 50 four three one zero one four three

R

print(combn(0:4, 3))

Combinations are organized per column, so to provide an output similar to the one in the task text, we need the following:

r <- combn(0:4, 3)for(i in 1:choose(5,3)) print(r[,i])

Racket

Translation of:Haskell
(define sublists  (match-lambda**   [(0 _)           '(())]   [(_ '())         '()]   [(m (cons x xs)) (append (map (curry cons x) (sublists (- m 1) xs))                             (sublists m xs))]))(define (combinations n m)  (sublists n (range m)))
Output:
> (combinations 3 5)'((0 1 2)  (0 1 3)  (0 1 4)  (0 2 3)  (0 2 4)  (0 3 4)  (1 2 3)  (1 2 4)  (1 3 4)  (2 3 4))

Raku

(formerly Perl 6)

Works with:rakudo version 2015.12

There actually is a builtin:

.say for combinations(5,3);
Output:
(0 1 2)(0 1 3)(0 1 4)(0 2 3)(0 2 4)(0 3 4)(1 2 3)(1 2 4)(1 3 4)(2 3 4)

Here is an iterative routine with the same output:

sub combinations(Int $n, Int $k) {    return ([],) unless $k;    return if $k > $n || $n <= 0;    my @c = ^$k;    gather loop {      take [@c];      next if @c[$k-1]++ < $n-1;      my $i = $k-2;      $i-- while $i >= 0 && @c[$i] >= $n-($k-$i);      last if $i < 0;      @c[$i]++;      while ++$i < $k { @c[$i] = @c[$i-1] + 1; }    }}.say for combinations(5,3);

Refal

$ENTRY Go {    = <Prout <Comb 3 5>>;};Comb {    s.M s.N = <Comb1 s.M <Iota 0 <- s.N 1>>>;};Comb1 {    0 e.X = ();    s.M = ;    s.M s.X e.X = <PfxEach s.X <Comb1 <- s.M 1> e.X>> <Comb1 s.M e.X>;};PfxEach {    s.X = ;    s.X (e.X) e.Y = (s.X e.X) <PfxEach s.X e.Y>;};Iota {    s.E s.E = s.E;    s.S s.E = s.S <Iota <+ 1 s.S> s.E>;};
Output:
(0 1 2 )(0 1 3 )(0 1 4 )(0 2 3 )(0 2 4 )(0 3 4 )(1 2 3 )(1 2 4 )(1 3 4 )(2 3 4 )

REXX

Version 1

This REXX program supports up to   100   symbols   (one symbol for each "thing").

If  things taken at a time   is negative,   the combinations aren't listed,   only a count is shown.

The symbol list could be extended by added any unique viewable symbol   (character).

/*REXX program displays combination sets for X things taken Y at a time.         */Parse Arg things size chars .  /* get optional arguments from the command line   */If things='?' Then Do  Say 'rexx combi things size characters'  Say ' defaults: 5      3    123456789...'  Say 'example rexx combi , , xyzuvw'  Say 'size<0 shows only the number of possible combinations'  Exit  EndIf things==''|things=="," Then things=5  /* No things specified? Then use default*/If size==''  |size==","   Then size=3    /* No size   specified? Then use default*/If chars==''|chars=="," Then             /* No chars  specified? Then Use default*/  chars='123456789abcdefghijklmnopqrstuvwxyz'||,                 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'||,  "~!@#chars%^&*()_+`{}|[]\:;<>?,./¦++++±==˜·" /*some extended chars             */show_details=sign(size)                  /* -1: Don't show details               */size=abs(size)If things<size Then  Call exit 'Not enough things ('things') for size ('size').'Say '------------' things 'things taken' size 'times at a time:'Say '------------' combn(things,size) 'combinations.'Exit                                           /* stick a fork in it,  we're all *//*-------------------------------------------------------------------------------*/combn: Procedure Expose chars show_details  Parse Arg things,size  thingsp=things+1  thingsm=thingsp-size  index.=0  If things=0|size=0 Then    Return 'no'  Do i=1 For size    index.i=i    End  done=0  Do combi=1 By 1 Until done    combination=''    Do d=1 To size      combination=combination substr(chars,index.d,1)      End    If show_details=1 Then      Say combination    index.size=index.size+1    If index.size==thingsp Then      done=.combn(size-1)    End  Return combi/*---------------------------------------------------------------------------------*/.combn: Procedure Expose index. size thingsm  Parse Arg d--Say '.combn' d thingsm show()  If d==0 Then    Return 1  p=index.d  Do u=d To size    index.u=p+1    If index.u==thingsm+u Then      Return .combn(u-1)    p=index.u    End  Return 0show:  list=''  Do k=1 To size    list=list index.k    End  Return listexit:  Say '*****error*****' arg(1)  Exit 13
output  when using the input of:     5   3   01234
------------ 5  things taken  3  at a time: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4------------ 10  combinations.
output  when using the input of:     5   3   abcde
------------ 5  things taken  3  at a time: a b c a b d a b e a c d a c e a d e b c d b c e b d e c d e------------ 10  combinations.
output  when using the input of:     44   0
------------ 44  things taken  0  at a time:------------ no  combinations.
output  when using the input of:     52   -5
------------ 52  things taken  5  at a time:------------ 2598960  combinations.
output  when using the input of:     5   -8
*****error***** Not enough things (5) for size (8).

Version 2

Translation of:Java
/*REXX program displays combination sets for X things taken Y at a time.         */Parse Arg things size charactersIf things='?' Then Do  Say 'rexx combi2 things size characters'  Say ' defaults:  5      3    123456789...'  Say 'example rexx combi2 , , xyzuvw'  Say 'size<0 shows only the number of possible combinations'  Exit  EndIf things==''|things=="," Then things=5  /* No things specified? Then use default*/If size==''  |size==","   Then size=3    /* No size   specified? Then use default*/Numeric Digits 20show=sign(size)size=abs(size)If things<size Then  Call exit 'Not enough things ('things') for size ('size').'    Say '----------' things 'things taken' size 'at a time:'n=2**things-1nc=0Do u=1 to n  nc=nc+combinations(u)  EndSay '------------' nc 'combinations.'Exitcombinations: Procedure Expose things size characters show  Parse Arg u  nc=0  bu=x2b(d2x(u))  bu1=space(translate(bu,' ',0),0)  If length(bu1)=size Then Do    ub=reverse(bu)    res=''    Do i=1 To things      If characters<>'' then        c=substr(characters,i,1)      Else        c=i      If substr(ub,i,1)=1 Then res=res c      End    If show=1 then      Say res    Return 1    End  Else    Return 0exit:  Say '*****error*****' arg(1)  Exit 13

Ring

# Project : Combinationsn = 5k = 3temp = []comb = []num = com(n, k)while true          temp = []         for n = 1 to 3               tm = random(4) + 1               add(temp, tm)         next         bool1 = (temp[1] = temp[2]) and (temp[1] = temp[3]) and (temp[2] = temp[3])          bool2 = (temp[1] < temp[2]) and (temp[2] < temp[3])         if not bool1 and bool2            add(comb, temp)         ok         for p = 1  to len(comb) - 1               for q = p + 1 to len(comb)                      if (comb[p][1] = comb[q][1]) and (comb[p][2] = comb[q][2]) and (comb[p][3] = comb[q][3])                         del(comb, p)                     ok                next         next         if len(comb) = num            exit         okendcomb = sortfirst(comb, 1)see showarray(comb) + nlfunc com(n, k)        res1 = 1        for n1 = n - k + 1 to n             res1 = res1 * n1        next        res2 = 1        for n2 = 1 to k              res2 = res2 * n2        next        res3 = res1/res2        return res3func showarray(vect)        svect = ""        for nrs = 1 to len(vect)              svect = "[" + vect[nrs][1] + " " + vect[nrs][2] + " " + vect[nrs][3] + "]" + nl              see svect         nextFunc sortfirst(alist, ind)        aList = sort(aList,ind)        for n = 1 to len(alist)-1             for m= n + 1 to len(aList)                    if alist[n][1] = alist[m][1] and alist[m][2] < alist[n][2]                     temp = alist[n]                     alist[n] = alist[m]                     alist[m] = temp                   ok              next        next        for n = 1 to len(alist)-1             for m= n + 1 to len(aList)                    if alist[n][1] = alist[m][1] and alist[n][2] = alist[m][2] and alist[m][3] < alist[n][3]                     temp = alist[n]                     alist[n] = alist[m]                     alist[m] = temp                   ok              next       next       return aList

Output:

[1 2 3][1 2 4][1 2 5][1 3 4][1 3 5][1 4 5][2 3 4][2 3 5][2 4 5][3 4 5]

RPL

Translation of:BASIC
Works with:HP version 48SX
≪ → currcomb start stop depth  ≪WHILE start stop ≤REPEAT      currcomb start +       1 'start' STO+IF depthTHEN          start stop depth 1 -GENCOMBENDEND≫ ≫ 'GENCOMB' STO≪   { } 0 4 ROLL 1 - 4 ROLL 1 -GENCOMB≫ 'COMBS' STO
5 3COMBS
Output:
10: { 0 1 2 }9:  { 0 1 3 }8:  { 0 1 4 }7:  { 0 2 3 }6:  { 0 2 4 }5:  { 0 3 4 }4:  { 1 2 3 }3:  { 1 2 4 }2:  { 1 3 4 }1:  { 2 3 4 }

Ruby

Works with:Ruby version 1.8.7+
def comb(m, n)  (0...n).to_a.combination(m).to_aendcomb(3, 5)  # => [[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

Rust

Works with:Rust version 0.9
fn comb<T: std::fmt::Default>(arr: &[T], n: uint) {  let mut incl_arr: ~[bool] = std::vec::from_elem(arr.len(), false);  comb_intern(arr, n, incl_arr, 0);}fn comb_intern<T: std::fmt::Default>(arr: &[T], n: uint, incl_arr: &mut [bool], index: uint) {  if (arr.len() < n + index) { return; }  if (n == 0) {    let mut it = arr.iter().zip(incl_arr.iter()).filter_map(|(val, incl)|      if (*incl) { Some(val) } else { None }    );    for val in it { print!("{} ", *val); }    print("\n");    return;  }  incl_arr[index] = true;  comb_intern(arr, n-1, incl_arr, index+1);  incl_arr[index] = false;  comb_intern(arr, n, incl_arr, index+1);}fn main() {  let arr1 = ~[1, 2, 3, 4, 5];  comb(arr1, 3);  let arr2 = ~["A", "B", "C", "D", "E"];  comb(arr2, 3);}
Works with:Rust version 1.26
struct Combo<T> {    data_len: usize,    chunk_len: usize,    min: usize,    mask: usize,    data: Vec<T>,}impl<T: Clone> Combo<T> {    fn new(chunk_len: i32, data: Vec<T>) -> Self {        let d_len = data.len();        let min = 2usize.pow(chunk_len as u32) - 1;        let max = 2usize.pow(d_len as u32) - 2usize.pow((d_len - chunk_len as usize) as u32);        Combo {            data_len: d_len,            chunk_len: chunk_len as usize,            min: min,            mask: max,            data: data,        }    }    fn get_chunk(&self) -> Vec<T> {        let b = format!("{:01$b}", self.mask, self.data_len);        b           .chars()           .enumerate()           .filter(|&(_, e)| e == '1')           .map(|(i, _)| self.data[i].clone())           .collect()    }}impl<T: Clone> Iterator for Combo<T> {    type Item = Vec<T>;    fn next(&mut self) -> Option<Self::Item> {        while self.mask >= self.min {            if self.mask.count_ones() == self.chunk_len as u32 {                let res = self.get_chunk();                self.mask -= 1;                return Some(res);            }            self.mask -= 1;        }        None    }}fn main() {    let v1 = vec![1, 2, 3, 4, 5];    let combo = Combo::new(3, v1);    for c in combo.into_iter() {        println!("{:?}", c);    }    let v2 = vec!("A", "B", "C", "D", "E");    let combo = Combo::new(3, v2);    for c in combo.into_iter() {        println!("{:?}", c);    }}
Works with:Rust version 1.47
fn comb<T>(slice: &[T], k: usize) -> Vec<Vec<T>>where    T: Copy,{    // If k == 1, return a vector containing a vector for each element of the slice.    if k == 1 {        return slice.iter().map(|x| vec![*x]).collect::<Vec<Vec<T>>>();    }    // If k is exactly the slice length, return the slice inside a vector.    if k == slice.len() {        return vec![slice.to_vec()];    }    // Make a vector from the first element + all combinations of k - 1 elements of the rest of the slice.    let mut result = comb(&slice[1..], k - 1)        .into_iter()        .map(|x| [&slice[..1], x.as_slice()].concat())        .collect::<Vec<Vec<T>>>();    // Extend this last vector with the all the combinations of k elements after from index 1 onward.    result.extend(comb(&slice[1..], k));    // Return final vector.    return result;}

Scala

implicit def toComb(m: Int) = new AnyRef {  def comb(n: Int) = recurse(m, List.range(0, n))  private def recurse(m: Int, l: List[Int]): List[List[Int]] = (m, l) match {    case (0, _)   => List(Nil)    case (_, Nil) => Nil    case _        => (recurse(m - 1, l.tail) map (l.head :: _)) ::: recurse(m, l.tail)  }}

Usage:

scala> 3 comb 5res170: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4), List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))

Lazy version using iterators:

  def combs[A](n: Int, l: List[A]): Iterator[List[A]] = n match {    case _ if n < 0 || l.lengthCompare(n) < 0 => Iterator.empty    case 0 => Iterator(List.empty)    case n => l.tails.flatMap({      case Nil => Nil      case x :: xs => combs(n - 1, xs).map(x :: _)    })  }

Usage:

scala> combs(3, (0 to 4).toList).toListres0: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4), List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))

Dynamic programming

Adapted from Haskell version:

  def combs[A](n: Int, xs: List[A]): Stream[List[A]] =    combsBySize(xs)(n)  def combsBySize[A](xs: List[A]): Stream[Stream[List[A]]] = {    val z: Stream[Stream[List[A]]] = Stream(Stream(List())) ++ Stream.continually(Stream.empty)    xs.toStream.foldRight(z)((a, b) => zipWith[Stream[List[A]]](_ ++ _, f(a, b), b))  }  def zipWith[A](f: (A, A) => A, as: Stream[A], bs: Stream[A]): Stream[A] = (as, bs) match {    case (Stream.Empty, _) => Stream.Empty    case (_, Stream.Empty) => Stream.Empty    case (a #:: as, b #:: bs) => f(a, b) #:: zipWith(f, as, bs)  }  def f[A](x: A, xsss: Stream[Stream[List[A]]]): Stream[Stream[List[A]]] =    Stream.empty #:: xsss.map(_.map(x :: _))

Usage:

combs(3, (0 to 4).toList).toListres0: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4), List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))

Using Scala Standard Runtime Library

Scala REPL

scala>(0 to 4).combinations(3).toListres0: List[scala.collection.immutable.IndexedSeq[Int]] = List(Vector(0, 1, 2), Vector(0, 1, 3), Vector(0, 1, 4), Vector(0, 2, 3), Vector(0, 2, 4), Vector(0, 3, 4), Vector(1, 2, 3), Vector(1, 2, 4), Vector(1, 3, 4), Vector(2, 3, 4))

Other environments

Output:

See it running in your browser byScalaFiddle (JavaScript, non JVM) or byScastie (JVM).

Scheme

Like the Haskell code:

(define (comb m lst)  (cond ((= m 0) '(()))        ((null? lst) '())        (else (append (map (lambda (y) (cons (car lst) y))                           (comb (- m 1) (cdr lst)))                      (comb m (cdr lst))))))(comb 3 '(0 1 2 3 4))

Seed7

$ include "seed7_05.s7i";const type: combinations is array array integer;const func combinations: comb (in array integer: arr, in integer: k) is func  result    var combinations: combResult is combinations.value;  local    var integer: x is 0;    var integer: i is 0;    var array integer: suffix is 0 times 0;  begin    if k = 0 then      combResult := 1 times 0 times 0;    else      for x key i range arr do        for suffix range comb(arr[succ(i) ..], pred(k)) do          combResult &:= [] (x) & suffix;        end for;      end for;    end if;  end func;const proc: main is func  local    var array integer: aCombination is 0 times 0;    var integer: element is 0;  begin    for aCombination range comb([] (0, 1, 2, 3, 4), 3) do      for element range aCombination do        write(element lpad 3);      end for;      writeln;    end for;  end func;
Output:
  0  1  2  0  1  3  0  1  4  0  2  3  0  2  4  0  3  4  1  2  3  1  2  4  1  3  4  2  3  4

SETL

print({0..4} npow 3);

Sidef

Built-in

combinations(5, 3, {|*c| say c })

Recursive

Translation of:Perl5i
func combine(n, set) {    set.len || return []    n == 1  && return set.map{[_]}    var (head, result)    head   = set.shift    result = combine(n-1, [set...])    for subarray in result {        subarray.prepend(head)    }    result + combine(n, set)}combine(3, @^5).each {|c| say c }

Iterative

func forcomb(callback, n, k) {    if (k == 0) {        callback([])        return()    }    if (k<0 || k>n || n==0) {        return()    }    var c = @^k    loop {        callback([c...])        c[k-1]++ < n-1 && next        var i = k-2        while (i>=0 && c[i]>=(n-(k-i))) {            --i        }        i < 0 && break        c[i]++        while (++i < k) {            c[i] = c[i-1]+1        }    }    return()}forcomb({|c| say c }, 5, 3)
Output:
[0, 1, 2][0, 1, 3][0, 1, 4][0, 2, 3][0, 2, 4][0, 3, 4][1, 2, 3][1, 2, 4][1, 3, 4][2, 3, 4]

Smalltalk

Works with:Pharo
Works with:Squeak
(0 to: 4) combinations: 3 atATimeDo: [ :x | Transcript cr; show: x printString]."output on Transcript:#(0 1 2)#(0 1 3)#(0 1 4)#(0 2 3)#(0 2 4)#(0 3 4)#(1 2 3)#(1 2 4)#(1 3 4)#(2 3 4)"

SPAD

Works with:FriCAS
Works with:OpenAxiom
Works with:Axiom
   [reverse subSet(5,3,i)$SGCF for i in 0..binomial(5,3)-1]   [[0,1,2], [0,1,3], [0,2,3], [1,2,3], [0,1,4], [0,2,4], [1,2,4], [0,3,4],    [1,3,4], [2,3,4]]                                                    Type: List(List(Integer))

SGCF==> SymmetricGroupCombinatoricFunctions

SparForte

As a structured script.

#!/usr/local/bin/sparpragma annotate( summary, "combinations" )       @( description, "Given non-negative integers m and n, generate all size m" )       @( description, "combinations of the integers from 0 to n-1 in sorted" )       @( description, "order (each combination is sorted and the entire table" )       @( description, "is sorted" )       @( see_also, "http://rosettacode.org/wiki/Combinations" )       @( author, "Ken O. Burtch" );pragma restriction( no_external_commands );procedure combinations is  number_of_items : constant natural := 3;  max_item_value  : constant natural := 5;  -- get_first_combination  -- return the first combination (e.g. 0,1,2 for 3 items)  function get_first_combination return string is    c : string;  begin    for i in 1..number_of_items loop      c := @ & strings.image( natural( i-1 ) );    end loop;    return c;  end get_first_combination;  -- get_last_combination  -- return the highest value (e.g. 4,4,4 for 3 items  -- with a maximum value of 5).  function get_last_combination return string is    c : string;  begin    for i in 1..number_of_items loop      c := @ & strings.image( max_item_value-1 );    end loop;    return c;  end get_last_combination;  combination : string := get_first_combination;  last_combination : constant string := get_last_combination;  item : natural; -- a number from the combination  bad : boolean; -- true if we know a value is too big  s : string;    -- a temp string for deleting leading spacebegin  put_line( combination );  while combination /= last_combination loop    -- the combination is 3 numbers with leading spaces    -- so the field positions start at 2 (1 is a null string)    for i in reverse 1..number_of_items loop        item := numerics.value( strings.field( combination, i+1, ' ') );        if item < max_item_value-1 then           item := @+1;           s := strings.image( item );           s := strings.delete( s, 1, 1 );           strings.replace( combination, i+1, s, ' ' );           bad := false;           for j in i+1..number_of_items loop              item := numerics.value( strings.field( combination, j, ' ') );              if item < max_item_value-1 then                 item := @+1;                 s := strings.image( item );                 s := strings.delete( s, 1, 1 );                 strings.replace( combination, j+1, s, ' ' );              else                 bad;                  end if;           end loop;           exit;        end if;    end loop;        if not bad then           put_line( combination );    end if;  end loop;end combinations;

Standard ML

fun comb (0, _    ) = [[]]  | comb (_, []   ) = []  | comb (m, x::xs) = map (fn y => x :: y) (comb (m-1, xs)) @                  comb (m, xs);comb (3, [0,1,2,3,4]);

Stata

program combintempfile cptempvar kgen `k'=1quietly save "`cp'"rename `1' `1'1forv i=2/`2' {joinby `k' using "`cp'"rename `1' `1'`i'quietly drop if `1'`i'<=`1'`=`i'-1'}sort `1'*end

Example

. set obs 5. gen a=_n. combin a 3. list     +--------------+     | a1   a2   a3 |     |--------------|  1. |  1    2    3 |  2. |  1    2    4 |  3. |  1    2    5 |  4. |  1    3    4 |  5. |  1    3    5 |     |--------------|  6. |  1    4    5 |  7. |  2    3    4 |  8. |  2    3    5 |  9. |  2    4    5 | 10. |  3    4    5 |     +--------------+

Mata

function combinations(n,k) {a = J(comb(n,k),k,.)u = 1..kfor (i=1; 1; i++) {a[i,.] = ufor (j=k; j>0; j--) {if (u[j]-j<n-k) break}if (j<1) return(a)u[j..k] = u[j]+1..u[j]+1+k-j}}combinations(5,3)

Output

        1   2   3     +-------------+   1 |  1   2   3  |   2 |  1   2   4  |   3 |  1   2   5  |   4 |  1   3   4  |   5 |  1   3   5  |   6 |  1   4   5  |   7 |  2   3   4  |   8 |  2   3   5  |   9 |  2   4   5  |  10 |  3   4   5  |     +-------------+

Swift

func addCombo(prevCombo: [Int], var pivotList: [Int]) -> [([Int], [Int])] {  return (0..<pivotList.count)    .map {      _ -> ([Int], [Int]) in      (prevCombo + [pivotList.removeAtIndex(0)], pivotList)    }}func combosOfLength(n: Int, m: Int) -> [[Int]] {  return [Int](1...m)    .reduce([([Int](), [Int](0..<n))]) {      (accum, _) in      accum.flatMap(addCombo)    }.map {      $0.0    }}println(combosOfLength(5, 3))
Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

Tailspin

operator (m comb n)  [by 0..~$n] -> #  when <[](..~$m)> do [$..., by $(last)~..~$n] -> #  otherwise $!end comb(3 comb 5) -> !OUT::write
Output:
[0, 1, 2][0, 1, 3][0, 1, 4][0, 2, 3][0, 2, 4][0, 3, 4][1, 2, 3][1, 2, 4][1, 3, 4][2, 3, 4]

Tcl

ref[2]

proc comb {m n} {    set set [list]    for {set i 0} {$i < $n} {incr i} {lappend set $i}    return [combinations $set $m]}proc combinations {list size} {    if {$size == 0} {        return [list [list]]    }    set retval {}    for {set i 0} {($i + $size) <= [llength $list]} {incr i} {        set firstElement [lindex $list $i]        set remainingElements [lrange $list [expr {$i + 1}] end]        foreach subset [combinations $remainingElements [expr {$size - 1}]] {            lappend retval [linsert $subset 0 $firstElement]        }    }    return $retval}comb 3 5 ;# ==> {0 1 2} {0 1 3} {0 1 4} {0 2 3} {0 2 4} {0 3 4} {1 2 3} {1 2 4} {1 3 4} {2 3 4}

TXR

TXR has repeating and non-repeating permutation and combination functions that produce lazy lists. They are generic over lists, strings and vectors. In addition, the combinations function also works over hashes.

Combinations and permutations are produced in lexicographic order (except in the case of hashes).

(defun comb-n-m (n m)  (comb (range* 0 n) m))(put-line `3 comb 5 = @(comb-n-m 5 3)`)
Run:
$ txr combinations.tl 3 comb 5 = ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 4) (1 3 4) (2 3 4))

uBasic/4tH

Translation of:C
o = 1Proc _Comb(5, 3, 0, 0)End_Comb  Param (4)    If a@ < b@ + d@ Then Return  If b@ = 0 Then    For d@ = 0 To a@-1      If AND(c@, SHL(o, d@)) Then Print d@;" "; : Fi    Next    Print : Return  EndIf  Proc _Comb(a@, b@ - 1, OR(c@, SHL(o, d@)), d@ + 1)  Proc _Comb(a@, b@, c@, d@ + 1)Return
Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 0 OK, 0:33

Uiua

Works with:Uiua version 0.16.2

This task is trivial with thetuples monadic modifier.

3 5  # 3 combo 5⊙⇡  # Create the array of numbers⧅<   # Get the permutations
Output:
╭─       ╷ 0 1 2    0 1 3    0 1 4    0 2 3    0 2 4    0 3 4    1 2 3    1 2 4    1 3 4    2 3 4          ╯

Ursala

Most of the work is done by the standard library functionchoices, whose implementation is shown here for the sake of comparison with other solutions,

choices = ^(iota@r,~&l); leql@a^& ~&al?\&! ~&arh2fabt2RDfalrtPXPRT

whereleql is the predicate that compares list lengths. The main body of the algorithm (~&arh2fabt2RDfalrtPXPRT) concatenates the results of two recursive calls, one of which finds all combinations of the required size from the tail of the list, and the other of which finds all combinations of one less size from the tail, and then inserts the head into each.choices generates combinations of an arbitrary set butnot necessarily in sorted order, which can be done like this.

#import std#import natcombinations = @rlX choices^|(iota,~&); -< @p nleq+ ==-~rh
  • The sort combinator (-<) takes a binary predicate to a function that sorts a list in order of that predicate.
  • The predicate in this case begins by zipping its two arguments together with@p.
  • The prefiltering operator-~ scans a list from the beginning until it finds the first item to falsify a predicate (in this case equality,==) and returns a pair of lists with the scanned items satisfying the predicate on the left and the remaining items on the right.
  • Therh suffix on the-~ operator causes it to return only the head of the right list as its result, which in this case will be the first pair of unequal items in the list.
  • Thenleq function then tests whether the left side of this pair is less than or equal to the right.
  • The overall effect of using everything starting from the@p as the predicate to a sort combinator is therefore to sort a list of lists of natural numbers according to the order of the numbers in the first position where they differ.

test program:

#cast %nLLexample = combinations(3,5)
Output:
<   <0,1,2>,   <0,1,3>,   <0,1,4>,   <0,2,3>,   <0,2,4>,   <0,3,4>,   <1,2,3>,   <1,2,4>,   <1,3,4>,   <2,3,4>>

V

like scheme (using variables)

[comb [m lst] let   [ [m zero?] [[[]]]     [lst null?] [[]]     [true] [m pred lst rest comb [lst first swap cons]  map            m lst rest comb concat]   ] when].

Using destructuring view and stack not *pure at all

[comb   [ [pop zero?] [pop pop [[]]]     [null?] [pop pop []]     [true] [ [m lst : [m pred lst rest comb [lst first swap cons]  map            m lst rest comb concat]] view i ]   ] when].

Pure concatenative version

[comb   [2dup [a b : a b a b] view].   [2pop pop pop].   [ [pop zero?] [2pop [[]]]     [null?] [2pop []]     [true] [2dup [pred] dip uncons swapd comb [cons] map popd rollup rest comb concat]   ] when].

Using it

|3 [0 1 2 3 4] comb=[[0 1 2] [0 1 3] [0 1 4] [0 2 3] [0 2 4] [0 3 4] [1 2 3] [1 2 4] [1 3 4] [2 3 4]]

VBA

Option ExplicitOption Base 0'Option Base 1Private ArrResult Sub test()    'compute    Main_Combine 5, 3        'return    Dim j As Long, i As Long, temp As String    For i = LBound(ArrResult, 1) To UBound(ArrResult, 1)        temp = vbNullString        For j = LBound(ArrResult, 2) To UBound(ArrResult, 2)            temp = temp & " " & ArrResult(i, j)        Next        Debug.Print temp    Next    Erase ArrResultEnd Sub Private Sub Main_Combine(M As Long, N As Long)Dim MyArr, i As Long    ReDim MyArr(M - 1)    If LBound(MyArr) > 0 Then ReDim MyArr(M) 'Case Option Base 1    For i = LBound(MyArr) To UBound(MyArr)        MyArr(i) = i    Next i    i = IIf(LBound(MyArr) > 0, N, N - 1)    ReDim ArrResult(i, LBound(MyArr))    Combine MyArr, N, LBound(MyArr), LBound(MyArr)    ReDim Preserve ArrResult(UBound(ArrResult, 1), UBound(ArrResult, 2) - 1)    'In VBA Excel we can use Application.Transpose instead of personal Function Transposition    ArrResult = Transposition(ArrResult)End SubPrivate Sub Combine(MyArr As Variant, Nb As Long, Deb As Long, Ind As Long)Dim i As Long, j As Long, N As Long    For i = Deb To UBound(MyArr, 1)        ArrResult(Ind, UBound(ArrResult, 2)) = MyArr(i)        N = IIf(LBound(ArrResult, 1) = 0, Nb - 1, Nb)        If Ind = N Then            ReDim Preserve ArrResult(UBound(ArrResult, 1), UBound(ArrResult, 2) + 1)            For j = LBound(ArrResult, 1) To UBound(ArrResult, 1)                ArrResult(j, UBound(ArrResult, 2)) = ArrResult(j, UBound(ArrResult, 2) - 1)            Next j        Else            Call Combine(MyArr, Nb, i + 1, Ind + 1)        End If    Next iEnd SubPrivate Function Transposition(ByRef MyArr As Variant) As VariantDim T, i As Long, j As Long    ReDim T(LBound(MyArr, 2) To UBound(MyArr, 2), LBound(MyArr, 1) To UBound(MyArr, 1))    For i = LBound(MyArr, 1) To UBound(MyArr, 1)        For j = LBound(MyArr, 2) To UBound(MyArr, 2)            T(j, i) = MyArr(i, j)        Next j    Next i    Transposition = T    Erase TEnd Function
Output:

If Option Base 0 :

 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

If Option Base 1 :

 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
Translation of:Phix
Private Sub comb(ByVal pool As Integer, ByVal needed As Integer, Optional ByVal done As Integer = 0, Optional ByVal chosen As Variant)    If needed = 0 Then  '-- got a full set        For Each x In chosen: Debug.Print x;: Next x        Debug.Print        Exit Sub    End If    If done + needed > pool Then Exit Sub '-- cannot fulfil    '-- get all combinations with and without the next item:    done = done + 1    Dim tmp As Variant    tmp = chosen    If IsMissing(chosen) Then        ReDim tmp(1)    Else        ReDim Preserve tmp(UBound(chosen) + 1)    End If    tmp(UBound(tmp)) = done    comb pool, needed - 1, done, tmp    comb pool, needed, done, chosenEnd SubPublic Sub main()    comb 5, 3End Sub

VBScript

Function Dec2Bin(n)q = nDec2Bin = ""Do Until q = 0Dec2Bin = CStr(q Mod 2) & Dec2Binq = Int(q / 2)LoopDec2Bin = Right("00000" & Dec2Bin,6)End FunctionSub Combination(n,k)Dim arr()ReDim arr(n-1)For h = 0 To n-1arr(h) = h + 1NextSet list = CreateObject("System.Collections.Arraylist")For i = 1 To 2^nbin = Dec2Bin(i)c = 0tmp_combo = ""If Len(Replace(bin,"0","")) = k ThenFor j = Len(bin) To 1 Step -1If CInt(Mid(bin,j,1)) = 1 Thentmp_combo = tmp_combo & arr(c) & ","End Ifc = c + 1Nextlist.Add Mid(tmp_combo,1,(k*2)-1)End IfNextlist.SortFor l = 0 To list.Count-1WScript.StdOut.Write list(l)WScript.StdOut.WriteLineNextEnd Sub'Testing with n = 5 / k = 3Call Combination(5,3)
Output:
1,2,31,2,41,2,51,3,41,3,51,4,52,3,42,3,52,4,53,4,5

Wren

Library:Wren-perm
import "./perm" for Combvar fib = Fiber.new { Comb.generate((0..4).toList, 3) }while (true) {    var c = fib.call()    if (!c) return    System.print(c)}
Output:
[0, 1, 2][0, 1, 3][0, 1, 4][0, 2, 3][0, 2, 4][0, 3, 4][1, 2, 3][1, 2, 4][1, 3, 4][2, 3, 4]

XPL0

code ChOut=8, CrLf=9, IntOut=11;def M=3, N=5;int A(N-1);proc Combos(D, S);      \Display all size M combinations of N in sorted orderint  D, S;              \depth of recursion, starting value of Nint  I;[if D<M then            \depth < size      for I:= S to N-1 do        [A(D):= I;        Combos(D+1, I+1);        ]else [for I:= 0 to M-1 do        [IntOut(0, A(I));  ChOut(0, ^ )];     CrLf(0);     ];];Combos(0, 0)
Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4

zkl

Translation of:OCaml
fcn comb(k,seq){// no repeats, seq is finite   seq=seq.makeReadOnly();// because I append to parts of seq   fcn(k,seq){      if(k<=0)    return(T(T));      if(not seq) return(T);      self.fcn(k-1,seq[1,*]).pump(List,seq[0,1].extend)   .extend(self.fcn(k,seq[1,*]));   }(k,seq);}
comb(3,"abcde".split("")).apply("concat")
Output:
L("abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde")
Retrieved from "https://rosettacode.org/wiki/Combinations?oldid=396595"
Categories:
Hidden category:
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

[8]ページ先頭

©2009-2026 Movatter.jp