Movatterモバイル変換


[0]ホーム

URL:


Jump to content
Rosetta Code
Search

Bitwise operations

From Rosetta Code
Task
Bitwise operations
You are encouraged tosolve this task according to the task description, using any language you may know.

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.

You may see other such operations in theBasic Data Operations category, or:

Integer Operations
Arithmetic |Comparison

Boolean Operations
Bitwise |Logical

String Operations
Concatenation |Interpolation |Comparison |Matching

Memory Operations
Pointers & references |Addresses


Task

Write a routine to perform a bitwise AND, OR, and XOR on two integers, a bitwise NOT on the first integer, a left shift, right shift, right arithmetic shift, left rotate, and right rotate.

All shifts and rotates should be done on the first integer with a shift/rotate amount of the second integer.

If any operation is not available in your language, note it.

11l

Translation of:Kotlin
V x = 10V y = 2print(‘x       = ’x)print(‘y       = ’y)print(‘NOT x   = ’(~x))print(‘x AND y = ’(x [&] y))print(‘x OR  y = ’(x [|] y))print(‘x XOR y = ’(x (+) y))print(‘x SHL y = ’(x << y))print(‘x SHR y = ’(x >> y))print(‘x ROL y = ’rotl(x, y))print(‘x ROR y = ’rotr(x, y))
Output:
x       = 10y       = 2NOT x   = -11x AND y = 2x OR  y = 10x XOR y = 8x SHL y = 40x SHR y = 2x ROL y = 40x ROR y = -2147483646

360 Assembly

*        Bitwise operations        15/02/2017BITWISE  CSECT         USING  BITWISE,R13         B      72(R15)         DC     17F'0'         STM    R14,R12,12(R13)         ST     R13,4(R15)         ST     R15,8(R13)         LR     R13,R15         L      R1,A         XDECO  R1,PG         MVC    OP,=CL7'A='         XPRNT  OP,L'OP+L'PG         L      R1,B         XDECO  R1,PG         MVC    OP,=CL7'B='         XPRNT  OP,L'OP+L'PG*                                  And         L      R1,A         N      R1,B         XDECO  R1,PG         MVC    OP,=C'A AND B'         XPRNT  OP,L'OP+L'PG*                                  Or         L      R1,A         O      R1,B         XDECO  R1,PG         MVC    OP,=C'A OR  B'         XPRNT  OP,L'OP+L'PG*                                  Xor         L      R1,A         X      R1,B         XDECO  R1,PG         MVC    OP,=C'A XOR B'         XPRNT  OP,L'OP+L'PG*                                  Not         L      R1,A         X      R1,=X'FFFFFFFF'    not (by xor -1)         XDECO  R1,PG         MVC    OP,=CL7'NOT A'         XPRNT  OP,L'OP+L'PG*         MVC    A,=X'80000008'     a=-2147483640 (-2^31+8)         L      R1,A         XDECO  R1,PG         MVC    OP,=CL7'A='         XPRNT  OP,L'OP+L'PG*                                  shift right arithmetic (on 31 bits)         L      R1,A         SRA    R1,3         XDECO  R1,PG         MVC    OP,=C'A SRA 3'         XPRNT  OP,L'OP+L'PG*                                  shift left arithmetic (on 31 bits)         L      R1,A         SLA    R1,3         XDECO  R1,PG         MVC    OP,=C'A SLA 3'         XPRNT  OP,L'OP+L'PG*                                  shift right logical (on 32 bits)         L      R1,A         SRL    R1,3         XDECO  R1,PG         MVC    OP,=C'A SRL 3'         XPRNT  OP,L'OP+L'PG*                                  shift left logical (on 32 bits)         L      R1,A         SLL    R1,3         XDECO  R1,PG         MVC    OP,=C'A SLL 3'         XPRNT  OP,L'OP+L'PG*RETURN   L      R13,4(0,R13)         LM     R14,R12,12(R13)         XR     R15,R15         BR     R14A        DC     F'21'B        DC     F'3'OP       DS     CL7PG       DS     CL12         YREGS         END    BITWISE
Output:
A=               21B=                3A AND B           1A OR  B          23A XOR B          22NOT A           -22A=      -2147483640A SRA 3  -268435455A SLA 3 -2147483584A SRL 3   268435457A SLL 3          64

6502 Assembly

Bitwise operations are done using the accumulator and an immediate constant (prefixed with #) or a value at a specified memory location (no #.)

LDA #$05STA temp ;temp equals 5 for the following
AND
LDA #$08AND temp
OR
LDA #$08ORA temp
XOR
LDA #$08EOR temp
NOT
LDA #$08EOR #255

The 6502 doesn't have arithmetic shift right, but it can be replicated, provided the negative flag is set according to the value in the accumulator.

    LDA #$FF    CLC  ;clear the carry. That way, ROR will not accidentally shift a 1 into the top bit of a positive number    BPL SKIP        SEC  ;if the value in A is negative, setting the carry will ensure that ROR will insert a 1 into bit 7 of A upon rotating.SKIP:    ROR

The 6502 can only rotate a value by one, not an arbitrary number. A looping routine is needed for rotates larger than 1.Also, the 6502'sROL andROR rotate instructions both rotate through the carry, unlike the instructions on other architectures with the same name. (68000, x86, and ARM all have a "ROR" command but it doesn't rotate through the carry on those CPUs.)

LDA #$01ROL ;if the carry was set prior to the ROL, A = 3. If the carry was clear, A = 2.
LDA #$01ROR ;if the carry was set prior to the ROR, A = 0x80. If clear, A = 0.

8051 Assembly

Integer one is assumed to be a, integer two assumed to be b.Each operation affects one or both operands and would not be used sequentially.The end result of each operation resides in a.The shift and rotate operations should likely push psw and pop psw because they affect the carry flag.

; bitwise ANDanla,b; bitwise ORorla,b; bitwise XORxrla,b; bitwise NOTcpla; left shiftincbrrcaloop:rlcaclrcdjnzb,loop; right shiftincbrlcaloop:rrcaclrcdjnzb,loop; arithmetic right shiftpush20incbrlcamov20.0,cloop:rrcamovc,20.0djnzb,looppop20; left rotateincbrraloop:rladjnzb,loop; right rotateincbrlaloop:rradjnzb,loop

8086 Assembly

AND
MOVAX,0345hMOVBX,0444hANDAX,BX
OR
MOVAX,0345hMOVBX,0444hORAX,BX
XOR
MOVAX,0345hMOVBX,0444hXORAX,BX
NOT
MOVAX,0345hNOTAX
Left Shift
MOVAX,03hMOVCL,02hSHLAX,CL
Right Shift
MOVAX,03hMOVCL,02hSHRAX,CL
Arithmetic Right Shift
MOVAX,03hMOVCL,02hSARAX,CL
Left Rotate
MOVAX,03hMOVCL,02hROLAX,CL
Right Rotate
MOVAX,03hMOVCL,02hRORAX,CL
Left Rotate Through Carry
MOVAX,03hMOVCL,02hRCLAX,CL
Right Rotate Through Carry
MOVAX,03hMOVCL,02hRCRAX,CL

68000 Assembly

Like with most 68000 commands, you can specify a length parameter. Anything outside that length is unaffected by the operation.

AND
MOVE.W#$100,D0MOVE.W#$200,D1AND.WD0,D1
OR
MOVE.W#$100,D0MOVE.W#$200,D1OR.WD0,D1
XOR
MOVE.W#$100,D0MOVE.W#$200,D1EOR.WD0,D1
NOT
MOVE.W#$100,D0NOT.WD0
Left Shift
MOVE.W#$FF,D0MOVE.W#$04,D1LSL.WD1,D0;shifts 0x00FF left 4 bits
Right Shift
MOVE.W#$FF,D0MOVE.W#$04,D1LSR.WD1,D0;shifts 0x00FF right 4 bits
Arithmetic Right Shift
MOVE.W#$FF00,D0MOVE.W#$04,D1ASR.WD1,D0;shifts 0xFF00 right 4 bits, preserving its sign
Left Rotate
MOVE.W#$FF00,D0MOVE.W#$04,D1ROL.WD1,D0
Right Rotate
MOVE.W#$FF00,D0MOVE.W#$04,D1ROR.WD1,D0
Left Rotate Through Extend Flag
MOVE.W#$FF00,D0MOVE.W#$04,D1ROXL.WD1,D0
Right Rotate Through Extend Flag
MOVE.W#$FF00,D0MOVE.W#$04,D1ROXR.WD1,D0

AArch64 Assembly

Works with:as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
/* ARM assembly AARCH64 Raspberry PI 3B *//*  program bitwise64.s   *//************************************//* Constantes                       *//************************************//* for this file see task include a file in language AArch64 assembly*/.include "../includeConstantesARM64.inc" /************************************//* Initialized data                 *//************************************/.dataszMessResultAnd:   .asciz "Result of And : \n"szMessResultOr:    .asciz "Result of Or : \n"szMessResultEor:   .asciz "Result of Exclusif Or : \n"szMessResultNot:   .asciz "Result of Not : \n"szMessResultLsl:   .asciz "Result of left shift : \n"szMessResultLsr:   .asciz "Result of right shift : \n"szMessResultAsr:   .asciz "Result of Arithmetic right shift : \n"szMessResultRor:   .asciz "Result of rotate right : \n"szMessResultClear: .asciz "Result of Bit Clear : \n"sMessAffBin:       .ascii "Register: "sZoneBin:          .space 65,' '                   .asciz "\n"/************************************//*  code section                    *//************************************/.text.global main main:    ldr x0,qAdrszMessResultAnd    bl affichageMess    mov x0,#5    and x0,x0,#15    bl affichage2    ldr x0,qAdrszMessResultOr    bl affichageMess    mov x0,#5    orr x0,x0,#15    bl affichage2    ldr x0,qAdrszMessResultEor    bl affichageMess    mov x0,#5    eor x0,x0,#15    bl affichage2    ldr x0,qAdrszMessResultNot    bl affichageMess    mov x0,#5    mvn x0,x0    bl affichage2    ldr x0,qAdrszMessResultLsl    bl affichageMess    mov x0,#5    lsl x0,x0,#1    bl affichage2    ldr x0,qAdrszMessResultLsr    bl affichageMess    mov x0,#5    lsr x0,x0,#1    bl affichage2    ldr x0,qAdrszMessResultAsr    bl affichageMess    mov x0,#-5    bl affichage2    mov x0,#-5    asr x0,x0,#1    bl affichage2    ldr x0,qAdrszMessResultRor    bl affichageMess    mov x0,#5    ror x0,x0,#1    bl affichage2    ldr x0,qAdrszMessResultClear    bl affichageMess    mov x0,0b1111    bic x0,x0,#0b100      //  clear 3ieme bit    bl affichage2    mov x0,0b11111    bic x0,x0,#6          //  clear 2ieme et 3ième bit  ( 6 = 110 binary)    bl affichage2100:    mov x0, #0    mov x8,EXIT     svc 0qAdrszMessResultAnd:  .quad szMessResultAndqAdrszMessResultOr:   .quad szMessResultOrqAdrszMessResultEor:  .quad szMessResultEorqAdrszMessResultNot:  .quad szMessResultNotqAdrszMessResultLsl:  .quad szMessResultLslqAdrszMessResultLsr:  .quad szMessResultLsrqAdrszMessResultAsr:  .quad szMessResultAsrqAdrszMessResultRor:  .quad szMessResultRorqAdrszMessResultClear:  .quad szMessResultClear/******************************************************************//*     display register in binary                              */ /******************************************************************//* x0 contains the register *//* x1 contains the address of receipt area */affichage2:    stp x1,lr,[sp,-16]!        // save  registers    ldr x1,qAdrsZoneBin    bl conversion2    ldr x0,qAdrsZoneMessBin    bl affichageMess    ldp x1,lr,[sp],16          // restaur  2 registres    ret                        // retour adresse lr x30   qAdrsZoneBin:     .quad sZoneBin         qAdrsZoneMessBin: .quad sMessAffBin/******************************************************************//*     register conversion in binary                              */ /******************************************************************//* x0 contains the value *//* x1 contains the address of receipt area */conversion2:    stp x2,lr,[sp,-16]!        // save  registers    stp x3,x4,[sp,-16]!        // save  registers    mov x3,64                  // position counter of the written character2:                             // loop    tst x0,1                   // test first bit     lsr x0,x0,#1               // shift right one bit    bne 3f    mov x2,#48                 // bit = 0 => character '0'    b 4f3:    mov x2,#49                 //   bit = 1   => character '1' 4:    strb w2,[x1,x3]            // character in reception area at position counter    subs x3,x3,#1              //  0 bits ?    bgt 2b                     // no!  loop100:    ldp x3,x4,[sp],16          // restaur  2 registres    ldp x2,lr,[sp],16          // restaur  2 registres    ret                        // retour adresse lr x30  /***************************************************//*      ROUTINES INCLUDE                           *//***************************************************//* for this file see task include a file in language AArch64 assembly*/.include "../includeARM64.inc"
Output:
Result of And :Register:  0000000000000000000000000000000000000000000000000000000000000101Result of Or :Register:  0000000000000000000000000000000000000000000000000000000000001111Result of Exclusif Or :Register:  0000000000000000000000000000000000000000000000000000000000001010Result of Not :Register:  1111111111111111111111111111111111111111111111111111111111111010Result of left shift :Register:  0000000000000000000000000000000000000000000000000000000000001010Result of right shift :Register:  0000000000000000000000000000000000000000000000000000000000000010Result of Arithmetic right shift :Register:  1111111111111111111111111111111111111111111111111111111111111011Register:  1111111111111111111111111111111111111111111111111111111111111101Result of rotate right :Register:  1000000000000000000000000000000000000000000000000000000000000010Result of Bit Clear :Register:  0000000000000000000000000000000000000000000000000000000000001011Register:  0000000000000000000000000000000000000000000000000000000000011001

ABAP

This works in ABAP 7.40 and above. The missing arithmetic shift operations have been implemented with arithmetic, whereas the logical shift and the rotate operations have been implemented using the built in string functions shift_left and shift_right.

reportz_bitwise_operations.classhex_converterdefinition.public section.class-methods:to_binaryimportinghex_valuetypexreturningvalue(binary_value)typestring,to_decimalimportinghex_valuetypexreturningvalue(decimal_value)typeint4.endclass.classhex_converterimplementation.methodto_binary.data(number_of_bits)=xstrlen(hex_value)*8.donumber_of_bitstimes.get bitsy-indexofhex_valueintodata(bit).binary_value=|{binary_value}{bit}|.enddo.endmethod.methodto_decimal.decimal_value=hex_value.endmethod.endclass.classmissing_bitwise_operationsdefinition.public section.class-methods:arithmetic_shift_leftimportingold_valuetypexchange_withtypexexportingnew_valuetypex,arithmetic_shift_rightimportingold_valuetypexchange_withtypexexportingnew_valuetypex,logical_shift_leftimportingold_valuetypexchange_withtypexexportingnew_valuetypex,logical_shift_rightimportingold_valuetypexchange_withtypexexportingnew_valuetypex,rotate_leftimportingold_valuetypexchange_withtypexexportingnew_valuetypex,rotate_rightimportingold_valuetypexchange_withtypexexportingnew_valuetypex.endclass.classmissing_bitwise_operationsimplementation.methodarithmetic_shift_left.clearnew_value.new_value=old_value*2**change_with.endmethod.methodarithmetic_shift_right.clearnew_value.new_value=old_valuediv2**change_with.endmethod.methodlogical_shift_left.clearnew_value.data(bits)=hex_converter=>to_binary(old_value).data(length_of_bit_sequence)=strlen(bits).bits=shift_left(val=bitsplaces=change_with).whilestrlen(bits)<length_of_bit_sequence.bits=|{bits}0|.endwhile.dostrlen(bits)times.data(index)=sy-index-1.data(current_bit)=bits+index(1).ifcurrent_biteq`1`.set bitsy-indexofnew_value.endif.enddo.endmethod.methodlogical_shift_right.clearnew_value.data(bits)=hex_converter=>to_binary(old_value).data(length_of_bit_sequence)=strlen(bits).bits=shift_right(val=bitsplaces=change_with).whilestrlen(bits)<length_of_bit_sequence.bits=|0{bits}|.endwhile.dostrlen(bits)times.data(index)=sy-index-1.data(current_bit)=bits+index(1).ifcurrent_biteq`1`.set bitsy-indexofnew_value.endif.enddo.endmethod.methodrotate_left.clearnew_value.data(bits)=hex_converter=>to_binary(old_value).bits=shift_left(val=bitscircular=change_with).dostrlen(bits)times.data(index)=sy-index-1.data(current_bit)=bits+index(1).ifcurrent_biteq`1`.set bitsy-indexofnew_value.endif.enddo.endmethod.methodrotate_right.clearnew_value.data(bits)=hex_converter=>to_binary(old_value).bits=shift_right(val=bitscircular=change_with).dostrlen(bits)times.data(index)=sy-index-1.data(current_bit)=bits+index(1).ifcurrent_biteq`1`.set bitsy-indexofnew_value.endif.enddo.endmethod.endclass.start-of-selection.data:atypexlength4value255,btypexlength4value2,result typexlength4.write:|a         ->{a},{hex_converter=>to_binary(a)},{hex_converter=>to_decimal(a)}|,/.write:|b         ->{b},{hex_converter=>to_binary(b)},{hex_converter=>to_decimal(b)}|,/.result=abit-andb.write:|a & b     ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.result=abit-orb.write:|a \|b->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.result=abit-xorb.write:|a ^ b     ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.result=bit-nota.write:|~a        ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.missing_bitwise_operations=>arithmetic_shift_left(exportingold_value=bit-notachange_with=bimportingnew_value=result).write:|~a << b   ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.missing_bitwise_operations=>arithmetic_shift_right(exportingold_value=bit-notachange_with=bimportingnew_value=result).write:|~a >> b   ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.missing_bitwise_operations=>logical_shift_left(exportingold_value=achange_with=bimportingnew_value=result).write:|a <<< b   ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.missing_bitwise_operations=>logical_shift_right(exportingold_value=bit-notachange_with=bimportingnew_value=result).write:|~a >>> b  ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.missing_bitwise_operations=>rotate_left(exportingold_value=bit-notachange_with=bimportingnew_value=result).write:|~a rotl b ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.missing_bitwise_operations=>rotate_right(exportingold_value=achange_with=bimportingnew_value=result).write:|a rotr b  ->{result},{hex_converter=>to_binary(result)},{hex_converter=>to_decimal(result)}|,/.
Output:
a         -> 000000FF, 00000000000000000000000011111111, 255b         -> 00000002, 00000000000000000000000000000010, 2a & b     -> 00000002, 00000000000000000000000000000010, 2a | b     -> 000000FF, 00000000000000000000000011111111, 255a ^ b     -> 000000FD, 00000000000000000000000011111101, 253~a        -> FFFFFF00, 11111111111111111111111100000000, -256~a << b   -> FFFFFC00, 11111111111111111111110000000000, -1024~a >> b   -> FFFFFFC0, 11111111111111111111111111000000, -64a <<< b   -> 000003FC, 00000000000000000000001111111100, 1020~a >>> b  -> 3FFFFFC0, 00111111111111111111111111000000, 1073741760~a rotl b -> FFFFFC03, 11111111111111111111110000000011, -1021a rotr b  -> C000003F, 11000000000000000000000000111111, -1073741761

ACL2

Unlisted operations are not available

(defunbitwise(ab)(list(logandab)(logiorab)(logxorab)(lognota)(ashab)(asha(-b))))

Action!

BYTE FUNC Not(BYTE a)RETURN (a!$FF)PROC Main()  BYTE a=[127],b=[2],res  res=a&b  PrintF("%B AND %B = %B%E",a,b,res)    res=a%b  PrintF("%B OR %B = %B%E",a,b,res)  res=a!b  PrintF("%B XOR %B = %B%E",a,b,res)  res=Not(a)  PrintF("NOT %B = %B (by %B XOR $FF)%E",a,res,a)  res=a RSH b  PrintF("%B SHR %B = %B%E",a,b,res)  res=a LSH b  PrintF("%B SHL %B = %B%E",a,b,res)RETURN
Output:

Screenshot from Atari 8-bit computer

127 AND 2 = 2127 OR 2 = 127127 XOR 2 = 125NOT 127 = 128 (by 127 XOR $FF)127 SHR 2 = 31127 SHL 2 = 252

ActionScript

ActionScript does not support bitwise rotations.

functionbitwise(a:int,b:int):void{trace("And: ",a&b);trace("Or: ",a|b);trace("Xor: ",a^b);trace("Not: ",~a);trace("Left Shift: ",a<<b);trace("Right Shift(Arithmetic): ",a>>b);trace("Right Shift(Logical): ",a>>>b);}

Ada

The following program performs all required operations and prints the resulting values in base 2 for easy checking of the bit values.

withAda.Text_IO,Interfaces;useAda.Text_IO,Interfaces;procedureBitwiseissubtypeByteisUnsigned_8;packageByte_IOis newAda.Text_Io.Modular_IO(Byte);A:constantByte:=2#00011110#;B:constantByte:=2#11110100#;X:constantByte:=128;N:constantNatural:=1;beginPut("A and B = ");Byte_IO.Put(Item=>AandB,Base=>2);New_Line;Put("A or B  = ");Byte_IO.Put(Item=>AorB,Base=>2);New_Line;Put("A xor B = ");Byte_IO.Put(Item=>AxorB,Base=>2);New_Line;Put("not A   = ");Byte_IO.Put(Item=>notA,Base=>2);New_Line;New_Line(2);Put_Line(Unsigned_8'Image(Shift_Left(X,N)));Put_Line(Unsigned_8'Image(Shift_Right(X,N)));Put_Line(Unsigned_8'Image(Shift_Right_Arithmetic(X,N)));Put_Line(Unsigned_8'Image(Rotate_Left(X,N)));Put_Line(Unsigned_8'Image(Rotate_Right(X,N)));endBitwise;

Aikido

Translation of:Javascript

There is no rotate support built in to Aikido.

function bitwise(a, b){   println("a AND b: " + (a & b))   println("a OR b: "+ (a | b))   println("a XOR b: "+ (a ^ b))   println("NOT a: " + ~a)   println("a << b: " + (a << b)) // left shift   println("a >> b: " + (a >> b)) // arithmetic right shift   println("a >>> b: " + (a >>> b)) // logical right shift}

ALGOL 68

Works with:ALGOL 68 version Standard - no extensions to language used
Works with:ALGOL 68G version Any - tested with release 3.7.2 win32

Aside from decimal,ALGOL 68 has 5 different alternative was of representing the number 170:

  • 2r00000000000000000000000010101010, 4r0000000000002222, 8r00000000252, 16r000000aa
  • and as an array of BOOL: FFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF
BEGIN  BITS all bits mask = NOT 16r0;  LONG BITS long bits mask = LENG all bits mask;  PRIO SLC = 8, SRC = 8; # SLC and SRC are not built in, define and overload them here #  OP SLC = (BITS b, INT rotate) BITS: b SHL rotate OR b SHR ( bits width - rotate );  OP SRC = (BITS b, INT rotate) BITS: b SHR rotate OR SHORTEN (   long bits mask                                                              AND ( LENG b SHL ( bits width - rotate ) )                                                              );  # SRC and SRL are non-standard, but versions are built in to ALGOL 68R's standard prelude #  PRIO XOR = 2;  OP XOR = (BITS p, q) BITS: p AND NOT q OR NOT p AND q;  # XOR is non-standard, but a version is built in to ALGOL 68G's standard prelude #  # ALGOL 68 has 5 different ways of representing a BINary BITS - Bases: 2, 4, 8, 16 and flip/flop #  FORMAT b5 = IF bits width > 32              THEN $"2r"2r64d," 4r"4r32d,l"          8r"8r22d," 16r"16r16d,l"          "gl$              ELSE $"2r"2r32d," 4r"4r16d," 8r"8r11d," 16r"16r8d,l"          "gl$              FI;  OP BBBBB = (BITS b)[]BITS: (b,b,b,b,b);  PROC bitwise = (BITS a, BITS b, INT shift)VOID:  (    printf((      $"         bits shorths: "gxgl$, bits shorths, "1 plus the number of extra SHORT BITS types",      $"         bits lengths: "gxgl$, bits lengths, "1 plus the number of extra LONG BITS types",      $"             max bits: "gl$, max bits,      $"        long max bits: "gl$, long max bits,      $"   long long max bits: "gl$, long long max bits,      $"           bits width: "gxgl$, bits width, "The number of CHAR required to display BITS",      $"      long bits width: "gxgl$, long bits width, "The number of CHAR required to display LONG BITS",      $" long long bits width: "gxgl$, long long bits width, "The number of CHAR required to display LONG LONG BITS",      $"         bytes shorths: "gxgl$, bytes shorths, "1 plus the number of extra SHORT BYTES types",      $"         bytes lengths: "gxgl$, bits lengths, "1 plus the number of extra LONG BYTES types",      $"          bytes width: "gxgl$, bytes width, "The number of CHAR required to display BYTES",      $"     long bytes width: "gxgl$, long bytes width, "The number of CHAR required to display LONG BYTES"    ));    printf(($" a:       "f(b5)$, BBBBB a));    printf(($" b:       "f(b5)$, BBBBB b));    printf(($" a AND b: "f(b5)$, BBBBB(a AND b)));    printf(($" a OR b:  "f(b5)$, BBBBB(a OR b)));    printf(($" a XOR b: "f(b5)$, BBBBB(a XOR b)));    printf(($" NOT b:   "f(b5)$, BBBBB NOT a));    printf(($" a SHL "d": "f(b5)$, shift, BBBBB(a SHL shift)));    printf(($" a SHR "d": "f(b5)$, shift, BBBBB(a SHR shift)));    printf(($" a SLC "d": "f(b5)$, shift, BBBBB(a SLC shift)));    printf(($" a SRC "d": "f(b5)$, shift, BBBBB(a SRC shift)))COMMENT with original ALGOL 68 character set;    printf(($" a AND b: "f(b5)$, BBBBB(a ∧ b)));    printf(($" a OR b:  "f(b5)$, BBBBB(a ∨ b)));    printf(($" NOT b:   "f(b5)$, BBBBB ¬ a));    printf(($" a SHL "d": "f(b5)$, shift, BBBBB(a ↑ shift)));    printf(($" a SHR "d": "f(b5)$, shift, BBBBB(a ↓ shift)));Also:    printf(($" a AND b: "f(b5)$, BBBBB(a /\ b)));    printf(($" a OR b: "f(b5)$, BBBBB(a \/ b)));COMMENT  );  bitwise(BIN 255, BIN 170, 5)# or using alternate representations for 255 and 170 in BITS #CO  bitwise(2r11111111,2r10101010,5);  bitwise(4r3333,4r2222,5);  bitwise(8r377,8r252,5);  bitwise(16rff,16raa,5)END COEND
Output:

This is fromALGOL 68 Genie version 3 running on Windows, on other platforms (or with other compilers/interpreters) the number of bits in the various BITS modes and hence the values shown may differ .

         bits shorths:                   +1 1 plus the number of extra SHORT BITS types         bits lengths:                   +2 1 plus the number of extra LONG BITS types             max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT        long max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT   long long max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT           bits width:                  +64 The number of CHAR required to display BITS      long bits width:                 +128 The number of CHAR required to display LONG BITS long long bits width:                 +128 The number of CHAR required to display LONG LONG BITS         bytes shorths:                   +1 1 plus the number of extra SHORT BYTES types         bytes lengths:                   +2 1 plus the number of extra LONG BYTES types          bytes width:                  +32 The number of CHAR required to display BYTES     long bytes width:                 +256 The number of CHAR required to display LONG BYTES a:       2r0000000000000000000000000000000000000000000000000000000011111111 4r00000000000000000000000000003333          8r0000000000000000000377 16r00000000000000ff          FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTT b:       2r0000000000000000000000000000000000000000000000000000000010101010 4r00000000000000000000000000002222          8r0000000000000000000252 16r00000000000000aa          FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF a AND b: 2r0000000000000000000000000000000000000000000000000000000010101010 4r00000000000000000000000000002222          8r0000000000000000000252 16r00000000000000aa          FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF a OR b:  2r0000000000000000000000000000000000000000000000000000000011111111 4r00000000000000000000000000003333          8r0000000000000000000377 16r00000000000000ff          FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTT a XOR b: 2r0000000000000000000000000000000000000000000000000000000001010101 4r00000000000000000000000000001111          8r0000000000000000000125 16r0000000000000055          FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTFTFTFT NOT b:   2r1111111111111111111111111111111111111111111111111111111100000000 4r33333333333333333333333333330000          8r1777777777777777777400 16rffffffffffffff00          TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTFFFFFFFF a SHL 5: 2r0000000000000000000000000000000000000000000000000001111111100000 4r00000000000000000000000001333200          8r0000000000000000017740 16r0000000000001fe0          FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTTFFFFF a SHR 5: 2r0000000000000000000000000000000000000000000000000000000000000111 4r00000000000000000000000000000013          8r0000000000000000000007 16r0000000000000007          FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTT a SLC 5: 2r0000000000000000000000000000000000000000000000000001111111100000 4r00000000000000000000000001333200          8r0000000000000000017740 16r0000000000001fe0          FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTTFFFFF a SRC 5: 2r1111100000000000000000000000000000000000000000000000000000000111 4r33200000000000000000000000000013          8r1740000000000000000007 16rf800000000000007          TTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTT

Note that an INT can be widened into BITS, and BITS can be widened into an array of BOOL. eg:

# unpack (widen) some data back into an a BOOL array #INT i := 170;BITS j := BIN i;[bits width]BOOL k := j;printf(($g", 8r"8r4d", "8(g)l$, i, j, k[bits width-8+1:]));# now pack some data back into an INT #k[bits width-8+1:] := (FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE);j := bits pack(k);i := ABS j;printf(($g", 8r"8r4d", "8(g)l$, i, j, k[bits width-8+1:]))

Output:

                +170, 8r0252, TFTFTFTF                 +85, 8r0125, FTFTFTFT

ALGOL W

% performs bitwise and, or, not, left-shift and right shift on the integers n1 and n2 %% Algol W does not have xor, arithmetic right shift, left rotate or right rotate      %procedure bitOperations ( integer value n1, n2 ) ;begin    bits b1, b2;    % the Algol W bitwse operations operate on bits values, so we first convert the   %    % integers to bits values using the builtin bitstring procedure                   %    % the results are converted back to integers using the builtin number procedure   %    % all Algol W bits and integers are 32 bits quantities                            %    b1 := bitstring( n1 );    b2 := bitstring( n2 );    % perform the operaations and display the results as integers                     %    write( n1, " and ", n2, " = ", number( b1 and b2 ) );    write( n1, " or  ", n2, " = ", number( b1 or  b2 ) );    write( "                "         ,     " not ", n1, " = ", number(    not b1 ) );    write( n1, " shl ", n2, " = ", number( b1 shl n2 ), " (  left-shift )"  );    write( n1, " shr ", n2, " = ", number( b1 shr n2 ), " ( right-shift )"  )end bitOPerations ;

AppleScript

Applescript has no bitwise operators. It's probably not the right tool to reach for if you need to work with bits.

If we really do need to use Applescript for bitwise operations, two immediate possibilities come to mind:

  • We can use JavaScript operators through an ObjC bridge to JavaScript for Automation, or
  • we can write our own functions – converting between 32-bit signed integers and corresponding lists of booleans, and performing the bitwise operations on the boolean lists before converting back to integers.


First option – 'dialling out to JavaScript for Automation':

This is feasible, (see below) subject to the limitations that:

  • Javascript lacks bit rotation operators, and
  • in the case of the JS left shift operator(<<) the right operand needs to be masked with0x1F (31), which is its maximum effective value.


useAppleScriptversion"2.4"useframework"Foundation"usescriptingadditions-- BIT OPERATIONS FOR APPLESCRIPT (VIA JAVASCRIPT FOR AUTOMATION)-- bitAND :: Int -> Int -> IntonbitAND(x,y)jsOp2("&",x,y)endbitAND-- bitOR :: Int -> Int -> IntonbitOR(x,y)jsOp2("|",x,y)endbitOR-- bitXOr :: Int -> Int -> IntonbitXOR(x,y)jsOp2("^",x,y)endbitXOR-- bitNOT :: Int -> IntonbitNOT(x)jsOp1("~",x)endbitNOT-- (<<) :: Int -> Int -> Inton|<<|(x,y)if31<ythen0elsejsOp2("<<",x,y)endifend|<<|-- Logical right shift-- (>>>) :: Int -> Int -> Inton|>>>|(x,y)jsOp2(">>>",x,y)end|>>>|-- Arithmetic right shift-- (>>) :: Int -> Int -> Inton|>>|(x,y)jsOp2(">>",x,y)end|>>|-- TEST ----------------------------------------------------------onrun-- Using an ObjC interface to Javascript for AutomationsetstrCliptobitWise(255,170)set the clipboard tostrClipstrClipendrun-- bitWise :: Int -> Int -> StringonbitWise(a,b)setlabelsto{"a AND b","a OR b","a XOR b","NOT a",¬"a << b","a >>> b","a >> b"}setxsto{bitAND(a,b),bitOR(a,b),bitXOR(a,b),bitNOT(a),¬|<<|(a,b),|>>>|(a,b),|>>|(a,b)}scriptasBinpropertyarrow:" -> "on|λ|(x,y)justifyRight(8,space,x)&arrow&¬justifyRight(14,space,yastext)&arrow&showBinary(y)end|λ|endscriptunlines({"32 bit signed integers   (in two's complement binary encoding)","",¬unlines(zipWith(asBin,¬{"a = "&aastext,"b = "&bastext},{a,b})),"",¬unlines(zipWith(asBin,labels,xs))})endbitWise-- CONVERSIONS AND DISPLAY-- bitsFromInt :: Int -> Either String [Bool]onbitsFromIntLR(x)scriptgoon|λ|(n,d,bools)setxsto{0d}&boolsifn>0then|λ|(ndiv2,nmod2,xs)elsexsendifend|λ|endscriptsetatoabs(x)if(2.147483647E+9)<athen|Left|("Integer overflow – maximum is (2 ^ 31) - 1")elsesetbstogo's|λ|(adiv2,amod2,{})if0>xthen|Right|(replicate(32-(lengthofbs),true)&¬binSucc(map(my|not|,bs)))elsesetbstogo's|λ|(adiv2,amod2,{})|Right|(replicate(32-(lengthofbs),false)&bs)endifendifendbitsFromIntLR-- Successor function (+1) for unsigned binary integer-- binSucc :: [Bool] -> [Bool]onbinSucc(bs)scriptsuccon|λ|(a,x)ifathenifxthenTuple(a,false)elseTuple(x,true)endifelseTuple(a,x)endifend|λ|endscriptsettpltomapAccumR(succ,true,bs)if|1|oftplthen{true}&|2|oftplelse|2|oftplendifendbinSucc-- showBinary :: Int -> StringonshowBinary(x)scriptshowBinon|λ|(xs)scriptbCharon|λ|(b)ifbthen"1"else"0"endifend|λ|endscriptmap(bChar,xs)end|λ|endscriptbindLR(mybitsFromIntLR(x),showBin)endshowBinary-- JXA --------------------------------------------------------------------jsOp2 :: String -> a -> b -> conjsOp2(strOp,a,b)bindLR(evalJSLR(unwords({aastext,strOp,bastext})),my|id|)asintegerendjsOp2--jsOp2 :: String -> a -> bonjsOp1(strOp,a)bindLR(evalJSLR(unwords({strOp,aastext})),my|id|)asintegerendjsOp1-- evalJSLR :: String -> Either String aonevalJSLR(strJS)try-- NB if gJSC is global it must be released-- (e.g. set to null) at end of scriptgJSC'sevaluateScriptonerrorsetgJSCtocurrent application'sJSContext'snew()log("new JSC")endtrysetvtounwrap((gJSC'sevaluateScript:(strJS))'stoObject())ifvismissing valuethen|Left|("JS evaluation error")else|Right|(v)endifendevalJSLR-- GENERIC FUNCTIONS ---------------------------------------------------- Left :: a -> Either a bon|Left|(x){type:"Either",|Left|:x,|Right|:missing value}end|Left|-- Right :: b -> Either a bon|Right|(x){type:"Either",|Left|:missing value,|Right|:x}end|Right|-- Tuple (,) :: a -> b -> (a, b)onTuple(a,b){type:"Tuple",|1|:a,|2|:b,length:2}endTuple-- Absolute value.-- abs :: Num -> Numonabs(x)if0>xthen-xelsexendifendabs-- bindLR (>>=) :: Either a -> (a -> Either b) -> Either bonbindLR(m,mf)ifmissing valueis not|Right|ofmthenmReturn(mf)'s|λ|(|Right|ofm)elsemendifendbindLR-- foldr :: (a -> b -> b) -> b -> [a] -> bonfoldr(f,startValue,xs)tellmReturn(f)setvtostartValuesetlngtolengthofxsrepeatwithifromlngto1by-1setvto|λ|(itemiofxs,v,i,xs)endrepeatreturnvendtellendfoldr-- id :: a -> aon|id|(x)xend|id|-- justifyRight :: Int -> Char -> String -> StringonjustifyRight(n,cFiller,strText)ifn>lengthofstrTextthentext-nthru-1of((replicate(n,cFiller)astext)&strText)elsestrTextendifendjustifyRight-- map :: (a -> b) -> [a] -> [b]onmap(f,xs)tellmReturn(f)setlngtolengthofxssetlstto{}repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,i,xs)endrepeatreturnlstendtellendmap-- 'The mapAccumR function behaves like a combination of map and foldr;--  it applies a function to each element of a list, passing an accumulating--  parameter from |Right| to |Left|, and returning a final value of this--  accumulator together with the new list.' (see Hoogle)-- mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])onmapAccumR(f,acc,xs)scripton|λ|(x,a,i)tellmReturn(f)tosetpairto|λ|(|1|ofa,x,i)Tuple(|1|ofpair,(|2|ofpair)&|2|ofa)end|λ|endscriptfoldr(result,Tuple(acc,[]),xs)endmapAccumR-- min :: Ord a => a -> a -> aonmin(x,y)ify<xthenyelsexendifendmin-- Lift 2nd class handler function into 1st class script wrapper-- mReturn :: First-class m => (a -> b) -> m (a -> b)onmReturn(f)ifclassoffisscriptthenfelsescriptproperty|λ|:fendscriptendifendmReturn-- not :: Bool -> Boolon|not|(p)notpend|not|-- Egyptian multiplication - progressively doubling a list, appending-- stages of doubling to an accumulator where needed for binary-- assembly of a target length-- replicate :: Int -> a -> [a]onreplicate(n,a)setoutto{}ifn<1thenreturnoutsetdblto{a}repeatwhile(n>1)if(nmod2)>0thensetouttoout&dblsetnto(ndiv2)setdblto(dbl&dbl)endrepeatreturnout&dblendreplicate-- unlines :: [String] -> Stringonunlines(xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,linefeed}setstrtoxsastextsetmytext item delimiterstodlmstrendunlines-- unwords :: [String] -> Stringonunwords(xs)set{dlm,mytext item delimiters}to{mytext item delimiters,space}setstoxsastextsetmytext item delimiterstodlmreturnsendunwords-- unwrap :: NSObject -> aonunwrap(objCValue)ifobjCValueismissing valuethenmissing valueelsesetcatocurrent applicationitem1of((ca'sNSArray'sarrayWithObject:objCValue)aslist)endifendunwrap-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]onzipWith(f,xs,ys)setlngtomin(lengthofxs,lengthofys)if1>lngthenreturn{}setlstto{}tellmReturn(f)repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,itemiofys)endrepeatreturnlstendtellendzipWith
Output:
32 bit signed integers   (in two's complement binary encoding) a = 255 ->            255 -> 00000000000000000000000011111111 b = 170 ->            170 -> 00000000000000000000000010101010 a AND b ->            170 -> 00000000000000000000000010101010  a OR b ->            255 -> 00000000000000000000000011111111 a XOR b ->             85 -> 00000000000000000000000001010101   NOT a ->           -256 -> 11111111111111111111111100000000  a << b ->              0 -> 00000000000000000000000000000000 a >>> b ->              0 -> 00000000000000000000000000000000  a >> b ->              0 -> 00000000000000000000000000000000


Second option – writing our own bitwise functions for Applescript:

useAppleScriptversion"2.4"useframework"Foundation"usescriptingadditions-- BITWISE OPERATIONS FOR APPLESCRIPT ----------------------------------------- bitAND :: Int -> Int -> IntonbitAND(x,y)bitOp2(my|and|,x,y)endbitAND-- bitOR :: Int -> Int -> IntonbitOR(x,y)bitOp2(my|or|,x,y)endbitOR-- bitXOr :: Int -> Int -> IntonbitXOR(x,y)bitOp2(myxor,x,y)endbitXOR-- bitNOT :: Int -> IntonbitNOT(x)scriptnotBitson|λ|(xs)bindLR(intFromBitsLR(map(my|not|,xs)),my|id|)end|λ|endscriptbindLR(bitsFromIntLR(x),notBits)endbitNOT-- (<<) :: Int -> Int -> Inton|<<|(a,b)scriptlogicLshifton|λ|(bs)bindLR(intFromBitsLR(take(32,drop(b,bs)&replicate(b,false))),my|id|)end|λ|endscriptbindLR(bitsFromIntLR(a),logicLshift)end|<<|-- Logical right shift-- (>>>) :: Int -> Int -> Inton|>>>|(a,b)scriptlogicRShifton|λ|(bs)bindLR(intFromBitsLR(take(32,replicate(b,false)&drop(b,bs))),my|id|)end|λ|endscriptbindLR(bitsFromIntLR(a),logicRShift)end|>>>|-- Arithmetic right shift-- (>>) :: Int -> Int -> Inton|>>|(a,b)scriptarithRShifton|λ|(bs)if0<lengthofbsthensetsigntoitem1ofbselsesetsigntofalseendifbindLR(intFromBitsLR(take(32,replicate(b,sign)&drop(b,bs))),my|id|)end|λ|endscriptbindLR(bitsFromIntLR(a),arithRShift)end|>>|-- bitRotL :: Int -> Int -> IntonbitRotL(a,b)scriptlRoton|λ|(bs)bindLR(intFromBitsLR(rotate(-b,bs)),my|id|)end|λ|endscriptbindLR(bitsFromIntLR(a),lRot)endbitRotL-- bitRotR :: Int -> Int -> IntonbitRotR(a,b)scriptrRoton|λ|(bs)bindLR(intFromBitsLR(rotate(b,bs)),my|id|)end|λ|endscriptbindLR(bitsFromIntLR(a),rRot)endbitRotR-- TEST ----------------------------------------------------------------- bitWise :: Int -> Int -> StringonbitWise(a,b)setlabelsto{"a AND b","a OR b","a XOR b","NOT a",¬"a << b","a >>> b","a >> b","ROTL a b","ROTR a b"}setxsto{bitAND(a,b),bitOR(a,b),bitXOR(a,b),bitNOT(a),¬|<<|(a,b),|>>>|(a,b),|>>|(a,b),bitRotL(a,b),bitRotR(a,b)}scriptasBinpropertyarrow:" -> "on|λ|(x,y)justifyRight(8,space,x)&arrow&¬justifyRight(14,space,yastext)&arrow&showBinary(y)end|λ|endscriptunlines({"32 bit signed integers   (in two's complement binary encoding)","",¬unlines(zipWith(asBin,¬{"a = "&aastext,"b = "&bastext},{a,b})),"",¬unlines(zipWith(asBin,labels,xs))})endbitWiseonrun-- Assuming 32 bit signed integers (in two's complement binary encoding)setstrCliptobitWise(255,170)set the clipboard tostrClipstrClipendrun-- BINARY INTEGER CONVERSIONS AND DISPLAY  -------------------------------------------------------------------- bitsFromInt :: Int -> Either String [Bool]onbitsFromIntLR(x)scriptgoon|λ|(n,d,bools)setxsto{0d}&boolsifn>0then|λ|(ndiv2,nmod2,xs)elsexsendifend|λ|endscriptsetatoabs(x)if(2.147483647E+9)<athen|Left|("Integer overflow – maximum is (2 ^ 31) - 1")elsesetbstogo's|λ|(adiv2,amod2,{})if0>xthen|Right|(replicate(32-(lengthofbs),true)&¬binSucc(map(my|not|,bs)))elsesetbstogo's|λ|(adiv2,amod2,{})|Right|(replicate(32-(lengthofbs),false)&bs)endifendifendbitsFromIntLR-- intFromBitsLR :: [Bool] -> Either String IntonintFromBitsLR(xs)scriptbitSumon|λ|(x,a,i)ifxthena+(2^(31-i))elseaendifend|λ|endscriptsetlngBitstolengthofxsif32<lngBitsthen|Left|("Applescript limited to signed 32 bit integers")elseif1>lngBitsthen|Right|(0asinteger)elsesetbitsto(restofxs)ifitem1ofxsthen|Right|(0-foldr(bitSum,1,map(my|not|,bits))asinteger)else|Right|(foldr(bitSum,0,bits)asinteger)endifendifendintFromBitsLR-- showBinary :: Int -> StringonshowBinary(x)scriptshowBinon|λ|(xs)scriptbCharon|λ|(b)ifbthen"1"else"0"endifend|λ|endscriptmap(bChar,xs)end|λ|endscriptbindLR(mybitsFromIntLR(x),showBin)endshowBinary-- bitOp2 :: ((Bool -> Bool -> Bool) -> Int -> Int -> IntonbitOp2(f,x,y)scriptyBitson|λ|(bitX)scriptzipOpon|λ|(bitY)bitZipWithLR(f,bitX,bitY)end|λ|endscriptbindLR(bindLR(bindLR(bitsFromIntLR(y),¬zipOp),myintFromBitsLR),my|id|)end|λ|endscriptbindLR(bitsFromIntLR(x),yBits)endbitOp2-- bitZipWithLR ::  ((a, b) -> c ) -> [Bool] -> [Bool] -> Either String  [(Bool, Bool)]onbitZipWithLR(f,xs,ys)setintXtolengthofxssetintYtolengthofyssetintMaxtomax(intX,intY)if33>intMaxthenifintX>intYthenset{bxs,bys}to{xs,ys&replicate(intX-intY,false)}elseset{bxs,bys}to{xs&replicate(intY-intX,false),ys}endiftellmReturn(f)setlstto{}repeatwithifrom1tointMaxsetendoflstto|λ|(itemiofbxs,itemiofbys)endrepeatreturn|Right|(lst)endtellelse|Left|("Above maximum of 32 bits")endifendbitZipWithLR-- Successor function (+1) for unsigned binary integer-- binSucc :: [Bool] -> [Bool]onbinSucc(bs)scriptsuccon|λ|(a,x)ifathenifxthenTuple(a,false)elseTuple(x,true)endifelseTuple(a,x)endifend|λ|endscriptsettpltomapAccumR(succ,true,bs)if|1|oftplthen{true}&|2|oftplelse|2|oftplendifendbinSucc-- BOOLEANS  ------------------------------------------------------ |or| :: Bool -> Bool -> Boolon|or|(x,y)xoryend|or|-- |and| :: Bool -> Bool -> Boolon|and|(x,y)xandyend|and|-- xor :: Bool -> Bool -> Boolonxor(x,y)(xory)andnot(xandy)endxor-- not :: Bool -> Boolon|not|(p)notpend|not|-- GENERAL ------------------------------------------------------ Right :: b -> Either a bon|Right|(x){type:"Either",|Left|:missing value,|Right|:x}end|Right|-- Left :: a -> Either a bon|Left|(x){type:"Either",|Left|:x,|Right|:missing value}end|Left|-- Tuple (,) :: a -> b -> (a, b)onTuple(a,b){type:"Tuple",|1|:a,|2|:b,length:2}endTuple-- Absolute value.-- abs :: Num -> Numonabs(x)if0>xthen-xelsexendifendabs-- bindLR (>>=) :: Either a -> (a -> Either b) -> Either bonbindLR(m,mf)ifmissing valueis not|Right|ofmthenmReturn(mf)'s|λ|(|Right|ofm)elsemendifendbindLR-- drop :: Int -> [a] -> [a]-- drop :: Int -> String -> Stringondrop(n,xs)ifclassofxsis notstringthenifn<lengthofxsthenitems(1+n)thru-1ofxselse{}endifelseifn<lengthofxsthentext(1+n)thru-1ofxselse""endifendifenddrop-- foldr :: (a -> b -> b) -> b -> [a] -> bonfoldr(f,startValue,xs)tellmReturn(f)setvtostartValuesetlngtolengthofxsrepeatwithifromlngto1by-1setvto|λ|(itemiofxs,v,i,xs)endrepeatreturnvendtellendfoldr-- id :: a -> aon|id|(x)xend|id|-- justifyRight :: Int -> Char -> String -> StringonjustifyRight(n,cFiller,strText)ifn>lengthofstrTextthentext-nthru-1of((replicate(n,cFiller)astext)&strText)elsestrTextendifendjustifyRight-- map :: (a -> b) -> [a] -> [b]onmap(f,xs)tellmReturn(f)setlngtolengthofxssetlstto{}repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,i,xs)endrepeatreturnlstendtellendmap-- 'The mapAccumR function behaves like a combination of map and foldr;--  it applies a function to each element of a list, passing an accumulating--  parameter from |Right| to |Left|, and returning a final value of this--  accumulator together with the new list.' (see Hoogle)-- mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])onmapAccumR(f,acc,xs)scripton|λ|(x,a,i)tellmReturn(f)tosetpairto|λ|(|1|ofa,x,i)Tuple(|1|ofpair,(|2|ofpair)&|2|ofa)end|λ|endscriptfoldr(result,Tuple(acc,[]),xs)endmapAccumR-- max :: Ord a => a -> a -> aonmax(x,y)ifx>ythenxelseyendifendmax-- min :: Ord a => a -> a -> aonmin(x,y)ify<xthenyelsexendifendmin-- Lift 2nd class handler function into 1st class script wrapper-- mReturn :: First-class m => (a -> b) -> m (a -> b)onmReturn(f)ifclassoffisscriptthenfelsescriptproperty|λ|:fendscriptendifendmReturn-- Egyptian multiplication - progressively doubling a list, appending-- stages of doubling to an accumulator where needed for binary-- assembly of a target length-- replicate :: Int -> a -> [a]onreplicate(n,a)setoutto{}ifn<1thenreturnoutsetdblto{a}repeatwhile(n>1)if(nmod2)>0thensetouttoout&dblsetnto(ndiv2)setdblto(dbl&dbl)endrepeatreturnout&dblendreplicate-- rotate :: Int -> [a] -> [a]onrotate(n,xs)setlngtolengthofxsif0>nthensetdto(-n)modlngelsesetdtolng-(nmodlng)endifdrop(d,xs)&take(d,xs)endrotate-- take :: Int -> [a] -> [a]-- take :: Int -> String -> Stringontake(n,xs)ifclassofxsisstringthenif0<nthentext1thrumin(n,lengthofxs)ofxselse""endifelseif0<nthenitems1thrumin(n,lengthofxs)ofxselse{}endifendifendtake-- unlines :: [String] -> Stringonunlines(xs)set{dlm,mytext item delimiters}to¬{mytext item delimiters,linefeed}setstrtoxsastextsetmytext item delimiterstodlmstrendunlines-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]onzipWith(f,xs,ys)setlngtomin(lengthofxs,lengthofys)if1>lngthenreturn{}setlstto{}tellmReturn(f)repeatwithifrom1tolngsetendoflstto|λ|(itemiofxs,itemiofys)endrepeatreturnlstendtellendzipWith
Output:
32 bit signed integers   (in two's complement binary encoding) a = 255 ->            255 -> 00000000000000000000000011111111 b = 170 ->            170 -> 00000000000000000000000010101010 a AND b ->            170 -> 00000000000000000000000010101010  a OR b ->            255 -> 00000000000000000000000011111111 a XOR b ->             85 -> 00000000000000000000000001010101   NOT a ->           -256 -> 11111111111111111111111100000000  a << b ->              0 -> 00000000000000000000000000000000 a >>> b ->              0 -> 00000000000000000000000000000000  a >> b ->              0 -> 00000000000000000000000000000000ROTL a b ->         261120 -> 00000000000000111111110000000000ROTR a b ->  1.06954752E+9 -> 00111111110000000000000000000000

Athird option is the mathematical one, although it still involves looping through the hypothetical bits where two numbers are involved, unless I've missed a trick. The handlers below all assume positive number inputs (except forarithmeticRightShift()) and attempt to return results of class integer. The "hi bits" of numbers which don't fit the specified register sizes are discarded.

onbitwiseAND(n1,n2,registerSize)setoutto0-- Multiplying equivalent bit values by each other gives 1 where they're both 1 and 0 otherwise.repeatwithifrom0toregisterSize-1tell(2^i)tosetouttoout+(n1divit)*(n2divit)mod2*itendrepeatreturnoutdiv1endbitwiseANDonbitwiseOR(n1,n2,registerSize)setoutto0-- Adding bit values plus a further 1 gives a carry of 1 if either or both values are 1, but not if they're both 0.repeatwithifrom0toregisterSize-1tell(2^i)tosetouttoout+(n1divitmod2+n2divitmod2+1)div2*itendrepeatreturnoutdiv1endbitwiseORonbitwiseXOR(n1,n2,registerSize)setoutto0-- Adding bit values gives 1 if they're different and 0 (with or without a carry) if they're both the same.repeatwithifrom0toregisterSize-1tell(2^i)tosetouttoout+(n1divit+n2divit)mod2*itendrepeatreturnoutdiv1endbitwiseXORonbitwiseNOT(n,registerSize)-- Subtract n from an all-1s value (ie. from 1 less than 2 ^ registerSize).tell(2^registerSize)toreturn(it-1-nmodit)div1endbitwiseNOTonleftShift(n,shift,registerSize)-- Multiply by 2 ^ shift and lose any bits beyond the left of the register.returnn*(2^shift)mod(2^registerSize)div1endleftShiftonrightShift(n,shift,registerSize)-- Divide by 2 ^ shift and lose any bits beyond the right of the register.returnnmod(2^registerSize)div(2^shift)endrightShiftonarithmeticRightShift(n,shift,registerSize)setntonmod(2^registerSize)-- If the number's positive and notionally sets the sign bit, reinterpret it as a negative.tell(2^(registerSize-1))toif(nit)thensetntonmodit-it-- Right shift by the appropriate amountsetouttondiv(2^shift)-- If the result for a negative is 0, change it to -1.if((n<0)and(outis0))thensetoutto-1returnoutendarithmeticRightShiftonleftRotate(n,shift,registerSize)-- Cut the register at the appropriate point, left shift the right side and right shift the left by the appropriate amounts.setshifttoshiftmod(registerSize)returnleftShift(n,shift,registerSize)+rightShift(n,registerSize-shift,registerSize)endleftRotateonrightRotate(n,shift,registerSize)-- As left rotate, but applying the shift amounts to the opposite sides.setshifttoshiftmodregisterSizereturnrightShift(n,shift,registerSize)+leftShift(n,registerSize-shift,registerSize)endrightRotatebitwiseAND(92,7,16)--> 4bitwiseOR(92,7,16)--> 95bitwiseXOR(92,7,16)--> 91bitwiseNOT(92,16)--> 64453bitwiseNOT(92,8)--> 163bitwiseNOT(92,32)--> 4.294967203E+9leftShift(92,7,16)--> 11776leftShift(92,7,8)--> 0rightShift(92,7,16)--> 0arithmeticRightShift(92,7,16)--> 0arithmeticRightShift(-92,7,16)--> -1leftRotate(92,7,8)--> 46rightRotate(92,7,8)--> 184rightRotate(92,7,16)--> 47104

ARM Assembly

Works with:as version Raspberry Pi
/* ARM assembly Raspberry PI  *//*  program binarydigit.s   *//* Constantes    */.equ STDOUT, 1.equ WRITE,  4.equ EXIT,   1/* Initialized data */.dataszMessResultAnd: .asciz "Result of And : \n"szMessResultOr: .asciz "Result of Or : \n"szMessResultEor: .asciz "Result of Exclusif Or : \n"szMessResultNot: .asciz "Result of Not : \n"szMessResultLsl: .asciz "Result of left shift : \n"szMessResultLsr: .asciz "Result of right shift : \n"szMessResultAsr: .asciz "Result of Arithmetic right shift : \n"szMessResultRor: .asciz "Result of rotate right : \n"szMessResultRrx: .asciz "Result of rotate right with extend : \n"szMessResultClear: .asciz "Result of Bit Clear : \n"sMessAffBin: .ascii "Register value : "sZoneBin: .space 36,' '              .asciz "\n"/*  code section */.text.global main main:                /* entry of program  */    push {fp,lr}    /* save des  2 registres */    ldr r0,iAdrszMessResultAnd    bl affichageMess    mov r0,#5    and r0,#15    bl affichage2    ldr r0,iAdrszMessResultOr    bl affichageMess    mov r0,#5    orr r0,#15    bl affichage2    ldr r0,iAdrszMessResultEor    bl affichageMess    mov r0,#5    eor r0,#15    bl affichage2    ldr r0,iAdrszMessResultNot    bl affichageMess    mov r0,#5    mvn r0,r0    bl affichage2    ldr r0,iAdrszMessResultLsl    bl affichageMess    mov r0,#5    lsl r0,#1    bl affichage2    ldr r0,iAdrszMessResultLsr    bl affichageMess    mov r0,#5    lsr r0,#1    bl affichage2    ldr r0,iAdrszMessResultAsr    bl affichageMess    mov r0,#-5    bl affichage2    mov r0,#-5    asr r0,#1    bl affichage2    ldr r0,iAdrszMessResultRor    bl affichageMess    mov r0,#5    ror r0,#1    bl affichage2    ldr r0,iAdrszMessResultRrx    bl affichageMess    mov r0,#5    mov r1,#15    rrx r0,r1    bl affichage2ldr r0,iAdrszMessResultClear    bl affichageMessmov r0,#5    bic r0,#0b100     @  clear 3ieme bit    bl affichage2bic r0,#4          @  clear 3ieme bit  ( 4 = 100 binary)    bl affichage2100:   /* standard end of the program */    mov r0, #0                  @ return code    pop {fp,lr}                 @restaur 2 registers    mov r7, #EXIT              @ request to exit program    swi 0                       @ perform the system calliAdrszMessResultAnd:  .int szMessResultAndiAdrszMessResultOr:  .int szMessResultOriAdrszMessResultEor:  .int szMessResultEoriAdrszMessResultNot:  .int szMessResultNotiAdrszMessResultLsl:  .int szMessResultLsliAdrszMessResultLsr:  .int szMessResultLsriAdrszMessResultAsr:  .int szMessResultAsriAdrszMessResultRor:  .int szMessResultRoriAdrszMessResultRrx:  .int szMessResultRrxiAdrszMessResultClear:  .int szMessResultClear/******************************************************************//*     register display in binary                              */ /******************************************************************//* r0 contains the register */affichage2:    push {r0,lr}     /* save  registers */      push {r1-r5} /* save others registers */    mrs r5,cpsr  /* saves state register in r5 */    ldr r1,iAdrsZoneBin    mov r2,#0    @ read bit position counter    mov r3,#0    @ position counter of the written character1:               @ loop     lsls r0,#1    @ left shift  with flags    movcc r4,#48  @ flag carry off   character '0'    movcs r4,#49  @ flag carry on    character '1'    strb r4,[r1,r3]   @ character ->   display zone    add r2,r2,#1      @ + 1 read bit position counter    add r3,r3,#1      @ + 1 position counter of the written character    cmp r2,#8         @ 8 bits read    addeq r3,r3,#1   @ + 1 position counter of the written character    cmp r2,#16         @ etc    addeq r3,r3,#1    cmp r2,#24    addeq r3,r3,#1    cmp r2,#31        @ 32 bits shifted ?    ble 1b           @  no -> loop    ldr r0,iAdrsZoneMessBin   @ address of message result    bl affichageMess           @ display result    100:    msr cpsr,r5    /*restaur state register */    pop {r1-r5}  /* restaur others registers */    pop {r0,lr}    bx lriAdrsZoneBin: .int sZoneBin   iAdrsZoneMessBin: .int sMessAffBin/******************************************************************//*     display text with size calculation                         */ /******************************************************************//* r0 contains the address of the message */affichageMess:    push {fp,lr}    /* save  registres */     push {r0,r1,r2,r7}    /* save others registres */    mov r2,#0   /* counter length */1:      /* loop length calculation */    ldrb r1,[r0,r2]  /* read octet start position + index */    cmp r1,#0       /* if 0 its over */    addne r2,r2,#1   /* else add 1 in the length */    bne 1b          /* and loop */                                /* so here r2 contains the length of the message */    mov r1,r0        /* address message in r1 */    mov r0,#STDOUT      /* code to write to the standard output Linux */    mov r7, #WRITE             /* code call system write */    swi #0                      /* call systeme */    pop {r0,r1,r2,r7}     /* restaur others registres */    pop {fp,lr}    /* restaur des  2 registres */     bx lr        /* return  */

Arturo

a:255b:2print[a"AND"b"="andab]print[a"OR"b"="orab]print[a"XOR"b"="xorab]print["NOT"a"="nota]print[a"SHL"b"="shlab]print[a"SHR"b"="shrab]
Output:
255 AND 2 = 2 255 OR 2 = 255 255 XOR 2 = 253 NOT 255 = -256 255 SHL 2 = 1020 255 SHR 2 = 63

AutoHotkey

bitwise(3,4)bitwise(a,b){MsgBox%"a and b: ".a&bMsgBox%"a or b: ".a|bMsgBox%"a xor b: ".a^bMsgBox%"not a: ".~a       ; treated as unsigned integerMsgBox%"a << b: ".a<<b  ; left shiftMsgBox%"a >> b: ".a>>b  ; arithmetic right shift}

AutoIt

No arithmetic shift.

bitwise(255,5)Funcbitwise($a,$b)MsgBox(1,'',_$a&" AND "&$b&": "&BitAND($a,$b)&@CRLF&_$a&" OR "&$b&": "&BitOR($a,$b)&@CRLF&_$a&" XOR "&$b&": "&BitXOR($a,$b)&@CRLF&_"NOT "&$a&": "&BitNOT($a)&@CRLF&_$a&" SHL "&$b&": "&BitShift($a,$b*-1)&@CRLF&_$a&" SHR "&$b&": "&BitShift($a,$b)&@CRLF&_$a&" ROL "&$b&": "&BitRotate($a,$b)&@CRLF&_$a&" ROR "&$b&": "&BitRotate($a,$b*-1)&@CRLF)EndFunc
Output:
255 AND 5: 5255 OR 5: 255255 XOR 5: 250NOT 255: -256255 SHL 5: 8160255 SHR 5: 7255 ROL 5: 8160255 ROR 5: 63495

AWK

Standard awk does not have bitwise operators. Gawk has built-in functions for many bitwise operations. No rotation of bits.

Works with:gawk
BEGIN{n=11p=1printn" or  "p" = "or(n,p)printn" and "p" = "and(n,p)printn" xor "p" = "xor(n,p)printn" <<  "p" = "lshift(n,p)# left shiftprintn" >>  "p" = "rshift(n,p)# right shiftprintf"not %d = 0x%x\n",n,compl(n)# bitwise complement}

OpenBSD/usr/bin/awk (a variant ofnawk) has these same functions, with a few differences. Gawk uses 53-bit unsigned integers, but OpenBSD awk uses 32-bit signed integers. Therefore Gawk printsnot 11 = 0x1ffffffffffff4, but OpenBSD awk printsnot 11 = 0xfffffff4.

Axe

Lbl BITSr₁→Ar₂→BDisp "AND:",A·B▶Dec,iDisp "OR:",AᕀB▶Dec,iDisp "XOR:",A▫B▶Dec,iDisp "NOT:",not(A)ʳ▶Dec,i.No language support for shifts or rotationsReturn

Note that the symbols for AND, OR, and XOR are the stat plot marks near the bottom of the Catalog.

Babel

In Babel, we prefix the logic operators with a 'c' to denote that they are C-style operations, that is, they are word-width operations, not arbitrary size operations. The following program combines the numbers 5 and 9 using the various bitwise operators and then displays the results.

({5 9}) ({cand} {cor} {cnor} {cxor} {cxnor} {shl} {shr} {ashr} {rol}) cart ! {give <- cp -> compose !} over ! {eval} over ! {;} each
Output:
[val 0x1 ][val 0xd ][val 0xfffffff7 ][val 0xc ][val 0xfffffff3 ][val 0xa00 ][val 0x0 ][val 0x0 ][val 0xa00 ]

The cnot operator works on just one operand:

9 cnot ;
Output:
[val 0xfffffff6 ]

BASIC

Works with:QuickBasic version 4.5

QuickBasic does not have shift or rotate operations defined. Here are the logical operations:

SUBbitwise(a,b)PRINTaANDbPRINTaORbPRINTaXORbPRINTNOTaENDSUB
Works with:FreeBASIC

FreeBASIC does not have rotate operators. Shift Right operator performs arithmetic shift if the left value is signed number and logical shift if the left value is unsigned number.

SUBbitwise(aASInteger,bASInteger)DIMuASUIntegerPRINT"a AND b = ";aANDbPRINT"a OR b  = ";aORbPRINT"a XOR b = ";aXORbPRINT"NOT a   = ";NOTaPRINT"a SHL b = ";aSHLbPRINT"a SHR b (arithmetic) = ";aSHRbu=aPRINT"a SHR b (logical) = ";uSHRbENDSUB

Commodore BASIC

Commodore BASIC V2.0 does not haveXOR,left shift,right shift,right arithmetic shift,left rotate, andright rotate operators. In this implementation theXOR operation is done with an equivalent formula.

10INPUT"A=";A20INPUT"B=";B30PRINT"A AND B ="AANDB:remAND40PRINT"A OR B ="AORB:remOR50PRINT"A XOR B ="(AAND(NOTB))OR((NOTA)ANDB):remXOR60PRINT"NOT A ="NOTA:remNOT
Input:
A=? 2B=? 6
Output:
A AND B = 2A OR B = 6A XOR B = 4NOT A =-3

IS-BASIC

100 LET A=10:LET B=12110 PRINT A;"and";B;"=";A AND B120 PRINT A;"band";B;"=";A BAND B130 PRINT A;"or ";B;"=";A OR B140 PRINT A;"bor";B;"=";A BOR B150 PRINT A;"xor";B;"=";XOR(A,B)160 PRINT " not";A;"=";NOT A170 DEF XOR(A,B)=(A BOR B)-(A BAND B)

Sinclair ZX81 BASIC

ZX81 BASIC has no integer type (a major lacuna) and consequently no bitwise operations; but the CPU has them, so we can use a tiny machine code routine to do the actual work and then return to BASIC to print the answers.

This program is a proof of concept, really, and will only work with 8-bit values. In addition, with 1k of RAM there is only space for the first of the shifts/rotates; the others could be implemented along exactly the same lines.

The disassembly of the Z80 code would be:

           org   40843a 83 40   ld    a, (4083)47         ld    b, a3a 82 40   ld    a, (4082)a0         and   b00         nop            ; negate and shift instructions take 2 bytes06 00      ld    b, 04f         ld    c, a     ; value in BC reg pair is returned to BASICc9         ret

We then usePOKE statements to replace theand instruction with each successive operation we want to perform.

Note that the left shift instruction shifts by one bit at a time, so we need a loop. The present program has the loop written in BASIC, because it seemed sensible to use BASIC for anything we could use it for and only drop into machine code when there was no alternative; it would of course be faster to do the whole thing in machine code.

Finally, observe that the first line reserves 15 bytes for our machine code routine by hiding them in a comment.

10REMABCDEFGHIJKLMNO20INPUTA30INPUTB40POKE16514,A50POKE16515,B60LETADDR=1651670LETR$="3A8340473A8240A00006004FC9"80POKEADDR,CODER$*16+CODER$(2)-47690LETR$=R$(3TO)100LETADDR=ADDR+1110IFR$<>""THENGOTO80120PRINTA;" AND ";B;" = ";USR16516130POKE16523,176140PRINTA;" OR ";B;" = ";USR16516150POKE16523,168160PRINTA;" XOR ";B;" = ";USR16516170POKE16523,237180POKE16524,68190PRINT"NOT ";A;" = ";USR16516200POKE16523,203210POKE16524,39220FORI=1TOB230POKE16514,USR16516240NEXTI250PRINTA;" << ";B;" = ";PEEK16514
Input:
213
Output:
21 AND 3 = 121 OR 3 = 2321 XOR 3 = 22NOT 21 = 23521 << 3 = 168

Tiny BASIC

Tiny BASIC has only one data type- the signed 16-bit integer- and no bitwise operations. This code emulates bitwise operations on unsigned 15-bit integers. Since the logic gates AND, NOR, and NXOR are characterised by having exactly two, exactly zero, and exactly one on bit in their inputs, their code is identical except for having a different number of target on bits (line 500 onward). The OR and XOR gates are just NOT NOR and NOT NXOR. The shift and rotate operations are simple divisions and mutiplications by 2, with care taken to avoid overflow, and a carry flag where applicable.

REM VARIABLESREM      A = first numberREM      B = second numberREM      C = resultREM      P = current bit positionREM      U = number of on bits at position P, or carry flag for rotate opsREM      Z = logic gate selection, then target number of on bits10  LET P = 16384    LET F = 0    PRINT "1.   A and B"    PRINT "2.   A  or B"    PRINT "3.   A xor B"    PRINT "4.   not A"    PRINT "5.   A shr B"    PRINT "6.   A shl B"    PRINT "7.   A ror B"    PRINT "8.   A rol B"    PRINT "Select a bitwise operation."    INPUT Z    IF Z < 1 THEN GOTO 10    IF Z > 8 THEN GOTO 1011  PRINT "What is A? "    INPUT A    IF A < 0 THEN GOTO 11    IF Z = 4 THEN GOTO 1512  PRINT "What is B?"    INPUT B    IF B < 0 THEN GOTO 1215  GOSUB 100 + 10*Z    PRINT "The result is ", C,"."    END110 LET Z = 2    GOSUB 500    RETURN120 LET Z = 0    GOSUB 500    LET A = C    GOSUB 140    RETURN130 LET Z = 1    GOSUB 500    LET A = C    GOSUB 140    RETURN140 LET C = 32767 - A    RETURN150 IF B = 0 THEN RETURN    LET A = A / 2    LET B = B - 1    GOTO 150160 IF B = 0 THEN RETURN    IF A > P THEN LET A = A - P    LET A = A * 2    LET B = B - 1    GOTO 160170 IF B = 0 THEN RETURN    LET U = 0    IF 2*(A/2) <> A THEN LET U = 1    LET A = A / 2 + U*P    LET B = B - 1    LET C = A    GOTO 170180 IF B = 0 THEN RETURN    LET U = 0    IF A >= P THEN LET U = 1    LET A = (A-F*P)*2 + U    LET B = B - 1    LET C = A    GOTO 180500 LET U = 0    IF B >= P THEN LET U = 1    IF A >= P THEN LET U = U + 1    IF U = Z THEN LET C = C + P    IF A >= P THEN LET A = A - P    IF B >= P THEN LET B = B - P    LET P = P / 2    IF P = 0 THEN RETURN    GOTO 500

uBasic/4tH

Translation of:11l

uBasic/4tH provides the most common bitwise operations as functions. It's not too difficult to provide the arithmetic left and right shift operations.

x = 10y = 2Print "x       = "; x Print "y       = "; y Print "NOT x   = "; NOT(x)Print "x AND y = "; AND(x, y)Print "x OR  y = "; OR(x, y)Print "x XOR y = "; XOR(x, y)Print "x SHL y = "; SHL(x, y)Print "x SHR y = "; SHL(x, -y) Print "x ROL y = "; FUNC(_rotl (x, y))Print "x ROR y = "; FUNC(_rotr (x, y))End_rotr Param (2) : Return (OR(SHL(a@, -b@), SHL(a@, Info("wordsize")-b@)))_rotl Param (2) : Return (OR(SHL(a@, b@), SHL(a@, -Info("wordsize")+b@)))
Output:
x       = 10y       = 2NOT x   = -11x AND y = 2x OR  y = 10x XOR y = 8x SHL y = 40x SHR y = 2x ROL y = 40x ROR y = -92233720368547758060 OK, 0:320

BASIC256

# bitwise operators - floating point numbers will be cast to integera = 0b00010001b = 0b11110000print aprint int(a * 2)  # shift left (multiply by 2)print a \ 2  # shift right (integer divide by 2)print a | b  # bitwise or on two integer valuesprint a & b  # bitwise or on two integer values

Batch File

The SET command with the /A option supports arithmetic and bit operations on signed 8 byte integers.

The SET /? documentation claims it supports logical shift operations, but in reality it performs an arithmetic right shift.

The following script (bitops.bat) not only demonstrates the basic bit operations, it also uses bit operations to convert each integral value into a string of 32 binary digits.

@echo offsetlocalset/a"a=%~1, b=%~2"call:num2bin%a% aStrcall:num2bin%b% bStr::ANDset/a"val=a&b"call:display"%a% AND%b%"%val%%aStr%%bStr%::ORset/a"val=a|b"call:display"%a% OR%b%"%val%%aStr%%bStr%::XORset/a"val=a^b"call:display"%a% XOR%b%"%val%%aStr%%bStr%::NOTset/a"val=~a"call:display"NOT%a%"%val%%aStr%::LEFT SHIFTset/a"val=a<<b"call:display"%a% Left Shift%b%"%val%%aStr%::ARITHMETIC RIGHT SHIFTset/a"val=a>>b"call:display"%a% Arithmetic Right Shift%b%"%val%%aStr%::The remaining operations do not have native support::The implementations use additional operators::  %% = mod::  ! = logical negation where !(zero)=1 and !(non-zero)=0::  * = multiplication::  - = subtraction::LOGICAL RIGHT SHIFT (No native support)set/a"val=(a>>b)&~((0x80000000>>b-1)*!!b)"call:display"%a% Logical Right Shift%b%"%val%%aStr%::ROTATE LEFT (No native support)set/a"val=(a<<b%%32) | (a>>32-b%%32)&~((0x80000000>>31-b%%32)*!!(32-b%%32))"call:display"%a% Rotate Left%b%"%val%%aStr%::ROTATE RIGHT (No native support)set/a"val=(a<<32-b%%32) | (a>>b%%32)&~((0x80000000>>b%%32-1)*!!(b%%32)) "call:display"%a% Rotate Right%b%"%val%%aStr%exit /b:display op result aStr [bStr]echo(echo%~1 =%2echo%3if"%4"neq""echo%4call:num2bin%2exit /b:num2bin    IntVal [RtnVar]setlocal enableDelayedExpansionsetn=%~1setrtn=for/l%%bin(0,1,31)do(set/a"d=n&1, n>>=1"setrtn=!d!!rtn!)(endlocal&rem -- return valuesif"%~2"neq""(set%~2=%rtn%)elseecho%rtn%)exit /b

Sample output

>bitops 0x800000FE 7-2147483394 AND 7 = 6100000000000000000000000111111100000000000000000000000000000011100000000000000000000000000000110-2147483394 OR 7 = -2147483393100000000000000000000000111111100000000000000000000000000000011110000000000000000000000011111111-2147483394 XOR 7 = -2147483399100000000000000000000000111111100000000000000000000000000000011110000000000000000000000011111001NOT -2147483394 = 21474833931000000000000000000000001111111001111111111111111111111100000001-2147483394 Left Shift 7 = 325121000000000000000000000001111111000000000000000000111111100000000-2147483394 Arithmetic Right Shift 7 = -167772151000000000000000000000001111111011111111000000000000000000000001-2147483394 Logical Right Shift 7 = 167772171000000000000000000000001111111000000001000000000000000000000001-2147483394 Rotate Left 7 = 325761000000000000000000000001111111000000000000000000111111101000000-2147483394 Rotate Right 7 = -503316471000000000000000000000001111111011111101000000000000000000000001

BBC BASIC

number1%=&89ABCDEFnumber2%=8PRINT~number1%ANDnumber2%:REM bitwise ANDPRINT~number1%ORnumber2%:REM bitwise ORPRINT~number1%EORnumber2%:REM bitwise exclusive-ORPRINT~NOTnumber1%:REM bitwise NOTPRINT~number1%<<number2%:REM left shiftPRINT~number1%>>>number2%:REM right shift (logical)PRINT~number1%>>number2%:REM right shift (arithmetic)PRINT~(number1%<<number2%)OR(number1%>>>(32-number2%)):REM left rotatePRINT~(number1%>>>number2%)OR(number1%<<(32-number2%)):REM right rotate

beeswax

#eX~T~T_####>N{` AND `~{~` = `&{Nz1~3JUXe###>{` OR  `~{~` = `|{Nz1~5JUXe###>{` XOR `~{~` = `${Nz1~7JUXe###>`NOT `{` = `!{Nz1~9JUXe###>{` <<  `~{~` = `({Nz1~9PPJUXe###>{` >>> `~{~` = `){` (logical shift right)`N7F+M~1~JUXe###>{` ROL `~{~` = `[{N7F+P~1~JUXe###>{` ROR `~{~` = `]{NN8F+P~1~JUXe###>`Arithmetic shift right is not originally implemented in beeswax.`N     q qN`,noitagen yb dezilaer eb nac srebmun evitagen rof RSA ,yllacinhcet tuB`N<##>`logical shift right, and negating the result again:`NN7F++~1~JUXe#      #>e# #>~1~[&'pUX{` >> `~{~` = `){` , interpreted as (positive) signed Int64 number (MSB=0), equivalent to >>>`NN;          ###         >UX`-`!P{M!` >> `~{~` = `!)!`-`M!{` , interpreted as (negative) signed Int64 number (MSB=1)`NN;           #>e#

Example:

julia>beeswax("Bitops.bswx",0,0.0,Int(20000))i9223653511831486512i489223653511831486512AND48=489223653511831486512OR48=92236535118314865129223653511831486512XOR48=9223653511831486464NOT9223653511831486512=92230905618780651039223653511831486512<<48=135107988821114889223653511831486512>>>48=32769(logicalshiftright)9223653511831486512ROL48=136515406654341129223653511831486512ROR48=3178497Arithmeticshiftrightisnotoriginallyimplementedinbeeswax.Buttechnically,ASRfornegativenumberscanberealizedbynegation,logicalshiftright,andnegatingtheresultagain:-9223090561878065104>>48=-32767,interpretedas(negative)signedInt64number(MSB=1)

The natural number range for beeswax is unsigned Int64, but it is easy to implement signed Int64 by realizing negative numbers by their 2’s complements or interpreting numbers as negative if their MSB is 1, as shown in the example above.

Arithmetic shift right is not originally implemented in beeswax because it does not make sense for unsigned integers, but for negative numbers, it can be realized easily with

A>>B = NOT(NOT(A)>>>B)

as demonstrated above.

In beeswax, rotate left (ROL) and rotate right (ROT) operators are implemented using modulo 64, so rotations by more than 63 bits wrap around:

A ROL B = A<<(B%64)+A>>>(64-B%64)A ROR B = A>>>(B%64)+A<<(64-B%64)

Befunge

>vMCR>v123456>61g-:|89>&&\481p>88*61p371p>:61g\`!:68*+71g81gp|7>61g2/61p71g1+71pv>v>v>v>v<>^>#A1$^^<B6^<^>^>^>^1C|!`5p18:+1g18$<^9p#p17*93p189p150<>61g71g81gg+71g81gpvD>071g81gpv^<AND>+2\`!#^_>vXOR+2%#^_>vOR+1\`!#^_>vNOT!#^_>vLSHFT0#^_>48*71g3+81gpvRSHFT$48*71g3+81gp#^_>vEENDv#^_>>61g2*61pv@Fv_^#`2:<>71g81gg.48*71g2+81gp79*1-71g2+81g1+pv^<_v#!`2p15:+1g15p18+1g18<^<G

The labelled points (1 to G) are:1. Read in A and B,2. Set the current operating row (R) to 4,3. Set the current bit value (M) to 64,4. Set Current operating column (C) to 3,5. Check if M > A (i.e. bit is 0 or 1),6. Write the bit value into location (R,C),7. A = A - M,8. M = M/2,9. C++,A&B. Storage of corresponding bits,C. Initialise R & C to operation storage (OP) and M to 1,D. Increment OP by M if true,E. M = M*2,F (2 rows below). Print value of OP, increment operation to perform by moving ">" down,G. If doing the NOT, LSHFT or RSHFT (current operation to perform > 3) only read A.

The code requires input be separated by spaces and only works for numbers less than 128, due to form of bit storage and ASCII locations not able to store beyond 127. Overflow will happen if 127 is shifted left due to aforementioned ASCII limit in most Befunge-93 interpreters.

Inputs:

21 3
Output:
1 22 23 106 42 10

C

voidbitwise(inta,intb){printf("a and b: %d\n",a&b);printf("a or b: %d\n",a|b);printf("a xor b: %d\n",a^b);printf("not a: %d\n",~a);printf("a << n: %d\n",a<<b);/* left shift */printf("a >> n: %d\n",a>>b);/* on most platforms: arithmetic right shift *//* convert the signed integer into unsigned, so it will perform logical shift */unsignedintc=a;printf("c >> b: %d\n",c>>b);/* logical right shift *//* there are no rotation operators in C */return0;}

To rotate an integer, you can combine a left shift and a right shift:

/* rotate x to the right by s bits */unsignedintrotr(unsignedintx,unsignedints){return(x>>s)|(x<<32-s);}

With a smart enough compiler, the above actually compiles into a single machine bit rotate instruction when possible. E.g.gcc -S on IA32 produced following assembly code:

rotr:        movl    4(%esp), %eax        ; arg1: x        movl    8(%esp), %ecx        ; arg2: s        rorl    %cl, %eax            ; right rotate x by s        ret

C#

staticvoidbitwise(inta,intb){Console.WriteLine("a and b is {0}",a&b);Console.WriteLine("a or b is {0}",a|b);Console.WriteLine("a xor b is {0}",a^b);Console.WriteLine("not a is {0}",~a);Console.WriteLine("a lshift b is {0}",a<<b);Console.WriteLine("a arshift b is {0}",a>>b);// When the left operand of the >> operator is of a signed integral type,// the operator performs an arithmetic shift rightuintc=(uint)a;Console.WriteLine("c rshift b is {0}",c>>b);// When the left operand of the >> operator is of an unsigned integral type,// the operator performs a logical shift right// there are no rotation operators in C#}

C++

Translation of:C
#include<iostream>voidbitwise(inta,intb){std::cout<<"a and b: "<<(a&b)<<'\n';// Note: parentheses are needed because & has lower precedence than <<std::cout<<"a or b:  "<<(a|b)<<'\n';std::cout<<"a xor b: "<<(a^b)<<'\n';std::cout<<"not a:   "<<~a<<'\n';// Note: the C/C++ shift operators are not guaranteed to work if the shift count (that is, b)// is negative, or is greater or equal to the number of bits in the integer being shifted.std::cout<<"a shl b: "<<(a<<b)<<'\n';// Note: "<<" is used both for output and for left shiftstd::cout<<"a shr b: "<<(a>>b)<<'\n';// typically arithmetic right shift, but not guaranteedunsignedintua=a;std::cout<<"a lsr b: "<<(ua>>b)<<'\n';// logical right shift (guaranteed)// there are no rotation operators in C++, but as of c++20 there is a standard-library rotate function.// The rotate function works for all rotation amounts, but the integer being rotated must always be an// unsigned integer.std::cout<<"a rol b: "<<std::rotl(ua,b)<<'\n';std::cout<<"a ror b: "<<std::rotr(ua,b)<<'\n';}

Clojure

(bit-andxy)(bit-orxy)(bit-xorxy)(bit-notx)(bit-shift-leftxn)(bit-shift-rightxn);;There is no built-in for rotation.

COBOL

Works with:COBOL 2023

COBOL 2002 added support for bitwise operations. Shift and rotation operators were added in COBOL 2023. Results are displayed in decimal.

IDENTIFICATIONDIVISION.PROGRAM-ID.bitwise-ops.DATADIVISION.LOCAL-STORAGESECTION.01aPIC 1(32)USAGEBIT.01bPIC 1(32)USAGEBIT.01resultPIC 1(32)USAGEBIT.01result-dispREDEFINESresultPIC S9(9)USAGECOMPUTATIONAL.LINKAGESECTION.01a-intUSAGEBINARY-LONG.01b-intUSAGEBINARY-LONG.PROCEDUREDIVISIONUSINGa-int,b-int.MOVEFUNCTIONBOOLEAN-OF-INTEGER(a-int,32)TOaMOVEFUNCTIONBOOLEAN-OF-INTEGER(b-int,32)TObCOMPUTEresult=aB-ANDbDISPLAY"a and b is "result-dispCOMPUTEresult=aB-ORbDISPLAY"a or b is "result-dispCOMPUTEresult=B-NOTaDISPLAY"Not a is "result-dispCOMPUTEresult=aB-XORbDISPLAY"a exclusive-or b is "result-disp      *>   More complex operations can be constructed from these.COMPUTEresult=B-NOT(aB-XORb)DISPLAY"Logical equivalence of a and b is "result-dispCOMPUTEresult=(B-NOTa)B-ANDbDISPLAY"Logical implication of a and b is "result-disp      *>   Shift and rotation operators were only added in COBOL 2023.COMPUTEresult=aB-SHIFT-LbDISPLAY"a shifted left by b is "result-dispCOMPUTEresult=bB-SHIFT-RaDISPLAY"b shifted right by a is "result-dispCOMPUTEresult=aB-SHIFT-LCbDISPLAY"a rotated left by b is "result-dispCOMPUTEresult=bB-SHIFT-RCaDISPLAY"b rotated right by a is "result-dispGOBACK.ENDPROGRAMbitwise-ops.
Works with:GnuCOBOL
Works with:Visual COBOL

In older implementations, non-standard extensions were developed as built-in subroutines.

IDENTIFICATIONDIVISION.PROGRAM-ID.mf-bitwise-ops.DATADIVISION.LOCAL-STORAGESECTION.01resultUSAGEBINARY-LONG.78arg-lenVALUELENGTHOFresult.LINKAGESECTION.01aUSAGEBINARY-LONG.01bUSAGEBINARY-LONG.PROCEDUREDIVISIONUSINGa,b.main-line.MOVEbTOresultCALL"CBL_AND"USINGa,result,VALUEarg-lenDISPLAY"a and b is "resultMOVEbTOresultCALL"CBL_OR"USINGa,result,VALUEarg-lenDISPLAY"a or b is "resultMOVEaTOresultCALL"CBL_NOT"USINGresult,VALUEarg-lenDISPLAY"Not a is "resultMOVEbTOresultCALL"CBL_XOR"USINGa,result,VALUEarg-lenDISPLAY"a exclusive-or b is "resultMOVEbTOresultCALL"CBL_EQ"USINGa,result,VALUEarg-lenDISPLAY"Logical equivalence of a and b is "resultMOVEbTOresultCALL"CBL_IMP"USINGa,result,VALUEarg-lenDISPLAY"Logical implication of a and b is "resultGOBACK.ENDPROGRAMmf-bitwise-ops.

CoffeeScript

CoffeeScript provides sugar for some JavaScript operators, but the bitwise operators are taken directly from JS. See more here:http://coffeescript.org/#operators

f=(a, b) ->p"and",a&bp"or",a|bp"xor",a^bp"not",~ap"<<",a<<bp">>",a>>b# no rotation shifts that I know ofp=(label, n) ->console.loglabel,nf(10,2)

output

> coffee foo.coffee and 2or 10xor 8not -11<< 40>> 2

Common Lisp

(defunbitwise(ab)(print(logandab)); AND(print(logiorab)); OR ("ior" = inclusive or)(print(logxorab)); XOR(print(lognota)); NOT(print(ashab)); arithmetic left shift (positive 2nd arg)(print(asha(-b))); arithmetic right shift (negative 2nd arg); no logical shift)

Left and right logical shift may be implemented by the following functions:

(defunshl(xwidthbits)"Compute bitwise left shift of x by 'bits' bits, represented on 'width' bits"(logand(ashxbits)(1-(ash1width))))(defunshr(xwidthbits)"Compute bitwise right shift of x by 'bits' bits, represented on 'width' bits"(logand(ashx(-bits))(1-(ash1width))))

Left and right rotation may be implemented by the following functions:

(defunrotl(xwidthbits)"Compute bitwise left rotation of x by 'bits' bits, represented on 'width' bits"(logior(logand(ashx(modbitswidth))(1-(ash1width)))(logand(ashx(-(-width(modbitswidth))))(1-(ash1width)))))(defunrotr(xwidthbits)"Compute bitwise right rotation of x by 'bits' bits, represented on 'width' bits"(logior(logand(ashx(-(modbitswidth)))(1-(ash1width)))(logand(ashx(-width(modbitswidth)))(1-(ash1width)))))

D

Trot(T)(inTx,inintshift)purenothrow@nogc{return(x>>>shift)|(x<<(T.sizeof*8-shift));}voidtestBit(ininta,inintb){importstd.stdio;writefln("Input: a = %d, b = %d",a,b);writefln("AND  : %8b  & %08b = %032b (%4d)",a,b,a&b,a&b);writefln(" OR  : %8b  | %08b = %032b (%4d)",a,b,a|b,a|b);writefln("XOR  : %8b  ^ %08b = %032b (%4d)",a,b,a^b,a^b);writefln("LSH  : %8b << %08b = %032b (%4d)",a,b,a<<b,a<<b);writefln("RSH  : %8b >> %08b = %032b (%4d)",a,b,a>>b,a>>b);writefln("NOT  : %8s  ~ %08b = %032b (%4d)","",a,~a,~a);writefln("ROT  : rot(%8b, %d)     = %032b (%4d)",a,b,rot(a,b),rot(a,b));}voidmain(){immutableinta=0b_1111_1111;// bit literal 255immutableintb=0b_0000_0010;// bit literal 2testBit(a,b);}
Output:
Input: a = 255, b = 2AND  : 11111111  & 00000010 = 00000000000000000000000000000010 (   2) OR  : 11111111  | 00000010 = 00000000000000000000000011111111 ( 255)XOR  : 11111111  ^ 00000010 = 00000000000000000000000011111101 ( 253)LSH  : 11111111 << 00000010 = 00000000000000000000001111111100 (1020)RSH  : 11111111 >> 00000010 = 00000000000000000000000000111111 (  63)NOT  :           ~ 11111111 = 11111111111111111111111100000000 (-256)ROT  : rot(11111111, 2)     = 11000000000000000000000000111111 (-1073741761)

Compilers are usually able to optimize the code pattern of the rot function to one CPU instruction plus loads. The DMD compiler too performs such optimization.

Delphi

programBitwise;{$APPTYPE CONSOLE}beginWriteln('2 and 3 = ',2and3);Writeln('2 or 3 = ',2or3);Writeln('2 xor 3 = ',2xor3);Writeln('not 2 = ',not2);Writeln('2 shl 3 = ',2shl3);Writeln('2 shr 3 = ',2shr3);// there are no built-in rotation operators in DelphiReadln;end.

DuckDB

Works with:DuckDB version V1.0

DuckDB provides bitwise operations for all the bitwise operators mentioned except for rotations,as illustrated by the first function and table below.

The second table illustrates that the behavior of bitwise `NOT` for integers depends on the type of the argument.

createorreplacefunctiontask(a,b)astable(selecta,b,a&b,a|b,xor(a,b),~a,a<<b,a>>b);fromtask(10,2);
Output:
┌───────┬───────┬──────────┬──────────┬────────────┬───────┬───────────┬───────────┐│  10   │   2   │ (10 & 2) │ (10 | 2) │ xor(10, 2) │ ~(10) │ (10 << 2) │ (10 >> 2) ││ int32 │ int32 │  int32   │  int32   │   int32    │ int32 │   int32   │   int32   │├───────┼───────┼──────────┼──────────┼────────────┼───────┼───────────┼───────────┤│  10   │   2   │    2     │    10    │     8      │  -11  │    40     │     2     │└───────┴───────┴──────────┴──────────┴────────────┴───────┴───────────┴───────────┘
select10asv,~(v::BITSTRING),~(v::INT)as"~INT",~(v::BIGINT)as"~BIGINT",~(10::UINTEGER)as"~UINTEGER";
Output:
┌───────┬──────────────────────────────────┬───────┬─────────┬────────────────┐│   v   │        ~(CAST(v AS BIT))         │ ~INT  │ ~BIGINT │   ~UINTEGER    ││ int32 │               bit                │ int32 │  int64  │     uint32     │├───────┼──────────────────────────────────┼───────┼─────────┼────────────────┤│  10   │ 11111111111111111111111111110101 │  -11  │   -11   │   4294967285   ││       │                                  │       │         │ (4.29 billion) │└───────┴──────────────────────────────────┴───────┴─────────┴────────────────┘

DWScript

PrintLn('2 and 3 = '+IntToStr(2and3));PrintLn('2 or 3 = '+IntToStr(2or3));PrintLn('2 xor 3 = '+IntToStr(2xor3));PrintLn('not 2 = '+IntToStr(not2));PrintLn('2 shl 3 = '+IntToStr(2shl3));PrintLn('2 shr 3 = '+IntToStr(2shr3));

E

E provides arbitrary-size integers, so there is no distinct arithmetic and logical shift right. E does not provide bit rotate operations.

def bitwise(a :int, b :int) {   println(`Bitwise operations:   a AND b: ${a & b}   a OR b: ${a | b}   a XOR b: ${a ^ b}   NOT a: " + ${~a}   a left shift b: ${a << b}   a right shift b: ${a >> b}`)}

EasyLang

# numbers are doubles, bit operations are unsigned, truncate # the fractional part and use 53 integer bitsa = 14b = 3print bitand a bprint bitor a bprint bitxor a bprint bitshift a bprint bitshift a -bprint bitand a bitnot b
Output:
21513112112

ECL

BitwiseOperations(INTEGERA,INTEGERB):=FUNCTIONBitAND:=A&B;BitOR:=A|B;BitXOR:=A^B;BitNOT:=BNOTA;BitSL:=A<<B;BitSR:=A>>B;DS:=DATASET([{A,B,'Bitwise AND:',BitAND},{A,B,'Bitwise OR:',BitOR},{A,B,'Bitwise XOR',BitXOR},{A,B,'Bitwise NOT A:',BitNOT},{A,B,'ShiftLeft A:',BitSL},{A,B,'ShiftRight A:',BitSR}],{INTEGERAVal,INTEGERBVal,STRING15valuetype,INTEGERval});RETURNDS;END;BitwiseOperations(255,5);//right arithmetic shift, left and right rotate not implemented/*   OUTPUT:   2555Bitwise AND:   5   2555Bitwise OR:    255   2555Bitwise XOR    250   2555Bitwise NOT A: -256   2555ShiftLeft A:   8160   2555ShiftRight A:  7*/

Ecstasy

moduleBitwiseOps{@InjectConsoleconsole;voidrun(){for((Int64n1,Int64n2):[0=7,1=5,42=2,0x123456789ABCDEF=0xFF]){// <- test datastaticStringhex(Int64n){// <- this is a locally scoped helper function// formats the integer as a hex string, but drops the leading '0' bytesreturnn.toByteArray()[(n.leadingZeroCount/8).minOf(7)..<8].toString();}console.print($|Forvalues{n1}({hex(n1)})and{n2}({hex(n2)}):|{hex(n1)}AND{hex(n2)}={hex(n1&n2)}|{hex(n1)}OR{hex(n2)}={hex(n1|n2)}|{hex(n1)}XOR{hex(n2)}={hex(n1^n2)}|NOT{hex(n1)}={hex(~n1)}|leftshift{hex(n1)}by{n2}={hex(n1<<n2)}|rightshift{hex(n1)}by{n2}={hex(n1>>n2)}|rightarithmeticshift{hex(n1)}by{n2}={hex(n1>>>n2)}|leftrotate{hex(n1)}by{n2}={hex(n1.rotateLeft(n2))}|rightrotate{hex(n1)}by{n2}={hex(n1.rotateRight(n2))}|leftmostbitof{hex(n1)}={hex(n1.leftmostBit)}|rightmostbitof{hex(n1)}={hex(n1.rightmostBit)}|leadingzerocountof{hex(n1)}={n1.leadingZeroCount}|trailingzerocountof{hex(n1)}={n1.trailingZeroCount}|bitcount(aka"population")of{hex(n1)}={n1.bitCount}|reversedbitsof{hex(n1)}={hex(n1.reverseBits())}|reversebytesof{hex(n1)}={hex(n1.reverseBytes())}|);}}}

Results in (extracted for just one of the test values):

Output:
For values 1 (0x01) and 5 (0x05):  0x01 AND 0x05 = 0x01  0x01 OR 0x05 = 0x05  0x01 XOR 0x05 = 0x04  NOT 0x01 = 0xFFFFFFFFFFFFFFFE  left shift 0x01 by 5 = 0x20  right shift 0x01 by 5 = 0x00  right arithmetic shift 0x01 by 5 = 0x00  left rotate 0x01 by 5 = 0x20  right rotate 0x01 by 5 = 0x0800000000000000  leftmost bit of 0x01 = 0x01  rightmost bit of 0x01 = 0x01  leading zero count of 0x01 = 63  trailing zero count of 0x01 = 0  bit count (aka "population") of 0x01 = 1  reversed bits of 0x01 = 0x8000000000000000  reverse bytes of 0x01 = 0x0100000000000000

Elena

ELENA 6.x :

import extensions;extension testOp{   bitwiseTest(y)   {      Console.printLine(self," and ",y," = ",self.band(y));      Console.printLine(self," or ",y," = ",self.bor(y));      Console.printLine(self," xor ",y," = ",self.bxor(y));      Console.printLine("not ",self," = ",self.BInverted);      Console.printLine(self," shr ",y," = ",self.shiftRight(y));      Console.printLine(self," shl ",y," = ",self.shiftLeft(y));   }}public program(){   Console.loadLineTo(new Integer()).bitwiseTest(Console.loadLineTo(new Integer()))}
Output:
255 and 2 = 2255 or 2 = 255255 xor 2 = 253not 255 = -256255 shr 2 = 63255 shl 2 = 1020

Elixir

defmoduleBitwise_operationdouseBitwisedeftest(a\\255,b\\170,c\\2)doIO.puts"Bitwise function:"IO.puts"band(#{a},#{b}) =#{band(a,b)}"IO.puts"bor(#{a},#{b}) =#{bor(a,b)}"IO.puts"bxor(#{a},#{b}) =#{bxor(a,b)}"IO.puts"bnot(#{a}) =#{bnot(a)}"IO.puts"bsl(#{a},#{c}) =#{bsl(a,c)}"IO.puts"bsr(#{a},#{c}) =#{bsr(a,c)}"IO.puts"\nBitwise as operator:"IO.puts"#{a} &&&#{b} =#{a&&&b}"IO.puts"#{a} |||#{b} =#{a|||b}"IO.puts"#{a} ^^^#{b} =#{a^^^b}"IO.puts"~~~#{a} =#{~~~a}"IO.puts"#{a} <<<#{c} =#{a<<<c}"IO.puts"#{a} >>>#{c} =#{a>>>c}"endendBitwise_operation.test
Output:
Bitwise function:band(255, 170) = 170bor(255, 170) = 255bxor(255, 170) = 85bnot(255) = -256bsl(255, 2) = 1020bsr(255, 2) = 63Bitwise as operator:255 &&& 170 = 170255 ||| 170 = 255255 ^^^ 170 = 85~~~255 = -256255 <<< 2 = 1020255 >>> 2 = 63

Erlang

All these operations are built-in functions except right arithmetic shift, left rotate, and right rotate.

-module(bitwise_operations).-export([test/0]).test()->A=255,B=170,io:format("~p band~p =~p\n",[A,B,AbandB]),io:format("~p bor~p =~p\n",[A,B,AborB]),io:format("~p bxor~p =~p\n",[A,B,AbxorB]),io:format("not~p =~p\n",[A,bnotA]),io:format("~p bsl~p =~p\n",[A,B,AbslB]),io:format("~p bsr~p =~p\n",[A,B,AbsrB]).

outputs:

255band170=170255bor170=255255bxor170=85not255=-256255bsl170=381627307539845370001346183518875822092557105621893120255bsr170=0

F#

letbitwiseab=printfn"a and b: %d"(a&&&b)printfn"a or  b: %d"(a|||b)printfn"a xor b: %d"(a^^^b)printfn"not a: %d"(~~~a)printfn"a shl b: %d"(a<<<b)printfn"a shr b: %d"(a>>>b)// arithmetic shiftprintfn"a shr b: %d"((uint32a)>>>b)// logical shift// No rotation operators.

Factor

"a=""b="[writereadlnstring>number]bi@{[bitand"a AND b: "write.][bitor"a OR b: "write.][bitxor"a XOR b: "write.][dropbitnot"NOT a: "write.][absshift"a asl b: "write.][negshift"a asr b: "write.]}2cleave

outputs:

a=255b=5aANDb:5aORb:255aXORb:250NOTa:-256aaslb:8160aasrb:7

Currently rotation and logical shifts are not implemented.

FALSE

Only AND, OR, and NOT are available.

10 3\$@$@$@$@\  { 3 copies }"a & b = "&."a | b  = "|."~a = "%~.""

Forth

:arshift0?do2/loop;\ 2/ is an arithmetic shift right by one bit (2* shifts left one bit):bitwise( a b -- )cr."a ="over.."b ="dup.cr."a and b ="2dupand.cr."a  or b ="2dupor.cr."a xor b ="2dupxor.cr."not a ="overinvert.cr."a shl b ="2duplshift.cr."a shr b ="2duprshift.cr."a ashr b ="2duparshift.2drop;

Rotation is not standard, but may be provided in particular Forth implementations, or as an assembly instruction in CODE words.

Fortran

In ISO Fortran 90 and later the following BIT INTRINSIC functions are defined:

integer::i,j=-1,k=42logical::ai=bit_size(j)! returns the number of bits in the given INTEGER variable! bitwise boolean operations on integersi=iand(k,j)! returns bitwise AND of K and Ji=ior(k,j)! returns bitwise OR of K and Ji=ieor(k,j)! returns bitwise EXCLUSIVE OR of K and Ji=not(j)! returns bitwise NOT of J! single-bit integer/logical operations (bit positions are zero-based)a=btest(i,4)! returns logical .TRUE. if bit position 4 of I is 1, .FALSE. if 0i=ibclr(k,8)! returns value of K with 8th bit position "cleared" (set to 0)i=ibset(k,13)! returns value of K with 13th bit position "set" (set to 1)! multi-bit integer operationsi=ishft(k,j)! returns value of K shifted by J bit positions, with ZERO fill!    (right shift if J < 0 and left shift if J > 0).i=ishftc(k,j)! returns value of K shifted CIRCULARLY by J bit positions!    (right circular shift if J < 0 and left if J > 0)i=ishftc(k,j,20)! returns value as before except that ONLY the 20 lowest order!    (rightmost) bits are circularly shiftedi=ibits(k,7,8)! extracts 8 contiguous bits from K starting at position 7 and!    returns them as the rightmost bits of an otherwise!    zero-filled integer. For non-negative K this is!    arithmetically equivalent to:   MOD((K / 2**7), 2**8)

The following INTRINSIC ELEMENTAL SUBROUTINE is also defined:

callmvbits(k,2,4,j,0)! copy a sequence of 4 bits from k starting at bit 2 into j starting at bit 0
programbits_rosettaimplicit none callbitwise(14,3)containssubroutinebitwise(a,b)implicit noneinteger,intent(in)::a,bcharacter(len=*),parameter::fmt1='(2(a,i10))'character(len=*),parameter::fmt2='(3(a,b32.32),i20)'write(*,fmt1)'input a=',a,' b=',bwrite(*,fmt2)'and : ',a,' &  ',b,' = ',iand(a,b),iand(a,b)write(*,fmt2)'or  : ',a,' |  ',b,' = ',ior(a,b),ior(a,b)write(*,fmt2)'xor : ',a,' ^  ',b,' = ',ieor(a,b),ieor(a,b)write(*,fmt2)'lsh : ',a,' << ',b,' = ',shiftl(a,b),shiftl(a,b)!since F2008, otherwise use ishft(a, abs(b))write(*,fmt2)'rsh : ',a,' >> ',b,' = ',shiftr(a,b),shiftr(a,b)!since F2008, otherwise use ishft(a, -abs(b))write(*,fmt2)'not : ',a,' ~  ',b,' = ',not(a),not(a)write(*,fmt2)'rot : ',a,' r  ',b,' = ',ishftc(a,-abs(b)),ishftc(a,-abs(b))end subroutinebitwiseend programbits_rosetta

Output

Input a=        14 b=         3AND : 00000000000000000000000000001110 &  00000000000000000000000000000011 = 00000000000000000000000000000010                   2OR  : 00000000000000000000000000001110 |  00000000000000000000000000000011 = 00000000000000000000000000001111                  15XOR : 00000000000000000000000000001110 ^  00000000000000000000000000000011 = 00000000000000000000000000001101                  13LSH : 00000000000000000000000000001110 << 00000000000000000000000000000011 = 00000000000000000000000001110000                 112RSH : 00000000000000000000000000001110 >> 00000000000000000000000000000011 = 00000000000000000000000000000001                   1NOT : 00000000000000000000000000001110 ~  00000000000000000000000000000011 = 11111111111111111111111111110001                 -15ROT : 00000000000000000000000000001110 ~  00000000000000000000000000000011 = 11000000000000000000000000000001         -1073741823

Free Pascal

programBitwise;{$mode objfpc}var// Pascal uses a native int type as a default literal type// Make sure the operants work on an exact type.x:shortint=2;y:ShortInt=3;beginWriteln('2 and 3 = ',xandy);Writeln('2 or 3 = ',xory);Writeln('2 xor 3 = ',xxory);Writeln('not 2 = ',notx);Writeln('2 shl 3 = ',x>>y);Writeln('2 shr 3 = ',x<<y);writeln('2 rol 3 = ',rolbyte(x,y));writeln('2 ror 3 = ',rorbyte(x,y));writeln('2 sar 3 = ',sarshortint(x,y));Readln;end.

FreeBASIC

' FB 1.05.0 Win64 (Note the (U)Integer type is 64 bits)' FB doesn't have built-in logical shift right or rotation operators' but, as they're not difficult to implement, I've done so below.Functionlsr(xAsConstInteger,yAsConstInteger)AsIntegerDimAsUIntegerz=xReturnzShryEndFunctionFunctionrol(xAsConstInteger,yAsConstUInteger)AsIntegerDimzAsInteger=xDimhighAsIntegerForiAsInteger=1Toyhigh=Bit(z,63)ForjAsInteger=62To0Step-1IfBit(z,j)Thenz=BitSet(z,j+1)Elsez=BitReset(z,j+1)EndIfNextjIfhighThenz=BitSet(z,0)Elsez=BitReset(z,0)EndIfNextiReturnzEndFunctionFunctionror(xAsConstInteger,yAsConstUInteger)AsIntegerDimzAsInteger=xDimlowAsIntegerForiAsInteger=1Toylow=Bit(z,0)ForjAsInteger=1To63IfBit(z,j)Thenz=BitSet(z,j-1)Elsez=BitReset(z,j-1)EndIfNextjIflowThenz=BitSet(z,63)Elsez=BitReset(z,63)EndIfNextiReturnzEndFunctionSubbitwise(xAsInteger,yAsInteger)Print"x       = ";xPrint"y       = ";yPrint"x AND y = ";xAndyPrint"x OR y  = ";xOryPrint"x XOR y = ";xXOryPrint"NOT x   = ";NotxPrint"x SHL y = ";xShlyPrint"x SHR y = ";xShryPrint"x LSR y = ";lsr(x,y)Print"x ROL y = ";rol(x,y)Print"x ROR y = ";ror(x,y)EndSubbitwise-15,3PrintPrint"Press any key to quit"Sleep
Output:
x       = -15y       =  3x AND y =  1x OR y  = -13x XOR y = -14NOT x   =  14x SHL y = -120x SHR y = -2x LSR y =  2305843009213693950x ROL y = -113x ROR y =  4611686018427387902

FutureBasic

FB does not have a bitwise symbol for not, but rather uses the "not" expression. It does not support predefined bitwise symbols for rotate left and rotate right, but functions in this demo provide that capability.

window 1, @"Bitwise Operations", (0,0,650,270)def fn rotl( b as long, n as long ) as long = ( ( 2^n * b) mod 256) or (b > 127)def fn rotr( b as long, n as long ) as long = (b >> n mod 32) or ( b << (32-n) mod 32)local fn bitwise( a as long, b as long )  print @"Input: a = "; a; @"  b = "; b  print  print @"AND  :", @"a && b = ", bin(a && b), @": "; a && b  print @"NAND :", @"a ^& b = ", bin(a ^& b), @": "; a ^& b  print @"OR   :", @"a || b = ", bin(a || b), @": "; a || b  print @"NOR  :", @"a ^| b = ", bin(a ^| b), @": "; a ^| b  print @"XOR  :", @"a ^^ b = ", bin(a ^^ b), @": "; a ^^ b  print @"NOT  :", @" not a = ", bin( not a), @": ";  not a  print  print @"Left shift   :", @"a << b =", bin(a << b), @": "; a << b  print @"Right shift  :", @"a >> b =", bin(a >> b), @": "; a >> b  print  print @"Rotate left  :", @"fn rotl( a, b ) = ", bin(fn rotl( a, b)), @": "; fn rotl( a, b )  print @"Rotate right :", @"fn rotr( a, b ) = ", bin(fn rotr( a, b )),@": "; fn rotr( a, b )end fnfn bitwise( 255, 2 )HandleEvents

Output:

Input: a =  255  b =  2AND  : a && b =  00000000000000000000000000000010 :  2NAND : a ^& b =  00000000000000000000000011111101 :  253OR   : a || b =  00000000000000000000000011111111 :  255NOR  : a ^| b =  11111111111111111111111111111111 : -1XOR  : a ^^ b =  00000000000000000000000011111101 :  253NOT  :  not a =  11111111111111111111111100000000 : -256Left shift   : a << b = 00000000000000000000001111111100 :  1020Right shift  : a >> b = 00000000000000000000000000111111 :  63Rotate left  : fn rotl( a, b ) =  11111111111111111111111111111111 : -1Rotate right : fn rotr( a, b ) =  11000000000000000000000000111111 : -1073741761

Go

packagemainimport"fmt"funcbitwise(a,bint16){fmt.Printf("a:   %016b\n",uint16(a))fmt.Printf("b:   %016b\n",uint16(b))// Bitwise logical operationsfmt.Printf("and: %016b\n",uint16(a&b))fmt.Printf("or:  %016b\n",uint16(a|b))fmt.Printf("xor: %016b\n",uint16(a^b))fmt.Printf("not: %016b\n",uint16(^a))ifb<0{fmt.Println("Right operand is negative, but all shifts require an unsigned right operand (shift distance).")return}ua:=uint16(a)ub:=uint32(b)// Logical shifts (unsigned left operand)fmt.Printf("shl: %016b\n",uint16(ua<<ub))fmt.Printf("shr: %016b\n",uint16(ua>>ub))// Arithmetic shifts (signed left operand)fmt.Printf("las: %016b\n",uint16(a<<ub))fmt.Printf("ras: %016b\n",uint16(a>>ub))// Rotationsfmt.Printf("rol: %016b\n",uint16(a<<ub|int16(uint16(a)>>(16-ub))))fmt.Printf("ror: %016b\n",uint16(int16(uint16(a)>>ub)|a<<(16-ub)))}funcmain(){vara,bint16=-460,6bitwise(a,b)}

Output:

a:   1111111000110100b:   0000000000000110and: 0000000000000100or:  1111111000110110xor: 1111111000110010not: 0000000111001011shl: 1000110100000000shr: 0000001111111000las: 1000110100000000ras: 1111111111111000rol: 1000110100111111ror: 1101001111111000

Golfscript

Golfscript has no bitshift operators.

{2\?*}:shl;{2\?/}:asr;{1$1$&p 1$1$|p 1$1$^p 1$-1^p 1$1$shl p 1$1$asr p}:bit;10 2 bit;;:n
Output:
2108-11402

Groovy

defbitwise={a,b->println"""a & b   = ${a} & ${b}   = ${a & b}a | b   = ${a} | ${b}   = ${a | b}a ^ b   = ${a} ^ ${b}   = ${a ^ b}~ a     = ~ ${a}     = ${~ a}a << b  = ${a} << ${b}  = ${a << b}a >> b  = ${a} >> ${b}  = ${a >> b}         arithmetic (sign-preserving) shifta >>> b = ${a} >>> ${b} = ${a >>> b}  logical (zero-filling) shift"""}

Program:

bitwise(-15,3)

Output:

a & b   = -15 & 3   = 1a | b   = -15 | 3   = -13a ^ b   = -15 ^ 3   = -14~ a     = ~ -15     = 14a << b  = -15 << 3  = -120a >> b  = -15 >> 3  = -2         arithmetic (sign-preserving) shifta >>> b = -15 >>> 3 = 536870910  logical (zero-filling) shift

Harbour

Harbour language has a set of core functions, which are fully optimized at compile time, to perform bitwise operations.

PROCEDURE Main(...)local n1 := 42, n2 := 2local aPar := hb_AParams()local nRotif !Empty( aPar )n1 :=Val( aPar[1] )hb_Adel( aPar, 1,.T. )if !Empty( aPar )n2 :=Val( aPar[1] )endifendifclear screen      ?"Bitwise operations with two integers"   ?"n1 =", hb_ntos(n1)   ?"n2 =", hb_ntos(n2)   ?"------------------------------------"   ?"AND          -->", hb_BitAnd( n1, n2 )   ?"OR           -->", hb_BitOr( n1, n2 )   ?"XOR          -->", hb_BitXor( n1, n2 )   ?"NOT          -->", hb_BitNot( n1 )   ?"LSHIFT       -->", hb_bitShift( n1, n2 )   ?"RSHIFT       -->", hb_bitShift( n1, -n2 )   ?"RarSHIFT     -->", hb_bitShift( n1, -n2 )         /* left/right rotation isnot implemented, but we can use inline C-code to do it */   /* rotate n1 to the left by n2 bits */nRot := hb_Inline( n1, n2 ) {HB_UINT x = hb_parni( 1 ), s = hb_parni( 2 );hb_retni( (x << s) | (x >> (-s & 31)) );   }            // (x << s) | (x >> (32 - s));   ?"Rotate left  -->", nRot      /* rotate n1 to the right by n2 bits */nRot := HB_INLINE( n1, n2 ){       HB_UINT x = hb_parni( 1 ), s = hb_parni( 2 );hb_retni( (x >> s) | (x << (32 - s)) );   }   ?"Rotate right -->", nRotreturn

Output:

  Bitwise operations with two integers  n1 = 42  n2 = 2  ------------------------------------  AND          -->          2  OR           -->         42  XOR          -->         40  NOT          -->        -43  LSHIFT       -->        168  RSHIFT       -->         10  RarSHIFT     -->         10  Rotate left  -->        168  Rotate right -->          -2147483638

Haskell

The operations inData.Bits work onInt,Integer, and any of the sized integer and word types.

importData.Bitsbitwise::Int->Int->IO()bitwiseab=mapM_print[a.&.b,a.|.b,a`xor`b,complementa,shiftLab-- left shift,shiftRab-- arithmetic right shift,shiftab-- You can also use the "unified" shift function;-- positive is for left shift, negative is for right shift,shifta(-b),rotateLab-- rotate left,rotateRab-- rotate right,rotateab-- You can also use the "unified" rotate function;-- positive is for left rotate, negative is for right rotate,rotatea(-b)]main::IO()main=bitwise255170
Output:
17025585-25600001121501860331520106954752011215018603315201069547520

If you were shifting Words (unsigned integers) instead of Ints, then the shift would be automatically logical shifts:

import Data.Wordprint $ shiftL (-1 :: Word) 1print $ shiftR (-1 :: Word) 1

HicEst

There is no rotate and no shift support built in to HicEst

i = IAND(k, j)i = IOR( k, j)i = IEOR(k, j)i = NOT( k   )

HPPPL

EXPORT BITOPS(a, b)BEGINPRINT(BITAND(a, b));PRINT(BITOR(a, b));PRINT(BITXOR(a, b));PRINT(BITNOT(a));PRINT(BITSL(a, b));PRINT(BITSR(a, b));// HPPPL has no builtin rotates or arithmetic right shift.END;

Icon andUnicon

linkbitint# for int2bitproceduremain()bitdemo(255,2)bitdemo(-15,3)endprocedurebitdemo(i,i2)write()demowrite("i",i)demowrite("i2",i2)demowrite("complement i",icom(i))demowrite("i or i2",ior(i,i2))demowrite("i and i2",iand(i,i2))demowrite("i xor i2",ixor(i,i2))demowrite("i shift "||i2,ishift(i,i2))demowrite("i shift -"||i2,ishift(i,-i2))returnendproceduredemowrite(vs,v)returnwrite(vs,": ",v," = ",int2bit(v),"b")end

Icon/Unicon implements bitwise operations on integers. Because integers can be transparently large integers operations that require fixed sizes don't make sense and aren't defined. These include rotation and logical shifting (shift is arithmetic) . Please note also that 'not' is a reserved word and the negation function is 'icom'

Sample output:

i: 255 = 11111111bi2: 2 = 10bcomplement i: -256 = -100000000bi or i2: 255 = 11111111bi and i2: 2 = 10bi xor i2: 253 = 11111101bi shift 2: 1020 = 1111111100bi shift -2: 63 = 111111bi: -15 = -1111bi2: 3 = 11bcomplement i: 14 = 1110bi or i2: -13 = -1101bi and i2: 1 = 1bi xor i2: -14 = -1110bi shift 3: -120 = -1111000bi shift -3: -2 = -10b

Inform 6

Inform 6 has no xor or rotate operators. It also has no shift operators, although the Z-machine, its usual target architecture, does. These can be accessed with inline assembly, which is done here.

[ bitwise a b temp;  print "a and b: ", a & b, "^";  print "a or b: ", a | b, "^";  print "not a: ", ~a, "^";  @art_shift a b -> temp;  print "a << b (arithmetic): ", temp, "^";  temp = -b;  @art_shift a temp -> temp;  print "a >> b (arithmetic): ", temp, "^";  @log_shift a b -> temp;  print "a << b (logical): ", temp, "^";  temp = -b;  @log_shift a temp -> temp;  print "a >> b (logical): ", temp, "^";];

J

Here are the "bitwise operators":

bAND=:17b.NB. 16+#.0 0 0 1bOR=:23b.NB. 16+#.0 1 1 1bXOR=:22b.NB. 16+#.0 1 1 0b1NOT=:28b.NB. 16+#.1 1 0 0bLshift=:33b.~NB. see http://www.jsoftware.com/help/release/bdot.htmbRshift=:33b.~-bRAshift=:34b.~-bLrot=:32b.~bRrot=:32b.~-

And here is a routine which takes a list of bitwise operators and two numbers and displays a table of results from combining those two numbers with each of the operators:

bitwise=:1 :0:smoutput(((":x),"1' ',.(>u),.' '),"1":y),"1' => ',"1'.X'{~#:xu`:0y)

And here they are in action:

254bAND`bOR`bXOR`b1NOT`bLshift`bRshift`bRAshift`bLrot`bRrotbitwise3254bAND3=>............................X.254bOR3=>......................XXXXXXXX254bXOR3=>......................XXXXXX.X254b1NOT3=>XXXXXXXXXXXXXXXXXXXXXX.......X254bLshift3=>...................XXXXXXX....254bRshift3=>.........................XXXXX254bRAshift3=>.........................XXXXX254bLrot3=>...................XXXXXXX....254bRrot3=>.........................XXXXX

Further test

bXOR/33335555777799998664

Java

publicstaticvoidbitwise(inta,intb){System.out.println("a AND b: "+(a&b));System.out.println("a OR b: "+(a|b));System.out.println("a XOR b: "+(a^b));System.out.println("NOT a: "+~a);System.out.println("a << b: "+(a<<b));// left shiftSystem.out.println("a >> b: "+(a>>b));// arithmetic right shiftSystem.out.println("a >>> b: "+(a>>>b));// logical right shiftSystem.out.println("a rol b: "+Integer.rotateLeft(a,b));//rotate left, Java 1.5+System.out.println("a ror b: "+Integer.rotateRight(a,b));//rotate right, Java 1.5+}

All of the operators may be combined with the= operator to save space. For example, the following lines each do the same thing:

a<<=3;a=a<<3;a*=8;//2 * 2 * 2 = 8a=a*8;

JavaScript

There are no integers in Javascript, but there are still bitwise operators. They will convert their number operands into integers before performing they task. In other languages, these operators are very close to the hardware and very fast. In JavaScript, they are very far from the hardware and very slow and rarely used.

functionbitwise(a,b){alert("a AND b: "+(a&b));alert("a OR b: "+(a|b));alert("a XOR b: "+(a^b));alert("NOT a: "+~a);alert("a << b: "+(a<<b));// left shiftalert("a >> b: "+(a>>b));// arithmetic right shiftalert("a >>> b: "+(a>>>b));// logical right shift}

jq

Works with jq, the C implementation of jq

Works with gojq, the Go implementation of jq

jq has no built-in bitwise operations, but the "bitwise" moduledefinesall those needed for the task at hand except for rotations.Here `rotateLeft` and rotateRight` functions are defined relative to a given width.

The examples are taken from the entry forWren.

include "bitwise" {search: "."};  # adjust as requireddef leftshift($n; $width):   [(range(0,$n)| 0), limit($width - $n; bitwise)][:$width] | to_int;# Using a width of $width bits: x << n | x >> ($width-n)def rotateLeft($x; $n; $width):   $x | bitwise_or(leftshift($n; $width); rightshift($width-$n));# Using a width of $width bits: x << n | x >> ($width-n)def rotateRight($x; $n; $width):  $x | bitwise_or(rightshift($n); leftshift($width-$n; $width) );def task($x; $y):  def isInteger: type == "number" and . == round;  if ($x|isInteger|not) or ($y|isInteger|not) or      $x < 0 or $y < 0 or $x > 4294967295 or $y > 4294967295  then "Operands must be in the range of a 32-bit unsigned integer" | error  else    " x      = \($x)",    " y      = \($y)",    " x & y  = \(bitwise_and($x; $y))",    " x | y  = \(bitwise_or($x; $y))",    " x ^ y  = \(null | xor(x; $y))",    "~x      = \(32 | flip($x))",    " x << y = \($x | leftshift($y))",    " x >> y = \($x | rightshift($y))",    " x rl y = \(rotateLeft($x; $y; 32))",    " x rr y = \(rotateRight($x; $y; 32))"    end;task(10; 2)
Output:
 x      = 10 y      = 2 x & y  = 2 x | y  = 10 x ^ y  = 8~x      = 4294967295 x << y = 40 x >> y = 2 x rl y = 40 x rr y = 2147483650

Julia

# Version 5.2@show1&2# AND@show1|2# OR@show1^2# XOR -- for Julia 6.0 the operator is `⊻`@show~1# NOT@show1>>>2# SHIFT RIGHT (LOGICAL)@show1>>2# SHIFT RIGHT (ARITMETIC)@show1<<2# SHIFT LEFT (ARITMETIC/LOGICAL)A=BitArray([true,true,false,false,true])@showAror(A,1)ror(A,2)ror(A,5)# ROTATION RIGHT@showrol(A,1)rol(A,2)rol(A,5)# ROTATION LEFT
Output:
1 & 2 = 01 | 2 = 31 ^ 2 = 1~1 = -21 >>> 2 = 01 >> 2 = 01 << 2 = 4A = Bool[true,true,false,false,true]ror(A,1) = Bool[true,true,true,false,false]ror(A,2) = Bool[false,true,true,true,false]ror(A,5) = Bool[true,true,false,false,true]rol(A,1) = Bool[true,false,false,true,true]rol(A,2) = Bool[false,false,true,true,true]rol(A,5) = Bool[true,true,false,false,true]

Kotlin

funmain(){// inferred type of x and y is Int (32-bit signed integer)valx=10valy=2println("x =$x")println("y =$y")println("NOT x =${x.inv()}")println("x AND y =${xandy}")println("x OR y =${xory}")println("x XOR y =${xxory}")// All operations below actually return (x OP (y % 32)) so that a value is never completely shifted outprintln("x SHL y =${xshly}")println("x ASR y =${xshry}")// arithmetic shift right (sign bit filled)println("x LSR y =${xushry}")// logical shift right (zero filled)println("x ROL y =${x.rotateLeft(y)}")println("x ROR y =${x.rotateRight(y)}")}
Output:
x = 10y = 2NOT x = -11x AND y = 2x OR y = 10x XOR y = 8x SHL y = 40x ASR y = 2x LSR y = 2x ROL y = 40x ROR y = -2147483646

LFE

All these operations are built-in functions except right arithmetic shift, left rotate, and right rotate.

(defunbitwise(ab)(lists:map(lambda(x)(io:format"~p~n"`(,x)))`(,(bandab),(borab),(bxorab),(bnota),(bslab),(bsrab)))'ok)(defundec->bin(x)(integer_to_listx2))(defundescribe(funcarg1arg2result)(io:format"(~s ~s ~s): ~s~n"(listfunc(dec->binarg1)(dec->binarg2)(dec->binresult))))(defunbitwise((ab'binary)(describe"band"ab(bandab))(describe"bor"ab(borab))(describe"bxor"ab(bxorab))(describe"bnot"ab(bnota))(describe"bsl"ab(bslab))(describe"bsr"ab(bsrab))))

Example usage:

>(bitwise255170)17025585-2563816273075398453700013461835188758220925571056218931200ok>(bitwise255170'binary)(band1111111110101010):10101010(bor1111111110101010):11111111(bxor1111111110101010):1010101(bnot11111111):-100000000(bsl1111111110101010):1111111100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000(bsr1111111110101010):0ok>

Liberty BASIC

Written as functions.

'   bitwise operations on byte-sized variablesv =int( 256 *rnd( 1))s = 1print "Shift            ="; s; " place."printprint "Number as dec. = "; v; " & as 8-bits byte = ", dec2Bin$( v)print "NOT  as dec.          =  "; bitInvert(   v),    dec2Bin$( bitInvert(   v))print "Shifted left  as dec. =  "; shiftLeft(   v, s), dec2Bin$( shiftLeft(   v, s))print "Shifted right as dec. =  "; shiftRight(  v, s), dec2Bin$( shiftRight(  v, s))print "Rotated left  as dec. =  "; rotateLeft(  v, s), dec2Bin$( rotateLeft(  v, s))print "Rotated right as dec. =  "; rotateRight( v, s), dec2Bin$( rotateRight( v, s))endfunction shiftLeft( b, n)    shiftLeft =( b *2^n) and 255end functionfunction shiftRight( b, n)    shiftRight =int(b /2^n)end functionfunction rotateLeft( b, n)    rotateLeft = (( 2^n *b) mod 256) or ( b >127)end functionfunction rotateRight( b, n)    rotateRight = (128*( b and 1)) or int( b /2)end functionfunction bitInvert( b)    bitInvert =b xor 255end functionfunction dec2Bin$( num) '   Given an integer decimal 0 <--> 255, returns binary equivalent as a string    n =num    dec2Bin$ =""    while ( num >0)        dec2Bin$    =str$( num mod 2) +dec2Bin$        num         =int(  num /2)    wend    dec2Bin$ =right$( "00000000" +dec2Bin$, 8)end function

Lingo

Lingo has built-in functions for bitwise AND, OR, XOR and NOT:

put bitAND(2,7)put bitOR(2,7)put bitXOR(2,7)put bitNOT(7)

Bit shifting and rotating has to be implemented by custom functions.

LiveCode

put "and:" && (255 bitand 2) & comma into bitopsput " or:" && (255 bitor 2) & comma after bitopsput " xor:" && (255 bitxor 2) & comma after bitopsput " not:" && (bitnot 255) after bitopsput bitops-- Ouputand: 2, or: 255, xor: 253, not: 4294967040

LiveCode does not provide built-in bit-shift operations.

LLVM

; ModuleID = 'test.o';e means little endian;p: { pointer size : pointer abi : preferred alignment for pointers };i same for integers;v is for vectors;f for floats;a for aggregate types;s for stack objects;n: {size:size:size...}, best integer sizestargetdatalayout="e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32";this was compiled with mingw32; thus it must be linked to an ABI compatible c librarytargettriple="i386-mingw32"@.str=privateconstant[13xi8]c"a and b: %d\0A\00",align1; <[13 x i8]*> [#uses=1]@.str1=privateconstant[12xi8]c"a or b: %d\0A\00",align1; <[12 x i8]*> [#uses=1]@.str2=privateconstant[13xi8]c"a xor b: %d\0A\00",align1; <[13 x i8]*> [#uses=1]@.str3=privateconstant[11xi8]c"not a: %d\0A\00",align1; <[11 x i8]*> [#uses=1]@.str4=privateconstant[12xi8]c"a << n: %d\0A\00",align1; <[12 x i8]*> [#uses=1]@.str5=privateconstant[12xi8]c"a >> n: %d\0A\00",align1; <[12 x i8]*> [#uses=1]@.str6=privateconstant[12xi8]c"c >> b: %d\0A\00",align1; <[12 x i8]*> [#uses=1];A function that will do many bitwise opreations to two integer arguments, %a and %bdefinevoid@bitwise(i32%a,i32%b)nounwind{;entry blockentry:;Register to store (a & b)%0=andi32%b,%a; <i32> [#uses=1];print the results%1=tailcalli32(i8*,...)*@printf(i8*getelementptrinbounds([13xi8]*@.str,i320,i320),i32%0)nounwind; <i32> [#uses=0];Register to store (a | b)%2=ori32%b,%a; <i32> [#uses=1];print the results%3=tailcalli32(i8*,...)*@printf(i8*getelementptrinbounds([12xi8]*@.str1,i320,i320),i32%2)nounwind; <i32> [#uses=0];Register to store (a ^ b)%4=xori32%b,%a; <i32> [#uses=1];print the results%5=tailcalli32(i8*,...)*@printf(i8*getelementptrinbounds([13xi8]*@.str2,i320,i320),i32%4)nounwind; <i32> [#uses=0];Register to store (~a)%not=xori32%a,-1; <i32> [#uses=1];print the results%6=tailcalli32(i8*,...)*@printf(i8*getelementptrinbounds([11xi8]*@.str3,i320,i320),i32%not)nounwind; <i32> [#uses=0];Register to store (a << b)%7=shli32%a,%b; <i32> [#uses=1];print the results%8=tailcalli32(i8*,...)*@printf(i8*getelementptrinbounds([12xi8]*@.str4,i320,i320),i32%7)nounwind; <i32> [#uses=0];Register to store (a >> b) (a is signed)%9=ashri32%a,%b; <i32> [#uses=1];print the results%10=tailcalli32(i8*,...)*@printf(i8*getelementptrinbounds([12xi8]*@.str5,i320,i320),i32%9)nounwind; <i32> [#uses=0];Register to store (c >> b), where c is unsiged (eg. logical right shift)%11=lshri32%a,%b; <i32> [#uses=1];print the results%12=tailcalli32(i8*,...)*@printf(i8*getelementptrinbounds([12xi8]*@.str6,i320,i320),i32%11)nounwind; <i32> [#uses=0];terminator instructionretvoid};Declare external fuctionsdeclarei32@printf(i8*nocapture,...)nounwind

Logo

Works with:UCB Logo
to bitwise :a :b  (print [a and b:] BitAnd :a :b)  (print [a or b:] BitOr :a :b)  (print [a xor b:] BitXor :a :b)  (print [not a:] BitNot :a)  ; shifts are to the left if positive, to the right if negative  (print [a lshift b:] LShift :a :b)  (print [a lshift -b:] LShift :a minus :b)  (print [-a ashift -b:] AShift minus :a minus :b)endbitwise 255 5

The output of this program is:

a and b: 5a or b: 255 a xor b: 250not a: -256a lshift b: 8160a lshift -b: 7-a ashift -b: -8

LSE64

This example isincorrect. Please fix the code and remove this message.

Details: No reason given.

over : 2 pick2dup : over over bitwise : \  " A=" ,t over ,h sp " B=" ,t dup ,h nl \  " A and B=" ,t 2dup & ,h nl \  " A  or B=" ,t 2dup | ,h nl \  " A xor B=" ,t over ^ ,h nl \  " not A="  ,t      ~ ,h nl \ a \ 7 bitwise   # hex literals

Lua

LuaBitOp implements bitwise functionality for Lua:

localbit=require"bit"localvb={0,1,-1,2,-2,0x12345678,0x87654321,0x33333333,0x77777777,0x55aa55aa,0xaa55aa55,0x7fffffff,0x80000000,0xffffffff}localfunctioncksum(name,s,r)localz=0fori=1,#sdoz=(z+string.byte(s,i)*i)%2147483629endifz~=rthenerror("bit."..name.." test failed (got "..z..", expected "..r..")",0)endendlocalfunctioncheck_unop(name,r)localf=bit[name]locals=""ifpcall(f)orpcall(f,"z")orpcall(f,true)thenerror("bit."..name.." fails to detect argument errors",0)endfor_,xinipairs(vb)dos=s..","..tostring(f(x))endcksum(name,s,r)endlocalfunctioncheck_binop(name,r)localf=bit[name]locals=""ifpcall(f)orpcall(f,"z")orpcall(f,true)thenerror("bit."..name.." fails to detect argument errors",0)endfor_,xinipairs(vb)dofor_,yinipairs(vb)dos=s..","..tostring(f(x,y))endendcksum(name,s,r)endlocalfunctioncheck_binop_range(name,r,yb,ye)localf=bit[name]locals=""ifpcall(f)orpcall(f,"z")orpcall(f,true)orpcall(f,1,true)thenerror("bit."..name.." fails to detect argument errors",0)endfor_,xinipairs(vb)dofory=yb,yedos=s..","..tostring(f(x,y))endendcksum(name,s,r)endlocalfunctioncheck_shift(name,r)check_binop_range(name,r,0,31)end-- Minimal sanity checks.assert(0x7fffffff==2147483647,"broken hex literals")assert(0xffffffff==-1or0xffffffff==2^32-1,"broken hex literals")assert(tostring(-1)=="-1","broken tostring()")assert(tostring(0xffffffff)=="-1"ortostring(0xffffffff)=="4294967295","broken tostring()")-- Basic argument processing.assert(bit.tobit(1)==1)assert(bit.band(1)==1)assert(bit.bxor(1,2)==3)assert(bit.bor(1,2,4,8,16,32,64,128)==255)

TheRiscLua dialect, forRISC OS, has32-bit integers as the default number type. It provides binary operations& (and), | (or), ^^ (xor), << (logical shift left), >> (logical shift right)and a unary operation ~ (negate).

Lua 5.3+

As of Lua 5.3 most of the required operations are built-in, and those still missing could be derived from them:

a=0xAA55AA55b=0x4print(string.format("%8X and %8X = %16X",a,b,a&b))print(string.format("%8X or  %8X = %16X",a,b,a|b))print(string.format("%8X xor %8X = %16X",a,b,a~b))print(string.format("%8s not %8X = %16X","",a,~a))print(string.format("%8X shl %8X = %16X",a,b,a<<b))print(string.format("%8X shr %8X = %16X",a,b,a>>b))-- not built-in, 32-bit substitutes provided:localfunctionsar(x,n)return(x>>n)|(x&0x80000000==0and0or(0xffffffff<<(32-n))&0xffffffff)endlocalfunctionrol(x,n)return((x<<n)&0xffffffff)|(x>>(32-n))endlocalfunctionror(x,n)return(x>>n)|((x<<(32-n))&0xffffffff)endprint(string.format("%8X sar %8X = %16X",a,b,sar(a,b)))print(string.format("%8X rol %8X = %16X",a,b,rol(a,b)))print(string.format("%8X ror %8X = %16X",a,b,ror(a,b)))
Output:
AA55AA55 and        4 =                4AA55AA55 or         4 =         AA55AA55AA55AA55 xor        4 =         AA55AA51         not AA55AA55 = FFFFFFFF55AA55AAAA55AA55 shl        4 =        AA55AA550AA55AA55 shr        4 =          AA55AA5AA55AA55 sar        4 =         FAA55AA5AA55AA55 rol        4 =         A55AA55AAA55AA55 ror        4 =         5AA55AA5

M2000 Interpreter

binary ops return currency type and internal works with 32bit binary values.

modulebinary_ops{selectcaserandom(1,6)case1Doublex=10,y=2case2Decimalx=10,y=2case3Integerx=10,y=2case4Longx=10,y=2case5' byte from 0 to 255 (unsigned)Bytex=10,y=2caseelseLongLongx=10,y=2endselectprinttype$(x)//x&yvaluesfrom0to4294967295printbinary.not(x)=4294967285,sint(binary.not(x))=-11printbinary.and(x,y)=2printbinary.or(x,y)=10//yvalues-31to31printbinary.xor(x,y)=8printbinary.shift(x,y)=40printbinary.shift(x,-y)=2printbinary.rotate(x,y)=40printbinary.rotate(x,-y)=2147483650,sint(binary.rotate(x,-y))=-2147483646//Binary.NegreturnUnsignedfromsignedvalues:-2147483648(0x8000_0000&)to2147483647(0x7FFF_FFFF&)//values>2147483647return2147483648//values<-2147483648return2147483647//0xFFFF_ABCD&(signedvalue),0xFFFF_ABCDunsingedvaluesamebitsprint0xFFFF_ABCD&=-21555,0xFFFF_ABCD=4294945741,sint(0xFFFF_ABCD)=-21555printBinary.Neg(0xFFFF_ABCD&)=21554,Binary.Not(0xFFFF_ABCD)=21554printsint(Binary.Neg(0xFFFF_ABCD&)+uint(0xFFFF_ABCD&))=sint(Binary.Neg(0))//signed0xFFFF_ABCD&hassamebitsasunsigned0xFFFF_ABCD,//buthavedifferentvalueasusedincalculationsprintBinary.Neg(0xFFFF_ABCD&)=Binary.Not(0xFFFF_ABCD),0xFFFF_ABCD&<>0xFFFF_ABCDprintBinary.Neg(0x0FFF_ABCD&)=Binary.Not(0x0FFF_ABCD),0xFFFF_ABCD&<>0xFFFF_ABCD//Add(modulo32),xunsignedandaddanegatesigned(convertedtounsigned)printbinary.add(x,binary.neg(y),1)=8'  10 - 2 =12printbinary.add(x,binary.neg(-y),1)=12' 10 - - 2 = 12printsint(binary.neg(x))=-11,binary.neg(x)=binary.not(x)}binary_ops

Maple

with(Bits):bit:=proc(A,B)locala,b,c,d,e,f,g,h,i,x,bitpow;bitpow:=2^B:a:=And(A,B);b:=Not(A);c:=Or(A,B);d:=Xor(A,B);#Left Shifte:=irem(2*A,bitpow);#Right Shiftf:=iquo(A,2);#Left Rotateg:=irem(2*A,bitpow,'x')+x;#Rightarithshifti:=iquo(A,2)+bitpow/2*irem(A,bitpow/2);returna,b,c,d,e,f,g,i;endproc;

Mathematica /Wolfram Language

Most functions are built-in or can be made really easily:

(*and xor and or*)BitAnd[integer1,integer2]BitXor[integer1,integer2]BitOr[integer1,integer2](*logical not*)BitNot[integer1](*left and right shift*)BitShiftLeft[integer1]BitShiftRight[integer1](*rotate digits left and right*)FromDigits[RotateLeft[IntegerDigits[integer1,2]],2]FromDigits[RotateRight[IntegerDigits[integer1,2]],2](*right arithmetic shift*)FromDigits[Prepend[Most[#],#[[1]]],2]&[IntegerDigits[integer1,2]]

The function BitShiftLeft, BitShiftRight, RotateRight, RotateLeft all take a second argument, which is the displacement, by default it is set to 1. BitAnd, BitXor and BitOr can handle more than 2 arguments:

BitXor[3333,5555,7777,9999]

gives back:

8664

MATLAB /Octave

Newer versions of MATLAB have even more bitwise operations than those demonstrated here. A complete list of bitwise operations for the newest version of MATLAB can be found atMathWorks

function bitwiseOps(a,b)    disp(sprintf('%d and %d = %d', [a b bitand(a,b)]));    disp(sprintf('%d or %d = %d', [a b bitor(a,b)]));    disp(sprintf('%d xor %d = %d', [a b bitxor(a,b)]));    disp(sprintf('%d << %d = %d', [a b bitshift(a,b)]));    disp(sprintf('%d >> %d = %d', [a b bitshift(a,-b)]));   end

Output:

>> bitwiseOps(255,2)255 and 2 = 2255 or 2 = 255255 xor 2 = 253255 << 2 = 1020255 >> 2 = 63

Maxima

load(functs)$a: 3661$b: 2541$logor(a, b);/* 4077 */logand(a, b);/* 2125 */logxor(a, b);/* 1952 *//* NOT(x) is simply -x - 1-a - 1;/* -3662 */logor(a, -a - 1);/* -1 */logand(a, -a - 1);/* 0 */

MAXScript

fn bitwise a b =(    format "a and b: %\n" (bit.and a b)    format "a or b: %\n" (bit.or a b)    format "a xor b: %\n" (bit.xor a b)    format "not a: %\n" (bit.not a)    format "Left shift a: %\n" (bit.shift a b)    format "Right shift a: %\n" (bit.shift a -b))bitwise 255 170

MAXScript doesn't have arithmetic shift or rotate operations.

ML/I

ML/I only supports bitwise AND and OR operations. These are available from version CKD onwards.

MCSKIP "WITH" NL"" Bitwise operations"" assumes macros on input stream 1, terminal on stream 2MCSKIP MT,<>MCINS %.MCDEF SL SPACES NL AS <MCSET T1=%A1.MCSET T2=%A2.a and b = %%T1.&%T2..a or b  = %%T1.|%T2..The other operators are not supported.MCSET S10=0>MCSKIP SL WITH *MCSET S1=1*MCSET S10=2

Modula-3

MODULE Bitwise EXPORTS Main;IMPORT IO, Fmt, Word;VAR c: Word.T;PROCEDURE Bitwise(a, b: INTEGER) =  BEGIN    IO.Put("a AND b: " & Fmt.Int(Word.And(a, b)) & "\n");    IO.Put("a OR b: " & Fmt.Int(Word.Or(a, b)) & "\n");    IO.Put("a XOR b: " & Fmt.Int(Word.Xor(a, b)) & "\n");    IO.Put("NOT a: " & Fmt.Int(Word.Not(a)) & "\n");    c := a;    IO.Put("c LeftShift b: " & Fmt.Unsigned(Word.LeftShift(c, b)) & "\n");    IO.Put("c RightShift b: " & Fmt.Unsigned(Word.RightShift(c, b)) & "\n");    IO.Put("c LeftRotate b: " & Fmt.Unsigned(Word.LeftRotate(c, b)) & "\n");    IO.Put("c RightRotate b: " & Fmt.Unsigned(Word.RightRotate(c, b)) & "\n");  END Bitwise;BEGIN  Bitwise(255, 5);END Bitwise.

Output:

a AND b: 5a OR b: 255a XOR b: 250NOT a: -256c LeftShift b: 1fe0c RightShift b: 7c LeftRotate b: 1fe0c RightRotate b: f8000007

Neko

/** <doc>   <h2>bitwise operations</h2>   <p>Tectonics:     <br>  nekoc bitwise.neko     <br>  neko bitwise</p> </doc>*/// Neko is a signed 31 bit integer VM, full 32 bit requires builtinsvar int32_new = $loader.loadprim("std@int32_new", 1);var int32_and = $loader.loadprim("std@int32_and", 2);var int32_or = $loader.loadprim("std@int32_or", 2);var int32_xor = $loader.loadprim("std@int32_xor", 2);var int32_shl = $loader.loadprim("std@int32_shl", 2);var int32_shr = $loader.loadprim("std@int32_shr", 2);var int32_ushr = $loader.loadprim("std@int32_ushr", 2);var int32_complement = $loader.loadprim("std@int32_complement", 1);// Function to show bitwise operations on a,bvar bitwise = function(a, b) {  var ia = int32_new(a);  var ib = int32_new(b);  $print("Neko 32 bit integer library\n");  $print("a AND b: ", a, " ", b, " ", int32_and(ia, ib), "\n");  $print("a OR b:  ", a, " ", b, " ", int32_or(ia, ib), "\n");  $print("a XOR b: ", a, " ", b, " ", int32_xor(ia, ib), "\n");  $print("ones complement a:   ", a, " ", int32_complement(ia), "\n");  $print("a SHL b: ", a, " ", b, " ", int32_shl(ia, ib), "\n");  $print("a SHR b: ", a, " ", b, " ", int32_shr(ia, ib), "\n");  $print("a USHR b: ", a, " ", b, " ", int32_ushr(ia, ib), "\n");  $print("a ROL b: is not directly supported in Neko Int32\n");  $print("a ROR b: is not directly supported in Neko Int32\n");  $print("\nNormal Neko 31 bit signed integers\n");  a = $int(a);  b = $int(b);  $print("a AND b: ", a, " ", b, " ", a & b, "\n");  $print("a OR  b: ", a, " ", b, " ", a | b, "\n");  $print("a XOR b: ", a, " ", b, " ", a ^ b, "\n");  $print("NOT a: is not directly supported in Neko syntax\n");  $print("a SHL b: ", a, " ", b, " ", a << b, "\n");  $print("a SHR b: ", a, " ", b, " ", a >> b, "\n");  $print("a USHR b: ", a, " ", b, " ", a >>> b, "\n");  $print("a ROL b: is not directly supported in Neko syntax\n");  $print("a ROR b: is not directly supported in Neko syntax\n");}// Pass command line arguments to the demo function// initially as float, to ensure no internal bit truncationvar a = $float($loader.args[0]);var b = $float($loader.args[1]);if a == null a = 0;if b == null b = 0;bitwise(a,b);
Output:
prompt$ nekoc bitwise.nekoprompt$ neko bitwise 0x7fffffff 2Neko 32 bit integer librarya AND b: 2147483647 2 2a OR b:  2147483647 2 2147483647a XOR b: 2147483647 2 2147483645ones complement a:   2147483647 -2147483648a SHL b: 2147483647 2 -4a SHR b: 2147483647 2 536870911a USHR b: 2147483647 2 536870911a ROL b: is not directly supported in Neko Int32a ROR b: is not directly supported in Neko Int32Normal Neko 31 bit signed integersa AND b: -1 2 2a OR  b: -1 2 -1a XOR b: -1 2 -3NOT a: is not directly supported in Neko syntaxa SHL b: -1 2 -4a SHR b: -1 2 -1a USHR b: -1 2 1073741823a ROL b: is not directly supported in Neko syntaxa ROR b: is not directly supported in Neko syntax

Nemerle

def i = 255;def j = 2;WriteLine($"$i and $j is $(i & j)");WriteLine($"$i or $j is $(i | j)");WriteLine($"$i xor $j is $(i ^ j)");WriteLine($"not $i is $(~i)");WriteLine($"$i lshift $j is $(i << j)");WriteLine($"$i arshift $j is $(i >> j)");          // When the left operand of the >> operator is of a signed integral type,                                                    // the operator performs an arithmetic shift rightWriteLine($"$(i :> uint) rshift $j is $(c >> j)"); // When the left operand of the >> operator is of an unsigned integral type,                                                    // the operator performs a logical shift right// there are no rotation operators in Nemerle, but you could define your own w/ a macro if you really wanted it

Nim

proc bitwise[T: SomeInteger](a, b: T) =  echo "a and b: " , a and b  echo "a or b: ", a or b  echo "a xor b: ", a xor b  echo "not a: ", not a  echo "a << b: ", a shl b  echo "a >> b: ", a shr b

NSIS

All bitwise operations in NSIS are handled by theIntOp instruction.

Function BitwisePush $0Push $1Push $2StrCpy $0 7StrCpy $1 2IntOp $2 $0 & $1DetailPrint "Bitwise AND: $0 & $1 = $2"IntOp $2 $0 | $1DetailPrint "Bitwise OR: $0 | $1 = $2"IntOp $2 $0 ^ $1DetailPrint "Bitwise XOR: $0 ^ $1 = $2"IntOp $2 $0 ~DetailPrint "Bitwise NOT (negate in NSIS docs): ~$0 = $2"DetailPrint "There are no Arithmetic shifts in NSIS"IntOp $2 $0 >> $1 DetailPrint "Right Shift: $0 >> 1 = $2"IntOp $2 $0 << $1DetailPrint "Left Shift: $0 << $1 = $2"DetailPrint "There are no Rotates in NSIS"Pop $2Pop $1Pop $0FunctionEnd

Oberon-2

Works with:oo2c version 2
MODULE Bitwise;IMPORT  SYSTEM,  Out;PROCEDURE Do(a,b: LONGINT);VAR  x,y: SET;BEGIN  x := SYSTEM.VAL(SET,a);y := SYSTEM.VAL(SET,b);  Out.String("a and b :> ");Out.Int(SYSTEM.VAL(LONGINT,x * y),0);Out.Ln;  Out.String("a or b  :> ");Out.Int(SYSTEM.VAL(LONGINT,x + y),0);Out.Ln;  Out.String("a xor b :> ");Out.Int(SYSTEM.VAL(LONGINT,x / y),0);Out.Ln;  Out.String("a and ~b:> ");Out.Int(SYSTEM.VAL(LONGINT,x - y),0);Out.Ln;  Out.String("~a      :> ");Out.Int(SYSTEM.VAL(LONGINT,-x),0);Out.Ln;  Out.String("a left shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.LSH(x,b)),0);Out.Ln;  Out.String("a right shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.LSH(x,-b)),0);Out.Ln;  Out.String("a left rotate b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.ROT(x,b)),0);Out.Ln;  Out.String("a right rotate b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.ROT(x,-b)),0);Out.Ln;  Out.String("a arithmetic left shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,ASH(a,b)),0);Out.Ln;  Out.String("a arithmetic right shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,ASH(a,-b)),0);Out.LnEND Do;BEGIN  Do(10,2);END Bitwise.
Output:
a and b :> 2a or b  :> 10a xor b :> 8a and ~b:> 8~a      :> -11a left shift b :> 40a right shift b :> 2a left rotate b :> 40a right rotate b :> -2147483646a arithmetic left shift b :> 40a arithmetic right shift b :> 2

Objeck

use IO;bundle Default {  class Test {    function : Main(args : String[]) ~ Nil {      BitWise(3, 4);    }    function : BitWise(a : Int, b : Int) ~ Nil {        Console->GetInstance()->Print("a and b: ")->PrintLine(a and b);      Console->GetInstance()->Print("a or b: ")->PrintLine(a or b);      Console->GetInstance()->Print("a xor b: ")->PrintLine(a xor b);      # shift left & right are supported by the compiler and VM but not       # exposed to end-users; those instructions are used for optimizations    }  }}

OCaml

let bitwise a b =  Printf.printf "a and b: %d\n" (a land b);  Printf.printf "a or b: %d\n" (a lor b);  Printf.printf "a xor b: %d\n" (a lxor b);  Printf.printf "not a: %d\n" (lnot a);  Printf.printf "a lsl b: %d\n" (a lsl b);  (* left shift *)  Printf.printf "a asr b: %d\n" (a asr b);  (* arithmetic right shift *)  Printf.printf "a lsr b: %d\n" (a lsr b);  (* logical right shift *);;

Octave

There's no arithmetic shift nor rotation (and the not can be done through a xor)

function bitops(a, b)  s = sprintf("%s %%s %s = %%s\n", dec2bin(a), dec2bin(b));  printf(s, "or", dec2bin(bitor(a, b)));  printf(s, "and", dec2bin(bitand(a, b)));  printf(s, "xor", dec2bin(bitxor(a, b)));  printf(s, "left shift", dec2bin(bitshift(a, abs(b))));  printf(s, "right shift", dec2bin(bitshift(a, -abs(b))));  printf("simul not %s = %s", dec2bin(a), dec2bin(bitxor(a, 0xffffffff)));endfunctionbitops(0x1e, 0x3);

Oforth

There is no built-in for not and rotation

: bitwise(a, b)   a b bitAnd println   a b bitOr println   a b bitXor println   a bitLeft(b) println   a bitRight(b) println ;

ooRexx

/* ooRexx *************************************************************/ Bit Operations work as in Rexx (of course)* Bit operations are performed up to the length of the shorter string.* The rest of the longer string is copied to the result.* ooRexx introduces the possibility to specify a padding character* to be used for expanding the shorter string.* 10.11.2012 Walter Pachl taken over from REXX and extended for ooRexx**********************************************************************/a=21b=347Say '          a :'c2b(a) '        'c2x(a)Say '          b :'c2b(b)           c2x(b)Say 'bitand(a,b) :'c2b(bitand(a,b)) c2x(bitand(a,b))Say 'bitor(a,b)  :'c2b(bitor(a,b))  c2x(bitor(a,b))Say 'bitxor(a,b) :'c2b(bitxor(a,b)) c2x(bitxor(a,b))p='11111111'BSay 'ooRexx only:'Say 'a~bitor(b,p):'c2b(a~bitor(b,p)) c2x(a~bitor(b,p))Exitc2b: return x2b(c2x(arg(1)))

Output:

          a :0011001000110001         3231          b :001100110011010000110111 333437bitand(a,b) :001100100011000000110111 323037bitor(a,b)  :001100110011010100110111 333537bitxor(a,b) :000000010000010100110111 010537ooRexx only:a~bitor(b,p):001100110011010111111111 3335FF

OpenEdge/Progress

The only bit operators available in OpenEdge are the GET-BITS() and PUT-BITS() functions. These functions can be used to implement all bitwise operators.

PARI/GP

Pari does not support bitwise rotations, which have no obvious meaning with arbitrary-precision integers. See alsobitnegimply for another bitwise operator. For shifts, see alsoshiftmul.

bo(a,b)={  print("And: "bitand(a,b));  print("Or: "bitor(a,b));  print("Not: "bitneg(a));  print("Xor: "bitxor(a,b));  print("Left shift: ",a<<b);  print("Right shift: ",a>>b);}

Pascal

While Standard Pascal does not have bitwise operations, most Pascal implementations (including Turbo Pascal and Delphi) extend the standard logical operators to also provide bitwise operations:

var a, b: integer;begin a := 10; { binary 1010 } b := 12; { binary 1100 } writeln('a and b = ', a and b); {  8 = 1000 } writeln('a or b  = ', a or b);  { 14 = 1110 } writeln('a xor b = ', a xor b)  {  6 = 0110 }end.

PascalABC.NET

begin  var (a,b) := ReadInteger2;  Println($'not {a} = {not a}');  Println($'{a} and {b} = {a and b}');  Println($'{a} or {b} = {a or b}');  Println($'{a} xor {b} = {a xor b}');  Println($'{a} shl {b} = {a shl b}');  Println($'{a} shr {b} = {a shr b}');end.
Output:
7 3not 7 = -87 and 3 = 37 or 3 = 77 xor 3 = 47 shl 3 = 567 shr 3 = 0

Perl

use integer; sub bitwise :prototype($$) {   ($a, $b) = @_;   print 'a and b: '. ($a & $b) ."\n";   print 'a or b: '.  ($a | $b) ."\n";   print 'a xor b: '. ($a ^ $b) ."\n";   print 'not a: '.   (~$a)     ."\n";   print 'a >> b: ', $a >> $b, "\n"; # logical right shift   use integer; # "use integer" enables bitwise operations to return signed ints   print "after use integer:\n";   print 'a << b: ', $a << $b, "\n"; # left shift   print 'a >> b: ', $a >> $b, "\n"; # arithmetic right shift}

Phix

Phix has four builtin bitwise operations (and/or/xor/not)_bits, which each have sequence and unsigned variants. Note careful use of latter (unsigned) routines here, since Phix naturally preserves signs (and common sense) when it can, rather than rudely treat, for instance, +4,294,967,295 as -1, unless explicitly told to do so as it is below. Likewise the builtin shift operators deliver signed and unbounded results, so we'll wrap them here. There are no builtin rotate routines, but easy enough to devise. The distributed copy (1.0.2+) also contains an (older) inline assembly version, which is obviously not JavaScript compatible, but may be significantly faster, for desktop-only applications.

-- demo\rosetta\Bitwise_operations.exwwithjavascript_semanticsenumSHL,SAR,SHR,ROL,RORfunctionbitop(atoma,integerb,integerop)atomresifop=SHLthen-- Note: Phix doesn't quietly discard high bits...res=and_bitsu(a<<b,#FFFF_FFFF)elsifop=SARthen-- Note: Phix doesn't really do "unsigned numbers",        --       Should you want to treat 4G-1 as -1 then:ifa>#7FFF_FFFFthena-=#1_0000_0000endifres=and_bitsu(a>>b,#FFFF_FFFF)elsifop=SHRthenres=and_bitsu(a>>b,#FFFF_FFFF)elsifop=ROLthenreturnor_bitsu(a>>32-b,and_bits(a<<b,#FFFF_FFFF))elsifop=RORthenreturnor_bitsu(a>>b,and_bits(a<<32-b,#FFFF_FFFF))else?9/0endifreturnresendfunctionprocedurebitwise(atoma,atomb)printf(1,"and_bits(%b,%b) = %032b\n",{a,b,and_bitsu(a,b)})printf(1," or_bits(%b,%b) = %032b\n",{a,b,or_bitsu(a,b)})printf(1,"xor_bits(%b,%b) = %032b\n",{a,b,xor_bitsu(a,b)})printf(1,"not_bits(%b)     = %032b\n",{a,not_bitsu(a)})printf(1,"     shl(%b,%b) = %032b\n",{a,b,bitop(a,b,SHL)})printf(1,"     sar(%b,%b) = %032b\n",{a,b,bitop(a,b,SAR)})printf(1,"     shr(%b,%b) = %032b\n",{a,b,bitop(a,b,SHR)})printf(1,"     rol(%b,%b) = %032b\n",{a,b,bitop(a,b,ROL)})printf(1,"     ror(%b,%b) = %032b\n",{a,b,bitop(a,b,ROR)})endprocedurebitwise(0x800000FE,7)
Output:
and_bits(10000000000000000000000011111110,111) = 00000000000000000000000000000110 or_bits(10000000000000000000000011111110,111) = 10000000000000000000000011111111xor_bits(10000000000000000000000011111110,111) = 10000000000000000000000011111001not_bits(10000000000000000000000011111110)     = 01111111111111111111111100000001     shl(10000000000000000000000011111110,111) = 00000000000000000111111100000000     sar(10000000000000000000000011111110,111) = 11111111000000000000000000000001     shr(10000000000000000000000011111110,111) = 00000001000000000000000000000001     rol(10000000000000000000000011111110,111) = 00000000000000000111111101000000     ror(10000000000000000000000011111110,111) = 11111101000000000000000000000001

Phixmonti

6 var a 3 var bdef tab    9 tochar printenddefdef printBits    8 int>bit reverse print nlenddefa print " = " print tab a printBitsb print " = " print tab b printBitstab "------------------------" print nl"AND = " print tab a b bitand printBits"OR =  " print tab a b bitor printBits"XOR = " print tab a b bitxor printBits"NOT = " print tab a bitnot printBits

PHP

function bitwise($a, $b){    function zerofill($a,$b) {         if($a>=0) return $a>>$b;        if($b==0) return (($a>>1)&0x7fffffff)*2+(($a>>$b)&1); // this line shifts a 0 into the sign bit for compatibility, replace with "if($b==0) return $a;" if you need $b=0 to mean that nothing happens        return ((~$a)>>$b)^(0x7fffffff>>($b-1));     echo '$a AND $b: ' . $a & $b . '\n';    echo '$a OR $b: ' . $a | $b . '\n';    echo '$a XOR $b: ' . $a ^ $b . '\n';    echo 'NOT $a: ' . ~$a . '\n';    echo '$a << $b: ' . $a << $b . '\n'; // left shift      echo '$a >> $b: ' . $a >> $b . '\n'; // arithmetic right shift    echo 'zerofill($a, $b): ' . zerofill($a, $b) . '\n'; // logical right shift}

PicoLisp

PicoLisp has no specific word size. Numbers grow to arbitrary length. Therefore,bitwise NOT, logical (non-arithmetic) SHIFTs, and rotate operations do not makesense.

Bitwise AND:

: (& 6 3)-> 2: (& 7 3 1)-> 1

Bitwise AND-Test (tests if all bits in the first argument are set in thefollowing arguments):

: (bit? 1 2)-> NIL: (bit? 6 3)-> NIL: (bit? 6 15 255)-> 6

Bitwise OR:

: (| 1 2)-> 3: (| 1 2 4 8)-> 15

Bitwise XOR:

: (x| 2 7)-> 5: (x| 2 7 1)-> 4

Shift (right with a positive count, left with a negative count):

: (>> 1 8)-> 4: (>> 3 16)-> 2: (>> -3 16)-> 128: (>> -1 -16)-> -32

Pike

Rotate operations are not available

void bitwise(int a, int b){    write("a and b: %d\n", a & b);    write("a or b:  %d\n", a | b);    write("a xor b: %d\n", a ^ b);    write("not a:   %d\n", ~a);    write("a << b:  0x%x\n", a << b);    write("a >> b:  %d\n", a >> b);    // ints in Pike do not overflow, if a particular size of the int    // is desired then cap it with an AND operation    write("a << b & 0xffffffff (32bit cap):  0x%x\n",          a << b & 0xffffffff);}void main(){    bitwise(255, 30);}
Output:
a and b: 30a or b:  255a xor b: 225not a:   -256a << b:  0x3fc0000000a >> b:  0a << b & 0xffffffff (32bit cap):  0xc0000000

PL/I

/* PL/I can perform bit operations on binary integers. */k = iand(i,j);k = ior(i,j);k = inot(i,j);k = ieor(i,j);k = isll(i,n); /* unsigned shifts i left  by n places. */k = isrl(i,n); /* unsigned shifts i right by n places. */k = lower2(i, n); /* arithmetic right shift i by n places. */k = raise2(i, n); /* arithmetic left  shift i by n places. *//* PL/I can also perform boolean operations on bit strings *//* of any length: */declare (s, t, u) bit (*);u = s & t; /* logical and  */u = s | t; /* logical or   */u = ^ s;   /* logical not  */u = s ^ t; /* exclusive or *//* Built-in rotate functions are not available. *//* They can be readily implemented by the user, though: */u = substr(s, length(s), 1) || substr(s, 1, length(s)-1); /* implements rotate right. */u = substr(s, 2) || substr(s, 1, 1);                      /* implements rotate left.  */

Pluto

Pluto supports the same bitwise operators as Lua 5.3+ though compound versions (x &= y, x |= y etc.) are also supported though not used for this task.

A pecularity of Lua / Pluto is that '~' is used for both bit inversion and exclusive OR operations since '^' is the exponentiation operator.

-- Rotate left and right are not built-in but we use the-- same 32-bit substitutes as in the Lua 5.3+ example.local function rl(x, y) return ((x << y) & 0xffffffff) | (x >> (32 - y)) endlocal function rr(x, y) return (x >> y) | ((x << (32 - y)) & 0xffffffff) endlocal function bitwise(x, y)    print($" x      = {x}")    print($" y      = {y}")    print($" x & y  = {x & y}")    print($" x | y  = {x | y}")    print($" x ~ y  = {x ~ y}")    print($"~x      = {~x}")    print($" x << y = {x << y}")    print($" x >> y = {x >> y}")    print($" x rl y = {rl(x, y)}")    print($" x rr y = {rr(x, y)}")endbitwise(10, 2)
Output:
 x      = 10 y      = 2 x & y  = 2 x | y  = 10 x ~ y  = 8~x      = -11 x << y = 40 x >> y = 2 x rl y = 40 x rr y = 2147483650

Pop11

define bitwise(a, b);    printf(a && b, 'a and b = %p\n');    printf(a || b, 'a or b = %p\n');    printf(a ||/& b, 'a xor b = %p\n');    printf(~~ a, 'not a = %p\n');    printf(a << b, 'left shift of a by b = %p\n');    printf(a >> b, 'arithmetic right shift of a by b = %p\n');enddefine;

Conceptually in Pop11 integers have infinite precision, in particular negative numbers conceptually have infinitely many leading 1's in two's complement notation. Hence, logical right shift is not defined. If needed, logical right shift can be simulated by masking high order bits.

Similarly, on infinitely precise numbers rotation is undefined.

PowerShell

Logical right shift and rotations are not supported in PowerShell.

Works with:PowerShell version 2.0
$X -band $Y$X -bor  $Y$X -bxor $Y-bnot $X
Works with:PowerShell version 3.0
$X -shl $Y# Arithmetic right shift$X -shr $Y# Requires quite a stretch of the imagination to call this "native" support of right rotate, but it works[System.Security.Cryptography.SHA256Managed].GetMethod('RotateRight', 'NonPublic, Static', $null, @([UInt32], [Int32]), $null).Invoke($null, @([uint32]$X, $Y))

PureBasic

Procedure Bitwise(a, b)  Debug  a & b      ; And  Debug a | b       ;Or  Debug a ! b       ; XOr  Debug ~a          ;Not  Debug a << b      ; shift left  Debug a >> b      ; arithmetic shift right  ; Logical shift right and rotates are not available  ; You can of use inline ASM to achieve this:  Define Temp  ; logical shift right  !mov edx, dword [p.v_a]  !mov ecx, dword [p.v_b]  !shr edx, cl  !mov dword [p.v_Temp], edx  Debug Temp  ; rotate left  !mov edx, dword [p.v_a]  !mov ecx, dword [p.v_b]  !rol edx, cl  !mov dword [p.v_Temp], edx  Debug Temp  ; rotate right  !mov edx, dword [p.v_a]  !mov ecx, dword [p.v_b]  !ror edx, cl  !mov dword [p.v_Temp], edx  Debug TempEndProcedure

Python

Python 3

Python has variable length integers. Usually implementations require fixed-width integers. This we get by &-ing values with a mask of all ones of sufficient length. Below we use a combination of a mask and zero-extended fixed-widthbinary output formatting in calculations and result displays.

def bitwise_built_ins(width, a, b):    mask = (1 << width) - 1    print(f"""\    AND:     0b{a :0{width}b}            & 0b{b :0{width}b}            = 0b{(a & b) & mask :0{width}b}               OR:      0b{a :0{width}b}            | 0b{b :0{width}b}            = 0b{(a | b) & mask :0{width}b}               XOR:     0b{a :0{width}b}            ^ 0b{b :0{width}b}            = 0b{(a ^ b) & mask :0{width}b}               NOT:   ~ 0b{a :0{width}b}            = 0b{(~a) & mask :0{width}b}               SHIFTS          RIGHT:   0b{a :0{width}b} >> 1             = 0b{(a >> 1) & mask :0{width}b}                LEFT:    0b{a :0{width}b} << 1             = 0b{(a << 1) & mask :0{width}b}      """)def rotr(width, a, n):    "Rotate a, n times to the right"    if n < 0:        return rotl(width, a, -n)    elif n == 0:        return a    else:        mask = (1 << width) - 1        a, n = a & mask, n % width        return ((a >> n)    # top moved down                | ((a & ((1 << n) - 1))   # Bottom masked...                   << (width - n)))  # ... then moved up    def rotl(width, a, n):    "Rotate a, n times to the left"    if n < 0:        return rotr(width, a, -n)    elif n == 0:        return a    else:        mask = (1 << width) - 1        a, n = a & mask, n % width        return (((a << n) & mask)      # bottom shifted up and masked                | (a >> (width - n)))  # Top moved down      def asr(width, a, n):    "Arithmetic shift a, n times to the right. (sign preserving)."    mask, top_bit_mask = ((1 << width) - 1), 1 << (width - 1)    if n < 0:        return  (a << -n) & mask    elif n == 0:        return a    elif n >= width:        return mask if a & top_bit_mask else 0    else:        a = a & mask        if a & top_bit_mask:    # Sign bit set?            signs = (1 << n) - 1            return a >> n | (signs << width - n)        else:            return a >> n          def helper_funcs(width, a):    mask, top_bit_mask = ((1 << width) - 1), 1 << (width - 1)    aa = a | top_bit_mask  # a with top bit set    print(f"""\    ROTATIONS          RIGHT:   rotr({width}, 0b{a :0{width}b}, 1)               =       0b{rotr(width, a, 1) :0{width}b}                     rotr({width}, 0b{a :0{width}b}, 2)               =       0b{rotr(width, a, 2) :0{width}b}                     rotr({width}, 0b{a :0{width}b}, 4)               =       0b{rotr(width, a, 4) :0{width}b}                LEFT:    rotl({width}, 0b{a :0{width}b}, 1)               =       0b{rotl(width, a, 1) :0{width}b}                     rotl({width}, 0b{a :0{width}b}, 2)               =       0b{rotl(width, a, 2) :0{width}b}                     rotl({width}, 0b{a :0{width}b}, 4)               =       0b{rotl(width, a, 4) :0{width}b}            SIGN-EXTENDING ARITHMETIC SHIFT RIGHT                   asr({width}, 0b{a :0{width}b}, 1)               =      0b{asr(width, a, 1) :0{width}b}                     asr({width}, 0b{aa :0{width}b}, 1)               =      0b{asr(width, aa, 1) :0{width}b}                     asr({width}, 0b{a :0{width}b}, 2)               =      0b{asr(width, a, 2) :0{width}b}                     asr({width}, 0b{aa :0{width}b}, 2)               =      0b{asr(width, aa, 2) :0{width}b}                     asr({width}, 0b{a :0{width}b}, 4)               =      0b{asr(width, a, 4) :0{width}b}                asr({width}, 0b{aa :0{width}b}, 4)               =      0b{asr(width, aa, 4) :0{width}b} """)if __name__ == '__main__':    bitwise_built_ins(8, 27, 125)    helper_funcs(8, 27)
Output:
    AND:     0b00011011            & 0b01111101            = 0b00011001               OR:      0b00011011            | 0b01111101            = 0b01111111               XOR:     0b00011011            ^ 0b01111101            = 0b01100110               NOT:   ~ 0b00011011            = 0b11100100               SHIFTS          RIGHT:   0b00011011 >> 1             = 0b00001101                LEFT:    0b00011011 << 1             = 0b00110110          ROTATIONS          RIGHT:   rotr(8, 0b00011011, 1)               =       0b10001101                     rotr(8, 0b00011011, 2)               =       0b11000110                     rotr(8, 0b00011011, 4)               =       0b10110001                LEFT:    rotl(8, 0b00011011, 1)               =       0b00110110                     rotl(8, 0b00011011, 2)               =       0b01101100                     rotl(8, 0b00011011, 4)               =       0b10110001            SIGN-EXTENDING ARITHMETIC SHIFT RIGHT                   asr(8, 0b00011011, 1)               =      0b00001101                     asr(8, 0b10011011, 1)               =      0b11001101                     asr(8, 0b00011011, 2)               =      0b00000110                     asr(8, 0b10011011, 2)               =      0b11100110                     asr(8, 0b00011011, 4)               =      0b00000001                asr(8, 0b10011011, 4)               =      0b11111001

Python 2

def bitwise(a, b):        print 'a and b:', a & b        print 'a or b:', a | b        print 'a xor b:', a ^ b        print 'not a:', ~a        print 'a << b:', a << b # left shift        print 'a >> b:', a >> b # arithmetic right shift

Python does not have built in rotate or logical right shift operations.

Note: Newer Python versions (circa 2.4?) will automatically promote integers into "long integers" (arbitrary length, bounded by available memory). This can be noticed especially when using left shift operations. When using bitwise operations one usually wants to keep these bounded to specific sizes such as 8, 16, 32 or 64 bit widths. To do these we use the AND operator with specific values (bitmasks). For example:

# 8-bit bounded shift:x = x << n & 0xff# ditto for 16 bit:x = x << n & 0xffff# ... and 32-bit:x = x << n & 0xffffffff# ... and 64-bit:x = x << n & 0xffffffffffffffff

We can easily implement our own rotation functions. For left rotations this is down by ORing the left shifted and masked lower bits against the right shifted upper bits. For right rotations we perform the converse operations, ORing a set of right shifted lower bits against the appropriate number of left shifted upper bits.

def bitstr(n, width=None):   """return the binary representation of n as a string and      optionally zero-fill (pad) it to a given length   """   result = list()   while n:      result.append(str(n%2))      n = int(n/2)   if (width is not None) and len(result) < width:      result.extend(['0'] * (width - len(result)))   result.reverse()   return ''.join(result)def mask(n):   """Return a bitmask of length n (suitable for masking against an      int to coerce the size to a given length)   """   if n >= 0:       return 2**n - 1   else:       return 0def rol(n, rotations=1, width=8):    """Return a given number of bitwise left rotations of an integer n,       for a given bit field width.    """    rotations %= width    if rotations < 1:        return n    n &= mask(width) ## Should it be an error to truncate here?    return ((n << rotations) & mask(width)) | (n >> (width - rotations))def ror(n, rotations=1, width=8):    """Return a given number of bitwise right rotations of an integer n,       for a given bit field width.    """    rotations %= width    if rotations < 1:        return n    n &= mask(width)    return (n >> rotations) | ((n << (width - rotations)) & mask(width))

In this example we show a relatively straightforward function for converting integers into strings of bits, and another simplemask() function to create arbitrary lengths of bits against which we perform our masking operations. Also note that the implementation of these functions defaults to single bit rotations of 8-bit bytes. Additional arguments can be used to over-ride these defaults. Any case where the number of rotations modulo the width is zero represents a rotation of all bits back to their starting positions. This implementation should handle any integer number of rotations over bitfields of any valid (positive integer) length.

QB64

' no rotations and shift aritmetic are available in QB64' Bitwise operator in Qbasic and QB64'AND (operator) the bit is set when both bits are set.'EQV (operator) the bit is set when both are set or both are not set.'IMP (operator) the bit is set when both are set or both are unset or the second condition bit is set.'OR (operator) the bit is set when either bit is set.'NOT (operator) the bit is set when a bit is not set and not set when a bit is set.'XOR (operator) the bit is set when just one of the bits are set.Print "Qbasic and QB64 operators"Print " Operator        1 vs 1   1 vs 0   0 vs 0"Print "AND", 1 And 1, 1 And 0, 0 And 0Print " OR", 1 Or 1, 1 Or 0, 0 Or 0Print "XOR", 1 Xor 1, 1 Xor 0, 0 Xor 0Print "EQV", 1 Eqv 1, 1 Eqv 0, 0 Eqv 0Print "IMP", 1 Imp 1, 1 Imp 0, 0 Imp 0Print "NOT", Not 1, Not 0, Not -1, Not -2Print "QB64 operators"Dim As _Byte a, b, ca = 1: b = 1: c = 1For i = 1 To 4    Print a, b, c    Print _SHL(a, i), _SHL(b, i * 2), _SHL(c, i * 3)Nexta = 16: b = 32: c = 8For i = 1 To 4    Print a, b, c    Print _SHR(a, i), _SHR(b, i * 2), _SHR(c, i * 3)Next

Quackery

Integers in Quackery are bignums, so the bitwise left rotate wordrot64 rotates specifically the least significant 64 bits of an integer. There is no corresponding bitwise right rotate, but it is readily defined fromrot64.

  [ [] swap     64 times       [ 2 /mod         number$ rot join swap ]    drop     echo$ cr ]                                   is echobin (   n -->   )  [ 64 swap - rot64 ]                            is rrot64  (   n --> n )  [ say "first integer:   " over       echobin    say "second integer:  " dup        echobin    say "bitwise AND:     " 2dup &     echobin      say "bitwise OR:      " 2dup |     echobin    say "bitwise XOR:     " 2dup ^     echobin    say "bitwise NOT:     " over ~     echobin    say "bitwise LSHIFT:  " 2dup <<    echobin    say "bitwise RSHIFT:  " 2dup >>    echobin    say "bitwise LROTATE: " 2dup rot64 echobin    say "bitwise RROTATE: "     rrot64 echobin ] is task    ( n n -->   )hex FFFFF hex F task
Output:
first integer:   0000000000000000000000000000000000000000000011111111111111111111second integer:  0000000000000000000000000000000000000000000000000000000000001111bitwise AND:     0000000000000000000000000000000000000000000000000000000000001111bitwise OR:      0000000000000000000000000000000000000000000011111111111111111111bitwise XOR:     0000000000000000000000000000000000000000000011111111111111110000bitwise NOT:     1111111111111111111111111111111111111111111100000000000000000000bitwise LSHIFT:  0000000000000000000000000000011111111111111111111000000000000000bitwise RSHIFT:  0000000000000000000000000000000000000000000000000000000000011111bitwise LROTATE: 0000000000000000000000000000011111111111111111111000000000000000bitwise RROTATE: 1111111111111110000000000000000000000000000000000000000000011111

R

Native functions in R 3.x

# Since R 3.0.0, the base package provides bitwise operators, see ?bitwAnda <- 35b <- 42bitwAnd(a, b)bitwOr(a, b)bitwXor(a, b)bitwNot(a)bitwShiftL(a, 2)bitwShiftR(a, 2)

See alsohttps://cran.r-project.org/doc/manuals/r-release/NEWS.3.html.

Usingas.hexmode oras.octmode

a <- as.hexmode(35)b <- as.hexmode(42)as.integer(a & b)      # 34as.integer(a | b)      # 43as.integer(xor(a, b))  # 9

UsingintToBits

The logical operators in R, namely &, | and !, are designed to work on logical vectors rather than bits. It is possible to convert from integer to logical vector and back to make these work as required, e.g.

intToLogicalBits <- function(intx) as.logical(intToBits(intx))logicalBitsToInt <- function(lb) as.integer(sum((2^(0:31))[lb]))"%AND%" <- function(x, y) {   logicalBitsToInt(intToLogicalBits(x) & intToLogicalBits(y))}"%OR%" <- function(x, y) {   logicalBitsToInt(intToLogicalBits(x) | intToLogicalBits(y))}35 %AND% 42    # 3435 %OR% 42     # 42

Usingbitops package

library(bitops)bitAnd(35, 42)          # 34bitOr(35, 42)           # 43bitXor(35, 42)          # 9bitFlip(35, bitWidth=8) # 220bitShiftL(35, 1)        # 70bitShiftR(35, 1)        # 17# Note that no bit rotation is provided in this package

Racket

#lang racket(define a 255)(define b 5)(list (bitwise-and a b)      (bitwise-ior a b)      (bitwise-xor a b)      (bitwise-not a)      (arithmetic-shift a b)      ; left shift      (arithmetic-shift a (- b))) ; right shift

Output:

'(5 255 250 -256 8160 7)

Raku

(formerly Perl 6)

Works with:Rakudo version 2017.05
constant MAXINT = uint.Range.max;constant BITS = MAXINT.base(2).chars;# define rotate ops for the fun of itmulti sub infix:<⥁>(Int:D \a, Int:D \b) { :2[(a +& MAXINT).polymod(2 xx BITS-1).list.rotate(b).reverse] }multi sub infix:<⥀>(Int:D \a, Int:D \b) { :2[(a +& MAXINT).polymod(2 xx BITS-1).reverse.list.rotate(b)] }sub int-bits (Int $a, Int $b) {    say '';    say_bit "$a", $a;    say '';    say_bit "1's complement (not) $a", +^$a;    say_bit "2's complement $a", +^$a + 1;    say_bit "$a and $b", $a +& $b;    say_bit "$a or $b",  $a +| $b;    say_bit "$a xor $b", $a +^ $b;    say_bit "$a unsigned shift right $b", ($a +& MAXINT) +> $b;    say_bit "$a signed shift right $b", $a +> $b;    say_bit "$a rotate right $b", $a ⥁ $b;    say_bit "$a shift left $b", $a +< $b;    say_bit "$a rotate left $b", $a ⥀ $b;}int-bits(7,2);int-bits(-65432,31);sub say_bit ($message, $value) {    printf("%30s: %{'0' ~ BITS}b\n", $message, $value +& MAXINT);}
Output:
                             7: 0000000000000000000000000000000000000000000000000000000000000111        1's complement (not) 7: 1111111111111111111111111111111111111111111111111111111111111000              2's complement 7: 1111111111111111111111111111111111111111111111111111111111111001                       7 and 2: 0000000000000000000000000000000000000000000000000000000000000010                        7 or 2: 0000000000000000000000000000000000000000000000000000000000000111                       7 xor 2: 0000000000000000000000000000000000000000000000000000000000000101      7 unsigned shift right 2: 0000000000000000000000000000000000000000000000000000000000000001        7 signed shift right 2: 0000000000000000000000000000000000000000000000000000000000000001              7 rotate right 2: 1100000000000000000000000000000000000000000000000000000000000001                7 shift left 2: 0000000000000000000000000000000000000000000000000000000000011100               7 rotate left 2: 0000000000000000000000000000000000000000000000000000000000011100                        -65432: 1111111111111111111111111111111111111111111111110000000001101000   1's complement (not) -65432: 0000000000000000000000000000000000000000000000001111111110010111         2's complement -65432: 0000000000000000000000000000000000000000000000001111111110011000                 -65432 and 31: 0000000000000000000000000000000000000000000000000000000000001000                  -65432 or 31: 1111111111111111111111111111111111111111111111110000000001111111                 -65432 xor 31: 1111111111111111111111111111111111111111111111110000000001110111-65432 unsigned shift right 31: 0000000000000000000000000000000111111111111111111111111111111111  -65432 signed shift right 31: 1111111111111111111111111111111111111111111111111111111111111111        -65432 rotate right 31: 1111111111111110000000001101000111111111111111111111111111111111          -65432 shift left 31: 1111111111111111100000000011010000000000000000000000000000000000         -65432 rotate left 31: 1111111111111111100000000011010001111111111111111111111111111111


Rebol

Rebol [title: "Rosetta code: Bitwise operations"file:  %Bitwise_operations.r3url:    https://rosettacode.org/wiki/Bitwise_operations    needs: 3.10.0]do-test: function [code][    res: try code    case [        error?   res [res: join "error: " res/id]        integer? res [res: enbase to-binary res 2]    ]    printf [-21 " == "] reduce [form code res]]foreach test [    [10]    [2]    [10 AND 2]    [10 & 2]    [10 OR 2]    [10 | 2]    [10 XOR 2]    [10 >> 2]    [10 << 2]    [-65432]    [complement -65432]    [255]    [shift 255 -2]    [shift 255 56]    [shift/logical 255 56]][  do-test test ]
Output:
                   10 == 0000000000000000000000000000000000000000000000000000000000001010                    2 == 0000000000000000000000000000000000000000000000000000000000000010             10 AND 2 == 0000000000000000000000000000000000000000000000000000000000000010               10 & 2 == 0000000000000000000000000000000000000000000000000000000000000010              10 OR 2 == 0000000000000000000000000000000000000000000000000000000000001010               10 | 2 == 0000000000000000000000000000000000000000000000000000000000001010             10 XOR 2 == 0000000000000000000000000000000000000000000000000000000000001000              10 >> 2 == 0000000000000000000000000000000000000000000000000000000000000010              10 << 2 == 0000000000000000000000000000000000000000000000000000000000101000               -65432 == 1111111111111111111111111111111111111111111111110000000001101000    complement -65432 == 0000000000000000000000000000000000000000000000001111111110010111                  255 == 0000000000000000000000000000000000000000000000000000000011111111         shift 255 -2 == 0000000000000000000000000000000000000000000000000000000000111111         shift 255 56 == error: overflow shift/logical 255 56 == 1111111100000000000000000000000000000000000000000000000000000000

Red

Red [Source: https://github.com/vazub/rosetta-red]a: 10b: 2print [pad "a =" 10 a newlinepad "b =" 10 b newlinepad "a AND b:" 10 a and b newlinepad "a OR b:" 10 a or b newlinepad "a XOR b:" 10 a xor b newlinepad "NOT a:" 10 complement a newlinepad "a >>> b:" 10 a >>> b newlinepad "a >> b:" 10 a >> b newlinepad "a << b:" 10 a << b newline; there are no circular shift operators in Red]
Output:
a =        10 b =        2a AND b:   2a OR b:    10a XOR b:   8NOT a:     -11a >>> b:   2a >> b:    2a << b:    40

Retro

There is no predefined arithmetic shifts in Retro.

: bitwise ( ab- )  cr  over     "a = %d\n" puts  dup      "b = %d\n" puts  2over and "a and b = %d\n" puts  2over or  "a or b = %d\n" puts  2over xor "a xor b = %d\n" puts  over not "not a = %d\n" puts  2over <<  "a << b = %d\n" puts  2over >>  "a >> b = %d\n" puts  2drop ;

REXX

 ╔═══════════════════════════════════════════════════════════════════════════════════════╗ ║ Since REXX stores numbers  (indeed, all values)  as characters, it makes no sense to  ║ ║ "rotate"  a value,  since there aren't any boundaries for the value.    I.E.:  there  ║ ║ isn't any 32─bit word  "container"  or  "cell"  (for instance)  to store an integer.  ║ ║                                                                                       ║ ║ Furthermore, since REXX numbers can be arbitrary precision,  the concept of rotating  ║ ║ a number has no meaning.                                                              ║ ╚═══════════════════════════════════════════════════════════════════════════════════════╝
/*REXX program performs  bit─wise operations  on integers:   &   |   &&   ¬   «L   »R   */numeric digits 1000                              /*be able to handle ginormous integers.*/           say  center('decimal', 9)      center("value", 9)        center('bits', 50)           say  copies('─'      , 9)      copies("─"    , 9)        copies('─',    50)a = 21 ;   call show           a          ,      'A'                   /* display   A   */b =  3 ;   call show              b       ,      'B'                   /* display   B   */           call show      bAnd(a, b)      ,      'A & B'               /*  and          */           call show       bOr(a, b)      ,      'A | B'               /*   or          */           call show      bXor(a, b)      ,      'A && B'              /*  xor          */           call show      bNot(a)         ,      '¬ A'                 /*  not          */           call show   bShiftL(a, b)      ,      'A [«B]'              /* shift  left   */           call show   bShiftR(a, b)      ,      'A [»B]'              /* shirt right   */exit                                             /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/show:    say  right( arg(1), 9)  center( arg(2), 9)  right( d2b( arg(1) ), 50);     returnd2b:     return x2b( d2x( arg(1) ) ) + 0         /*some REXXes have the   D2B   BIF.    */b2d:     return x2d( b2x( arg(1) ) )             /*  "     "     "   "    B2D    "      */bNot:    return b2d( translate( d2b( arg(1) ), 10, 01) )     +0   /*+0 ≡ normalizes a #.*/bShiftL: return b2d( d2b( arg(1) ) || copies(0, arg(2) ) )   +0   /* " "      "     " " */bAnd:    return c2d( bitand( d2c( arg(1) ), d2c( arg(2) ) ) )bOr:     return c2d(  bitor( d2c( arg(1) ), d2c( arg(2) ) ) )bXor:    return c2d( bitxor( d2c( arg(1) ), d2c( arg(2) ) ) )bShiftR: $=substr(reverse(d2b(arg(1))),arg(2)+1); if $='' then $=0; return b2d(reverse($))
output:
 decimal    value                          bits───────── ───────── ──────────────────────────────────────────────────       21     A                                                  10101        3     B                                                     11        1   A & B                                                    1       23   A | B                                                10111       22  A && B                                                10110       10    ¬ A                                                  1010      168  A [«B]                                             10101000        2  A [»B]                                                   10

Ring

x = 8y = 2see "x & y - Binary AND : " + (x & y) + nl see "x | y - Binary OR : " + (x | y) + nlsee "x ^ y - Binary XOR : " + (x ^ y) +nlsee "~x - Binary Ones Complement : " + (~x) + nlsee "x << y - Binary Left Shift : " + (x << y) + nlsee "x >> y - Binary Right Shift : " + (x >> y) + nl

RISC-V Assembly

for Raspberry pi pico 2 see instructions to page risc v

 # riscv assembly raspberry pico2 rp2350# program bitwise.s# connexion putty com3/*********************************************//*           CONSTANTES                      *//********************************************//* for this file see risc-v task include a file */.include "../../constantesRiscv.inc"/*******************************************//* INITIALED DATAS                    *//*******************************************/ .dataszMessStart:         .asciz "Program riscv start.\r\n"szCariageReturn:     .asciz "\r\n"szMessReg0:          .asciz "Register s0:\r\n"szMessReg1:          .asciz "Register s1:\r\n"szMessAnd:           .asciz "And result:\r\n"szMessOr:            .asciz "Or result :\r\n"szMessXor:           .asciz "Xor result :\r\n"szMessNot:           .asciz "Not result :\r\n"szMessNeg:           .asciz "Neg result :\r\n"szMessBset:          .asciz "Set single bit result :\r\n"szMessSll:           .asciz "Shift left result :\r\n"szMessSrl:           .asciz "Shift right result :\r\n"szMessSra:           .asciz "Shift right arithmetic result :\r\n"szMessRol:           .asciz "Rotation left result :\r\n"szMessRor:           .asciz "Rotation right result :\r\n"szMessBclr:          .asciz "Clear single bit result :\r\n"szMessBext:          .asciz "Extraction single bit result :\r\n"szMessBinv:          .asciz "Inversion single bit result :\r\n"szMessBrev:          .asciz "Bit-reverse within each byte result :\r\n"szMessClz:           .asciz "Count leading zeroes result :\r\n"szMessCtz:           .asciz "Count trailing zeroes result :\r\n"szMessCpop:          .asciz "Population count result :\r\n"szMessPack:          .asciz "Pack two halfwords into one word result :\r\n"szMessPackh:         .asciz "Pack two byte into one halfword result :\r\n"szMessZip:           .asciz "Zip result :\r\n"szMessUnzip:         .asciz "Unzip result :\r\n".align 2/*******************************************/ /*  UNINITIALED DATA                    *//*******************************************/ .bss.align 2sConvArea:       .skip 24sConvBinaire:    .skip 36/**********************************************//* SECTION CODE                              *//**********************************************/.text.global mainmain:    call stdio_init_all        # général init1:                             # start loop connexion     li a0,0                    # raz argument register    call tud_cdc_n_connected   # waiting for USB connection    beqz a0,1b                 # return code = zero ?      la a0,szMessStart          # message address    call writeString           # display messagela a0,szMessReg0           # message address    call writeString           # display messageli s0,0b1100mv a0,s0call displayResult    la a0,szMessReg1           # message address    call writeString           # display messageli s1,0b1001mv a0,s1    call displayResult    la a0,szMessAnd            # and    call writeString           # display message     andi a0,s0,0b1001          # and immediat value    call displayResult    and a0,s0,s1               # register and    call displayResultandn a0,s0,s1              # register and and not    call displayResult        la a0,szMessOr             # or    call writeString           # display message    ori a0,s0,0b1001           # or immediat value    call displayResult    or a0,s0,s1                # or register    call displayResult    orn a0,s0,s1               # or and not register    call displayResultorc.b a0,s0                # OR-combine of bits within each byte. Generates a mask of nonzero bytes    call displayResult    la a0,szMessXor            # xor    call writeString           # display message    xori a0,s0,0b1001          # xor immediat value    call displayResult    xor a0,s0,s1               # xor register    call displayResultxnor a0,s0,s1              # Bitwise XOR with inverted operand. Equivalently, bitwise NOT of bitwise XOR    call displayResult        la a0,szMessNot            # not    call writeString           # display messagenot a0,s0                  # notcall displayResultla a0,szMessNeg            # negation    call writeString           # display messageneg a0,s0                  # negationcall displayResultla a0,szMessSll            # shift left    call writeString           # display message    slli a0,s0,11              # shift left immediat value    call displayResultli t0,5    sll a0,s0,t0               # shift left register    call displayResult    la a0,szMessSrl            # shift right    call writeString           # display message    srli a0,s0,1               # shift right immediat value    call displayResultli t0,5    srl a0,s0,t0               # shift right register    call displayResultla a0,szMessSra            # Shift right, arithmetic    call writeString           # display message    srai a0,s0,1               # shift right arithmetic immediat value    call displayResultli t0,5li t1,0b10000000000000001100000000000000    sra a0,t1,t0               # shift right arithmetic register    call displayResult    la a0,szMessRol            # rotation left    call writeString           # display messageli t0,5    rol a0,s0,t0               # rotation left register    call displayResult    la a0,szMessRor            # rotation right    call writeString           # display message    rori a0,s0,10              # rotation right immediat value    call displayResultli t0,5    ror a0,s0,t0               # rotation right register    call displayResultla a0,szMessBclr           # Clear single bit.    call writeString           # display message    bclri a0,s0,3              # Clear single bit. immediat value    call displayResultli t0,2    bclr a0,s0,t0              # Clear single bit. register    call displayResult    la a0,szMessBext           # Extraction single bit.    call writeString           # display message    bexti a0,s0,3              # Extraction  single bit. immediat value    call displayResultli t0,2    bext a0,s0,t0              # Extraction  single bit. register    call displayResultla a0,szMessBinv           # Inversion single bit.    call writeString           # display message    binvi a0,s0,3              # Inversion bit. immediat value    call displayResultli t0,2    binv a0,s0,t0              # Inversion single bit. register    call displayResultla a0,szMessBset           # Set single bit    call writeString           # display message    bseti a0,s0,8              # Set single bit (immediate).    call displayResultli t0,17    bset a0,s0,t0              # Set single bit    call displayResultla a0,szMessClz            # Count leading zeroes (starting from MSB, searching LSB-ward).    call writeString           # display message    clz a0,s0                  #     call displayResultDla a0,szMessCtz            # Count trailing zeroes (starting from LSB, searching MSB-ward).    call writeString           # display message    ctz a0,s0                  #     call displayResultD    la a0,szMessCpop           # Population count    call writeString           # display message    cpop a0,s0                 #     call displayResultD    la a0,szMessBrev           # Bit-reverse within each byte    call writeString           # display message    brev8 a0,s0                #     call displayResultla a0,szMessPack           # Pack two halfwords into one word    call writeString           # display messageli t0,0x1234li t1,0x5678    pack a0,t1,t0              #     call displayResultHex    la a0,szMessPackh          # Pack two halfwords into one word    call writeString           # display messageli t0,0x12li t1,0x34    packh a0,t1,t0             #     call displayResultHexla a0,szMessZip            # Interleave upper/lower half of register into odd/even bits of result    call writeString           # display message    zip s2,s0     mv a0,s2#     call displayResult    la a0,szMessUnzip          # Deinterleave odd/even bits of register into upper/lower half of result    call writeString           # display message    unzip a0,s2                #     call displayResult    call getchar100:                           # final loop    j 100b    /**********************************************//*   display binary Result                       *//**********************************************//* a0    value */.equ LGZONECONV,   20displayResult:    addi    sp, sp, -4         # reserve stack    sw      ra, 0(sp)    la a1,sConvBinaire         # conversion result address    call conversion2           # binary conversion     la a0,sConvBinaire         # message address    call writeString           # display message    la a0,szCariageReturn    call writeString100:    lw      ra, 0(sp)    addi    sp, sp, 4    ret/**********************************************//*   display Result  décimal                     *//**********************************************//* a0    value */.equ LGZONECONV,   20displayResultD:    addi    sp, sp, -4         # reserve stack    sw      ra, 0(sp)    la a1,sConvArea            # conversion result address    call conversion10           # binary conversion     la a0,sConvArea         # message address    call writeString           # display message    la a0,szCariageReturn    call writeString100:    lw      ra, 0(sp)    addi    sp, sp, 4    ret/**********************************************//*   display hexadecimal result                       *//**********************************************//* a0    value */.equ LGZONECONV,   20displayResultHex:    addi    sp, sp, -4         # reserve stack    sw      ra, 0(sp)    la a1,sConvArea            # conversion result address    call conversion16         # conversion decimal     la a0,sConvArea            # message address    call writeString           # display message    la a0,szCariageReturn    call writeString100:    lw      ra, 0(sp)    addi    sp, sp, 4    ret/************************************//*     file include  Fonctions   *//***********************************//* for this file see risc-v task include a file */.include "../../includeFunctions.s"
Program riscv start.Register s0:00000000 00000000 00000000 00001100Register s1:00000000 00000000 00000000 00001001And result:00000000 00000000 00000000 0000100000000000 00000000 00000000 0000100000000000 00000000 00000000 00000100Or result :00000000 00000000 00000000 0000110100000000 00000000 00000000 0000110111111111 11111111 11111111 1111111000000000 00000000 00000000 11111111Xor result :00000000 00000000 00000000 0000010100000000 00000000 00000000 0000010111111111 11111111 11111111 11111010Not result :11111111 11111111 11111111 11110011Neg result :11111111 11111111 11111111 11110100Shift left result :00000000 00000000 01100000 0000000000000000 00000000 00000001 10000000Shift right result :00000000 00000000 00000000 0000011000000000 00000000 00000000 00000000Shift right arithmetic result :00000000 00000000 00000000 0000011011111100 00000000 00000110 00000000Rotation left result :00000000 00000000 00000001 10000000Rotation right result :00000011 00000000 00000000 0000000001100000 00000000 00000000 00000000Clear single bit result :00000000 00000000 00000000 0000010000000000 00000000 00000000 00001000Extraction single bit result :00000000 00000000 00000000 0000000100000000 00000000 00000000 00000001Inversion single bit result :00000000 00000000 00000000 0000010000000000 00000000 00000000 00001000Set single bit result :00000000 00000000 00000001 0000110000000000 00000010 00000000 00001100Count leading zeroes result :28Count trailing zeroes result :2Population count result :2Bit-reverse within each byte result :00000000 00000000 00000000 00110000Pack two halfwords into one word result :12345678Pack two byte into one halfword result :00001234Zip result :00000000 00000000 00000000 01010000Unzip result :00000000 00000000 00000000 00001100

RLaB

In RLaB the bitwise operations are available forintegers type of numbers. For the operations below if both argumentsare integers then the result of the operation is an integer as well.

>> x = int(3);>> y = int(1);>> z = x && y; printf("0x%08x\n",z); // logical 'and'0x00000001>> z = x || y; printf("0x%08x\n",z); // logical 'or'0x00000003>> z = !x; printf("0x%08x\n",z);     // logical 'not'0xfffffffc>> i2 = int(2);>> z = x * i2; printf("0x%08x\n",z);  // left-shift is multiplication by 2 where both arguments are integers0x00000006>> z = x / i2; printf("0x%08x\n",z);  // right-shift is division by 2 where both arguments are integers0x00000001

Robotic

input string "First value"set "local1" to "input"input string "Second value"set "local2" to "input". ">>> is an arithmetic shift; >> is a logical shift"[ "a AND b = ('local1' a 'local2')"[ "a OR b = ('local1' o 'local2')"[ "a XOR b = ('local1' x 'local2')"[ "NOT a = (~'local1')"[ "a << b = ('local1' << 'local2')"[ "a >> b = ('local1' >> 'local2')"[ "a >>> b = ('local1' >>> 'local2')"end. "Bitwise rotation is not natively supported"

RPL

≪ { AND OR XOR NOT SL SR ASR RL RR } → a b ops  ≪ {} 1 ops SIZEFOR j         a →STR " " +IF j 3 ≤THEN b →STR + " " +END       ops j GET →STR 2 OVER SIZE 1 - SUB + " -> " +       a j 3 ≤ b IFT ops j GET EVAL →STR + +NEXT≫ ≫ ‘BITOPS’ STO
Output:
{ "# 355h # 113h AND -> # 111h"  "# 355h # 113h OR -> # 357h"  "# 355h # 113h XOR -> # 246h"  "# 355h NOT -> # FCAAh"  "# 355h SL -> # 6AAh"  "# 355h SR -> # 1AAh"  "# 355h ASR -> # 1AAh"  "# 355h RL -> # 6AAh"  "# 355h RR -> # 81AAh" }

Operations made with a word size set at 16 bits.

Ruby

def bitwise(a, b)  form = "%1$7s:%2$6d  %2$016b"  puts form % ["a", a]  puts form % ["b", b]  puts form % ["a and b", a & b]  puts form % ["a or b ", a | b]  puts form % ["a xor b", a ^ b]  puts form % ["not a  ", ~a]  puts form % ["a << b ", a << b]  # left shift  puts form % ["a >> b ", a >> b]  # arithmetic right shiftendbitwise(14,3)
Output:
      a:    14  0000000000001110      b:     3  0000000000000011a and b:     2  0000000000000010a or b :    15  0000000000001111a xor b:    13  0000000000001101not a  :   -15  ..11111111110001a << b :   112  0000000001110000a >> b :     1  0000000000000001

Rust

fn main() {    let a: u8 = 105;    let b: u8 = 91;    println!("a      = {:0>8b}", a);    println!("b      = {:0>8b}", b);    println!("a | b  = {:0>8b}", a | b);    println!("a & b  = {:0>8b}", a & b);    println!("a ^ b  = {:0>8b}", a ^ b);    println!("!a     = {:0>8b}", !a);    println!("a << 3 = {:0>8b}", a << 3);    println!("a >> 3 = {:0>8b}", a >> 3);}

Output:

a      = 01101001b      = 01011011a | b  = 01111011a & b  = 01001001a ^ b  = 00110010!a     = 10010110a << 3 = 01001000a >> 3 = 00001101

SAS

/* rotations are not available, but are easy to implement with the other bitwise operators */data _null_;   a=105;   b=91;   c=bxor(a,b);   d=band(a,b);   e=bor(a,b);   f=bnot(a); /* on 32 bits */   g=blshift(a,1);   h=brshift(a,1);   put _all_;run;

S-BASIC

S-BASIC does not have bitwise shift or rotate operators. The test values are taken from the 11l example.

var a, b = integera = 10b = 2print "a ="; a; tab(16); hex$(a)print "b ="; b; tab(16); hex$(b)print "a and b ="; a and b; tab(16); hex$(a and b)print "a or b  ="; a or b; tab(16); hex$(a or b)print "a xor b ="; a xor b; tab(16); hex$(a xor b)print "not a   ="; not a; tab(16); hex$(not a)end
Output:
a = 10         000Ab = 2          0002a and b = 2    0002a or b  = 10   000Aa xor b = 688  02CDnot a   =-11   FFF5

Scala

def bitwise(a: Int, b: Int) {  println("a and b: " + (a & b))  println("a or b: " + (a | b))  println("a xor b: " + (a ^ b))  println("not a: " + (~a))  println("a << b: " + (a << b)) // left shift  println("a >> b: " + (a >> b)) // arithmetic right shift  println("a >>> b: " + (a >>> b)) // unsigned right shift  println("a rot b: " + Integer.rotateLeft(a, b)) // Rotate Left  println("a rol b: " + Integer.rotateRight(a, b)) // Rotate Right}

Scheme

Works with:Scheme version R6{\displaystyle {\displaystyle ^{6}}}RS
(import (rnrs arithmetic bitwise (6)))(define (bitwise a b)  (display (bitwise-and a b))  (newline)  (display (bitwise-ior a b))  (newline)  (display (bitwise-xor a b))  (newline)  (display (bitwise-not a))  (newline)  (display (bitwise-arithmetic-shift-right a b))  (newline))(bitwise 255 5)

Output:

5255250-2567

Note: bitwise operations were also described inSRFI-60, with additional aliases (and previously discussed inSRFI-33 which remained draft).

Seed7

The typeinteger is intended for arithmetic operations.Besides arithmetic shifts, which are seen as multiplication and division by powers of two, no bitwise operations are supported.The typebin32 is intended for bit-pattern operations.Bin32 has the same internal representation as integer.That way conversions between them don't cause an overhead.Right shifting of bin32 values is done with logical shifts.

$ include "seed7_05.s7i";  include "bin32.s7i";const proc: bitwise (in integer: a, in integer: b) is func  begin    writeln("a:        " <& a  radix 2 lpad0 32);    writeln("b:        " <& b  radix 2 lpad0 32);    writeln("integer operations:");    writeln("a << b:   " <& a << b  radix 2 lpad0 32); # left shift    writeln("a >> b:   " <& a >> b  radix 2 lpad0 32); # arithmetic right shift  end func;const proc: bitwise (in bin32: a, in bin32: b) is func  begin    writeln("bin32 operations:");    writeln("a and b:  " <& a & b  radix 2 lpad0 32);    writeln("a or b:   " <& a | b  radix 2 lpad0 32);    writeln("a xor b:  " <& a >< b  radix 2 lpad0 32);    writeln("not a:    " <& ~a  radix 2 lpad0 32);    writeln("a << b:   " <& a << ord(b)  radix 2 lpad0 32);  # left shift    writeln("a >> b:   " <& a >> ord(b)  radix 2 lpad0 32);  # logical right shift    writeln("a rotL b: " <& rotLeft(a, ord(b))  radix 2 lpad0 32);  # Rotate Left    writeln("a rolR b: " <& rotRight(a, ord(b))  radix 2 lpad0 32); # Rotate Right  end func;const proc: main is func  begin    bitwise(65076, 6);    bitwise(bin32(65076), bin32(6));  end func;
Output:
a:        00000000000000001111111000110100b:        00000000000000000000000000000110integer operations:a << b:   00000000001111111000110100000000a >> b:   00000000000000000000001111111000bin32 operations:a and b:  00000000000000000000000000000100a or b:   00000000000000001111111000110110a xor b:  00000000000000001111111000110010not a:    11111111111111110000000111001011a << b:   00000000001111111000110100000000a >> b:   00000000000000000000001111111000a rotL b: 00000000001111111000110100000000a rolR b: 11010000000000000000001111111000

Sidef

func bitwise(a, b) {   say ('a and b : ',  a & b)   say ('a or b  : ',  a | b)   say ('a xor b : ',  a ^ b)   say ('not a   : ',     ~a)   say ('a << b  : ', a << b)  # left shift   say ('a >> b  : ', a >> b)  # arithmetic right shift} bitwise(14,3)
Output:
a and b : 2a or b  : 15a xor b : 13not a   : -15a << b  : 112a >> b  : 1

Simula

BEGIN   COMMENT TO MY KNOWLEDGE SIMULA DOES NOT SUPPORT BITWISE OPERATIONS SO WE MUST WRITE PROCEDURES FOR THE JOB ;   INTEGER WORDSIZE;   WORDSIZE := 32;   BEGIN      PROCEDURE TOBITS(N,B); INTEGER N; BOOLEAN ARRAY B;      BEGIN         INTEGER I,BITN;         FOR I := WORDSIZE-1 STEP -1 UNTIL 0 DO BEGIN            BITN := MOD(N,2); B(I) := BITN<>0; N := N // 2;         END;      END TOBITS;      INTEGER PROCEDURE FROMBITS(B); BOOLEAN ARRAY B;      BEGIN         INTEGER I, RESULT;         FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO             RESULT := 2 * RESULT + (IF B(I) THEN 1 ELSE 0);         FROMBITS := RESULT;      END FROMBITS;      INTEGER PROCEDURE BITOP(A,B,F);         INTEGER A,B;         PROCEDURE F IS BOOLEAN PROCEDURE F(A,B); BOOLEAN A,B;;      BEGIN         INTEGER I;         BOOLEAN ARRAY BA(0:WORDSIZE-1);         BOOLEAN ARRAY BB(0:WORDSIZE-1);         TOBITS(A,BA);         TOBITS(B,BB);         FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BA(I) := F(BA(I),BB(I));         BITOP := FROMBITS(BA);      END BITOP;      INTEGER PROCEDURE BITUOP(A,F);         INTEGER A;         PROCEDURE F IS BOOLEAN PROCEDURE F(A); BOOLEAN A;;      BEGIN         INTEGER I;         BOOLEAN ARRAY BA(0:WORDSIZE-1);         TOBITS(A,BA);         FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BA(I) := F(BA(I));         BITUOP := FROMBITS(BA);      END BITUOP;      BOOLEAN PROCEDURE OPAND(A,B); BOOLEAN A,B; OPAND := A AND B;      INTEGER PROCEDURE BITAND(A,B); INTEGER A,B; BITAND := BITOP(A,B,OPAND);      BOOLEAN PROCEDURE OPOR(A,B); BOOLEAN A,B; OPOR := A OR B;      INTEGER PROCEDURE BITOR(A,B); INTEGER A,B; BITOR := BITOP(A,B,OPOR);      BOOLEAN PROCEDURE OPXOR(A,B); BOOLEAN A,B; OPXOR := (A AND NOT B) OR (NOT A AND B);      INTEGER PROCEDURE BITXOR(A,B); INTEGER A,B; BITXOR := BITOP(A,B,OPXOR);      BOOLEAN PROCEDURE OPNOT(A); BOOLEAN A; OPNOT := NOT A;      INTEGER PROCEDURE BITNOT(A); INTEGER A; BITNOT := BITUOP(A,OPNOT);      INTEGER PROCEDURE BITSHL(A,B); INTEGER A,B;      BEGIN          IF B < 0 THEN A := BITSHR(A,-B)          ELSE WHILE B > 0 DO BEGIN A := 2 * A; B := B-1; END;          BITSHL := A;      END BITSHL;      INTEGER PROCEDURE BITSHR(A,B); INTEGER A,B;      BEGIN          IF B < 0 THEN A := BITSHL(A,-B)          ELSE WHILE B > 0 DO BEGIN A := A // 2; B := B-1; END;          BITSHR := A;      END BITSHR;      INTEGER PROCEDURE BITROTR(A,B); INTEGER A,B;      BEGIN         INTEGER I,J;         BOOLEAN ARRAY BA(0:WORDSIZE-1);         BOOLEAN ARRAY BB(0:WORDSIZE-1);         TOBITS(A,BA);         FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BEGIN            J := MOD(I + B, WORDSIZE); BB(J) := BA(I);         END;         BITROTR := FROMBITS(BB);      END BITROTR;      INTEGER PROCEDURE BITROTL(A,B); INTEGER A,B;         BITROTL := BITROTR(A,-B);      PROCEDURE BITWISE(A,B); INTEGER A,B;      BEGIN        OUTTEXT("A AND B   : "); OUTINT(BITAND(A,B),0); OUTIMAGE;        OUTTEXT("A OR B    : "); OUTINT(BITOR (A,B),0); OUTIMAGE;        OUTTEXT("A XOR B   : "); OUTINT(BITXOR(A,B),0); OUTIMAGE;        OUTTEXT("NOT A     : "); OUTINT(BITNOT(A),  0); OUTIMAGE;        OUTTEXT("A << B    : "); OUTINT(BITSHL(A,B),0); OUTIMAGE;  ! LEFT SHIFT ;        OUTTEXT("A >> B    : "); OUTINT(BITSHR(A,B),0); OUTIMAGE;  ! ARITHMETIC RIGHT SHIFT ;        OUTTEXT("A ROTL B  : "); OUTINT(BITROTL(A,B),0); OUTIMAGE;  ! ROTATE LEFT ;        OUTTEXT("A ROTR B  : "); OUTINT(BITROTR(A,B),0); OUTIMAGE;  ! ROTATE RIGHT ;      END BITWISE;            BITWISE(14,3);   END;END
Output:
A AND B   : 2A OR B    : 15A XOR B   : 13NOT A     : -15A << B    : 112A >> B    : 1A ROTL B  : 112A ROTR B  : -1073741823

Slate

[ |:a :b | inform: (a bitAnd: b) printString. inform: (a bitOr: b) printString. inform: (a bitXor: b) printString. inform: (a bitNot) printString. inform: (a << b) printString. inform: (a >> b) printString.] applyTo: {8. 12}.

Bold text

Smalltalk

Works with:GNU Smalltalk
Works with:Smalltalk/X
Works with:VisualWorks Smalltalk

SinceGNU Smalltalk by default runs without a graphical user interface, I wrote the program in that dialect. The actual methods for bitwise operations (bitAnd:, etc.) are the same in all implementations.

| testBitFunc |testBitFunc := [ :a :b |     ('%1 and %2 is %3' % { a. b. (a bitAnd: b) }) displayNl.     ('%1 or %2 is %3' % { a. b. (a bitOr: b) }) displayNl.     ('%1 xor %2 is %3' % { a. b. (a bitXor: b) }) displayNl.     ('not %1 is %2' % { a. (a bitInvert) }) displayNl.     ('%1 left shift %2 is %3' % { a. b. (a bitShift: b) }) displayNl.     ('%1 right shift %2 is %3' % { a. b. (a bitShift: (b negated)) }) displayNl. ].testBitFunc value: 16r7F value: 4 .

in addition to the above,

Works with:Smalltalk/X
(a bitClear: b) "mask out bits"(a bitAt: index) "retrieve a bit (bit-index, one-based)"(a setBit: index) "set a bit (bit-index)"(a clearBit: index) "clear a bit (bit-index)"(a invertBit: index) "invert a bit (bit index)"lowBit "find the index of the lowest one-bit; zero if none"highBit "find the index of the highest one-bit; zero if none"bitCount "count the one-bits"

Notice that all of those work on arbitrarily large integers (i.e. 1000 factorial lowBit -> 995).

SparForte

As a structured script.

#!/usr/local/bin/sparpragma annotate( summary, "bitarith" )       @( description, "Write a routine to perform a bitwise AND, OR, and XOR on" )       @( description, "two integers, a bitwise NOT on the first integer, a left" )       @( description, "shift, right shift, right arithmetic shift, left rotate," )       @( description, "and right rotate. All shifts and rotates should be done on" )       @( description, "the first integer with a shift/rotate amount of the second" )       @( description, "integer." )       @( category, "tutorials" )       @( author, "Ken O. Burtch" )       @( see_also, "http://rosettacode.org/wiki/Bitwise_operations" );pragma license( unrestricted );pragma software_model( shell_script );pragma restriction( no_external_commands );procedure bitarith is  A : constant natural := 255;  B : constant natural := 170;  X : constant natural := 128;  N : constant natural := 1;begin  put( "A and B = " ) @ (A and B); new_line;  put( "A or  B = " ) @ (A or  B); new_line;  put( "A xor B = " ) @ (A xor B); new_line;  new_line;  put( "A << B = " ) @ ( numerics.shift_left( X, N ) ); new_line;  put( "A >> B = " ) @ ( numerics.shift_right( X, N ) ); new_line;  put( "A >>> B = " ) @ ( numerics.shift_right_arithmetic( X, N ) ); new_line;  put( "A rotl B = " ) @ ( numerics.rotate_left( X, N ) ); new_line;  put( "A rotr B = " ) @ ( numerics.rotate_right( X, N ) ); new_line;end bitarith;

Standard ML

For integers, IntInfs provide bitwise operations:

fun bitwise_ints (a, b) = (  print ("a and b: " ^ IntInf.toString (IntInf.andb (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");  print ("a or b: "  ^ IntInf.toString (IntInf.orb  (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");  print ("a xor b: " ^ IntInf.toString (IntInf.xorb (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");  print ("not a: "   ^ IntInf.toString (IntInf.notb (IntInf.fromInt a                  )) ^ "\n");  print ("a lsl b: " ^ IntInf.toString (IntInf.<<   (IntInf.fromInt a, Word.fromInt b  )) ^ "\n");  (* left shift *)  print ("a asr b: " ^ IntInf.toString (IntInf.~>>  (IntInf.fromInt a, Word.fromInt b  )) ^ "\n")   (* arithmetic right shift *))

More shifts are available for words (unsigned ints):

fun bitwise_words (a, b) = (  print ("a and b: " ^ Word.fmt StringCvt.DEC (Word.andb (a, b)) ^ "\n");  print ("a or b: "  ^ Word.fmt StringCvt.DEC (Word.orb  (a, b)) ^ "\n");  print ("a xor b: " ^ Word.fmt StringCvt.DEC (Word.xorb (a, b)) ^ "\n");  print ("not a: "   ^ Word.fmt StringCvt.DEC (Word.notb a     ) ^ "\n");  print ("a lsl b: " ^ Word.fmt StringCvt.DEC (Word.<< (a, b)  ) ^ "\n");  (* left shift *)  print ("a asr b: " ^ Word.fmt StringCvt.DEC (Word.~>> (a, b) ) ^ "\n");  (* arithmetic right shift *)  print ("a asr b: " ^ Word.fmt StringCvt.DEC (Word.>> (a, b)  ) ^ "\n")   (* logical right shift *))

Stata

Stata does not have bitwise operators as of version 15.1. It's possible to use Mata functionsinbase andfrombase to convert integers to binary strings, and operate on these, but it will be much slower than native operators. William Matsuoka has written functions for thishere.

Swift

func bitwise(a: Int, b: Int) {  // All bitwise operations (including shifts)  // require both operands to be the same type  println("a AND b: \(a & b)")  println("a OR b: \(a | b)")  println("a XOR b: \(a ^ b)")  println("NOT a: \(~a)")  println("a << b: \(a << b)") // left shift  // for right shifts, if the operands are unsigned, Swift performs  // a logical shift; if signed, an arithmetic shift.  println("a >> b: \(a >> b)") // arithmetic right shift  println("a lsr b: \(Int(bitPattern: UInt(bitPattern: a) >> UInt(bitPattern: b)))") // logical right shift}bitwise(-15,3)
Output:
a AND b: 1a OR b: -13a XOR b: -14NOT a: 14a << b: -120a >> b: -2a lsr b: 2305843009213693950

SystemVerilog

Verilog, being a hardware description language, had pretty comprehensive support for bit twiddling; though rotation is still a slightly manual operation. Just to be different, I decided to use a couple of 53-bit integers:

program main;  initial begin    bit [52:0] a,b,c;    a = 53'h123476547890fe;    b = 53'h06453bdef23ca6;    c = a & b; $display("%h & %h = %h", a,b,c);    c = a | b; $display("%h | %h = %h", a,b,c);    c = a ^ b; $display("%h ^ %h = %h", a,b,c);    c = ~ a;   $display("~%h = %h", a, c);    c = a << 5; $display("%h << 5 = %h", a, c);    c = a >> 5; $display("%h >> 5 = %h", a, c);    c = { a[53-23:0], a[52-:23] }; $display("%h rotate-left 23 = %h", a, c);    c = { a[1:0], a[52:2] }; $display("%h rotate-right 2 = %h", a, c);  endendprogram

If we want to do a variable bit rotation, then we need to think in hardware terms, and build a mux structure (this could be a function, but using a module allows it to be parameterized:

module rotate(in, out, shift);  parameter BITS = 32;  parameter SHIFT_BITS = 5;  input  [BITS-1:0] in;  output [BITS-1:0] out;  input  [SHIFT_BITS-1:0] shift;  always_comb foreach (out[i]) out[i] = in[ (i+shift) % BITS ];endmodule

of course, one could always write the foreach loop inline.

Tailspin

Bytes values are infinitely extended to the left by sign extension when needed. The shift message can be used for all types of shifts, depending on the fill pattern which is infinitely repeated as needed to supply bits for vacated positions.

def a: [x f075 x];def b: [x 81 x];($a and $b) -> '$a; and $b; is $;$#10;' -> !OUT::write($a or $b) -> '$a; or $b; is $;$#10;' -> !OUT::write($a xor $b) -> '$a; xor $b; is $;$#10;' -> !OUT::write$a::inverse -> 'not $a; is $;$#10;' -> !OUT::write$a::shift&{left: 3, fill: [x 00 x]} -> '$a; shifted left 3 bits is $;$#10;' -> !OUT::write$a::shift&{left: -3, fill: [x 00 x]} -> '$a; shifted right 3 bits is $;$#10;' -> !OUT::write$a::shift&{left: -3, fill: $a(0)} -> '$a; arithmetically shifted right 3 bits is $;$#10;' -> !OUT::write$a::shift&{left: 3, fill: $a} -> '$a; rotated left 3 bits is $;$#10;' -> !OUT::write$a::shift&{left: -3, fill: $a} -> '$a; rotated right 3 bits is $;$#10;' -> !OUT::write
Output:
f075 and 81 is f001f075 or 81 is fff5f075 xor 81 is 0ff4not f075 is 0f8af075 shifted left 3 bits is 83a8f075 shifted right 3 bits is 1e0ef075 arithmetically shifted right 3 bits is fe0ef075 rotated left 3 bits is 83aff075 rotated right 3 bits is be0e

Tcl

proc bitwise {a b} {    puts [format "a and b: %#08x" [expr {$a & $b}]]    puts [format "a or b: %#08x"  [expr {$a | $b}]]    puts [format "a xor b: %#08x" [expr {$a ^ $b}]]    puts [format "not a: %#08x"   [expr {~$a}]]    puts [format "a << b: %#08x"  [expr {$a << $b}]]    puts [format "a >> b: %#08x"  [expr {$a >> $b}]]}

There are no built-in operations for arithmetic right shift or for bit rotation. Indeed, rotation precludes the use of arbitrary-width integers and can only be defined with respect to a particular width. However, we can simulate these operations for 32-bit values (requires Tcl 8.5):

proc bitwiseUnsupported {a b} {    set bits 0xFFFFFFFF    # Force interpretation as a 32-bit unsigned value    puts [format "a ArithRightShift b: %#08x" [expr {($a & $bits) >> $b}]]    puts [format "a RotateRight b: %#08x" [expr {        (($a >> $b) & ($bits >> $b)) |        (($a << (32-$b)) & ($bits ^ ($bits >> $b)))    }]]    puts [format "a RotateLeft b: %#08x" [expr {        (($a << $b) & $bits & ($bits << $b)) |        (($a >> (32-$b)) & ($bits ^ ($bits << $b)))    }]]}

TI-89 BASIC

While the TI-89 supports arbitrary-size integers, all bitwise arithmetic is performed on the rightmost 32 bits of the integers' two's complement representation.

The right shift operation fills the new leftmost bit with a copy of the old leftmost bit.

bitwise(a,b)Prgm  Local show, oldbase  Define show(label, x)=Prgm    Local r    setMode("Base","DEC")    string(x) → r    setMode("Base","HEX")    Disp label & r & " " & string(x)  EndPrgm  getMode("Base") → oldbase  show("", {a, b})  show("And ", a and b)  show("Or  ", a or b)  show("Xor ", a xor b)  show("Not ", not a)  Pause "[Press ENTER]"  show("LSh ", shift(a,b))  show("RSh ", shift(a,–b))  show("LRo ", rotate(a,b))  show("RRo ", rotate(a,–b))  setMode("Base",oldbase)EndPrgm

Uiua

a ← 10b ← 2# Experimental!¬a            # bitwise NOT°⋯ /× ⋯ ⊟ a b # bitwise AND°⋯ /∨ ⋯ ⊟ a b # bitwise OR°⋯ /≠ ⋯ ⊟ a b # bitwise XOR* a ⁿ:2 b     #  SHL⌊÷: a ⁿ:2 b   #  ASR
Output:
¯92108402

Uxntal

%\n { 0a }  %\s { 20 }  %\0 { 00 }%newline { [ LIT2 \n -Console/write ] DEO }%not { #ff EOR }%and { AND }%or  { ORA }%xor { EOR }%shl { #40 SFT SFT }%shr { SFT }%rol { #40 SFT #00 ROT ROT SFT2 ORA }%ror { SWP #00 ROT SFT2 ORA }|18 @Console/write|100#0a02DUP2 SWP ;msgs/a print/arg ;msgs/b print/argbitwiseBRK@bitwise ( a b -- );msgs/not print/str ;msgs/a print/str     ;msgs/equ print/str   OVR  not print/result;msgs/and print/label DUP2 and print/result;msgs/or  print/label DUP2 or  print/result;msgs/xor print/label DUP2 xor print/result;msgs/shl print/label DUP2 shl print/result;msgs/shr print/label DUP2 shr print/result;msgs/rol print/label DUP2 rol print/result;msgs/ror print/label      ror !print/result@print/label ( label* -- );msgs/a /str/str;msgs/b /str;msgs/equ !/str@print/byte ( byte -- )[ LIT "$ ] .Console/write DEODUP #04 SFT /nibble( >> )@print/nibble ( -- )#0f AND DUP #09 GTH #27 MUL ADD [ LIT "0 ] ADD .Console/write DEOJMP2r@print/arg ( a name* -- )/str ;msgs/equ /str( >> )@print/result ( a -- )/byte newlineJMP2r@print/str ( str* -- )LDAk .Console/write DEOINC2 LDAk ?/strPOP2 JMP2r@msgs [&a   "a   \s \0&b   "b   \s \0&equ "=   \s \0&not "NOT \s \0&and "AND \s \0&or  "OR  \s \0&xor "XOR \s \0&shl "SHL \s \0&shr "SHR \s \0&rol "ROL \s \0&ror "ROR \s \0 ]
Output:
a = $0ab = $02NOT a = $f5a AND b = $02a OR b = $0aa XOR b = $08a SHL b = $28a SHR b = $02a ROL b = $28a ROR b = $82

Vala

void testbit(int a, int b) {  print(@"input: a = $a, b = $b\n");  print(@"AND:  $a  & $b = $(a & b)\n");  print(@"OR:   $a  | $b = $(a | b)\n");  print(@"XOR:  $a  ^ $b = $(a ^ b)\n");  print(@"LSH:  $a << $b = $(a << b)\n");  print(@"RSH:  $a >> $b = $(a >> b)\n");  print(@"NOT:  ~$a = $(~a)\n");  /* there are no rotation operators in vala, but you could define your own      function to do what is required. */}void main() {   int a = 255;  int b = 2;  testbit(a,b); }
Output:
input: a = 255, b = 2AND:  255  & 2 = 2OR:   255  | 2 = 255XOR:  255  ^ 2 = 253LSH:  255 << 2 = 1020RSH:  255 >> 2 = 63NOT:  ~255 = -256

VBA

In VBA, the logical operators And, Or, Xor, Not are actually binary operators. There are also Eqv and Imp (for bitwise "equivalence" and "logical implication").

Debug.Print Hex(&HF0F0 And &HFF00)  'F000Debug.Print Hex(&HF0F0 Or &HFF00)   'FFF0Debug.Print Hex(&HF0F0 Xor &HFF00)  'FF0Debug.Print Hex(Not &HF0F0)         'F0FDebug.Print Hex(&HF0F0 Eqv &HFF00)  'F00FDebug.Print Hex(&HF0F0 Imp &HFF00)  'FF0F

The other operations in the task are not builtin, but are easy to implement. Integers are signed, and overflow throws and exception, one must take care of this.

Function MaskL(k As Integer) As Long    If k < 1 Then        MaskL = 0    ElseIf k > 31 Then        MaskL = -1    Else        MaskL = (-1) Xor (2 ^ (32 - k) - 1)    End IfEnd FunctionFunction MaskR(k As Integer) As Long    If k < 1 Then        MaskR = 0    ElseIf k > 31 Then        MaskR = -1    Else        MaskR = 2 ^ k - 1    End IfEnd FunctionFunction Bit(k As Integer) As Long    If k < 0 Or k > 31 Then        Bit = 0    ElseIf k = 31 Then        Bit = MaskL(1)    Else        Bit = 2 ^ k    End IfEnd FunctionFunction ShiftL(n As Long, k As Integer) As Long    If k = 0 Then        ShiftL = n    ElseIf k > 31 Then        ShiftL = 0    ElseIf k < 0 Then        ShiftL = ShiftR(n, -k)    Else        ShiftL = (n And MaskR(31 - k)) * 2 ^ k        If (n And Bit(31 - k)) <> 0 Then ShiftL = ShiftL Or MaskL(1)    End IfEnd FunctionFunction ShiftR(n As Long, k As Integer) As Long    If k = 0 Then        ShiftR = n    ElseIf k > 31 Then        ShiftR = 0    ElseIf k < 0 Then        ShiftR = ShiftL(n, -k)    Else        ShiftR = (n And MaskR(31)) \ 2 ^ k        If (n And MaskL(1)) <> 0 Then ShiftR = ShiftR Or Bit(31 - k)    End IfEnd FunctionFunction RotateL(n As Long, k As Integer) As Long    k = (32768 + k) Mod 32    If k = 0 Then        RotateL = n    Else        RotateL = ShiftL(n, k) Or ShiftR(n, 32 - k)    End IfEnd FunctionFunction RotateR(n As Long, k As Integer) As Long    k = (32768 + k) Mod 32    If k = 0 Then        RotateR = n    Else        RotateR = ShiftR(n, k) Or ShiftL(n, 32 - k)    End IfEnd FunctionFunction ClearBit(n As Long, k As Integer) As Long    ClearBit = n And Not Bit(k)End FunctionFunction SetBit(n As Long, k As Integer) As Long    SetBit = n Or Bit(k)End FunctionFunction SwitchBit(n As Long, k As Integer) As Long    SwitchBit = n Xor Bit(k)End FunctionFunction TestBit(n As Long, k As Integer) As Boolean    TestBit = (n And Bit(k)) <> 0End Function

Examples

Debug.Print Hex(MaskL(8))               'FF000000Debug.Print Hex(MaskR(8))               'FFDebug.Print Hex(Bit(7))                 '80Debug.Print Hex(ShiftL(-1, 8))          'FFFFFF00Debug.Print Hex(ShiftL(-1, -8))         'FFFFFFDebug.Print Hex(ShiftR(-1, 8))          'FFFFFFDebug.Print Hex(ShiftR(-1, -8))         'FFFFFF00Debug.Print Hex(RotateL(65535, 8))      'FFFF00Debug.Print Hex(RotateL(65535, -8))     'FF0000FFDebug.Print Hex(RotateR(65535, 8))      'FF0000FFDebug.Print Hex(RotateR(65535, -8))     'FFFF00

Visual Basic

Works with:Visual Basic version VB6 Standard

identical syntax as in#VBA.

Visual Basic .NET

Sub Test(a as Integer, b as Integer)   WriteLine("And " & a And b)   WriteLine("Or " & a Or b)   WriteLine("Xor " & a Xor b)   WriteLine("Not " & Not a)   WriteLine("Left Shift " & a << 2)   WriteLine("Right Shift " & a >> 2)End Sub

Visual Basic doesn't have built-in support for bitwise rotation.

Wren

In Wren all numbers are represented in 64-bit floating point form.

Although the same bitwise operators are supported as in C, the operands are converted to unsigned 32-bit integers before the operation is performed and return values of this form.

Consequently, it is not usually a good idea to try and perform bitwise operations on integer values outside this range or on non-integral values.

Given this limitation, there is no difference between logical and arithmetic left and right shift operations. Although Wren doesn't support circular shift operators, it is not difficult to write functions to perform them.

var rl = Fn.new { |x, y| x << y | x >> (32-y) }var rr = Fn.new { |x, y| x >> y | x << (32-y) }var bitwise = Fn.new { |x, y|    if (!x.isInteger || !y.isInteger || x < 0 || y < 0 || x > 0xffffffff || y > 0xffffffff) {        Fiber.abort("Operands must be in the range of a 32-bit unsigned integer")    }    System.print(" x      = %(x)")    System.print(" y      = %(y)")    System.print(" x & y  = %(x & y)")    System.print(" x | y  = %(x | y)")    System.print(" x ^ y  = %(x ^ y)")    System.print("~x      = %(~x)")    System.print(" x << y = %(x << y)")    System.print(" x >> y = %(x >> y)")    System.print(" x rl y = %(rl.call(x, y))")    System.print(" x rr y = %(rr.call(x, y))")}bitwise.call(10, 2)
Output:
 x      = 10 y      = 2 x & y  = 2 x | y  = 10 x ^ y  = 8~x      = 4294967285 x << y = 40 x >> y = 2 x rl y = 40 x rr y = 2147483650

x86 Assembly

Works with:nasm

It must be linked with the libc and "start" code; lazyly agcc bitops.o works, being bitops.o produced bynasm -f elf bitops.asm (I've chosen ELF since I am on a GNU/Linux box)

extern printfglobal mainsection .textmainmoveax, dword [_a]movecx, dword [_b]pushecxpusheaxand eax, ecxmovebx, _opandcallout_opscallget_numsoreax, ecxmovebx, _oporcallout_opscallget_numsxor     eax, ecxmovebx, _opxorcallout_opscallget_numsshreax, clmovebx, _opshrcallout_opscallget_numsshleax, clmovebx, _opshlcallout_opscallget_numsroleax, clmovebx, _oprolcallout_opscallget_numsroreax, clmovebx, _oprorcallout_opscallget_numssaleax, clmovebx, _opsalcallout_opscallget_numssareax, clmovebx, _opsarcallout_opsmoveax, dword [esp+0]noteaxpush eaxnoteaxpusheaxpush_opnotpush_nullpush_testncallprintfaddesp, 20addesp, 8retout_opspusheaxpushecxpushebxpushdword [_a]push_testcallprintfaddesp, 20retget_numsmoveax, dword [esp+4]movecx, dword [esp+8]retsection .data_add11_bdd3section .rodata_testdb'%08x %s %08x = %08x', 10, 0_testndb'%08s %s %08x = %08x', 10, 0 _opanddb'and', 0_opordb'or ', 0_opxordb'xor', 0_opshldb'shl', 0_opshrdb'shr', 0_oprordb'ror', 0_oproldb'rol', 0_opnotdb'not', 0_opsaldb'sal', 0_opsardb'sar', 0_nulldb 0end

XBasic

Works with:Windows XBasic
PROGRAM "bitwise"DECLARE FUNCTION Entry()INTERNAL FUNCTION ULONG Rotr(ULONG x, ULONG s)FUNCTION Entry()  SLONG a, b  ULONG ua, ub  a = 21  b = 3  ua = a  ub = b  PRINT  PRINT "= Decimal ="  PRINT LTRIM$(STR$(a)); " AND"; b; ":"; a & b ' also: a AND b  PRINT LTRIM$(STR$(a)); " OR"; b; ":"; a | b ' also: a OR b  PRINT LTRIM$(STR$(a)); " XOR"; b; ":"; a ^ b' also: a XOR b  PRINT "NOT"; a; ":"; ~a ' also: NOT a  PRINT LTRIM$(STR$(a)); " <<<"; b; ":"; a <<< b ' arithmetic left shift  PRINT LTRIM$(STR$(a)); " >>>"; b; ":"; a >>> b ' arithmetic right shift  PRINT LTRIM$(STR$(ua)); " <<"; b; ":"; ua << b ' bitwise left shift  PRINT LTRIM$(STR$(ua)); " >>"; b; ":"; ua >> b ' bitwise right shift  PRINT LTRIM$(STR$(ua)); " rotr"; ub; ":"; Rotr(ua, ub)  PRINT  PRINT "= Binary ="  PRINT BIN$(a); " AND "; BIN$(b); ": "; BIN$(a & b)  PRINT BIN$(a); " OR "; BIN$(b); ": "; BIN$(a | b)  PRINT BIN$(a); " XOR "; BIN$(b); ": "; BIN$(a ^ b)  PRINT "NOT "; BIN$(a); ": "; BIN$(~a)  PRINT BIN$(a); " <<< "; BIN$(b); ": "; BIN$(a <<< b)  PRINT BIN$(a); " >>> "; BIN$(b); ": "; BIN$(a >>> b)  PRINT BIN$(ua); " << "; BIN$(b); ": "; BIN$(ua << b)  PRINT BIN$(ua); " >> "; BIN$(b); ": "; BIN$(ua >> b)  PRINT BIN$(ua); " Rotr "; BIN$(ub); ": "; BIN$(Rotr(ua, ub))END FUNCTION' Rotate x to the right by s bitsFUNCTION ULONG Rotr(ULONG x, ULONG s)  RETURN (x >> s) | (x << (SIZE(ULONG) * 8 - s))END FUNCTIONEND PROGRAM
Output:
= Decimal =21 AND 3: 121 OR 3: 2321 XOR 3: 22NOT 21:-2221 <<< 3: 16821 >>> 3: 221 << 3: 16821 >> 3: 221 Rotr 3: 2684354562= Binary =10101 AND 11: 110101 OR 11: 1011110101 XOR 11: 10110NOT 10101: 1111111111111111111111111110101010101 <<< 11: 1010100010101 >>> 11: 1010101 << 11: 1010100010101 >> 11: 1010101 Rotr 11: 10100000000000000000000000000010

XLISP

(defun bitwise-operations (a b); rotate operations are not supported(print `(,a and ,b = ,(logand a b)))(print `(,a or ,b = ,(logior a b)))(print `(,a xor ,b = ,(logxor a b)))(print `(,a left shift by ,b = ,(lsh a b)))(print `(,a right shift by ,b = ,(lsh a (- b)))) ; negative second operand shifts right(print `(,a arithmetic right shift by ,b = ,(ash a (- b)))) )

XPL0

Text(0, "A and B = ");  HexOut(0, A and B);  CrLf(0);   \alternate symbol: &Text(0, "A or B = ");   HexOut(0, A or B);   CrLf(0);   \alternate symbol: !Text(0, "A xor B = ");  HexOut(0, A xor B);  CrLf(0);   \alternate symbol: |Text(0, "not A = ");    HexOut(0, not A);    CrLf(0);   \alternate symbol: ~Text(0, "A << B = ");   HexOut(0, A << B);   CrLf(0);Text(0, "A >> B logical = ");  HexOut(0, A >> B);  CrLf(0);Text(0, "A >> B arithmetic = ");  HexOut(0, A ->> B);  CrLf(0);\Rotate operations must be done by calling a function such as:func ROR(A, B); int A, B; return A>>B ! A<<(32-B);Text(0, "A ror B = ");  HexOut(0, ROR(A,B));  CrLf(0);

The reason the "!" and "|" symbols may seem reversed is that the ORoperator was introduced at a time when only uppercase characters wereavailable (such as on the Apple II). The XOR operator was added later.

Yabasic

sub formBin$(n)    return right$("00000000" + bin$(n), 8)end suba = 6 : b = 3print a, " = \t", formBin$(a)print b, " = \t", formBin$(b)print "\t--------"print "AND = \t", formBin$(and(a, b))print "OR = \t", formBin$(or(a, b))print "XOR = \t", formBin$(xor(a, b))print "NOT ", a, " =\t", formBin$(xor(255, a))
6 =000001103 =00000011--------AND =00000010OR =00000111XOR =00000101NOT 6 =11111001

Z80 Assembly

AND
LD A,&05AND &1F   ;0x05 & 0x1F
OR
LD A,&05OR &1F   ;0x05 | 0x1F
XOR
LD A,&05XOR &1F   ;0x05 ^ 0x1F
NOT
LD A,&05CPL
Left Shift (Z80 can only shift by one at a time.)
LD A,&05SLA A
Right Shift
LD A,&05SRL A
Arithmetic Right Shift
LD A,&05SRA A

Z80 has two different types of bit rotates.

  • RL/RR rotates through the carry. The state of the carry before the rotate gets rotated in, and the bit that rotates out is put into the carry.
  • RLC/RRC copies the bit "pushed out" to the carry but the old carry isn't rotated in.
LD A,&05RLALD A,&05RRALD A,&05RLCALD A,&05RRCA

zkl

No bitwise rotates. Shifts are unsigned.

(7).bitAnd(1) //-->1(8).bitOr(1)  //-->9(7).bitXor(1) //-->6(1).bitNot() : "%,x".fmt(_) //-->ff|ff|ff|ff|ff|ff|ff|fe(7).shiftRight(1) //-->3(7).shiftLeft(1)  //-->0xe(-1).toString(16) //-->ffffffffffffffff(-1).shiftRight(1).toString(16) //-->7fffffffffffffff
Retrieved from "https://rosettacode.org/wiki/Bitwise_operations?oldid=390713"
Categories:
Hidden category:
Cookies help us deliver our services. By using our services, you agree to our use of cookies.

[8]ページ先頭

©2009-2025 Movatter.jp